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Abstract: High-grade gliomas (HGGs) and glioblastoma multiforme (GBM) are characterized by a
heterogeneous and aggressive population of tissue-infiltrating cells that promote both destructive
tissue remodeling and aberrant vascularization of the brain. The formation of defective and perme-
able blood vessels and microchannels and destructive tissue remodeling prevent efficient vascular
delivery of pharmacological agents to tumor cells and are the significant reason why therapeutic
chemotherapy and immunotherapy intervention are primarily ineffective. Vessel-forming endothelial
cells and microchannel-forming glial cells that recapitulate vascular mimicry have both infiltration
and destructive remodeling tissue capacities. The transmembrane protein TMEM230 (C20orf30) is a
master regulator of infiltration, sprouting of endothelial cells, and microchannel formation of glial
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and phagocytic cells. A high level of TMEM230 expression was identified in patients with HGG, GBM,
and U87-MG cells. In this study, we identified candidate genes and molecular pathways that support
that aberrantly elevated levels of TMEM230 play an important role in regulating genes associated
with the initial stages of cell infiltration and blood vessel and microchannel (also referred to as tumor
microtubule) formation in the progression from low-grade to high-grade gliomas. As TMEM230
regulates infiltration, vascularization, and tissue destruction capacities of diverse cell types in the
brain, TMEM230 is a promising cancer target for heterogeneous HGG tumors.

Keywords: angiogenesis; vascular mimicry; metalloproteinases; vesicles; endoplasmic reticulum;
TMEM230 (C20orf30); Golgi complex; U87-MG; glycoproteins; endothelial cells; high-grade diffuse
infiltrating gliomas; astrocytoma; microchannels; tumor microtubules; heparinase; heparan sulfate
proteoglycans; RNASET2

1. Introduction

Glial cells provide physical and chemical support for the homeostasis of the extra-
cellular compartment of neural tissue through direct contacts and the secretion of soluble
factors, vesicles, and insoluble and substrate-forming scaffolds [1]. Following injury, glial
cells of the central nervous system promote tissue remodeling by microchanneling, new
blood vessel formation, and scar formation, processes associated with normal wound
healing [2–4]. Microchannel lumen structures, besides promoting passive permeability
and the circulation of oxygen and nutrients, also allow for the diffusion of wound healing
and angiogenesis-promoting factors (Figure 1). In wound healing, in addition to glial cells,
phagocytic cells, such as monocytes and macrophages, also promote microchanneling.
Likely, microchannels also provide a “path” that allow sprouting cells, such as endothelial
cells, to migrate and form new blood vessels.

In neural disease or tumor development, the aberrant expression and secretion of glial
and phagocytic cell factors result in destructive tissue remodeling and loss of normal blood
vessel structure, formation, and function. Microchannels also promote destructive tissue re-
modeling by forming lumen and scars. The destruction of blood vessels and the formation
of microchannels and scar tissue promote the loss of normal vascular activities and drug
delivery for cancer treatment. We previously demonstrated that the transmembrane protein
TMEM230 regulates both tissue vascularization by inducing endothelial cell sprouting
and vessel formation and vascular mimicry by regulating glial- and macrophage-cell-
generating microchannels [5]. TMEM230 is an evolutionarily conserved multifunctional
protein expressed in various cell types such as tubule-forming glandular cells and endothe-
lial cells [5,6]. TMEM230 has both intracellular and extracellular trafficking and secretion
activities. For instance, secreted factors and vesicles from U87-MG cells (a glial cell line
model of glioblastoma multiforme, GBM) expressing TMEM230 have the capacity to pro-
mote endothelial cell sprouting and proliferation. TMEM230 promotes the intracellular and
extracellular trafficking of the signaling factors of angiogenesis by regulating endothelial
tip- and stalk-cell formation [6]. Sustained over-expression of TMEM230 in endothelial cells
also promoted loss of normal blood vessel structure and function by inducing loss of cell-
to-cell contacts [6]. Recently, we demonstrated that TMEM230 induces vascular mimicry by
secretion of glial and macrophage cellular proteins and glycan-digesting enzymes and gly-
coproteins that have microchannel- and scar-forming capacity [5]. The addition of secreted
factors generated from glial cells in which TMEM230 expression was upregulated to human
umbilical vein endothelial cell (HUVEC) cultures resulted in endothelial cell sprouting and
blood-vessel-like structure formation. Collectively, our previous studies have supported
that expression of TMEM230 promotes the infiltration of various cell types [5], including
microglia, macrophages, endothelial cells, and immune cells.
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glycan scaffolds and other components of the tissue. Bona fide tubules are lumen containing 
structures that are supported by a wall of cells that have cell-to-cell or cell-to-substratum contacts. 
In glial tumor formation, microchannels are often referred to as tumor “microtubules”. In contrast 
to bona fide cell-lined tubules, tumor microchannels/microtubules are not cell supported structures 
but are supported instead by scaffolds or extracellular matrix of the tissue in which they are 
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that are physically unstable and transient, depending on environmental forces that induce tissue 
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Our research originally identified TMEM230 as essential to maintain normal blood 
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developing embryos. Aberrantly high levels of TMEM230 resulted in the 
hypervascularization of embryos due to the generation of permeable and highly invasive 
blood vessels and disorganized infiltration of endothelial cells. These characteristic 
features of highly vascularized tissue and defective blood vessels are associated with 
aggressive gliomas such as glioblastoma multiforme and high-grade oligodendroglioma. 
An aggressive tumor property also observed in GBM and HGG-ODG is the destructive 
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Figure 1. Comparison of blood vessel (top) and vascular mimicry promoting microchannel lumen
structures (bottom) generated by epithelial or glial cells, respectively. Microchannels are generated
by phagocytic cells, such as macrophages or glial cells, that secrete enzymes that digest protein
and glycan scaffolds and other components of the tissue. Bona fide tubules are lumen containing
structures that are supported by a wall of cells that have cell-to-cell or cell-to-substratum contacts. In
glial tumor formation, microchannels are often referred to as tumor “microtubules”. In contrast to
bona fide cell-lined tubules, tumor microchannels/microtubules are not cell supported structures but
are supported instead by scaffolds or extracellular matrix of the tissue in which they are generated.
Therefore, scaffold supported microchannels/microtubules consist of luminal 3D “space” that are
physically unstable and transient, depending on environmental forces that induce tissue compression.

TMEM230 regulates the trafficking of blood-vessel-forming signaling factors in en-
dothelial cells and the extracellular secretion of tissue-digesting enzymes in microchannel-
forming (mimicking vasculogenesis) glial and phagocytic cells. We therefore hypothesized
that the destructive tissue remodeling associated with HGG and GBM was due to the
contribution of various cell types, including endothelial, glial, and macrophage cells that
express elevated levels of TMEM230. High-grade gliomas and glioblastoma are highly
aggressive tumors and appear heterogeneous cellularly and functionally. This hetero-
geneity contributes to variability in destructive neural tissue remodeling, aberrant blood
vessel formation, and response to conventional and state-of-the-art anti-cancer therapies in
patients [7].

As HGG and GBM are associated with highly infiltrating cells, we propose that HGG
and GBM cell heterogeneity may be due to aberrant overexpression of TMEM230 in various
cell types with infiltration and vessel and microchannel formation capacity.

Progress in glioma research would greatly benefit by understanding which genes,
molecular pathways, and diverse cell types are regulated by TMEM230 and contribute to
tissue infiltration, de novo formation of blood vessels, vascular mimicry, and microchannel
formation in highly vascularized tumors such as glioblastoma multiforme and high-grade
oligodendroglioma (ODG). Research also supports that low-grade oligodendrogliomas
gradually become more aggressive over time and progress to high-grade gliomas [8–10]. If
this tumor progression model is valid, and aberrant elevated levels of TMEM230 promote
aggressive tumor development by modulating the infiltrating properties of diverse types,
TMEM230 may represent a significant target for cancer therapeutic research.

GBM and HGG are the most aggressive tumors originating in the brain, with histopatho-
logic features that include disorganized and highly permeable blood vessels and extensive
cellular processes/projections and cells that infiltrate into the brain parenchyma and tis-
sue [11–14]. These invasive cells and their processes are also associated with contact and
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the extensive remodeling capacity of existing blood vessels. As previously mentioned, the
infiltration of cells and their cellular projections also allow new blood vessels to form by
providing microchannels for sprouting endothelial cells to migrate. Known targets for anti-
angiogenic therapies provide minimal or no effect in the overall survival of 12 to 15 months
following diagnosis in patients with GBM [7,15–17]. A likely cause of the inability to treat
GMB is that aberrantly formed blood vessels and extensive microchannel formation con-
tribute to highly permeable “leaky” vasculature of the brain, which results in intermittent
blood flow and the inability of the cardiovascular system to effectively direct therapeutic
agents to tumor cells. Limited research into the role of vascular mimicry in HGG/GMB
development greatly inhibits the identification of novel genes and molecular pathways that
promote destructive tissue remodeling by microchannel-forming tissue-digesting enzymes
and factors that regulate tissue digesting enzymes.

Identifying novel targets for tumor-induced angiogenesis and vascular mimicry there-
fore remains an important goal for developing effective treatments for highly vascularized
tumors such as GBM or high-grade ODG generated by diverse infiltrating cells. Character-
izing the interactions of endothelial, glial, and macrophage cells in HGG cells may provide a
deeper understanding of why it is difficult to identify anti-cancer agents for treating tumors
with heterogeneous cell types. We previously identified TMEM230 as a master regulator
of the sprouting of endothelial cells in vertebrate early development [5]. Additionally, we
demonstrated that TMEM230 promotes vascular mimicry, a process generated by differ-
ent cell types with microchannel formation capacity [2,5]. Microchannels formed during
tissue wound healing are different from blood vessels formed in angiogenesis (Figure 1).
Microchannels differ with bona fide blood vessels in that they are not surrounded by a
“wall” of cells but are lumen structures that are supported instead by the scaffolds or matrix
of the tissue [18]. Therefore, the lumen permeability of microchannels is not regulated at
the cellular level, allowing the unregulated diffusion and permeability of diverse factors
into the tissue mass.

2. Results
2.1. Transmembrane Protein TMEM230 Expression Is Necessary for Endothelial and Glial Cell
Adhesion, Sprouting, Migration, and Infiltration

Our research originally identified TMEM230 as essential to maintain normal blood
function through its role in regulating endothelial cell-to-cell substratum adhesion and
therefore the structural integrity of blood vessels and blood vessel impermeability. These
activities were essential to promote proper blood vessel network formation and blood
vessel renormalization in the early development of zebrafish. Ablation of the expres-
sion TMEM230 in zebrafish showed that dorsal endothelial cells lost the ability to sprout,
migrate, and maintain normal cell-to-cell contacts, resulting in vascular insufficiency in
developing embryos. Aberrantly high levels of TMEM230 resulted in the hypervascular-
ization of embryos due to the generation of permeable and highly invasive blood vessels
and disorganized infiltration of endothelial cells. These characteristic features of highly
vascularized tissue and defective blood vessels are associated with aggressive gliomas
such as glioblastoma multiforme and high-grade oligodendroglioma. An aggressive tumor
property also observed in GBM and HGG-ODG is the destructive remodeling of neural
tissue and neural parenchyma [19]. Oligodendrogliomas are associated with infiltrating
oligodendrocytes or glial precursor cells and may, like other types of infiltrating gliomas,
such as GBM, invade around the endothelial cells of the blood vessels of the brain. This
results in the displacement, remodeling, or destruction of blood vessels. The infiltration and
displacement of endothelial cells was previously observed by our group to be regulated by
TMEM230 in U87-MG cells (Figure 2).

Like the behavior of TMEM230 in HUVECs, the expression of TMEM230 in 2D and
3D cell cultures was found necessary to maintain the cell morphology, viability, and mi-
crochanneling of U87-MG glial cells (Figures 2 and 3). TMEM230 expression was shown to
be necessary for U87-MG substratum attachment and survival capacity by the observation
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that when TMEM230 was downregulated (shTMEM230+eGFP), U87-MG lost normal cell
morphology and maintenance of cellular cytoplasmic-like invadopodium and projections
and detached in 2D adherent cultures (Figure 3). The role of TMEM230 in U87-MG cells was
similarly observed in endothelial cells in in vitro and in vivo assays, in which the ablation
of TMEM230 promoted loss of normal cell morphology and survival.
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Figure 2. Endogenous TMEM230-promoted U87-MG (shSCR+eGFP control cells) infiltration, dis-
ruption, and displacement of human umbilical vein endothelial cells (HUVECs) in co-culture assays.
Representative images of U87 shSCR+eGFP-expressing cells plated directly on top of confluent
HUVECs at day 9. U87 control cells expressing endogenous TMEM230 infiltrate into the confluent
mass of HUVECs (see red circle), a behavior that is associated with the first step of intussusceptive
induced blood vessel sprouting, branching, and infiltration of high-grade glioma or glioblastoma
multiforme tumors. U87-MG cells in which TMEM230 expression was ablated displayed inability for
cell anchorage and endothelial cell contact.
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Figure 3. Downregulation of endogenous TMEM230 was sufficient to promote loss of U87-MG
substratum adhesion capacity and survival. U87 control (shSCR+eGFP, panels 1–6) and U87 cells in
which TMEM230 was constitutively downregulated (shTMEM230+eGFP, panels 7–12) were cultured
in 2D conditions. When TMEM230 was downregulated (shTMEM230+eGFP, panels 7–12), U87-
MG lost normal cell morphology and cellular cytoplasmic-like invadopodium and projections and
detached from the culture plates (panels 7–12), Equal numbers of control cells and cells in which
TMEM230 was downregulated were plated. “P” is passage number, where each passage was every
3 days. Panels 1, 3, 5, 7, 9 and 11: lower magnifications, 60 µm; Panels 2, 4, 6, 8, 10 and 12: higher
magnifications, 15 µm.
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2.2. Endogenous Expression of TMEM230 Promotes “Tunneling”, Microchannel Formation,
Extracellular Matrix Infiltration, and Vascular Mimicry

The loss of the structural morphology of glial cells and the extracellular adhesion
of cells to the substratum was likely due to the inability to maintain the trafficking and
renewal of intracellular scaffolds and the secretion of scaffold components onto substratum,
a function regulated by the Golgi apparatus. When grown in Matrigel culture conditions,
U87-MG cells in which TMEM230 was downregulated (shTMEM230+eGFP), compared to
control cells (shSCR+eGFP), lost the ability to migrate and form microchannels and lumen,
supporting the essential role of scaffolds in cell morphology, movement, and the secretion
of extracellular matrix and scaffold-digesting enzymes (Figure 4, 2 panels on the left). This
behavior was originally observed in HUVECs when TMEM230 was downregulated or
when HUVECs were cultured in Matrigel with conditioned media obtained from 3-day
cultures of U87 control (shSCR+eGFP) and U87 in which TMEM230 was downregulated
(shTMEM230+eGFP) (Figure 4, bright field image panels on the right).
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Figure 4. Endogenous expression of TMEM230-promoted U87-MG migration, “tunneling”, and mi-
crochannel structure formation, recapitulating extracellular matrix infiltration and vascular mimicry.
(Left, 1st panel): representative 3D bodies and lumen structures generated by U87 control cells
expressing endogenous TMEM230 and eGFP reporter genes (shSCR+eGFP). Cells cultured in Ma-
trigel at 48 h displayed microchanneling, cell sprouting, collective cell movement, infiltration, and
invasion capacity. (Left, 2nd panel): U87 cells in which endogenous TMEM230 was downregulated
(shTMEM230+eGFP) did not generate 3D bodies and microchannel structures of significant size,
in agreement with TMEM230 being required for cell growth, migration, and survival. (Left, 3rd
panel): HUVECs treated with conditioned media obtained from U87-MG cells expressing endogenous
TMEM230 promoted angiogenic and cell infiltration behavior. HUVECs cultured in Matrigel with
conditioned media obtained from 3-day cultures of U87 in which TMEM230 was downregulated
(shTMEM230+eGFP) did not generate microchannel structures (4th panel).

2.3. High Levels of Transmembrane Protein TMEM230 Are Associated with Lower Survivability in
Patients with High-Grade Oligodendroglioma

Research supports that gliomas such as low-grade ODG gradually become more
aggressive over time [20]. Aggressiveness may be due to the destructive remodeling of
tissue by infiltrating glial cells and the generation of aberrantly formed defective blood
vessels and microchanneling, leading to the inability to deliver and target tumor cells in
neural tissue [21]. To evaluate whether the tumor grade progression model (i.e., progression
from LGG to HGG) was associated with aberrantly elevated levels of TMEM230 expression,
open-access mRNA sequencing datasets were analyzed from patients with low-grade
glioma (LGG), patients with high-grade glioma (HGG), and patients with glioblastoma
multiforme (GBM). Approximately 200 patients with ODG and a cohort of 172 patient
samples with GBM from The Cancer Genome Atlas (TCGA) RNA sequencing (RNAseq)
database were analyzed for high and low TMEM230 expression levels (https://www.cancer.
gov/ccg/research/genome-sequencing/tcga) accessed on 1 December 2023. Analyses were
performed using the TCGA2STAT R Package, as previously described [5]. Expression data
were used to determine whether TMEM230 was also differentially expressed in glial tumor
tissue cells from patients with low- or high-grade ODG or GBM (Figures 5 and 6 and

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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Supplementary Table S1). Supplementary Table S1 lists genes differentially expressed
in patients with LLG and HGG oligodendroglioma and patients with GBM (high-grade)
correlated with high and low TMEM230 expression.
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Figure 5. Expression level of TMEM230 in oligodendroglioma and GBM. Glioblastoma multiforme
tumors showed significantly elevated level of TMEM230 mRNA compared to oligodendroglioma
(unpaired t-test p < 0.0001).
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Figure 6. Expression of TMEM230 in low-grade (LGG) and high-grade (HGG) gliomas analyzed
from The Cancer Genome Atlas. Kaplan–Meier survival analysis correlated poor prognosis with high
TMEM230 expression level. The vertical axis is the probability of the patient surviving, and the horizontal
axis is the number of days. The values are expressed in log2 of the number of normalized reads.

Patient-derived tumor gene expression analyses supported that TMEM230 has prog-
nostic value as a tumor marker for aggressive HGG-ODG since a higher level of TMEM230
was associated with lower patient survival (Figures 5 and 6) and worse prognosis. A higher
percentage of patients died more rapidly compared to patients with lower expression of
TMEM230. High expression of TMEM230 was therefore associated with low survivability
for patients with HGG-ODG (Figure 6). Patients with GBM expressed the highest levels of
TMEM230 (Figure 5) and the lowest survivability (Figure 6) when compared to patients
with LGG or HGG oligodendroglioma. Even the lowest levels of TMEM230 in GBM corre-
sponded to the high levels of HGG oligodendrogliomas. As the TMEM230 expression of
HGG oligodendroglioma corresponded with low survivability for patients, not surprisingly,
low survival was also correlated with GBM. Therefore, no correlation could be generated
with patient survival using differential expression of TMEM230 in GBM (p-value 0.8494,
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Figure 6) as almost all patients with GBM expressed very high levels of TMEM230 and
almost all patients had low survival after 4 years (1500 days). This supports that the low
levels of TMEM230 in patients with GBM were not low enough to be protective against
high patient mortality.

Collectively, patient-derived tumor expression analysis supported that a high level
of TMEM230 was associated with high-grade infiltrating and more aggressive gliomas
(in terms of patient survival and tumor grade). As elevated TMEM230 expression was a
prognostic marker for HGG, we investigated genes and pathways that were differentially
expressed in patient tumors when TMEM230 was also differentially expressed to determine
why high levels of TMEM230 are not protective against, or why high TMEM230 may
promote, low survivability.

Of interest was to determine which genes and pathways may be promoted by elevated
levels of TMEM230 in the progression from low- to high-grade gliomas and whether these
genes and pathways were associated with angiogenesis or microchannel formation.

Figures 5 and 6 support that in GBM no correlation exists between patient survival
and high and low expression of TMEM230. As GBM has predominantly higher levels of
TMEM230 compared to both LGG and HGG oligodendroglioma, this suggests that even
low TMEM230 expression in GBM is sufficiently high to induce high patient mortality.

2.4. Candidate Pathways Regulated by TMEM230 in HGG and GBM

The cell assays in Figure 4 supported that TMEM230 had an essential role in microchan-
nel formation by regulating the intracellular trafficking and secretion of scaffold-digesting
enzymes, such as metalloproteinases. The endoplasmic reticulum and Golgi complex are
the hub of endomembrane trafficking and secretion, powered by motor proteins [22–24]. In
addition to microchannel formation, the intracellular trafficking and secretion of scaffold-
digesting enzymes, such as metalloproteinases, are also essential in angiogenesis. To evalu-
ate whether TMEM230 is a regulator of the endomembrane system, candidate genes and
pathways regulated or co-regulated with TMEM230 expression in ODG and GBM tumors
were analyzed (Supplementary Tables S2–S7 and Figure 7). All genes that had significant
differential expression with a p-value adjusted to ≤0.05 when TMEM230 was also differ-
entially expressed (p-value adjusted to ≤0.05) were analyzed (Supplementary Table S1).
Gene ontology and biological pathways were then assessed for the genes differentially
expressed using the False Discovery Rate method.

In support of the functional cellular analysis (Figure 4), high expression of TMEM230
was significantly associated with genes regulating endomembrane end-product synthesis or
trafficking in the organelles, endoplasmic reticulum (ER), and Golgi apparatus as indicated
by predominant upregulation of proteoglycans and glycosylation genes (Supplementary
Table S2). N-glycosylation is a process that occurs in the endoplasmic reticulum (ER) and
Golgi body. Initial synthesis of precursor molecules occurs in the ER, with subsequent
processing occurring in the Golgi complex. The expression of these organelle genes and
genes of the endocytic vesicle membrane supports that TMEM230 regulates endomembrane
trafficking and secretion.

In support that TMEM230 regulates the endomembrane system, genes associated with
factors for vesicle trafficking and secretion were identified (Supplementary Table S3). The
upregulation of metalloproteinases (such as A Disintegrin and Metalloproteinase (ADAMs)
and Matrix Metalloproteinases (MMPs), in bold in Supplementary Table S3) and phagosome
genes supports that TMEM230 directly regulates microchannel formation by secretion of
scaffold-digesting enzymes. The trafficking and secretion of these enzymes are powered by
motor proteins, essential in the movement of the intracellular and extracellular trafficking
of cargo (Supplementary Table S3). Phagosomes are vesicles of the endomembrane system
formed around the material that enters a cell by phagocytosis.
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ODG. High levels of TMEM230 in ODG were found to be associated with the upregulation 
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Figure 7. Diagram describing the endomembrane cellular functions of TMEM230 in endoplasmic
reticulum and Golgi-dependent intracellular trafficking and secretion of scaffold-digesting enzymes
and glycoprotein processing in angiogenesis. The direction of red and dark green arrows corresponds
to the retrograde and anterograde transport directions, respectively. Yellow stars correspond to newly
synthetized and transported proteins through the endoplasmic reticulum and Golgi complex. Part of
the figure was created by Biorender.com (see Supplementary Tables S2 and S3).

Collectively, the pathways and genes uncovered supported that TMEM230 has a role
in the shuttling and secretion of microchannel-forming metalloproteinases, ADAMs and
MMPs, and phagosomes. The Golgi complex, combined with the endoplasmic reticulum, is
the hub of all cargo intracellular and extracellular trafficking and secretion (Figure 7) [22–24].
The motor-protein-dependent cargo trafficking of intracellular and extracellular factors,
membrane components, and vesicles is dependent on their physical interactions with cy-
toskeletal scaffolds. In turn, cytoskeletal scaffold renewal and maintenance are dependent
on endomembrane trafficking. In addition to regulating secretion for microchannel for-
mation, TMEM230 is also likely essential in maintaining or modulating cell polarity, 3D
tissue and cell structure and function, cell-to-cell contacts, cell-to-substrate adhesion, and
cell motility, as observed in Figure 3 [25,26]. Additionally, cargo trafficking is essential in
motor-protein-dependent cytoskeletal remodeling for generating extracellular projections
and processes for cell sprouting and infiltration into tissue (Figures 3 and 7) [25–28].

Cell functional assays using U87-MG cells support that TMEM230 induced microchan-
nel formation by upregulating the endosome system of glial cells, specifically Golgi com-
plex activity, indicated by the upregulation of proteoglycans and glycosylation activity.
Microchannel formation is a biological process that recapitulates vascular mimicry and
angiogenesis by glial or macrophage cells. Similarly, endogenous TMEM230 expression
was shown to induce cell sprouting, migration, and blood vessel formation in HUVECs
(Figure 4). As terminal glycosylation of glycoproteins occurs in the Golgi apparatus and
is necessary for endothelial sprouting and tissue infiltration, we investigated whether
TMEM230 also regulates glycoprotein expression in infiltrating ODG. High levels of
TMEM230 in ODG were found to be associated with the upregulation of glycoproteins and
angiogenesis-associated genes (Supplementary Table S4 and Figures 8 and 9). This sug-
gested that high expression of TMEM230 promoted glycoprotein-associated angiogenesis
in highly vascularized infiltrating gliomas.
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Figure 9. Summary of candidate cellular functions associated with upregulation of TMEM230
in HGG oligodendroglioma and GBM. Collectively, our results support that TMEM230 promotes
dynamic interaction of glial secreting cells with endothelial cells, resulting in blood vessel remodeling
and microchannel formation. High-grade gliomas (HGG) and glioblastoma multiforme (GBM) are
characterized by a heterogeneous and aggressive population of tissue-infiltrating phagocytic cells that
promote both destructive tissue remodeling and aberrant vascularization of the brain by secretion
of metalloproteinases or ribonucleases, such as RNASET2. Formation of defective and permeable
blood vessels and microchannels and destructive tissue remodeling prevent vascular delivery of
pharmacological agents to tumor cells and are a significant reason why therapeutic chemotherapy
and immunotherapy intervention are primarily ineffective. Yellow arrows, glial and macrophage
cells secrete pro-angiogenic factors that induce blood vessel remodeling, sprouting, and branching.
Red arrows, glial and macrophage cells secrete factors that promote endothelial cell proliferation and
cell infiltration. Black arrows, glial and macrophage cells secrete scaffold degrading enzymes such as
heparanase that cleaves heparan sulfate proteoglycans, a major matrix component of blood vessels.

As a very large number of genes (734 glycoprotein genes and 46 genes associated with
angiogenesis (Supplementary Table S4)) were found to be modulated with the upregulation
of TMEM230 expression in ODG, to identify the most significantly modulated glycoproteins
and genes in angiogenesis, genes were selected based on a more stringent adjusted p-value
(<1 × 10−5) and an absolute log2 fold change of >2, as shown in Supplementary Table S5.

As noted previously, patients with GBM expressed the highest levels of TMEM230
(Figure 5) and were associated with lowest survivability (Figure 6) when compared to
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patients with ODG. No correlation was observed between patient survival and high and
low expression of TMEM230 in GBM (Kaplan–Meier, p-value 0.8494; Figure 6). Similarly,
most glycoproteins and genes associated with angiogenesis displayed no fold change in
expression or were correlated with a fold change associated with an adjusted p-value with
no significance, suggesting that TMEM230 had lost the ability to regulate these genes in
GBM (Supplementary Table S6).

We hypothesize that any level of TMEM230 expressed in GBM constitutively main-
tained these genes in an elevated state of expression compared to ODG. This is supported
by the observation that glycoproteins and genes associated with angiogenesis were ex-
pressed at higher levels in patients with GBM compared to ODG (see base mean expression
levels, Supplementary Table S7). The base mean expression levels of these genes were 10
to 60 times higher in GBM with respect to LGG, supporting that even the low levels of
TMEM230 in GBM maintains elevated levels of Golgi complex (indicated by glycoprotein
expression) and angiogenesis activities.

Our results supported that endomembrane and secretion activities were driven by
TMEM230 and that these activities were aberrantly elevated in GBM and ODG in which
TMEM230 was upregulated and were associated with lower survivability. We hypothe-
sized that elevated levels of TMEM230 drive both glioma (or macrophage) cell infiltration
through microchannel formation and endothelial cell sprouting for blood vessel formation
(Figures 8 and 9). High-grade gliomas (ODG or GBM) are characterized by heteroge-
nous and aggressive populations of tissue-infiltrating cells that promote both destructive
tissue remodeling and aberrant vascularization of the brain. Our results may support
that TMEM230 likely regulates various cell types in heterogeneous infiltrating gliomas
by modulating microchannel-forming glial cells and blood-vessel-forming endothelial
cells and these activities likely overlap. That is, microchannels may directly interact and
promote aberrant blood vessel formation by allowing the diffusion of proangiogenic factors
(Figure 9). In support of this, our research showed that microchannel-forming glial cells,
physically contact endothelial cells and promote altered behavior in endothelial cells and
blood vessels (see Figure 2).

In addition, the formation of defective and permeable blood vessels and microchannels
and destructive tissue remodeling may prevent the vascular delivery of pharmacological
agents to tumor cells and represent the main reason why therapeutic chemotherapy and
immunotherapy intervention are ineffective.

2.5. Astrocytoma Patient Data Set Analysis

Our hypothesis was that high-grade glioma behavior was due to the aggressive in-
filtration of brain tissue associated with blood-vessel- and microchannel-forming cells.
Determining whether other glioma cell types, such as astrocytoma, have similar path-
ways modulated with TMEM230 expression levels would provide further evidence that
TMEM230 may be a cancer target for glioma treatment. We performed similar statistical
analyses using the transcriptomic data of astrocytoma patients. Astrocytomas are the
second most common gliomas and are associated with extreme infiltration, making sur-
gical removal nearly impossible. Prognosis for grade 4 astrocytoma (grade IV GBM) is
3 years or less [8–10]. TMEM230 was significantly differentially expressed between LGG
astrocytoma compared to HGG astrocytoma (a base mean expression of 1872.54 in LGG
tumors, and a log2 fold change of 0.695271080072909 associated with an adjusted p-value of
9.14930075327835 × 10−74). The genes and pathways identified regulating infiltration and
microchanneling that were modulated with TMEM230 expression were similarly identified
in astrocytoma as they were for ODG (Supplementary Tables S8–S10).

The genes and pathways identified as being regulated by TMEM230 were supported
by the astrocytoma cell functional assays (Figure 10). As for U87-MG cells, infiltration
and microchanneling were inhibited with the ablation of TMEM230 in astrocytoma cells
(Figure 10).
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downregulated (shTMEM230+eGFP) did not generate 3D bodies and microchannel structures of 
significant size, in agreement with TMEM230 being required for cell growth, migration, and 
survival. (3rd and 4th panels): representative 3D bodies and lumen structures generated by 1321N1 
control cells expressing endogenous TMEM230 and eGFP reporter genes (shSCR+eGFP). Cells 
cultured in Matrigel at 48 h. 
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high-grade infiltrating gliomas, including ODG and astrocytoma. 
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Figure 10. Endogenous expression of TMEM230 promoted 1321N1 astrocytoma migration, “tun-
neling”, and microchannel structure formation, recapitulating extracellular matrix infiltration and
vascular mimicry. (Left, 1st and 2nd panels): 1321N1 cells in which endogenous TMEM230 was
downregulated (shTMEM230+eGFP) did not generate 3D bodies and microchannel structures of
significant size, in agreement with TMEM230 being required for cell growth, migration, and survival.
(3rd and 4th panels): representative 3D bodies and lumen structures generated by 1321N1 control
cells expressing endogenous TMEM230 and eGFP reporter genes (shSCR+eGFP). Cells cultured in
Matrigel at 48 h.

Collectively, the results of the infiltrating astrocytoma cells support that TMEM230
is regulator of glial cell vascular mimicry and endothelial cell angiogenesis in diverse
high-grade infiltrating gliomas, including ODG and astrocytoma.

2.6. VEGF Analysis

TMEM230 activity in endothelial tip-cell sprouting was previously shown to be inde-
pendent from the VEGF signaling pathway in an animal model [6]. The independence of
activity was supported in zebrafish by TMEM230 being able to promote angiogenesis with
impairment of the VEGF activity and by the downregulation of TMEM230 inhibiting an-
giogenesis with upregulation of VEGF signaling [6]. During angiogenesis, new vessels are
generated from existing endothelial cells that become tip cells that promote degradation of
the vascular extracellular matrix, a process recapitulating microchannel formation through
the secretion of metalloproteinases. Supplementary Table S2 supports that TMEM230 is
associated with angiogenesis in gliomas. To determine whether TMEM230 is a master
regulator and independent of the VEGF signaling pathway in glioma formation and an-
giogenesis (Figure 4 and Supplementary Table S2), HUVEC cultures were treated with
VEGF ligand (20 ng/mL), and TMEM230 expression was modulated (Figure 11). The cell
assays show that, as expected, VEGF promoted sprouting (panels 1, 3) compared to cultures
where VEGF was not added (panels 2, 4). Transgenic expression of TMEM230 mRNA also
promoted sprouting (panels 5, 6), regardless of whether VEGF was added or not to the
cultures. This suggests that TMEM230 can promote angiogenesis and microchanneling
independently of VEGF ligand activity (panel 6). Whether TMEM230 downregulation can
impair VEGF-promoted cell activities was indicated by the inhibition of cell sprouting and
infiltration in cultures in which VEGF was present and in which TMEM230 was downreg-
ulated (see panels 7 and 8). This strongly supports that TMEM230 downregulation may
represent an effective anti-cancer therapy in glioma treatment. Further insight was obtained
when the number of sprouts and their respective lengths were quantified (Figure 12). Lane
5, in Figure 12, may suggest that TMEM230 and VEGF may act synergistically, where the
sproutings are not significantly different but their numbers have increased.
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Figure 11. 3D cultures were treated with VEGF ligand (20 ng/mL), and TMEM230 expression
was modulated in HUVECs. Panels: VEGF ligand (20 ng/mL) was added or not added to control
cells expressing eGFP, (1 and 2, respectively); VEGF ligand (20 ng/mL) was added or not added
to cells expressing shSCR+eGFP (3 and 4, respectively); VEGF ligand (20 ng/mL) was added or
not added to cells in which TMEM230 mRNA was upregulated (TMEM230 mRNA+eGFP) (5 and 6,
respectively); and VEGF ligand (20 ng/mL) was added or not added to cells in which TMEM230 was
downregulated (shTMEM230+eGFP) (7 and 8, respectively). Experimental assays were performed
3 times, with 3 replicates for each assay. VEGF ligand concentration was 20 ng/mL. Red circles
indicate individual branching sprouts. Yellow bar indicates length of a representative sprout.
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Figure 12. Number and lengths of sprouts quantified in cultures treated with VEGF ligand (20 ng/mL)
and in which TMEM230 expression was modulated in HUVECs, corresponding to Figure 11. Panels:
VEGF ligand (20 ng/mL) was added or not added to control cells expressing eGFP (1 and 2, respec-
tively); VEGF ligand (20 ng/mL) was added or not added to cells expressing shSCR+eGFP (3 and 4,
respectively); VEGF ligand (20 ng/mL) was added or not added to cells in which TMEM230. mRNA
was upregulated (TMEM230 mRNA+eGFP) (5 and 6, respectively); and VEGF ligand (20 ng/mL)
was added or not added to cells in which TMEM230 was downregulated (shTMEM230+eGFP) (7 and
8, respectively).

2.7. Hypoxia Analysis

Of interest and clinical importance is whether TMEM230 regulates tissue response to
hypoxia and may be upregulated in the hypoxic tumor microenvironment. Our previous
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study suggested that GBM pathophysiology was characterized by aberrant hypervascular-
ization in which defective and highly circuitous permeable blood vessels are formed [5].
This creates a tumor tissue microenvironment that is hypoxic, resulting in both tissue
necrosis and cell death, in agreement with the lower patient survival associated with
higher levels of TMEM230 in oligodendroglioma and GBM (Figures 5 and 6). Aggressive
high-grade gliomas are highly vascularized with permeable and defective blood vessels
that result in tissue hypoxia, necrosis, and cell death, suggesting that TMEM230 may be
upregulated in part due to lack of oxygen. Supplementary Table S11 shows that increase in
TMEM230 expression was correlated with increased expression of genes associated with
hypoxia in oligodendroglioma and astrocytoma.

Whether TMEM230 expression was upregulated by hypoxia signaling or TMEM230
elevated expression-induced upregulation of hypoxia genes was analyzed by culturing
HUVECs in normoxia or hypoxia (1%) (Figure 13). Upregulation of TMEM230 was observed
in cells cultured in hypoxia (lane 2 compared to lane 1) or with cells treated with VEGF
ligand in normoxia (lane 3 compared to lane 1). The capacity for hypoxia to upregulate
TMEM230 apparently was less than the capacity for VEGF ligand (lane 3 compared to lane
4 and lane 2 compared to lane 3).
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Figure 13. TMEM230 expression was upregulated by hypoxia signaling and independently with
VEGF ligand treatment of HUVECs. Upregulation of TMEM230 was observed in cells cultured in
hypoxia (lane 2 compared to lane 1) or with cells treated with VEGF ligand (100 ng/mL) in normoxia
(lane 3 compared to lane 1). TMEM230 upregulation was less with hypoxia than with treatment
with VEGF ligand (lane 3 compared to lane 4 and lane 2 compared to lane 3). Relative intensity was
determined by comparing TMEM230 with lamin AC protein expression in Western blot analysis, as
described [29].

3. Discussion

Glial cells provide physical and chemical support and protection for neurons, neural
tissue, and diverse cell types of the brain. Secreted factors, scaffolds, and vesicles regulate,
in addition to the normal homeostasis of the brain, the tumor micro-environment of GBM
and HGG. GBM and HGG are highly aggressive tumors with bad prognosis and poor
response to all cancer treatments [9,12]. They are characterized by high heterogeneity at the
cellular level and high infiltration. Infiltration is a property of various cell types of the CNS,
including immune cells, macrophages, and endothelial cells [13,14]. Infiltrating tumor cells
are also commonly associated with aberrant and high vascularization, where infiltration and
vascularization promote destructive tissue remodeling and loss of normal vascular function
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and, consequently, the inability to deliver therapeutic agents to tumor cells. Aberrantly
secreted factors and vesicles have diverse roles in the pathological formation of blood
vessels and in 3D destructive tissue remodeling [30]. In pathological conditions, glial cells
secrete factors, vesicles, and scaffolds that promote extracellular matrix digestion, resulting
in microchannel formation and scar formation [31,32]. These microchannels have various
functions depending on the anatomical location of the glial cells. In the CNS, localized
glial cells generate microchannels that recapitulate vascular mimicry and wound healing
processes. Microchannels are dynamic structures that promote (1) digestion of polymeric
macromolecules of tissue, (2) absorption and circulation of tissue-soluble factors, and
(3) deposition of newly synthesized scaffolds into lumen (Figure 9). In contrast to bona
fide vessels, such as blood vessels, microchannels are structures in which lumen is not
surrounded by cells, and therefore lumen permeability is not regulated at the cellular level.
Deposition of fibrous scaffolds into luminal space provides traction for glial or neural cell
migration and cytoplasmic extensions such as cellular processes and axons. Extensions also
allow the formation of new connections and endothelial cell migration during blood vessel
formation. GBM is associated with a heterogeneous population of phagocytic tumor cells,
predominantly glial and macrophages. Specific factors secreted by phagocytic cells were
identified with tissue and blood vessel remodeling capacities (Supplementary Table S2).
These include plasma membrane, basement membrane and tissue extracellular scaffold
degrading enzymes such as heparanase that cleaves heparan sulfate proteoglycans, a major
matrix component of blood vessels. Additionally various lysosome associated and secreted
ribonucleases were identified, such as RNASET2 that promote mRNA and non-coding
RNA degradation.

We hypothesized that the aggressive pathological features of HGG oligodendroglioma
and GBM are due to the interactions of diverse cell types, including tumor glial cells
and tumor phagocytic cells, such as macrophages or other immune cells with blood ves-
sels resident in the brain. We have identified a transmembrane protein, TMEM230, that
recapitulates pathological blood vessel formation and vascular mimicry, both processes
having destructive tissue remodeling capacity. Additionally, we observed that secreted
factors from U87-MG glial cells promote cell sprouting and blood-vessel-like formation in
endothelial cells. Our results support that TMEM230 may be a regulator in the formation
of the invasive and infiltrating behavior observed in diverse and heterogenous cell types in
HGG oligodendroglioma and GBM. Transcriptomic analysis of patients with gliomas re-
vealed that TMEM230 as membrane protein may regulate genes associated with the motor-
protein-dependent Golgi complex and the endoplasmic reticulum intracellular trafficking
and secretion of factors promoting angiogenesis and microchannel-generating metallopro-
teinases. Microchannel formation is a property of phagocytic cells and in the context of
glial tumor formation is also referred to as tumor microtubules [22–24].

4. Materials and Methods
4.1. Patient Data Collection

mRNAseq datasets and corresponding patient clinical data were obtained from The
Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Research Network), analyzed using
R package TCGA2STAT V 5.2.3 [33] and normalized with RSEM [34]. Patients included
for analysis are 172 brain samples from patients with high-grade (G3, G4) glioblastoma
multiforme (GBM), 198 oligodendroglioma samples, and 197 astrocytoma samples. Grades
of tumors were defined according to the American Joint Committee on Cancer, AJCC.

4.2. Patient RNA-Seq Gene Expression Analysis

Differential gene expression analysis was performed using DESEQ2 with a p-value cut-off
< 0.05 and an absolute log2 fold change cut-off > 0.58. Functional enrichment analysis was
performed using DAVID (6.8) [35]. Only terms with a corrected p-value (Benjamini) < 0.05 were
considered [36]. and gene expression analysis was performed using the DESEQ2 R package
(version 1.30.1) [37].
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4.3. Cloning of Lentiviral-System-Based Construct for Inhibiting TMEM230 Protein Expression

The shTMEM230 sequence (for downregulation of endogenous TMEM230) was cloned
into pcDNATM6.2-GW/EmGFP using the BLOCK-iTTM Pol II miR RNAi Expression Vector
Kit with EmGFP (K493600, Thermo Fisher Scientific, Waltham, MA, USA) following the
manufacturer’s instructions. The following sequences were annealed to generate double-
stranded oligonucleotides: TOP:5′-TGCTGTGTAGGTTCACTTAACATCTTgttttggccact
gactgacAAGATGTTGTGAACCTACA-3′ and BOTTOM:5′-cctgTGTAGGTTCACAACATCT
TgtcagtcagtggccaaaacAAGATGTTAAGTGAACCTACAC-3′. Capital letters represent the
sense and anti-sense sequences of the small hairpin RNA to be expressed for targeting the
endogenous TMEM230 transcript. Lowercase letters are the sequence forming the loop
of the hairpin structure. The expression cassette of the resulting plasmid and the control
vector provided in the kit (pcDNATM6.2- GW/EmGFP-miR-neg Control/shSCR) were
amplified by PCR using the following primers: FW 50-GGCATGGACGAGCTGTACAA-3′

and RVNotI 5′-GTGCGGCCGCATCTGGGCCATTT-3′ (which added a NotI restriction site).
The PCR products were cloned into the destination lentiviral vector pCDH-CMV-MCS-
EF1-copGFP (CD511B1, System Bioscience, Palo Alto, CA, USA) between BamHI and NotI
restriction sites. Lentivirus particles were produced in HEK293T cells by transfecting pCDH
or pLENTI vectors together with psPAX2 and pMD2.G (gift from Didier Trono, Addgene
plasmids #12260 and #12259) as helper vectors for 2nd-generation viral packaging (with a
ratio 4:3:1, respectively) using the LipofectamineTM 2000 Transfection Reagent (11668027,
Thermo Fisher Scientific Waltham, MA, USA) following manufacturer’s instructions. Cell
culture supernatants containing the lentiviral particles were harvested after 48 and 72 h,
concentrated by ultracentrifugation at 120,000 rcf for 3 h, and stored at −80 ◦C for later use.

4.4. Generation and Cloning of the Endogenous TMEM230 Variant 2 (ISOFORM 2) Transcript

The TMEM230 coding sequence was amplified from cDNA obtained from U87 cDNA
using primers T230infFw: 5′-gagctagcgaattcgaaTGTTATGATGCCGTCCCGTA-3′ T230infRv
and 5′-atccgatttaaattcgaaCTATGGGGTGGGTGCTA-3′. Capital letters represent the nu-
cleotide sequence that anneals with the endogenous TMEM230 transcript. Lowercase
letters are the docking sequences of the vector. The destination plasmid pCDHCMV-MCS-
EF1-copGFP (SBI CD511B-1) was linearized using the BstBI restriction enzyme. Plasmid
insert cloning was completed using In-fusion Cloning Plus (638920, Clontech TAKARA Bio,
San Jose, CA, USA) following manufacturer’s instructions. The U87 cDNA sequence was
compared to the wild-type sequence on non-malignant human patient cells to confirm that
U87 cells did not contain a mutated or aberrant sequence of TMEM230.

4.5. Adherent Cell Cultures

The human brain glioblastoma U87-MG cell line was obtained from the ATTC and
maintained in DMEM (ECB7501L Euroclone, Pero Mi, Italy) supplemented with 10% fe-
tal bovine serum (FBS, F7524, Sigma, St. Louis, MO, USA), 1% glutamine (BE17-605E,
Cambrex, Paullo Mi, Italy), and 1% penicillin/streptomycin (15140-122, Life Technology,
Carlsbad, CA, USA) in a humidified atmosphere of 5% CO2 at 37 ◦C. Cells were cultured to
an 80% level of confluence. Transduction was performed on adherent cells using lentiviral
vectors (shSCR-GFP, used as control, and shTMEM230-GFP for downregulating endoge-
nous TMEM230). Human umbilical vein endothelial cells (HUVECs) were grown in EGM2
medium (CC-3162 Euroclone) and Ham’s F12/DMEM-Glutamax (21765-029:31966-021,
Life Technologies, Carlsbad, CA, USA) at a ratio of 1:1 supplemented with additional
factors: heparin (CC-4396A), hydrocortisone (CC-4112A), epidermal growth factor (CC-
4317A), human basic fibroblast growth factor (CC-4113A), vascular endothelial growth
factor (CC-4114A), ascorbic acid (CC-4116A), FBS (CC-4101A), gentamicin (CC-4381A), and
R3 insulin-like growth factor (R3IGF1, CC-4115A) all from Euroclone. Human umbilical
vein endothelial cells were cultured in a humidified atmosphere of 5% CO2 at 37 ◦C to an
80% level of confluence and medium was replaced twice a week. The human brain astrocy-
toma cell line 1321-N1 was kindly provided and validated by Prof. Valerio Magnaghi from
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the University of Milan. Cells were maintained in DMEM supplemented with 10% FBS, 1%
glutamine, and 1% P/S in a humidified atmosphere of 5% CO2 at 37 ◦C and cultured to
80% level of confluence. As for U87-MG cells, transduction was performed on adherent
cells using lentiviral vectors (shSCR-eGFP, used as control, and shTMEM230-eGFP for
downregulating endogenous TMEM230).

4.6. Adherent Co-Cultures of Human Umbilical Vein Endothelial Cells and U87-MG Cells

Briefly, 20,000 HUVECs were plated and cultured to confluency. shSCR or shTMEM230
+ eGFP-transduced U87-MG cells at low concentration were then added on top of the
confluent HUVECs. U87 cells were distinguished from HUVECs because of their green
fluorescence. A combination of U87 and HUVEC (EGM2) media at a ratio of 1:1 was used
as described in [5]. Cell migration and infiltration of U87 into HUVECs were monitored
for 10 days. Half of media was replaced with fresh media every 3 days. All assays were
performed in 3 replicates simultaneously and in 3 independent experiments.

4.7. Microchannel Formation Assay

shSCR or shTMEM230 + eGFP lentivirus-transduced U87-MG (20,000 cells) were
cultured on top of growth-factor-reduced Matrigel (356231, BD Biosciences, Milan, Italy)
bed in 48-well plates (677180, Greiner, Twin-Helix, Rho Mi, Italy) using U87 (tumor) or
HUVEC (vascular) medium as described in [5]. All assays were performed in 3 replicates
simultaneously in 3 independent experiments.

4.8. 1321-N1 Microchannel Formation Assay

shSCR or shTMEM230 lentivirus-transduced 1321-N1 astrocytomas (20,000 cells) were
cultured on top of growth-factor-reduced Matrigel (BD Biosciences, 356231) bed in 48-well
plates (677180, Greiner, Twin-Helix) using 1321-N1 medium, as described for U87 cells
in [5].

4.9. Angiogenesis Assays

For tubulogenesis assay, 20,000 HUVECs were plated on top of growth-factor-reduced
Matrigel (356231, BD Biosciences, Milan, Italy) in 48-well plates (677180, Greiner, Twin-
Helix) for 24 h. Tubule-forming media were conditioned media obtained from U87shSCR
and U87shTMEM230+eGFP. All assays were performed in 3 replicates simultaneously in
3 independent experiments. For spheroid outgrowth assay, 16,000 transduced HUVECs
were suspended in 100 mL of 20% HUVEC medium containing 2% methylcellulose solution
(M7027, Sigma) in 96-well plates as described in [5]. Spheroids were collected the day after
and embedded in 60% methylcellulose containing 40% FBS and Collagen R (SE4725401,
SERVA, Euroclone, Pero MI, Italy) at a ratio 1:1 and then layered onto a solidified bed of rat
collagen in 96-well plates, as described in [5]. After the methylcellulose/collagen mixture
solidified, medium with or without angiogenic-promoting factor and 20 ng/mL VEGF
(V7259, Merck, Darmstadt, Germany, V7259). Spheroids formed within 24 h from control
cells with VEGF. Four distinct culture conditions were examined: eGFP HUVEC-transduced
control cells with or without VEGF; shSCR+eGFP-transduced HUVEC control cells with
or without VEGF; TMEM230mRNA+eGFP-transduced HUVECs; and shTMEM230+eGFP-
transduced HUVECs. Spheroids from all experimental conditions were compared to
spheroids generated from control cells cultured in fresh EGM2. All assays were performed
in 3 replicates simultaneously in 3 independent experiments.

4.10. Hypoxia Assay

Culture conditions were identical to normoxia except that a hypoxic environment was
generated using nitrogen for displaying oxygen.
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4.11. Western Blotting

HUVECs were lysed on ice using Laemmli buffer, as previously described [5]. Briefly,
20 µg of total protein for each sample was mixed with a 6x loading dye buffer and loaded
onto 10% SDS denaturing poly-acrylamide gels. After transferring proteins to a PVDF mem-
brane (10600021 Euroclone), the membrane was blocked with 5% fat-dried milk (EMR180001
Euroclone) and incubated with primary polyclonal rabbit anti-TMEM230 (1:2500, 21466-1-AP,
Proteintech, Rosemont, IL, USA,) and polyclonal goat anti-Lamin A/C (sc 376248 Santa Cruz
Biotechnology, Dallas, TX, USA) used as endogenous control at concentration 1:7500. Donkey
anti-rabbit (1:20,000, NA934V, Amersham, Cologno Monzese, Mi, Italy) and sheep anti-mouse
(1:10,000, NA931V Amersham) were used as secondary antibodies.

4.12. Data Collection and Statistical Analysis

Transcriptomic profiling of genes in different gliomas was performed using public
datasets of oligodendroglioma, GBM and astrocytoma from The Cancer Genome Atlas
(TCGA) RNA sequencing (RNAseq) database (Cancer Genome Atlas Research Network)
based on the expression level of TMEM230. RNA sequencing data and clinical data of 198
oligodendroglioma, 172 GBM, and 197 astrocytoma patient samples were analyzed for
TMEM230 expression level. The samples were divided into TMEM230 high and TMEM230
low based on TMEM230 expression level, as described in [5]. Differentially expressed
genes associated with increased glioma tumor grade were identified in LGG and HGG
patient datasets using p-values and log2 FC, as described in each table. Gene ontology and
biological pathways were assessed using the False Discovery Rate method (Benjamini) [36].

4.13. Microcopy and Imaging

Imaging was performed with an Olympus IX51 fluorescent microscope (Olympus
Italia, Segrate MI, Italy) and XM10 Camera (Olympus Italia) and visualized with Cell F
imaging software (version 5.1.2640, Tokyo, Japan). Figure 7 was created by Biorender.com
scientific image and illustration software (https://www.biorender.com/, accessed on 21
December 2023).

4.14. Supplementary Tables (Excel Files)

Supplementary Table S1 (sheets 1, 2, and 3) shows all genes showing base mean
expression, log fold change (log2), and their adjusted p-values for patients with oligoden-
droglioma, GBM, and astrocytoma, respectively. The gene expression fold changes are
correlated with a corresponding differential expression of TMEM230, with an adjusted
p-value of ≤0.05 for TMEM230 (Supplementary Tables S2–S11).

5. Conclusions

Expression analysis performed in this study supports that TMEM230 is necessary for
the endomembrane-dependent intracellular trafficking and secretion of microchannel- and
angiogenesis-promoting factors. Our results support that the aggressive tumor behaviors
of GBM and HGG may be associated with aberrantly high levels of TMEM230. Progress
in glioma research would greatly benefit in understanding which pathways regulated by
TMEM230 in endothelial and glial cells contribute to de novo formation of defective blood
vessels or vascular mimicry in highly vascularized tumors. Some research supports that
infiltrating glioma, such as oligodendroglioma and astrocytoma, gradually become more
aggressive and thereby increase in tumor grade over time. If aberrant elevated levels of
TMEM230 promote aggressive tumor development, TMEM230 may represent a promising
target for cancer therapeutics. Aberrantly formed vessels and microchannels contribute to
the inability to target therapeutic agents to the tumor mass.

6. Patents

Ileana Zucchi and Rolland Reinbold are recipients of EU Patent EP18707150.1, 2022-09-
06 and US Patent US11566070B2, granted on 2023-01-31.
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