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Abstract: The increasing portability and accessibility of miniaturized NIR spectrometers are promot-
ing the spread of in-field and online applications. Alongside the successful outcomes, there are also
several problems related to the acquisition strategies for each instrument and to experimental factors
that can influence the collected signals. An insightful investigation of such factors is necessary and
could lead to advancements in experimental set-up and data modelling. This work aimed to identify
variation sources when using miniaturized NIR sensors and to propose a methodology to investigate
such sources based on a multivariate method (ANOVA—Simultaneous Component Analysis) that
considers the effects and interactions between them. Five different spectrometers were chosen for
their different spectroscopic range and technical characteristics, and samples of worldwide interest
were chosen as the case study. Comparing various portable sensors is interesting since results could
significantly vary in the same application, justifying the idea that this kind of spectrometer is not to
be treated as a general class of instruments.

Keywords: Miniaturized NIR spectrometers; sources of variance; food applications; ASCA; instrument
stability

1. Introduction

According to the state of the art, miniaturized near infrared (NIR) spectrometers have
proved useful for a wide range of analytical challenges [1–5]. However, the potential
applications and relative performance may differ from instrument to instrument [6]. Cou-
pling NIR measurements with chemometrics techniques has become extremely established
during the years [7] because of the complex and self-correlated information contained in
the spectra. Moreover, frequently the analytical information about the analyte of interest is
not evident in the spectra but included in the data due to correlation and interactions with
other sample features (i.e., physical form and components of samples).

In general, field spectrometers can be transportable (mounted to a vehicle for field
use), portable in a suitcase (total weight >4 kg), and handheld (<1 kg). A miniaturized
instrument is one that is no larger than the size of a book [1]. Scientists working with NIR
miniaturized instruments usually compare the outcomes from benchtop and handheld
devices, mainly based on the typical performance parameters of prediction or classification
models. Commonly, results show better performances for the benchtop equipment than for
the different portable devices [8–11]. This is totally reasonable given that the robustness of
the benchtop spectrometers has been achieved through years of analyses and technological
development. Apart from that, standard benchtop NIR devices are specialized equipment,
often used in laboratories (controlled environments) by experienced staff due to their
size and cost. The portability and accessibility (including a lower cost, sometimes with a
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decrease of one order of magnitude from benchtop devices) of miniaturized sensors offer
on one hand the opportunity of in-field and online analysis, but on the other hand there
are several issues related to their use by non-expert personnel [6]. Additionally, what is
nowadays evident in the use of benchtop systems, as for instance the choice of the suitable
sample cell and the analytical procedure to collect spectra, it is not so straightforward
for miniaturized sensors, being necessary in most cases to develop a specific analytical
procedure tailored to the sample and to the miniaturized NIR instrument. While the use of
several chemometric strategies has been reported for model development [12], experiences
with different acquisition strategies for miniaturized sensors [13,14] are rarely encountered
in the literature and their influence on the resulting spectral data has only recently been
investigated [15].

Other interesting aspects arise when comparing different portable sensors since their
behaviour in the same application may significantly vary [16–18]. The main reasons for
these variations could be related to the different factors that affect the measurements
during an NIR analysis, especially in the case of diffuse external reflectance. Above all, the
spectrometers cover different spectroscopic ranges, thus the radiation penetrates differently
in the samples. Moreover, the sample granulometry, shape, and colour could influence at
several levels of the analysis output. On top of that, technological differences [19,20] can
play a determinant role during the analysis. For instance, the sensors scan sample areas of
different size, and this is a key point when dealing with inhomogeneous samples.

In this context, an examination of the potential sources of variance that may arise
when using handheld instruments is interesting for several reasons, including potential
advancements in experimental set-up and data modelling, as well as identification of the
limits of experimental measurements. Methods to highlight the specific characteristics
of spectrometers and to perform careful use of them can be of interest at many levels
considering that the time and effort required to train and validate models may be higher
than the cost of a single new sensor. First, information about the experimental setup can
benefit the application development. Then, the data analysis can take advantage of a
prudent development of models resulting in better performances for the final application,
and, finally, the spectrometer itself could be technologically optimized.

ANOVA—Simultaneous Component Analysis (ASCA) has already been proved effi-
cient in combining the advantages of design of experiments and multivariate exploratory
analysis. In preliminary analysis for method set-up, joining experimental design and a
powerful tool for an easy interpretation could really be a game changer. ASCA allows the
user to study whether a set of data is significantly affected by certain experimental param-
eters or factors and to evaluate the magnitude of the influences. It has been successfully
applied to produce process understanding through spectroscopic measurement [21–24],
study influences due to sample positioning [25], or to common measurement procedures
during the use of miniaturized NIR [15].

The aim of this work is to propose a methodology to investigate these sources of vari-
ance using a multivariate method that takes into account effects and interactions between
them. In this research, an experimental design data structure was planned by considering,
as factors, the type of sample, the power supply system, the timing of background acquisi-
tion, the session of analysis, and the replicates with the focus of studying the influence of
these factors on the spectroscopical signal. The significant main and interaction effects were
investigated by using ASCA. In addition, highlights of the spectrometers’ characteristics
related to the different samples are reported.

In this study, reflectance spectra of different samples (i.e., granulated sugar, sugar
lumps, brown sugar, milled rice, and red rice) were acquired under different conditions
with five miniaturized spectrometers. Reflectance spectroscopy is well known for carrying
chemical and physical information about samples [26]. The five selected sensors were cho-
sen for the different covered spectral ranges and optical configurations. The spectrometers
did not represent all the miniaturized NIR available on the market. Still, they could offer an
interesting overview of the possible sources of variance and examples to show methodologi-
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cal strategies. Sugar and rice samples were chosen to investigate the peculiarity and sources
of variance of the spectrometers under study. The selection of the samples was mainly
based on their known stability over time and the worldwide interest in these matrices.
Moreover, rice and sugar present physical characteristics similar to many other powdered
and granulated samples. The main differences among the samples were granulometry,
colour, and physical state. Rice samples of medium grain size permit a different light path
and interaction different from those of the smaller granules of sugar. Milled rice and red
rice were considered for the different influences on the external reflection spectra due to
colour and chemistry. In the same way, brown and white sugar are interesting for the
different particle size and colour. Moreover, the analysis of granulated and lump sugar
samples could unlock considerations on the packing form.

2. Materials and Methods
2.1. Samples

Granulated sugar (i.e., sucrose—Eridania semolato classico), sugar lumps (Eridania
zollette classico), granulated brown sugar (Esselunga zucchero di canna grezzo), milled
rice (Esselunga carnaroli), and red rice (Riso Mittino–Rosso Ermes) were purchased from
a local supermarket in Como (Italy) and maintained at room temperature in a protected
environment (sealed containers) for the duration of the experiments. The same samples
were packaged under nitrogen and sent to the different laboratories where the experiments
took place. No pretreatments were conducted on the samples. All spectra were acquired
with the following fixed order: brown sugar (A), granulated sugar, sugar lumps, milled
rice, red rice, and brown sugar (B). A and B are used to intend the same sample, analyzed
at the beginning and end of an analytical session.

2.2. Spectrometers

Since miniaturized spectrometers available on the market present different techno-
logical characteristics and could be used with different acquisition configurations, the
main features and the details of the analysis carried out with the five sensors used in this
study are reported. The miniaturized NIR spectrometers under investigation have different
technological and spectroscopic features and prices. Examples of configurations used to
carry out the analyses are reported in Supplementary Figure S1. The variability in the
technologies is also reflected in the availability of software, applications, cloud-solutions,
and other connecting solutions. Moreover, the parameters to be set-up through the inter-
faces are mainly different. There is no homogeneity in the instrumental parameters and
for each spectrometer an ad hoc optimization is required. The main information on the
spectrometers is summarized in Table 1.

2.2.1. SCiO

The 1080 spectra were recorded in Tarragona (ES) with SCiO NIR spectrometer hard-
ware version 1.2 from Consumer Physics (Herzliya, Israel). The sensor was operated by
the SCiO “The Lab” mobile application on an Android phone using Bluetooth connection.
The spectrometer allowed the acquisition under charge and standing on its own battery.
Spectra were acquired after calibration with the built-in calibration device in the sensor
cover. After the first background, needed to start the analyses, all the following acquisitions
can be set by the operator. The sensor was positioned with the window and detector
facing downward. The granulated sugar samples and rice grains were placed in a 40 mm
diameter petri dish without applying any pressure apart from that of the sensor during
the analysis (contact measurements). A single sugar lump was placed directly under the
spectrophotometer window paying attention to the obscuration of both the light source
and the detector. No additional acquisition parameters (i.e., exposure time and spectrum
averaging) can be optimized. Data were stored in The Lab cloud environment and then the
raw data were exported to a local Windows portable computer and used for further data
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analysis. The exported NIR spectra consisted in 331 individual variables. Supplementary
Figure S2 shows the dataset structure.

Table 1. Main technical specifications and characteristics of selected miniaturized NIR spectrometers.
Parameters are extracted from the technical sheet of the vendors. LED: light-emitting diodes, LVF:
linear variable filter.

Spectrometer
(Vendor) Source Wavelenght

Selector Detector Wavelenght
Region

Spectral
Resolution

(at Wavelength)

Weight
(Dimension) Connectivity

Approximate
Order of Unit

Cost
($)

SCiO
(Consumer

Physics)
LED Bandpass filter

Si photodiode
(array,

12 elements)
740–1070 nm N/A 35 g (5.4 × 3.6

× 3.5 cm)

Bluetooth
(Cloud
service)

<1000

MicroNIR
1700

(VIAVI)

Tungsten
halogen LVF

InGaAs
(array;

128 elements)
908–1676 nm 12.5 (1000)

25 (2000)
64 g

(4.5 × 5.0 cm) USB cable <30,000

AvaSpec-Mini-
NIR

(AVANTES)

Tungsten
halogen

InGaAs
(array;

256 pixels)
900–1750 nm 12(1000)

24 (2000)

185 g
(9.5 × 6.8 ×

2.0 cm)
USB cable <10,000

NeoSpectra
Scanner
(Si-Ware
Systems)

Tungsten
halogen

MEMS
Michelson

interferometer

InGaAs
(single

element)
1350–2550 nm 16 (1550)

1 kg
(17.8 × 9.1 ×

6.2 cm)
Bluetooth <5000

NeoSpectra
development

kit
(Si-Ware
Systems)

Tungsten
halogen

MEMS
Michelson

interferometer

InGaAs
(single

element)
1350–2558 nm 16 (1550)

17 g
(32. × 3.2 ×

2.2 cm)
USB cable <5000

2.2.2. MicroNir OnSite-W

The 810 spectra were recorded in Milan (IT) by using the handheld MicroNIRTM

OnSite spectrometer (VIAVI Solutions Inc., Santa Rosa, CA, USA). The sensor was operated
by MicroNIR Pro software suite and a Windows laptop connected through a cable. The
spectrometer allowed the acquisition only when connected to a computer. External white
and black references were scanned manually before spectra acquisition. After the first
background, needed to start the analyses, two possible solutions for the following back-
ground acquisitions are possible: performing the background acquisition when suggested
by the integrated application and collecting the background when considered necessary by
the operator. The sensor was positioned with the window facing downward and blocked
on a holder system. The samples of granulated sugar and rice were placed in a 40 mm
diameter petri dish without applying any pressure apart from that of the sensor that was
placed in contact. In the case of sugar lumps, a single cube was placed directly under
the spectrophotometer window paying attention to cover the whole acquisition window.
The spectra acquisitions were performed with 12.5 µs integration time and 200 scans at
80 Hz. Data were stored in .CSV files and then imported into MATLAB for data analysis.
The exported NIR spectra consisted of 125 individual variables. Supplementary Figure S3
shows the dataset structure.

2.2.3. AvaSpec-Mini-NIR

The 1080 spectra were recorded in Como (IT) with AvaSpec-Mini-NIR from Avantes
coupled with AvaLight-HAL-S-Mini2 source. The 540 spectra were acquired with a reflec-
tion fiber probe (7 × 400 µm fibers, 2 m length, SMA term) while 540 spectra were acquired
using AvaSphere-50-LS-HAL. The spectroscopic range covered was 972–1701 nm. The
sensor was operated by the AvaSoft 8 application on a Windows laptop connected through
a cable. The spectrometer needs to be connected to a computer and the light source needs to
be connected to a power supply with a power cable. Spectra were acquired after calibration
with a black reference with the source turned off and then the total reflectance reference
with a white standard (WS-2). After the first background, all the following background
acquisition can be set by the operator. The analysis with the optical fiber were conducted by
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placing the reflectance probe in a holder (RPH-1) and by placing granulated sugars and rice
samples in a 10 mL beaker without applying any pressure, whereas a single sugar lump was
placed directly under the holder. An integration time of 15 ms and 10 average scans were
set as acquisition parameters. Data were stored directly in .CSV and then imported into
MATLAB for elaboration. The exported NIR spectra consisted of 236 individual variables.
Supplementary Figure S4 shows the dataset structure.

2.2.4. NeoSpectra Scanner

The 1080 spectra were acquired in Como (IT) using the handheld NIR spectrometer
from Si-Ware Systems (18.5 × 4.5 × 8 mm with a weight of approximately 730 g). The
spectroscopic range covered was 1351–2559 nm. The sensor was operated by the proprietary
mobile application on an Android phone using Bluetooth connection. The spectrometer
allowed the acquisition under charge and standing on its own battery. Spectra were
acquired after calibration with a 100% reflectance reference with a Spectralon® standard,
approximately 15 min after the spectrometer was turned on. After the first background, all
the others can be set by the operator. The sensor was positioned with the window facing
downward in the case of granulated sugars and rice samples, presented to the spectrometer
in a 40 mm diameter petri dish without applying any pressure. A single sugar lump was
placed directly over the spectrophotometer window while the sensor was standing with
the window facing upward. A time scan of 5 s without data interpolation were used. Data
were autosaved in the default format “.Spectrum” and then converted to .txt files and
processed with MATLAB. The exported NIR spectra consisted of 74 individual variables.
Supplementary Figure S5 shows the dataset structure.

2.2.5. NeoSpectra Micro Development Kit

The 540 spectra were collected in Tarragona (ES) using the handheld NIR spectrometer
from Si-Ware Systems (2 × 32 × 22 mm with a weight of 17 g). The spectroscopic range
covered was 1351–2558 nm. The device was connected to a Windows personal computer via
a universal serial bus (USB) and operated by the software package SpectroMOST. Spectra
were acquired after calibration with a Spectralon (99% reflectance) reflectance standard.
Apart from the first background, all the subsequent background acquisitions can be set
by the operator. Granulated sugars and rice samples were presented to the spectrometer
in an in-house constructed cell [14,24] without applying any pressure. The sugar lump
was placed directly over the spectrophotometer window by covering it. A time scan of 5 s
without data interpolation was used. The exported NIR spectra consisted of 134 individual
variables. Supplementary Figure S6 shows the dataset structure.

2.3. Experimental Set-Up: Sources of Variability

The experimental set-up considered as the main influencing factors: (1) the type of
sample, (2) the order of replicate, (3) the session of analysis, (4) the power supply during
spectra acquisition, and (5) the timing of background.

Type of sample identifies different samples, i.e., granulated sugar (i.e., sucrose), sugar
lumps, brown sugar, milled rice, and red rice, which were analyzed in fifteen experimental
replicates for each sample during each session from the first replicate to the fifteenth.
Each experimental replicate is intended as the displacement and the repositioning of the
samples on the sample holder. The analytical session identifies three independent sessions
of analysis. At the end of the acquisition of a sequence of samples, the spectrometers
were switched off; a new session started only after the cool-down and warm-up time
suggested by the manufacturers. Concerning the charge condition, SCiO and NeoSpectra
Scanner sensors allow the recording of spectra with the instruments under charge or
operating on their own battery. MicroNIRTM OnSite, AvaSpec-Mini-NIR, and NeoSpectra
development kit could work only when connected to a computer and power supply.
Timing of background is used to intend background before each sample, background
before each session, or for the MicroNirTM Onsite, background when suggested by the
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instrument software. Indeed, MicroNIRTM OnSite has an automatic alarm indicating the
need for a background reference (dark and white references are available). The timing
of background factor was intended to evaluate the elapsed time between a background
acquisition and another.

Moreover, existing factors related to instrumental acquisition range and technological
features were considered (Table 1). AvaSpec-Mini-NIR allows the acquisition with different
technological solutions: integrating sphere and fiber optic cable.

2.4. Chemometrics Analysis

The datasets obtained for each instrument were considered firstly as a whole (“all
samples”), and then divided for rice and sugar samples. Afterwards, models for the spectra
of each type of sample were considered. Data mean centering was set as the default for
preprocessing in the data analysis.

Exploratory analysis was carried out with Principal Component Analysis (PCA) [27].
It was performed on each of the mean-centered datasets to identify gross errors using the Q
residuals and Hotelling’s T2 statistics. The spectra identified as outliers were removed from
further analyses. Common preprocessing methods, such as multiplicative signal correction
(MSC) and standard normal variate (SNV), were also applied [28,29].

ANOVA–Simultaneous Component Analysis (ASCA) [30,31] was used to evaluate the
significance of the main considered factors and their interactions. ASCA was proposed
for the analysis of multivariate datasets obtained through designed experiments [32].
The model consists in the partitioning of the original data matrix into a set of matrices
corresponding to design factors (e.g., a and b) and their interactions (ab) and decomposing
them through simultaneous component analysis (SCA):

Xoriginal = Xmean + Xa + Xb + Xab + Xres

where Xres represents the residuals and Xmean is equal to zero since the original matrix is
centered. The resulting matrices consist in the mean profiles calculated by averaging all
the replicates at a specific level of each factor or interaction. For instance, in the case of
spectra acquired with the spectrometer under charge or on battery, half of the rows in the
Xpower supply will contain the mean profile of the spectra in which the spectrometer was
under charge and the other half will contain the average of the spectra acquired with the
sensors operating on their own battery.

From the interpretative point of view, the procedure can be thought as a combination
of analysis of variance (ANOVA) and PCA under the scheme constraint. The effect of factors
and interactions are evaluated by the sum-of-squares of the corresponding j submatrix
(according to the previous equation, j could be a, b, ab or res).

SSQj = Xj
2

The magnitude of the calculated effect is indicative of the influence magnitude of the
specific factor or interaction on the data. The significance is then assessed by counterposing
the effect to a null-distribution, nonparametrically estimated by permutation test. If the sum
of squares is systematically larger than the values of the null-distribution, a p-value < 0.05
is obtained and the tested effect is assumed to be significant.

Models for each instrument were calculated and 200 permutations were used to
evaluate the significance of the factors. The factors taken into consideration during the
study were type of sample, order of replicates, session, power supply condition within
the session, and timing of background. Two-way interactions were also calculated. Firstly,
the whole samples were considered, while considering the factor sample. In this case,
the brown sugar was included only once even if acquired twice. Subsequently, the ASCA
model for each of the samples was carried out. In the brown sugar model, the factor “At
the begging or end of the session” was added and all the spectra acquired were considered.
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Data analysis was performed using routines and toolboxes developed in the MATLAB
R2021a environment (the Mathworks Inc., Natick, MA, USA). Principal component analysis
and ASCA were carried out by PLS-Toolbox v. 9.0 (Eigenvector Inc., Manson, WA, USA).

3. Results and Discussion
3.1. Spectra and Features

Figure 1 shows the average spectra of granulated sugar collected with the five spec-
trometers and the two configurations for the AvaSpec-Mini. The different wavelength
ranges are also represented. While benchtop instruments typically cover the entire range
represented (800–2500 nm) [33–35], miniaturized spectrometers typically cover narrower
ranges. When dealing with miniaturized sensors, the specific range of acquisition may
influence analysis in different ways and careful evaluations need to be pursued for the
application of interest. In addition to this, the technological development of different
manufacturers should be intended for different scopes, for instance, use in the field or
online implementation. With respect to the color [36,37] SCiO works in a spectral range
that reaches the visible part of the electromagnetic spectrum, adding information that may
not be of interest.

A priori knowledge about the applicability of a certain sensor is not straightforward to
be evaluated only based on the spectral ranges [38]. Indeed, when dealing with reflectance
NIR spectroscopy the information correlated to the properties of interest is not always
strictly related to evident chemical spectral information of the analyte or bulk. On the
contrary, it is quite probable that the information is distributed over wider spectral ranges
or reflected in the physical information that non-exclusively depends on the spectral
range [7,39]. Physical parameters, such as compactness and particle sizes, also influence
the acquisition of external reflectance NIR spectra because the resulting spectra are strictly
related to light path, energy, and power.

The miniaturization and the different engineering designs clearly influenced the
working and performance characteristics (e.g., spectral region, sensitivity and precision,
spectral resolution, and recordable intensity). Spectra might also be affected by the practical
procedures, i.e., sample located near the light source or at a given distance. Figure 1
shows that even in the regions shared by different devices the signal shapes are slightly
different, and the definition of the bands can vary. The overall intensity captured by the
spectrometers is also quite different. For the two configurations of Ava-Spec-Mini-NIR
it was found that there was, as expected, a higher intensity for the use of the integrating
sphere than for the optical fiber. As for the direct comparison of NeoSpectra devices, lower
values of reflectance (up to 17%) were registered with the NeoSpectra development kit
compared to the Neospectra Scanner. These results could be ascribed to the differences in
the spot and detector sizes, the number of light sources (seven tungsten halogen lamps for
the Neospectra Scanner and three for the Neospectra development kit), and the analytical
measurement procedures.

In Supplementary Figure S7, the average spectrum of each sample is represented
for each analytical configuration and spectrometer. As expected, the red rice reflects the
radiation less than the milled rice with every instrument and configuration. The noticeable
differences are related to both the physical and chemical differences of the two samples.
The comparison of the spectra of granulated and lump sugar highlights the influence
of the compactness and granulometry in the investigated spectrometers. Generally, less
intense signals were obtained for the sugar lumps even if the difference decreased at
higher wavelengths. Peculiar spectra were obtained with SCiO whose spectra showed a
consistent change of shape for the different rice samples. The same appeared to be true
when comparing the spectra of granulated sugar and brown sugar samples, where their
physical and chemical characteristics were identifiable at first sight.
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Figure 1. Averaged spectra of granulated sugar acquired with the different spectrometers and optical
configurations. The background colors indicate the different NIR regions [38]: 800–1200 nm, Region 1
in yellow; 1200–1800 nm, Region 2 in green; 1800–2600 nm, Region 3 in blue.

3.2. Exploratory Analysis

The replicates obtained for each sample were used to build an X matrix, one for
each instrument configuration for a total of six datasets. Raw data were centered and
then analyzed using Principal Component Analysis (PCA) to detect the presence of gross
outliers, which were not detected. In the case of multiple spectra emerging as possible
outliers on Hotelling’s T2 and Q residuals statistics, possible trends related to the factors
under investigation were studied to understand if they represent the intrinsic variability
contained in the experimentations. Figure 2 shows the score plot obtained for the whole
dataset under investigation, whereas in Figure 3 the loadings are shown. The way in
which the replicates and samples are distributed over PC1 and PC2 for the spectrometers is
noteworthy. The arrangement of the sample and their dispersion over each sample centroid
is characteristic of each sensor. The study of the distribution of samples and replicates
may provide interesting insights. The dispersion of the clouds of points related to each
sample can be used as semi-quantitative information related to the precision of the analysis.
Similar replicas led to closer points in principal component space, while more significant
variability in the replicas is reflected in broader disposition.

For what concerns the spectra acquired with different spectrometers and configura-
tion for the same samples, the variability could be related to the interaction between the
compactness and sample granulometry and the intrinsic characteristics of the sensors. The
influence of different compactness has been partially addressed in [40], while consideration
on different granulometry due to sample pretreatment can be found in [41]. These topics
emerge here as a possible future research direction.
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Figure 2. PCA results on mean-centered data: score plot for (a) SCiO, (b) Viavi Micro-NIR, (c) AvaSpec
with integrating sphere, (d) AvaSpec with optical fiber, (e) NeoSpectra Scanner, and (f) NeoSpectra
Development kit.
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Figure 3. PCA results on mean−centered data: loading plot for (a) SCiO, (b) Viavi Micro−NIR,
(c) AvaSpec with integrating sphere, (d) AvaSpec with optical fiber, (e) NeoSpectra Scanner, and
(f) NeoSpectra Development kit.

The separation between the five samples is not always accomplished in the scores
plot, and it strictly depends on the ability of each spectrometer in capturing the substantial
physical and chemical differences among the samples. Overall, sugar lump and granulated
sugar spectra seem to have the highest precision for each sensor since the replicates appear
closer in the PCA space than those of the other samples. These could be related to the
analytical practices along with the sample characteristics; indeed, the presentation of the
sample to the sensor is intuitively more constant for the packed form than for the loose one.
Other interesting insights came from the fact that when the same sensor is used but different
acquisition configurations are selected (Figure 2c,d), the scores are found to be grouped in
different ways, and PCA models explained different percentages of variance. According
to the comparison of the loading plots for the AvaSpec−Mini−NIR data (Figure 3c,d),
the distribution of the samples in the score plot could be ascribed to the same spectral
regions independently from the acquisition configuration. Indeed, the shape of loadings
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looked remarkably similar. The differences encountered in the scores could be related to the
different detail of the features registered. Neither the acquisition in the same spectral range
nor with similar engineering technologies showed the same distribution of the samples
(Figure 2e,f).

All these results lead to the conclusion that it is not straightforward to build a priori
theories about instruments’ performances in a specific application. The shapes found in the
loadings suggested that both the physical and chemical characteristics of the samples were
responsible for the score grouping or dispersion.

It is well known that one of the main sources of repeatability error in spectroscopy is
related to scattering effects [42]. Since the final user is likely to use one of the most common
preprocessing techniques for NIR spectra to remove scattering influences, investigations
were carried out on how this affects the dataset under study. As for raw data, using
MSC (Supplementary Figures S8 and S9) or SNV (Supplementary Figures S10 and S11)
resulted in different patterns depending on the preprocessing and the spectrometer used
for data acquisition.

In the case of SCiO, the use of MSC (which is dependent on the mean spectra of
the dataset and corrects for scattering correlated to the wavelength), highly enhances the
variability of the red rice while the scores for the spectra of other samples appeared all in
the center of the model. The first two components were not sufficient for the discrimination
of sample groups. The preprocessing correction was found to be substantially incompatible
with the data under investigation, which varied based on chemical, physical, and also color
features, the latter highly influencing the SCiO signal. A solution could reside in the use
of different reference spectra during the MSC procedure according to the type of sample.
On the contrary, when SNV is applied to the data, red rice and brown sugar emerged as
distinctive groups, although very separated from the other samples.

Application of the scattering removal preprocessing techniques to MicroNir, AvaSpec,
and NeoSpectra Scanner data resulted in very similar outputs. The application of such
preprocessing techniques enhances the variability related to the discrimination between
samples according to the macroscopic differences between rice and sugar spectra. The use
of MSC or SNV did not differently affect the modelling phase. Spectra acquired with the
optical fiber were consistently more variable than the ones obtained with the integrating
sphere. The variability related to the chemistry of the samples predominantly emerged as
the main variance in data, while white granulated and lump sugar samples turned out to
be superimposed in the space of the first two PCs.

NeoSpectra development kit spectra showed an interesting behavior for MSC prepro-
cessed data. The main variance (first PC) includes the intrinsic variability of the rice groups
while the second component highlights spectroscopic differences between rice and sugar
samples. The opposite behavior was found when applying SNV: the first PC was mainly
related to the differences between rice and sugar spectra, whereas the second was necessary
to explain the variability of the rice sample spectra.

The results obtained after applying spectra preprocessing methods depend on the
spectrometer and the samples under investigation, which showed that generalized guid-
ance could not be the most suitable. Consequently, a careful evaluation is needed for the
choice of the instrument and the evaluation of the performances for a specific application,
even in the case of preprocessing methods.

3.3. Studying the Factors Influencing the Analysis
3.3.1. Preliminary Models

Initially, ASCA models including all the spectra and the spectra divided according to
the macro−chemical differences (rice or sugar samples) were calculated and investigated.
The multivariate method permitted the separation of the influences of the investigated
factors and their interactions. The interpretation of the results is somehow immediate. Some
factors resulted significant in different models, whereas others were not, thus allowing
the identification of their connection with a specific spectrometer and/or the sample
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characteristics. The type of sample is the main significant factor in each model that included
this source of variability even if with different magnitudes depending on the model and
instrument or acquisition configuration considered. Other factors showed a behavior more
related to the specific instrument. Results are reported in Supplementary Tables S1–S5.

3.3.2. ASCA Models on Different Samples

The outcomes of the ASCA models for each sample type were easily evaluated by
visualizing and interpreting scores and loadings as in a common PCA. Some selected results
for the sub−models obtained are represented in Figure 4, where some factors significant for
the sensors are shown. The obtained scores for the sub−models are represented according
to the factor levels, and spider graphs are used to enhance the scores centroid. Tendencies
and grouping behaviors reflected the significance of the factors. The results are discussed
below according to the spectrometer.

SCiO

ASCA models were carried out on each sample type to enhance the recurrence of
significant factors. The influence of spectra preprocessing for scattering removal was also
investigated. The results are summarized in Table 2, which shows the percentage each
effect contributes to the sum of squares. The significant effects are highlighted in bold.

From the models of raw spectra, the timing of background emerged as significant for
the majority of the samples, whereas other factors and interactions are sparse. For instance,
the order of replicates was found significant only for sugar lump spectra, for which the
interaction between the order of replicates and the power supply was also significant. When
preprocessing was applied to data, interesting results arose. First, the magnitudes of the
effects were identical, clearly highlighting that the multiplicative scattering is not present
in the data. Secondly, some factors significant for specific samples became negligible when
the scattering was removed, whereas others emerged. In general, it is relevant to notice
that preprocessing increased the number and extent of significant factors and interactions.
A reason could be that when removing the artifacts created by the scattering, the sources of
variance typical for the instrument gain importance relative to the variation of the analysis.
The sub−model obtained for the factor timing of background of red rice spectra is reported
in Figure 4a,b.

The experimental procedure included the acquisition of brown sugar spectra at the
beginning and at the end of each session in order to verify the factor and interaction
related to the sample position in the order of analyses. The factor begin or end of the session
was considered as well as the interactions with the other factors. No significant effects
were found.
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Figure 4. ASCA sub−models of raw data. Scores (a) and loadings (b) of the ASCA sub−model for
the factor timing of background. Instrument: SCiO. Sample: red rice. Scores (c) and loadings (d) of
the ASCA sub−model for the factor order of replicates. Instrument: MicroNir. Sample: brown sugar.
Scores (e) and loadings (f) of the ASCA sub−model for the factor session. Instrument: NeoSpectra
Scanner. Sample: sugar lumps. Scores (g) and loadings (h) of the ASCA sub−model for the factor
power supply. Instrument: NeoSpectra Scanner. Sample: granulated sugar.

MicroNir OnSite−W

The results of ASCA models on each sample group with and without signal prepro-
cessing are summarized in Table 3, which shows the percentage each effect contributes to
the sum of squares. The significative effects are highlighted in bold.
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Table 2. Summary of results for ASCA models of SCiO data. The effects are expressed as percentage
of contribution to the sum of squares of the data. Models calculated on each sample. Factors that
show a p-value < 0.05 after 200 permutations are reported in bold. Brown sugar A indicates the
spectra acquired at the beginning of each analytical session. Brown sugar B indicates the spectra
acquired at the end of each analytical session. None is used to identify the default preprocessing.
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Milled rice 10.56 0.04 0.34 0.21 15.53 8.48 5.18 0.72 2.60 4.10 52.23

Red rice 7.49 3.51 1.19 8.73 13.90 10.80 4.30 1.26 0.02 1.82 46.99

Granulated sugar 9.23 1.90 0.37 4.40 7.81 5.76 3.20 2.18 0.39 7.87 56.90

Sugar lump 20.51 0.87 0.31 0.43 8.22 17.94 5.70 1.17 0.33 0.55 43.94

Brown sugar A 8.9 0.98 0.08 4.85 11.5 5.5 10.07 3.32 1.32 0.35 53.11

Brown sugar B 6.71 1.71 0.01 2.53 14.96 7.67 9.1 0.33 1.27 0.97 54.74

M
SC

Milled rice 7.64 4.35 2.01 18.82 10.30 4.96 4.75 0.89 1.40 0.31 44.58

Red rice 8.87 2.92 0.98 13.77 12.99 4.13 5.29 1.07 0.84 0.30 48.83

Granulated sugar 5.59 7.04 5.60 33.75 5.89 4.55 3.03 1.78 1.05 3.06 28.65

Sugar lump 18.25 3.14 1.54 16.50 6.15 13.94 3.81 3.34 0.57 1.02 31.75

Brown sugar A 8.62 7.06 6.16 6.47 8.79 5.19 6.93 7.23 4.61 0.81 38.15

Brown sugar B 2.80 0.63 0.84 59.74 4.47 2.36 2.15 1.40 1.23 1.61 22.78

SN
V

Milled rice 7.64 4.35 2.01 18.82 10.30 4.96 4.75 0.89 1.40 0.31 44.58

Red rice 8.87 2.92 0.98 13.77 12.99 4.13 5.29 1.07 0.84 0.30 48.83

Granulated sugar 5.59 7.04 5.60 33.75 5.89 4.55 3.03 1.78 1.05 3.06 28.65

Sugar lump 18.25 3.14 1.54 16.50 6.15 13.94 3.81 3.34 0.57 1.02 31.75

Brown sugar A 8.62 7.06 6.16 6.47 8.79 5.19 6.93 7.23 4.61 0.81 38.15

Brown sugar B 2.80 0.63 0.84 59.74 4.47 2.36 2.15 1.40 1.23 1.61 22.78

For the raw data, the factor timing of background, and the interaction between session ×
timing of background were significant for all the samples under investigation. The importance
of the session of analysis is manifested for almost all the samples. The order of replicates
was significant for milled rice and brown sugar (Figure 4c,d). In addition, the values
for the residuals were found to be mainly different depending on the sample considered.
This could be ascribed to the concurrence of other factors not taken under control and
interactions of higher levels.

Preprocessing was applied to the data and, as for SCiO, the calculated effects were
identical showing that the multiplicative scattering is not present in the data. Preprocessing
in this case did not change the significant factors and interactions apart from two specific
samples with similar particle sizes: session for red rice and session × timing of background
for milled rice. Generally, with the higher quality of the preprocessed data, the value of
the considered effects increased. An exception was found for the influence of the timing of
background, which increased for rice samples and decreased for sugars.

The study conducted to identify if the acquisition of a sample at the beginning or at
the end of the session may affect the resulting spectra showed that the factor begin and end
of the session had a p−value of 0.075, whereas its interaction with the timing of background
had an effect of 15.04 and a p−value of 0.005.
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Table 3. Summary of results for ASCA models of MicroNIRTM OnSite data. The effects are ex-
pressed as percentage of contribution to the sum of squares of the data. Models calculated on each
sample. Factors that shown a p−value < 0.05 after 200 permutations are reported in bold. Brown
sugar A indicates the spectra acquired at the beginning of each analytical session. Brown sugar
B indicates the spectra acquired at the end of each analytical session. None is used to identify the
default preprocessing.
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Milled rice 16.78 11.17 5.50 7.77 20.25 12.36 26.18

Red rice 10.72 2.32 7.28 16.82 19.81 10.12 32.93

Granulated sugar 8.19 8.50 35.87 0.93 1.78 39.01 5.73

Sugar lump 0.09 13.62 69.73 0.23 0.14 15.68 0.51

Brown sugar A 12.64 11.33 60.87 0.85 1.14 11.24 1.94

Brown sugar B 12.21 11.66 60.63 1.15 1.05 11.03 2.27

M
SC

Milled rice 12.97 12.20 11.98 10.42 11.50 16.54 24.40

Red rice 8.03 9.89 21.91 9.88 12.21 18.60 19.49

Granulated sugar 9.10 6.90 32.35 1.86 2.40 40.83 6.57

Sugar lump 0.79 17.39 44.93 0.20 0.22 35.95 0.52

Brown sugar A 23.65 13.79 27.77 1.49 2.02 25.83 5.45

Brown sugar B 22.07 14.11 28.64 1.84 1.89 24.78 6.67

SN
V

Milled rice 12.97 12.20 11.98 10.42 11.50 16.54 24.40

Red rice 8.03 9.89 21.91 9.88 12.21 18.60 19.49

Granulated sugar 9.10 6.90 32.35 1.86 2.40 40.83 6.57

Sugar lump 0.79 17.39 44.93 0.20 0.22 35.95 0.52

Brown sugar A 23.65 13.79 27.77 1.49 2.02 25.83 5.45

Brown sugar B 22.07 14.11 28.64 1.84 1.89 24.78 6.67

AvaSpec−Mini−NIR

Results for the AvaSpec−Mini−NIR data are summarized for raw and preprocessed
data in Table 4. The significant effects are highlighted in bold.

At a first glance, the significant factors and interactions are the same regardless
of acquisition configuration and preprocessing method. The slight differences in the
significant effects for the acquisition configuration in raw data could be attributed to the
higher intrinsic variability of data acquired with the fiber optic cable compared to the
integrating sphere. Indeed, the spectrometer and detector were the same, but the light
source and light path through the fiber or the sphere were substantially different, together
with the portion of the sample exposed to the acquisition windows. As a general rule, the
effect values obtained after the application of MSC or SNV were higher than for raw data
and very similar but not identical within them. Interestingly, factors significant only for
some samples when raw spectra were considered were found significant for all the samples
under investigation when a scattering correction method was applied.

Drawing attention to the factor related to different sessions of analysis and the interac-
tion with the timing of background, interesting aspects arise depending on the samples
and configuration. The fact that milled rice spectra resulted in peculiar behavior (only few
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factors influence the analysis) with integrating sphere configuration could reside in the
intrinsic characteristics of the samples, which typically influence NIR acquisition: the grain
size and the color.

The factor dealing with the acquisition of brown sugar spectra at the beginning or
the end of a session and its interactions with the other factors were investigated. Results
allowed for identification of a significant influence of the interaction session × begin or end
of the session (effect 3.33 and p−value 0.02) in the spectra obtained with the optical fiber.
Data registered with the integrating sphere did not show any significant effect according to
the p−values related to the order of samples’ acquisition.

Table 4. Summary of results for ASCA models of AvaSpec−Mini−NIR data. The effects are ex-
pressed as percentage of contribution to the sum of squares of the data. Models calculated on each
sample. Factors that shown a p-value < 0.05 after 200 permutations are reported in bold. Brown
sugar A indicates the spectra acquired at the beginning of each analytical session. Brown sugar
B indicates the spectra acquired at the end of each analytical session. None is used to identify the
default preprocessing.
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Milled rice 14.92 4.41 3.10 30.50 13.22 3.67 30.18 14.00 1.52 0.43 30.34 16.67 1.43 35.61

Red rice 17.14 0.64 4.91 23.04 21.88 2.78 29.61 13.61 1.87 3.91 34.07 11.97 4.85 29.72

Granulated sugar 8.86 4.39 0.84 38.18 18.28 0.89 28.54 5.70 7.61 21.64 17.29 4.81 25.93 17.02

Sugar lump 9.76 3.50 7.86 24.35 22.14 18.17 14.22 12.19 14.50 0.52 30.36 10.75 10.38 21.30

Brown sugar A 19.08 12.32 6.55 17.97 13.25 3.37 27.45 5.27 15.72 24.29 8.77 4.07 27.23 14.65

Brown sugar B 12.59 0.48 2.38 30.63 11.63 0.74 41.56 4.55 5.97 10.77 8.64 5.02 55.13 9.92

M
SC

Milled rice 0.03 42.79 14.27 0.05 0.02 42.80 0.05 13.01 4.28 3.78 27.90 13.24 4.86 32.93

Red rice 18.34 6.45 3.52 24.71 12.71 4.31 29.95 14.95 9.26 6.94 33.62 11.55 4.54 19.15

Granulated sugar 9.84 13.79 3.39 25.61 13.41 5.63 28.32 4.87 14.27 27.11 13.51 4.38 20.27 15.58

Sugar lump 11.21 5.03 6.30 28.56 10.67 6.10 32.13 8.49 9.56 10.94 13.45 6.35 37.11 14.10

Brown sugar A 0.03 42.80 14.27 0.03 0.02 42.82 0.03 12.22 7.06 5.89 16.14 6.71 24.35 27.62

Brown sugar B 11.21 5.03 6.30 28.56 10.67 6.10 32.13 8.49 9.56 10.94 13.45 6.35 37.11 14.10

SN
V

Milled rice 0.17 42.38 14.09 0.37 0.12 42.52 0.35 13.00 4.29 3.79 27.89 13.23 4.87 32.94

Red rice 18.31 6.41 3.50 24.78 12.74 4.32 29.95 14.93 9.27 6.95 33.61 11.55 4.55 19.15

Granulated sugar 9.84 13.80 3.40 25.60 13.41 5.63 28.32 4.87 14.27 27.11 13.51 4.38 20.27 15.58

Sugar lump 11.21 5.05 6.31 28.54 10.64 6.12 32.12 8.49 9.56 10.94 13.45 6.35 37.11 14.10

Brown sugar A 0.15 42.55 14.28 0.13 0.10 42.64 0.15 12.22 7.06 5.89 16.14 6.71 24.36 27.62

Brown sugar B 11.21 5.05 6.31 28.54 10.64 6.12 32.12 8.49 9.56 10.94 13.45 6.35 37.11 14.10

NeoSpectra Scanner

Remarkable aspects were highlighted from the modelling of every single type of
sample and the application of signal preprocessing (Table 5).



Chemosensors 2023, 11, 182 17 of 24

Table 5. Summary of results for ASCA models of Neospectra Scanner data. The effects are ex-
pressed as percentage of contribution to the sum of squares of the data. Models calculated on each
sample. Factors that shown a p-value < 0.05 after 200 permutations are reported in bold. Brown
sugar A indicates the spectra acquired at the beginning of each analytical session. Brown sugar
B indicates the spectra acquired at the end of each analytical session. None is used to identify the
default preprocessing.
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Milled rice 6.72 0.86 1.40 0.36 14.18 9.57 8.91 1.80 0.94 1.26 54.01

Red rice 7.57 0.15 1.14 1.10 11.77 14.68 12.49 1.17 0.64 0.04 49.25

Granulated sugar 4.98 3.72 3.94 6.19 9.10 3.06 7.09 2.44 1.91 5.50 52.06

Sugar lump 0.51 15.60 6.41 15.98 0.64 0.21 0.22 8.99 5.11 33.42 12.92

Brown sugar A 5.09 6.38 5.59 1.19 8.06 3.34 5.59 5.66 9.91 9.83 39.36

Brown sugar B 5.38 4.25 5.92 5.78 10.09 3.57 6.20 3.53 8.15 2.51 44.62

M
SC

Milled rice 7.35 1.30 0.66 0.54 15.63 7.79 7.81 1.25 0.86 1.06 55.75

Red rice 8.16 0.62 1.19 0.60 15.02 15.38 11.42 1.15 0.45 0.35 45.66

Granulated sugar 2.45 9.15 13.86 12.60 4.01 1.63 2.43 7.12 5.75 16.46 24.54

Sugar lump 2.91 9.31 9.12 12.05 1.38 0.55 0.49 9.31 7.78 36.60 10.51

Brown sugar A 7.02 4.20 4.55 5.51 11.32 5.11 5.52 2.93 5.57 4.41 43.85

Brown sugar B 5.91 5.93 4.66 3.82 9.22 4.70 5.57 5.26 5.80 4.33 44.80

SN
V

Milled rice 5.98 1.92 0.87 0.64 15.74 7.47 7.98 1.43 0.86 2.13 54.97

Red rice 8.16 0.62 1.18 0.60 15.06 15.26 11.36 1.16 0.46 0.36 45.77

Granulated sugar 2.45 9.15 13.86 12.60 4.01 1.63 2.43 7.12 5.75 16.46 24.54

Sugar lump 2.91 9.31 9.12 12.05 1.38 0.55 0.49 9.31 7.78 36.60 10.51

Brown sugar A 7.02 4.21 4.55 5.51 11.31 5.12 5.52 2.94 5.57 4.41 43.85

Brown sugar B 5.91 5.93 4.66 3.82 9.23 4.70 5.57 5.27 5.80 4.33 44.79

Based on the analysis of raw data, session (Figure 4e,f), timing of background, and
power supply are significant factors, as well as their interaction and the interaction with
the timing of background. The discrepancy among residual values calculated in these
models is consistent depending on the sample, indicating that other factors or higher−level
interactions could be involved. The influencing factors in the spectra of this instrument
were found substantially independent of scattering removal. The main difference when
applying MSC (or SNV) resided in the magnitude of the effects for the significant factors
and interactions.

The analysis carried out with the brown sugar spectra acquired at the beginning and
the end of the session proved that there is not such a significant influence of the factor itself.
In contrast, the interactions session × timing of background, session × begin or end of the session,
and timing of background × begin or end of the session were significant (p−values—0.005,
0.025, and 0.005, respectively) with a small contribution (% sum of squares—8.80, 1.77, and
2.01, respectively).
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NeoSpectra Development Kit

Looking into the results obtained for each sample (Table 6), it appears that disparate
factors and interactions for different samples could influence the spectra.

Table 6. Summary of results for ASCA models of Neospectra development kit data. The effects
are expressed as percentage of contribution to the sum of squares of the data. Models calculated
on each sample. Factors that shown a p-value < 0.05 after 200 permutations are reported in bold.
Brown sugar A indicates the spectra acquired at the beginning of each analytical session. Brown
sugar B indicates the spectra acquired at the end of each analytical session. None is used to identify
the default preprocessing.
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Milled rice 22.06 3.11 0.81 22.38 23.23 0.37 28.04

Red rice 15.97 2.45 0.99 32.20 12.90 4.30 31.17

Granulated sugar 13.49 12.12 16.76 23.34 9.61 4.01 20.66

Sugar lump 18.09 2.50 21.56 16.17 19.74 5.87 16.07

Brown sugar A 8.64 19.96 5.33 21.40 10.44 14.68 19.56

Brown sugar B 6.85 2.52 31.25 23.98 10.32 3.94 21.14

M
SC

Milled rice 13.83 0.44 1.58 33.10 20.02 1.05 29.96

Red rice 11.73 2.35 0.12 37.79 15.61 3.73 28.68

Granulated sugar 14.47 1.16 0.99 32.60 14.70 2.57 33.50

Sugar lump 18.68 2.19 2.66 24.90 19.07 1.71 30.79

Brown sugar A 10.90 11.61 1.45 29.32 11.97 4.11 30.62

Brown sugar B 16.55 2.97 4.79 28.09 14.19 2.70 30.71

SN
V

Milled rice 15.53 0.64 0.91 31.18 21.26 1.02 29.46

Red rice 16.19 3.01 0.97 37.37 15.72 2.90 23.84

Granulated sugar 14.46 1.19 1.01 32.59 14.68 2.59 33.47

Sugar lump 18.67 2.19 2.70 24.87 19.04 1.72 30.81

Brown sugar A 10.88 11.66 1.49 29.34 11.99 4.12 30.52

Brown sugar B 16.58 3.01 4.80 28.02 14.22 2.71 30.65

None of the factors under investigation were identified as significant from the permu-
tations test for the spectra of rice samples. Despite that, the residuals are compatible with
the ones of the previous instruments and with the other samples. The timing of background
was found significant with a relatively different magnitude for the spectra of the sugar
samples. The same is true for the interaction session × timing of background. Conversely to
what was obtained for the other spectrometers, the application of a preprocessing method
in this case generally reduced the effect of significant factors, strictly depending on the
sample. The order of the sample in the session, investigated through the replicates of brown
sugar, demonstrated that the interaction session × begin or end of the session was the only
one significant for the spectra acquired by the NeoSpectra development kit.

These results enhanced the importance of a comprehensive study of the signals. In
this case, the results of the ASCA models suggested that this spectrometer could be the best
option among the tested ones. However, from a thoughtful evaluation of the characteristics
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of the signal, the circumstances appeared different. First of all, the intensities of the
spectra registered with the NeoSpectra development kit were considerably lower than
the ones of the spectra acquired with other sensors (Supplementary Figure S7). The
inspection of the S/N ratio and the relative standard deviation was carried out, and results
were directly compared with those achieved for the NeoSpectra Scanner spectra. The
reason for such comparison resides in the similarity of the sensors’ conceptualization.
The S/N was calculated as the ratio between the mean spectra for each sample and the
standard deviation of the spectra of the same sample. The relative standard deviation was
estimated as 100 × standard deviation of spectra for each sample divided by the mean
spectrum for the same sample. In general, the S/N was smaller with the relative standard
deviation higher for the Neospectra development kit (Figure 5). Therefore, fewer factors
and interactions were found to be significant in the ASCA models due to the low quality
and lack of sensitivity of the sensor and not because of reduced influences in the spectra.

Figure 5. Relative standard deviation (a) and signal to noise ratio (b) for the spectra of all samples:
results for spectra acquired with NeoSpectra scanner are in orange, while results for the spectra of
NeoSpectra development kit are represented in blue.

3.4. Emerging Rules of Thumb

The feasibility and utility of miniaturized NIR devices has been proved in the lit-
erature in several applications [2], and the low cost of the sensors mainly led to their
wide use in industries of several fields. In addition, the potentialities in gaining chemical
and physical information have been widely proved. Despite this, it is quite common to
underestimate the importance of the method set−up procedure in the analytical method
and the effects to consider during the development of the acquisition strategy [1]. Under
these circumstances, the results obtained through this study are meaningful for several
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reasons. ASCA allowed the separation of the influences of different factors and interactions
on the spectra. Moreover, an esteem of the magnitude of the effects was made available
and interpretable through the loadings of each sub−model. Typical behaviors about the
main effects studied could be stated for each spectrometer. The class of miniaturized spec-
trometers is proved to be plenty of differences between technologies and applicability. The
outcome for spectrometers measuring the same spectral range could not be expected to be
consistent without examining the specific application. Indeed, the intrinsic characteristics
of each instrument and the features reflected in different experimental procedures make
the influences in the spectra arduous to generalize. Even when the same spectrometer is
used but with a different acquisition configuration, as in the case of AvaSpec−Mini−NIR,
the variabilities in the data may change. In the same way, the factors to consider can vary
depending on how a specific technology is assembled in the final spectrometer, as was
proved for NeoSpectra sensors.

Some good practices may pop up from the insights obtained in this work. First, when
considering a new application of a miniaturized spectrometer, a previous feasibility analysis
has to be carried out for several factors. The method proposed could be used to identify
the main factors for the specific case study. Within this frame, the optimization of the
background timing was proved essential. Indeed, the acquisition of the background before
each sample could be the optimal condition, but being time consuming, the identification of
an optimal timing for the parameter is fundamental. Nonetheless, the evaluation of power
supply conditions could be of interest when the spectrometer allows analysis standing
in battery mode. In some cases, systematic error related to the order of acquisition was
identified. Consequently, when more than one experimental replicated spectrum is needed,
the influence of subsequent acquisitions is to be taken into consideration, as well as the
order of samples under analysis. The general guidelines could reside in the random spectra
acquisition for samples with similar characteristics.

With a view to developing predictive or classification models where the ordinary user
will likely consider preprocessing methods, a deep investigation must be carried out [43]
according to the emphasized influences found on the factors under study. The calibration
set for the modelling phase should be constructed to include the sources of variability
related to the instrument and its application [44,45] and should consider the reference
errors. Similarly, it will most likely be necessary to include the same variabilities for reliable
external validation. For instance, if the analysis session is a significant factor, a representa-
tive calibration set should include data from different sessions of analyses. Similarly, an
actual external validation set could be composed of spectra acquired in different sessions.
Other relevant implications could be highlighted for monitoring measurement systems and
model maintenance (i.e., the calibration transfer strategies between different instruments
and within the same instrument) [46–49].

4. Conclusions

Replicated spectra of samples with different physical and chemical characteristics and
of worldwide interest were analyzed with five miniaturized NIR spectrometers covering
different spectral ranges and based on different technologies. On one side, the factors
that influence raw spectra are elucidated for each spectrometer, and the advantages and
drawbacks of preprocessing are highlighted. The urgency for preliminary studies when
dealing with a specific miniaturized spectrometer came out, and a guide for good practices
was delineated to face the method set−up step. The identification of suitable acquisition
strategies and systematic influences could allow the obtention of reliable results. On
the other side, a method to investigate the sources of variability is presented. A way to
identify the significant factors and interactions affecting spectral data is proposed. The
background was proved to be one of the main factors to consider and to care about by
the final user. Miniaturized NIR spectrometers were found to be very different to each
other. The necessity for not treating them as a general class of instruments emerged due
to significant technological differences in the characteristics and in the type of variation
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associated to the spectra. Depending on the samples and their physical and chemical
characteristics, the results could vary with each sensor. Results showed that preprocessing
is not always needed and, depending on the sensor, enhances the influences in the spectra
unrelated to the sample properties.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors11030182/s1, Figure S1: Examples of spectrometer
positioning during the analyses: (a) SCiO, (b) Viavi Micro-NIR, (c) AvaSpec with optical fibre,
(d) AvaSpec with integrating sphere, (e) NeoSpectra Scanner, (f) NeoSpectra Development kit; Figure
S2: Dataset structure scheme for SCiO; Figure S3: Dataset structure scheme for MicroNir OnSite-W;
Figure S4: Dataset structure scheme for AvaSpec-Mini NIR; Figure S5: Dataset structure scheme for
NeoSpectra Scanner; Figure S6: Dataset structure scheme for NeoSpectra development kit; Figure
S7: Averaged spectra of each sample with the different spectrometers: (a) SCiO, (b) Viavi Micro-
NIR, (c) AvaSpec with integrating sphere, (d) AvaSpec with optical fiber, (e) NeoSpectra Scanner,
(f) NeoSpectra Development kit; Figure S8: PCA results on data preprocessed with MSC: Score plot
for (a) SCiO, (b) Viavi Micro-NIR, (c) AvaSpec with integrating sphere, (d) AvaSpec with optical
fibre, (e) NeoSpectra Scanner, (f) NeoSpectra Development kit; Figure S9: PCA results on data
preprocessed with MSC: Loading plot for (a) SCiO, (b) Viavi Micro-NIR, (c) AvaSpec with integrating
sphere, (d) AvaSpec with optical fiber, (e) NeoSpectra Scanner, (f) NeoSpectra Development kit;
Figure S10: PCA results on data preprocessed with SNV: Score plot for (a) SCiO, (b) Viavi Micro-
NIR, (c) AvaSpec with integrating sphere, (d) AvaSpec with optical fibre, (e) NeoSpectra Scanner,
(f) NeoSpectra Development kit; Figure S11: PCA results on data preprocessed with SNV: Loading
plot for (a) SCiO, (b) Viavi Micro-NIR, (c) AvaSpec with integrating sphere, (d) AvaSpec with optical
fiber, (e) NeoSpectra Scanner, (f) NeoSpectra Development kit; Table S1: Resume of results for ASCA
models of SCiO data. Effect in percentage which represent the contribution to the sum of squares
of the data and cumulative eigenvalue. Models calculated on each type of sample according to
the macro-chemical characteristics. In bold are reported factors that shown a p-value < 0.05 after
200 permutations. The factor “sample” included as sample levels respectively milled rice, brown rice,
granulated sugar, sugar lump and only the replicate of the brown sugar acquired at the beginning of
each session; Table S2: Resume of results for ASCA models of MicroNIR data. Effect in percentage
which represent the contribution to the sum of squares of the data and cumulative eigenvalue.
Models calculated on each type of sample according to the macro-chemical characteristics. In bold are
reported factors that shown a p-value < 0.05 after 200 permutations. The factor “sample” included as
sample levels respectively milled rice, brown rice, granulated sugar, sugar lump and only the replicate
of the brown sugar acquired at the beginning of each session; Table S3: Resume of results for ASCA
models of AvaSpec-mini-NIR data. Effect in percentage which represent the contribution to the sum of
squares of the data and cumulative eigenvalue. Models calculated on each type of sample according
to the macro-chemical characteristics. In bold are reported factors that shown a p-value < 0.05 after
200 permutations. The factor “sample” included as sample levels respectively milled rice, brown rice,
granulated sugar, sugar lump and only the replicate of the brown sugar acquired at the beginning
of each session; Table S4: Resume of results for ASCA models of NeoSpectra Scanner data. Effect
in percentage which represent the contribution to the sum of squares of the data and cumulative
eigenvalue. Models calculated on each type of sample according to the macro-chemical characteristics.
In bold are reported factors that shown a p-value < 0.05 after 200 permutations. The factor “sample”
included as sample levels respectively milled rice, brown rice, granulated sugar, sugar lump and
only the replicate of the brown sugar acquired at the beginning of each session; Table S5: Resume of
results for ASCA models of NeoSpectra development kit data. Effect in percentage which represent
the contribution to the sum of squares of the data and cumulative eigenvalue. Models calculated on
each type of sample according to the macro-chemical characteristics. In bold are reported factors
that shown a p-value < 0.05 after 200 permutations. The factor “sample” included as sample levels
respectively milled rice, brown rice, granulated sugar, sugar lump and only the replicate of the brown
sugar acquired at the beginning of each session.
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