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1. Introduction 

 

 Composite indicators are basically computational models used to measure the 

performance of objects or individuals in complex concepts which are not able to 

judge based on a single aspect. The role of composite indicators is to provide a proper 

aggregation that combines the conduct of objects in different dimensions into only 

one scalar. On the one hand, composite indicators are useful to support decision 

makers in capturing multidimensional realities and comparing object performance 

straightforwardly. On the other hand, synthetic indices might provide incorrect 

benchmarks and misleading policy messages if they are poorly constructed (OECD, 

2008; Saisana and Tarantola, 2002). 

While the choice of sub-indicators or inputs mainly depends on the definition of 

the phenomenon, the composite model, including the setting of weights and the 

aggregation function, is much in the hands of developers. Conceptually, weights 

refer to the explicit importance of inputs to a composite indicator, and the relative 

importance (trade-off) between these inputs (OECD, 2008). However, a weight can 

be directly interpreted as a measure of importance for each input only if several 

conditions are satisfied: normative weighting, constant variances, and no 

correlations among variables (Becker et al., 2017). Decancq and Lugo (2013) also 

pointed out that only under the circumstance of using the weighted arithmetic 

aggregation and a proper transformation of variables, the ratio of weights becomes 

equal to the trade-off between input factors. Most composite indicators cannot meet 

all such requirements, and hence recruiting a measurement of variable importance 

that is not subject to any model constraints is requisite for weighting. 

Given a computational model, there are two main approaches to assess the 

importance of input variables to the model output: local sensitivity analysis and 

global sensitivity analysis. This paper focuses on the global approach using variance-

based sensitivity measures (Sobol’, 1993; Homma and Saltelli, 1996; Saisana et al., 

2005). In detail, the article introduces a non-parametric estimation procedure for 

measuring the importance of input factors, which is developed from the original 

work of Mara et al. (2015) and integrated with the Monte Carlo estimator of Martinez 
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(2011). The selection of optimal weights is hence carried out by solving a 

minimization problem in which the weight vector is tuned to achieve the minimum 

difference between itself and the normalized importance of inputs. 

 

 

2. Measuring Importance 
 

2.1. Importance Measures for Independent Inputs 

Let 𝑌 denote a composite indicator obtained from a square integrable function 

𝑓(𝑋)  where the input 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛)  is a random vector. Assume that 𝑋  is 

defined by a joint probability density function 𝑝𝑋. The variance of the conditional 

distribution of 𝑌  given 𝑋𝑖  is denoted by Var𝑋~𝑖(𝑌|𝑋𝑖), where the term 𝑋~𝑖  is the 

vector 𝑋 without 𝑋𝑖. We can establish a measure of importance for 𝑋𝑖 as 

 

Var(𝑌)  −  E (Var𝑋~𝑖(𝑌|𝑋𝑖)) =  Var (E𝑋~𝑖(𝑌|𝑋𝑖)),                                          (1) 

 

which is the expected variance reduction in composite indicator scores if the factor 

of variation 𝑋𝑖 is fixed. According to the ANOVA representation of Sobol’ (1993), 

𝑓(𝑋) can be decomposed into summands of different dimensions: 

 

𝑓(𝑋) = 𝑓0 + ∑ 𝑓𝑖(𝑋𝑖)
𝑛
𝑖=1 + ∑ 𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗)1≤𝑖<𝑗≤𝑛 +⋯+ 𝑓1…𝑛(𝑋1, … , 𝑋𝑛)               (2) 

 

This expression is always existent and unique if the integrals of the summands with 

respect to any of their own variables are zero (Sobol’, 1993). The condition results 

in all the individual terms in (2) being pairwise orthogonal, implying that all 𝑋𝑖’s are 

mutually independent. The orthogonality leads to the variance decomposition 

 

Var(𝑌) = ∑ Var(𝑓𝑖)
𝑛
𝑖=1 + ∑ Var(𝑓𝑖𝑗)1≤𝑖<𝑗≤𝑛 +⋯+ Var(𝑓1…𝑛).                           (3) 

 

Sobol’ (1993) introduced his measurement of importance, known as Sobol’ 

indices, which is derived from dividing both sides of (3) by Var(𝑌) to acquire 

 

∑ 𝑆𝑖
𝑛
𝑖 + ∑ 𝑆𝑖𝑗1≤𝑖<𝑗≤𝑛 +⋯+ 𝑆12…𝑛 = 1,                                                                (4) 

 

where 

𝑆𝑖 =
Var(𝑓𝑖)

Var(𝑌)
=
Var(E𝑋∼𝑖(𝑌|𝑋𝑖))

Var(𝑌)
,  𝑆𝑖𝑗 =

Var(𝑓𝑖𝑗)

Var(𝑌)
=
Var(E𝑋∼𝑖𝑗(𝑌|𝑋𝑖,𝑋𝑗))

Var(𝑌)
− 𝑆𝑖 − 𝑆𝑗, 

    

(1) 
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and so on. The term 𝑋∼𝑖𝑗 denotes the vector 𝑋 without 𝑋𝑖 and 𝑋𝑗. 𝑆𝑖 is a first-order 

Sobol’ index that captures the main contribution of 𝑋𝑖 to the output variance. 𝑆𝑖𝑗 is a 

second-order Sobol’ index that gauges the contribution caused by the interaction 

between 𝑋𝑖 and 𝑋𝑗, and analogous formulas can be applied to higher-order indices. 

Homma and Saltelli (1996) established another measure called a total Sobol’ 

index that captures the total contribution of 𝑋𝑖 and all its interactions, defined by 

 

𝑆𝑇𝑖 = 𝑆𝑖 +∑ 𝑆𝑖𝑗𝑗≠𝑖 +⋯+ 𝑆1…𝑖…𝑛 = 1 −
Var(E𝑋𝑖(𝑌|𝑋∼𝑖))

Var(𝑌)
=
E(Var𝑋𝑖(𝑌|𝑋∼𝑖))

Var(𝑌)
. 

(2) 

 

 

While 𝑆𝑖  indicates the expected proportion of variance reduction that would be 

obtained if 𝑋𝑖  was fixed, 𝑆𝑇𝑖  indicates the expected proportion of variance that 

would be left if all inputs were fixed except 𝑋𝑖. Therefore, a large value of either 𝑆𝑖 
or 𝑆𝑇𝑖 implies that 𝑋𝑖 is an important contributor and vice versa. 

 

 

2.2. Importance Measures for Independent Inputs 

 

The application of the Sobol’ ANOVA representation to dependent inputs is not 

prohibited but might lead to incorrect computation and wrong interpretation (Mara 

and Tarantola, 2012). In Mara et al. (2015), the authors proposed a strategy to 

estimate importance indices that account for the dependency of inputs, using the 

Rosenblatt (1952) transformation (𝑅𝑇). It transforms 𝑋 ~ 𝑝𝑋 into a random vector 

𝑈 ∼ 𝒰𝑛(0, 1) with independent and uniformly distributed entries: 

 

[
 
 
 
 
 
𝑋1
𝑋2
⋮
𝑋𝑘
⋮
𝑋𝑛]
 
 
 
 
 

𝑅𝑇
→ 

[
 
 
 
 
 
𝑈1
𝑈2
⋮
𝑈𝑘
⋮
𝑈𝑛]
 
 
 
 
 

=

[
 
 
 
 
 
 

𝐹𝑋1(𝑥1)

𝐹𝑋2|𝑋1(𝑥2|𝑥1)

⋮
𝐹𝑋𝑘|𝑋1,…,𝑋𝑘−1(𝑥𝑘|𝑥1, … , 𝑥𝑘−1)

⋮
𝐹𝑋𝑛|𝑋1,…,𝑋𝑛−1(𝑥𝑛|𝑥1, … , 𝑥𝑛−1)]

 
 
 
 
 
 

,                                                 (7)  

 

where 𝐹𝑋𝑘∣𝑋1,…,𝑋𝑘−1 is the cumulative distribution function (CDF) of 𝑋𝑘 conditioned 

by 𝑋1, … , 𝑋𝑘−1.  
Let 𝑈𝑖 = (𝑈1

𝑖 , 𝑈2
𝑖 , … , 𝑈𝑛

𝑖 ) be the random vector obtained from 𝑅𝑇 of 𝑋 with the 

order (𝑋𝑖, 𝑋𝑖+1, … , 𝑋𝑛, 𝑋1, … , 𝑋𝑖−1). Because 𝑅𝑇 is bijective, there exists an inverse 

transformation such as 𝑋 = 𝑅𝑇𝑖
−1(𝑈𝑖) and the aggregation function can be written 

as 𝑌 = 𝑓(𝑅𝑇𝑖
−1(𝑈𝑖)) = 𝑔𝑖(𝑈𝑖). This establishes a one-to-one mapping 
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(𝐹𝑋𝑖 , 𝐹𝑋𝑖+1|𝑋𝑖 , … , 𝐹𝑋1|𝑋𝑖,𝑋𝑖+1,…,𝑋𝑛 , … , 𝐹𝑋𝑖−1|𝑋~(𝑖−1)) ↔ (𝑈1
𝑖 , 𝑈2

𝑖 , … , 𝑈𝑛
𝑖 ).               (8) 

 

Since 𝑈1
𝑖 , … , 𝑈𝑛

𝑖  are independent, the variance of 𝑌  can be decomposed into the 

Sobol’ indices of 𝑈𝑖 instead of 𝑋. The first-order index of 𝑈1
𝑖 indicates the expected 

proportion of variance that would be reduced if 𝑋𝑖 was fixed and the other factors 

varied conditionally on 𝑋𝑖. In other words, it quantifies the main contribution of 𝑋𝑖 
to the output variance, taking into account its dependency with the other inputs. The 

total index of 𝑈1
𝑖 specifies the expected proportion of variance that would remain if 

all the inputs but 𝑋𝑖 were fixed conditionally on 𝑋𝑖, measuring the total dependent 

contribution of 𝑋𝑖 and all its interactions. These two measures are so-called the full 

Sobol’ indices of 𝑋𝑖, denoted by 𝑆𝑖
𝑓𝑢𝑙𝑙

 and 𝑆𝑇𝑖
𝑓𝑢𝑙𝑙

 respectively. 

As can be seen from the mapping (8), the first-order index of 𝑈𝑛
𝑖  is the main 

contribution of 𝑋𝑖−1 that does not account for its dependence on all the other inputs. 

Therefore, this value is called the independent first-order Sobol’ index of 𝑋𝑖−1 , 

denoted by 𝑆𝑖−1
𝑖𝑛𝑑. Analogously, the total index of 𝑈𝑛

𝑖  is called the independent total 

Sobol’ index of 𝑋𝑖−1, denoted by 𝑆𝑇𝑖−1
𝑖𝑛𝑑, that specifies the independent contribution 

of 𝑋𝑖−1 and all its interactions. The formulas of full and independent Sobol’ indices, 

and their relationship with the original indices are given as follows: 

 

𝑆𝑖
𝑓𝑢𝑙𝑙 =

Var(E
𝑈∼1
𝑖 (𝑌|𝑈1

𝑖 ))

Var(𝑌)
=
Var(E𝑋∼𝑖(𝑌|𝑋𝑖))

Var(𝑌)
= 𝑆𝑖, 

𝑆𝑇𝑖
𝑓𝑢𝑙𝑙 =

E(Var
𝑈1
𝑖 (𝑌|𝑈∼1

𝑖 ))

Var(𝑌)
=
E(Var𝑋𝑖(𝑌|(𝑋∼𝑖|𝑋𝑖)))

Var(𝑌)
,                                                  (9) 

𝑆𝑖
𝑖𝑛𝑑 =

Var(E
𝑈∼𝑛
𝑖+1(𝑌|𝑈𝑛

𝑖+1))

Var(𝑌)
=
Var(E𝑋∼𝑖(𝑌|(𝑋𝑖|𝑋~𝑖)))

Var(𝑌)
, 

𝑆𝑇𝑖
𝑖𝑛𝑑 =

E(Var
𝑈𝑛
𝑖+1(𝑌|𝑈∼𝑛

𝑖+1))

Var(𝑌)
=
E(Var𝑋𝑖(𝑌|𝑋∼𝑖))

Var(𝑌)
= 𝑆𝑇𝑖. 

 

In terms of measuring importance, 𝑆𝑖
𝑖𝑛𝑑  points out the expected proportion of 

variance decline caused by fixing 𝑋𝑖 conditionally on all the other inputs while 𝑆𝑇𝑖
𝑖𝑛𝑑 

indicates the expected proportion of variance that would remain if all the inputs 

except 𝑋𝑖 were fixed and 𝑋𝑖 was set to vary conditionally on them. Overall, a great 

value of either full or independent Sobol’ indices implies that the input factor is 

important in explaining the variance of composite indicator scores. 

3. Estimation Methods and Sampling Strategies 

 

The estimation of full and independent Sobol’ indices can be performed using the 

“pick and freeze” strategy (Saltelli et al., 2008). Only two independent samples of 
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𝑈 ∼ 𝒰𝑛(0, 1) with 𝑁 rows are sufficient to estimate all four importance measures of 

each input factors. The first step is to generate two random samples 𝐴 ∼ 𝒰𝑛(0, 1) 
and 𝐵 ∼ 𝒰𝑛(0, 1)  with the same size 𝑁 × 𝑛 . Then two samples 𝐵1  and 𝐵𝑛  are 

formed by all columns of 𝐵 except the first (1-st) and the last (𝑛-th) column taken 

from 𝐴 respectively. Finally, the indices are calculated using the Martinez (2011) 

estimator with 𝜌 symbolizing the Pearson correlation coefficients: 

 

𝑆𝑖
𝑓𝑢𝑙�̂� = 𝜌(𝑔𝑖(𝐴), 𝑔𝑖(𝐵1)),             𝑆𝑖

𝑖𝑛�̂� = 𝜌(𝑔𝑖+1(𝐴), 𝑔𝑖+1(𝐵𝑛)), 

𝑆𝑇𝑖
𝑓𝑢𝑙𝑙̂ = 1− 𝜌(𝑔𝑖(𝐵), 𝑔𝑖(𝐵1)),  𝑆𝑇𝑖

𝑖𝑛�̂� = 1 − 𝜌(𝑔𝑖+1(𝐵), 𝑔𝑖+1(𝐵𝑛)). 
(3) 

 

Since the composite scores are computed from the samples of 𝑈, the inverse 

Rosenblatt transformation is required to calculate the output 𝑌 = 𝑔𝑖(𝑈𝑖) and the 

importance indices. If 𝑝𝑋  is known, this transformation can be derived from 

conditional CDFs in 𝑋. In practice, 𝑝𝑋 is often unidentified and only a representative 

sample 𝑆𝑋 of 𝑋 is available. The question here is how can we establish a bijective 

mapping from 𝑆𝑋 , which satisfies the property of the inverse Rosenblatt 

transformation, to provide a sufficiently large number of trials for the Monte Carlo 

estimation? 

A simple solution is to assume a multivariate normal distribution in 𝑋  then 

applying Gaussian inverse transform sampling. The distribution parameters 𝛴 and 𝜇 

can be estimated from 𝑆𝑋, and they in turn are used to construct the conditional 

inverse CDFs (conditional quantile functions). The second solution for sampling is 

the Iman-Conover method (Iman and Conover, 1982), which is designed to generate 

a random sample based on a given correlation structure and known marginal 

distributions. Because 𝑝𝑋  is unknown, the Pearson correlation matrix and the 

empirical marginals of 𝑆𝑋 will be employed instead. The last potential technique is 

copula sampling based on Sklar’s theorem. Having a proper copula model fitted on 

𝑆𝑋, one can totally use the inverse copula and empirical marginals to simulate the 

inverse Rosenblatt transformation. 

 

 

4. Weight Optimization 

 

With respect to the variable 𝑋𝑖, denote 𝑤𝑖 as the weight and 𝐼𝑖 as the importance 

measure using one of the four Sobol’ indices. The importance measures for all the 

variables are normalized by 𝐼�̃� = 𝐼𝑖/∑ 𝐼𝑘
𝑛
𝑘=1  to make them comparable to the value of 

weights. Denote a loss function 

 



126 Volume LXXVI n.4 Ottobre-Dicembre 2022 

 

𝐿 = 𝑑2(𝑤, 𝐼) = ∑ (𝑤𝑖 − 𝐼�̃�)
2𝑛

𝑖=1 ,                (11) 

 

which is the squared Euclidean distance between two vectors 𝑤 = (𝑤1, … , 𝑤𝑛) and 

𝐼 = (𝐼1̃, … , 𝐼�̃�). The optimal set of weights is defined by 

 

𝑤∗ = argmin
𝑤1,…,𝑤𝑛

𝐿  s.t. 𝑤𝑖 ∈ (0, 1), ∑ 𝑤𝑖
𝑛
𝑖=1 = 1               (12) 

 

At 𝐿min, the distance between the two vectors is minimal and hence we attain the 

set 𝑤∗ as close as possible to 𝐼. In case 𝐿min = 0 that is equivalent to 𝑤∗ ≡ 𝐼, the 

weights obtained are exactly proportional to the measures of importance. For the 

general case, L can be always expressed as a function of 𝑤 and 𝑝𝑋. Thus, we can 

reach the global minimum if two conditions are satisfied: the joint probability 

distribution of inputs is given; and the loss function is convex in its domain. Figure 

1 gives an illustration of the optimization procedure. At the beginning, a sample of 

𝑋 and an initial set of weights are fed into the loss function to estimate the distance 

𝐿. The trial weights are then calibrated using a minimization algorithm based on the 

estimated values of 𝐿 until the loss function achieves its minimum, which indicates 

the best course of action. 

 
Figure 1 - Diagram of the weight optimization procedure. 

 
 

 

5. Empirical Analysis 

 

5.1. Test Case 1: Multivariate Normal Distribution 

 

Considering the composite indicator 𝑌 = 𝑤1𝑋1 +𝑤2𝑋2 +𝑤3𝑋3 +𝑤4𝑋4 , where 

𝑋 = (𝑋1, 𝑋2, 𝑋3, 𝑋4) follows a multivariate Gaussian distribution 𝒩(𝜇, 𝛴) with the 

parameters 𝜇 = (0, 0, 0, 0) and 

Dataset Inverse transform sampling 

Trial weights 

LOSS FUNCTION 

Minimization Algorithm 

Initial weights 

Optimal weights 

Importance indices Monte Carlo simulation 

L 
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𝛴 =

[
 
 
 
𝜎1
2 𝜌12 𝜌13 𝜌14
𝜌21 𝜎2

2 𝜌23 𝜌24
𝜌31 𝜌32 𝜎3

2 𝜌34
𝜌41 𝜌42 𝜌43 𝜎4

2 ]
 
 
 
=  [

1 0.8 0.2 0.4
0.8 1 0.6 0.5
0.2 0.6 1 0.3
0.4 0.5 0.3 1

].              (13) 

 

Let 𝑆𝑇𝑖
𝑓𝑢𝑙𝑙

 be the measure of importance. Since the composite model is purely 

additive, the importance of 𝑋𝑖 can be computed as 

 

𝐼𝑖 = 𝑆𝑇𝑖
𝑓𝑢𝑙𝑙 = 𝑆𝑖

𝑓𝑢𝑙𝑙 =
Var(E𝑋∼𝑖(𝑌|𝑋𝑖))

Var(𝑌)
=

(𝑤𝑖 + ∑ 𝑤𝑗𝜌𝑗𝑖𝑗≠𝑖 )
2

∑ 𝑤𝑘
24

𝑘=1  + 2∑ 𝑤𝑝𝑤𝑞𝜌𝑝𝑞1≤𝑝<𝑞≤4
                   (14) 

 

which is a single-argument function of 𝑤  as the correlation coefficients are 

predefined. Hence, 𝐿 = 𝑑2(𝑤, 𝐼) is also a function of 𝑤 and the optimal weights can 

be achieved by solving 𝐿 =  0, obtaining 𝑤∗ = (0.304, 0.387, 0.143, 0.167). 
The purpose of this test case is to assess how accurate the weighing procedure 

could be if only working with the samples of 𝑋. Denote 𝑤 ∗̂ as the sample estimate 

of 𝑤∗, the error 

 

𝐸 = 𝑑2(𝑤∗, 𝑤 ∗̂) = ∑ (𝑤𝑖
∗ −𝑤𝑖

∗̂)2𝑛
𝑖=1                                                                  (15) 

 

is a useful gauge to evaluate the similarity between the estimated weights and the 

true optimal weights. A small 𝐸 implies that the procedure performs well on the 

sample, and the expression √𝐸/𝑛  measures the average deviation of estimated 

values from the true ones. 

Figures 2a, 2b and 2c describe the boxplots of the error 𝐸 when applying the 

procedure with 𝑁 = 104  to seven groups of sample sizes, using three sampling 

methods: Gaussian inverse transform (GIT) sampling, the Iman-Conover method, 

and Gaussian copula sampling1. Each group contains 100 random samples with the 

same size drawn from 𝒩(𝜇, 𝛴). In all three methods, the variation in errors tends to 

decline as the number of observations in samples increases. At the sample size of 

400 onward, we start to acquire sufficiently low and highly stable errors, meaning 

that the solution derived from samples with more than 400 observations is steady 

and close to the true optimal weights. Figure 2d illustrates the mean of errors 

obtained from the three sampling methods. Although there is no clear difference 

between the techniques across large samples, GIT sampling and the Iman-Conover 

method seem to outperform Gaussian copula sampling on small samples with less 

than 100 observations. 

                                                      
1 The Gaussian copula is chosen among other copulas based on the Akaike information criterion. 
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Figure 2 - Errors by three sampling methods for samples from multivariate normal distribution. 

 
(a) GIT sampling 

 
(b) Iman-Conover method 

 
(c) Gaussian copula sampling 

 
(d) Average errors 

 

 

5.2. Test Case 2: Multivariate Mixed Distributions 

 

The second test case uses the same setting as in the first one but performs on 

multivariate mixed distributions with a more complex model. The composite 

indicator is defined as 𝑌 = 𝑤1𝑋1 +𝑤2𝑋2 + 𝑋3
𝑤3𝑋4

𝑤4, where 𝑋1, 𝑋2 ∼ 𝒩(0,1), 𝑋3 ∼
𝒰(0,1), and 𝑋4 ∼ Pois(4). The dependency structure in 𝑋 is measured using the 

same correlation matrix as in Equation (13).  

In this case, the genuine optimal weights are difficult to calculate directly from 

distribution parameters because of model complexity and non-normal distributions. 

An alternative way is employing the inverse Rosenblatt transformation with the true 

marginal CDFs to produce a huge number of Monte Carlo trials (𝑁 = 106, replicate 

1000 times), which in turn is used to estimate an asymptotically true value of 𝑤∗. 

Using this strategy and choosing 𝑆𝑇𝑖
𝑓𝑢𝑙𝑙

 as the measure of importance, the optimal 

weight is defined as 𝑤∗ = (0.243, 0.317, 0.095, 0.345). 
Figures 3a, 3b and 3c show the variation of error using the optimization procedure 

with 𝑁 = 104  to seven groups of samples. Each group includes 100 equal-sized 

random samples from the mixed distributions. The accuracy of GIT sampling does 

not improve after a certain sample size while the other two methods continue 

lowering the errors toward zero. More evidence of this is shown in Figure 3d, where 

the average error by GIT sampling seems steady at around 0.001 from the sample 

size of 400 while the other two methods are constantly improving. 
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Figure 3 - Errors by three sampling methods for samples from multivariate mixed distributions. 

 
(a) GIT sampling 

 
(b) Iman-Conover method 

 
(c) Gaussian copula sampling 

 
(d) Average errors 

 

 

5.3. Practical Case: Human Development Index 2018 

 

The Human Development Index (HDI) is constructed from three sub-indicators 

including life expectancy, education, and income, and aggregated by the geometric 

mean with equal weights. The data for the HDI 2018 used in this section is provided 

by the UNDP Data Center (https://hdr.undp.org/data-center). Using the Iman-

Conover method with 𝑁 = 104, the contribution of equal-weighted inputs to the HDI 

2018 is given in Table 1. In case 𝑆𝑇𝑖
𝑓𝑢𝑙𝑙

 is selected as the importance index, the total 

contribution of each input and its interaction, considering its correlation with other 

inputs, is roughly equal 1/3. This corresponds to a small loss value, indicating that 

the original model of the HDI can nearly satisfy the condition of importance 

weighting based on the full total Sobol’ index. 

However, if 𝑆𝑇𝑖
𝑖𝑛𝑑  is considered as the importance index, the independent 

contribution to the output variance is dissimilar between the sub-indicators, leading 

to a huge loss when comparing the normalized importance indices and the original 

weights. Since the correlation in the HDI components 𝜌 = (0.82, 0.84, 0.87) is high, 

one might be interested in a composite indicator that imposes the uncorrelated 

contribution of each input on the corresponding weight. This indicator can be 

achieved using the optimization procedure based on the independent total Sobol’ 

index. The optimal weights from the Iman-Conover method with 𝑁 = 104 are 𝑤 ∗̂ =
(0.584, 0.177, 0.239) for life expectancy, education, and income. 

https://hdr.undp.org/data-center
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Table 1 - Importance measures for the HDI components in 2018 using equal weights. 

 

 Life expectancy Education Income L 

Normalized 𝑆�̂�𝑖
𝑓𝑢𝑙𝑙

 0.312 0.344 0.344 0.0007 

Normalized 𝑆�̂�𝑖
𝑖𝑛𝑑 0.150 0.487 0.363 0.0580 

 
Figure 4 - Greatest shifts in the HDI 

ranking using the optimized weights 

based on 𝑆𝑇𝑖
𝑖𝑛𝑑. 

 

Table 2 - Ten countries with the highest and 

lowest HDI rankings using the original weights 

and the optimized weights. 

 

Rank Equal weights Optimized weights 

1 Norway  Hong Kong (+5) 

2 Switzerland  Switzerland (+0) 

3 Ireland  Norway (−2) 

4 Germany  Singapore (+8) 

5 Iceland  Australia (+2) 

6 Hong Kong  Iceland (−1) 

7 Australia  Ireland (−4) 

8 Sweden  Sweden (+0) 

9 Netherlands  Netherlands (+0) 

10 Denmark  Japan (+10) 

180 Eritrea  Guinea-Bissau (−2) 

181 Mozambique  Burkina Faso (+2) 

182 Sierra Leone  Mozambique (−1) 

183 Burkina Faso  Mali (+2) 

184 Burundi  Burundi (+0) 

185 Mali  South Sudan (+1) 

186 South Sudan  Niger (+3) 

187 Chad  Sierra Leone (−5) 

188 CAR  Chad (−1) 

189 Niger  CAR (−1) 
    Note: The numbers in parentheses denote the place changes         

from the original ranking. 
 

Figure 4 describes the most increases and declines in the HDI ranking when 

applying the optimized weights compared to the original weights. The countries that 

have the highest promotion in ranking are Lebanon and Maldives while Fiji, Ukraine, 

and Russia occur the most ranking reductions. Table 2 compares the proportion of 

ten countries with the highest and lowest rankings on the original HDI table with the 

same proportion derived from the new index. In the upper part, the positions of 

Switzerland, Sweden, and the Netherlands remain unchanged. Hong Kong jumps 

from sixth place to first place while Singapore and Japan make a significant leap to 

present in the top ten countries. In the lower part, despite several slight disturbances 

in positions, the bottom ten countries are quite similar between the two ranking 

tables. 
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6. Conclusion 

 

This paper introduces a new weighting method for composite indicators based on 

a measure of importance and Monte Carlo simulations. The full and independent 

Sobol’ indices (Mara et al., 2015) and the Martinez estimator (Martinez, 2011) are 

two key factors used to establish a complete procedure for optimizing weights given 

a sample of inputs and a predefined aggregation model. The procedure allows 

developers to obtain a solution in which the magnitude of weights coincides with the 

dependent or independent contribution of inputs to the variance of composite scores. 

The method can be widely applied to all composite models since it works with any 

single-valued function regardless of complexity.  

During the optimization procedure, sampling strategies play a vital role in the 

precision of estimation results. Three sampling techniques were tested on different 

data structures and model configurations. Gaussian inverse transform sampling is the 

simplest approach, but it is only suitable for data from the multivariate normal 

distribution. The Iman-Conover technique and copula sampling show greater 

effectiveness as they can handle samples from mixed distributions and produce near-

maximum accuracy with a sufficiently large sample size. In the case of small sample 

sizes, checking for outliers before sampling is required because they might distort 

the simulation and result in inaccurate estimates of importance indices. 
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SUMMARY 

 
This paper presents an optimization procedure that helps composite indicator developers 

achieve the most plausible choice of weights without being restricted as the complexity of 

synthetic models escalates. Given a predefined aggregation function, variance-based 

sensitivity analysis and Monte Carlo simulations are employed to establish non-parametric 

methods for measuring the importance of each input to the output uncertainty. Utilizing the 

computational power of these methods, the weights are calibrated by an optimization 

procedure to attain the best fit with the estimated measures of importance. The procedure has 

been tested in two artificially created examples and in one practical case of well-being 

measurement to confirm its accuracy and efficiency in building composite indicators. 
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