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Traffic-related air pollutants inside vehicle cabins are often extremely high compared to background pollution concentrations. The
study of the determinants of these concentrations is particularly important for professional drivers and commuters who spend
long periods in vehicles. This study is aimed at identifying and quantifying the effect of several exposure determinants on
carbon monoxide (CO), equivalent black carbon (eBC), two particulate matter (PM) fractions (PM0.3–1 and PM1–2.5), and
ultrafine particle (UFP) concentrations inside a passenger car cabin. The novelty of this work consists in examining the effects
of the emissions of the first vehicle ahead (henceforth called “leading vehicle”) on pollutant concentrations inside the cabin of
the following vehicle (i.e., the car that was equipped with the air monitoring devices), with particular emphasis on the role of
the leading vehicle characteristics (e.g., emission reduction technologies). The real-time instrumentation was placed inside the
cabin of a petrol passenger car, which was driven by the same operator two times per day on the same route in real driving
conditions. The in-cabin ventilation settings were set as follows: windows closed, air conditioning and recirculation modes off,
and the fanned ventilation system on. The measurements were conducted over a total of 10 weekdays during two different
seasons (i.e., summer and autumn). A video camera fixed to the windscreen was used to retrieve information about traffic
conditions and leading vehicle characteristics through careful video analysis. The associations among pollutant concentrations
and their potential determinants were evaluated using generalized estimating equation univariate and multiple models. The
results confirmed the significant impact of several well-known determinants such as seasonality, microclimatic parameters,
traffic jam situations, and route characteristics. Moreover, the outcomes shed light on the key role of leading vehicle emissions
as determinant factors of the pollutant concentrations inside car cabins. Indeed, in the tested cabin ventilation conditions, it
was demonstrated that in-cabin pollutant concentrations were significantly higher with leading vehicles ahead (from +14.6% to
+67.5%) compared to empty road conditions, even though the introduction of newer technologies with better emissions
reduction helped mitigate their effect. Additionally, diesel-fuelled leading vehicles compared to petrol-fuelled leading vehicles
were impactful on in-cabin CO (−7.2%) and eBC (+45.3%) concentrations. An important effect (+30.4%) on in-vehicle PM1–2.5
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concentrations was found with heavy-duty compared to light-duty leading vehicles. Finally, this research pointed out that road-
scale factors are more important determinant factors of in-cabin concentrations than local pollution and meteorological
conditions.

Keywords: car environment; emission standard levels; exposure predictors; in-vehicle air quality; multiple analysis; vehicular
traffic exhausts

1. Introduction

In terms of air pollution, special interest should be focused
on human exposure to traffic-related air pollutants (TRAPs),
which are a complex mixture of gases and particles that can
be emitted from exhausts (i.e., tailpipe emissions) and non-
exhaust sources (e.g., resuspension of dust, the wear of
brakes and tyres, and evaporative emissions of fuel) that
are known as nontailpipe emissions [1, 2]. Among the emit-
ted substances, carbon dioxide (CO2), carbon monoxide
(CO), hydrocarbons (HCs), nitrogen oxides (NOx), particu-
late matter (PM), and mobile source air toxics such as form-
aldehyde and acetaldehyde are the most important. Each of
these pollutants, along with secondary by-products such as
ozone (O3) and secondary aerosols, can cause adverse effects
on health and the environment [2]. In this regard, a recent
systematic review and meta-analysis found that long-term
exposure to TRAPs was associated with adverse health out-
comes related to all-cause, circulatory, ischemic heart dis-
ease, and lung cancer mortality in adults; asthma onset in
children and adults; and acute lower respiratory infections
in children [3]. More specifically, a 1mg/m3 increase in the
mean CO concentration (at lag 1 day) was associated with
a 0.91% (95% confidence interval [CI]: 0.32–1.50) raise in
daily total mortality [4]. Moreover, a study focused on
short-term effects of CO demonstrated that the pooled rela-
tive risk for myocardial infarction was 1.052 (95% CI: 1.017–
1.089) per 1mg/m3 increase in ambient CO concentration
[5]. Among NOx, the air pollutant chemical species of most
interest for human health is nitrogen dioxide (NO2). A
systematic review showed a positive association between
long-term exposure to NO2 and nonaccidental mortality
reporting a meta-analytic effect estimate of relative risk
equal to 1.02 (95% CI: 1.01–1.04) per 10μg/m3 NO2, assum-
ing a linear relationship [6]. NO2, along with nonmethane
volatile organic compounds (VOCs), are the precursors that
contribute most to the formation of oxidation species,
among which O3. The review conducted by Huangfu and
Atkinson reported that the association between exposure to
O3 in the warm season (using peak O3 metrics) and nonac-
cidental mortality was 1.01 (95% CI: 1.00–1.02) per 10μg/m3

increase, assuming a linear relationship [6]. Also, PM particles
emitted from traffic are of toxicological concern. Focusing on
short-term exposure, a study found positive associations
between both PM10 and PM2.5 and all-cause nonaccidental
mortality reporting a meta-analytic effects estimate of risk
ratio RR = 1 0041 (95% CI: 1.0034–1.0049) and RR =
1 0065 (96% CI: 1.0044–1.0086) per 10μg/m3 increase in
PM10 and PM2.5 concentrations [7]. Regarding long-term
exposure, a systematic review reported that the combined
RRs for all nonaccidental mortality were 1.04 (95% CI: 1.03–
1.06) and 1.08 (95% CI: 1.06–1.09) per 10μg/m3 increase in

PM10 and PM2.5, respectively [8]. Moreover, these two pollut-
ants were also positively associated with cardiovascular, respi-
ratory, and cerebrovascular mortality [7]. Black carbon is a
component of PM. Between the various sources, it can be
produced by incomplete combustion of fossil fuels. A review
of the literature performed by WHO found that both short-
and long-term exposures to black carbon were linked to
cardiovascular health effects and premature mortality [9]. In
the last decades, a growing number of studies have dealt with
the health effects of exposure to ultrafine particles (UFPs).
However, the evidence about health effects strictly correlated
to UFPs was insufficient. Among those at least partially inde-
pendent of other pollutants, several studies reported associa-
tions between short-term exposure to UFPs and pulmonary
and systemic inflammation, changing autonomic tone, and
increasing arterial blood pressure [10].

This research was focalized on the study of in-vehicle
CO, equivalent black carbon (eBC), two fine PM fractions
(PM0.3–1 and PM1–2.5, i.e., particles with aerodynamic diam-
eter between 0.3–1μm and 1–2.5μm, respectively) and UFPs
(i.e., particles with aerodynamic diameter less than 0.1μm)
concentrations. Indoor environments also include motor
vehicle cabins [11–13] that can be considered a significant
source of exposure to TRAPs [14–19]. Therefore, the study
of human exposure inside them is extremely important,
especially focusing on both professional drivers and com-
muters, spending their entire work shift (typically about
8 h/day) and 1–2h/day (often during high traffic level condi-
tions) inside vehicle cabins, respectively [20]. It is well
known that CO emissions from vehicle exhausts were signif-
icantly reduced in the last decades [21]. Nevertheless, several
studies measured that CO concentrations were greater than
5ppm inside vehicle cabins in Chinese, Iranian, and Indian
urban environments [22–24]. Moreover, high CO concen-
trations were more frequent when driving at congested road
segments [25]. Further, the concentrations of black carbon,
often used as a tracer for diesel vehicle emissions, have been
associated with several possible health outcomes [26–30].
Moreover, in spite of the small percentage of time (6%–8%
of the day) usually spent by the general population in traffic
environments [31], this part of the day can substantially
contribute to the total daily exposure to PM and black car-
bon [32–35]. Indeed, transport environments were charac-
terized by higher black carbon concentrations (2–5 times)
compared to those measured at home, and the highest con-
centrations were observed inside car and bus cabins [34]. In
this regard, traveling by car often results in higher exposure
to black carbon and UFPs compared to other modes of
transport (i.e., bicycle and bus) and walking [36, 37]. Vehicle
cabin environments are also typically characterized by high
variability in fine PM and UFPs with concentrations up to
two orders of magnitude greater than the urban background
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concentrations [38, 39]. The choice to focus on the above-
mentioned PM fractions is explained by the fact that PM2.5
is the most important fraction to represent health risks, cor-
responding to the “high-risk respirable convention” as
defined in ISO 7708:1995 and has a pivotal role in indoor
air quality studies because it includes the near totality of
combustion-generated particles and secondary PM deriving
from chemical reactions either outdoors or indoors. In this
context, the splitting between PM0.3–1 and PM1–2.5 can help
to discriminate between exhaust versus nonexhaust PM [40].
On the other hand, the measurement of UFP concentrations
allows the identification of freshly emitted and “short living”
particles, which is crucial for studies of indoor environments
characterized by combustion sources, which explains also
why ISO 16000-42 (measurement of the particle number
concentration by condensation particle counters) was
recently published in 2023 [41, 42].

The present study precisely aimed at identifying and
quantifying the effect of several exposure determinants on
TRAP concentrations inside a passenger car cabin. To reach
this goal, two dedicated measurement campaigns were per-
formed, attempting to control many other possible determi-
nant factors such as cabin ventilation settings, roads
traveled, and time of the day. The novelty of this work arose
from the results of a recent literature review [25]. Specifi-
cally, it lies in examining the effects of the emissions of the
first vehicle ahead (hereafter called “leading vehicle”) on
TRAP concentrations inside the cabin of the following vehi-
cle (i.e., the car that was equipped with the monitoring
instruments—henceforth called “study vehicle”). Special
emphasis was given to the leading vehicle characteristics
(e.g., emission standard level and fuel type).

2. Materials and Methods

2.1. Study Design. We conducted this study along the roads
connecting the provinces of Como and Varese, two
medium-sized cities (about 84,200 and 80,000 inhabitants,
respectively) located in the northern part of Italy. The mea-
surements were carried out on the same route (about 55 km
long, average travel time: about 80min) from Cuveglio (a
town in Varese Province) (45°54′13.9″ N; 8°43′44.9″ E) to
Como (45°48′36.9″ N; 9°05′10.1″ E). The route was
planned a priori to incorporate several types of roads (i.e.,
rural roads, extraurban bypass roads, extraurban roads that
connected two cities, and urban roads) (Figure S1). Based
on this, the route was divided into four sections.

Experimental data were collected during two different
periods called “summer” (from 17th to 21st of June 2019)
and “autumn” (from 30th of September to 4th of October
2019) campaigns. The measurements were performed over
five consecutive weekdays per monitoring campaign during
two specific periods that included morning and late after-
noon rush hours: approximately from 8:00 to 9:30 am, the
“outward trip” from Cuveglio to Como, and approximately
from 5:00 to 6:30 pm, the “return-trip” from Como to Cuve-
glio. There were no rain events during the monitoring days.

The study vehicle was a petrol-fueled 2017 Kia RIO pas-
senger car. Its emission standard level corresponded to

“Euro 6” [43]. The in-cabin ventilation settings were set as
follows: windows closed, air conditioning off, recirculation
fan off, and the fanned ventilation system on. This ventila-
tion set-up, together with windows open, was associated
with the highest exposures among car drivers [44]. The
study vehicle was driven by the same operator without other
passengers to avoid any driver behavior effects [45]. More-
over, during regular driving conditions, the driver main-
tained a distance of at least 10m from the leading vehicle
(respecting the Highway Code safe distance requirements).
In reality, this distance was shorter when the vehicles were
traveling in a queue (e.g., during traffic light stops or traffic
jam situations).

2.2. In-Vehicle Air Quality Monitoring. The TRAP concen-
trations were measured using the following direct-reading
instruments:

- CO (parts per million): electrochemical sensor (model
T15v, Langan Products Inc., San Francisco, CA,
United States);

- eBC (micrograms per cubic meter): microaethalometer
(model AE51, AethLabs, San Francisco, CA, United
States);

- PM0.3–1 and PM1–2.5 (particle per cubic centimeter):
optical particle counter (OPC) (model Handheld
3016 IAQ, Lighthouse Worldwide Solutions, Fremont,
CA, United States);

- UFPs (particle per cubic centimeter): miniature diffu-
sion size classifier (DiSCmini, Matter Aerosol AG,
Wohlen AG, Swiss).

These portable devices have been used in previous stud-
ies for data collection in traffic environments [18, 19, 46–50].
The quality assurance and quality control (QA/QC) proce-
dures are described here. Regarding the CO passive electro-
chemical sensor, zeroing and calibrating operations were
carried out before and after the measurement campaigns in
glove bags at 20°C, using a climatic cabinet and two certified
standard gas mixtures containing < 0.5 and 10.3 ppm of CO
in air. All particle instruments were calibrated by factory-
supplied services within 1 year before the end of the survey.
To measure the background concentrations, the instruments
were placed and left in the cabin of the study vehicle at least
10min before and after the sampling trips. Moreover, the
zeroing control was carried out using a HEPA zero filter
(rated at 99.96% removal efficiency for 0.45μm particles)
that was placed on the inlet of both fine PM and UFP instru-
ments and by checking that the particle number concentra-
tion dropped to < 100 particles/cm3. More details about the
measurement devices are reported in the Supporting Infor-
mation (Text S1).

As indicated in previous research [19], the data were col-
lected using a high-resolution measurement time (i.e., 10-s
averaged) to capture very fast changes in traffic conditions.
The instruments were placed inside the pockets of a “car seat
organizer” that was positioned in front of the passenger
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seat’s backrest (Figure 1). Tygon tubes were used to locate
the sampling inlets of the fine PM and UFP sampling devices
at the height of a seated passenger’s head. Regarding the eBC
instrument, a polyurethane sampling tube, approximately
15 cm long, designed to dissipate electrostatic discharge
from air passing through the tube was used. Since the sam-
pling probes were located in proximity to the subject (within
3m), the “individual exposure’” was evaluated [51]. The dif-
ferences with the “personal exposure” (in the proximity of
the breathing zone, the 30 cm hemispheric radius extending
in front of the face) [52] are reported in a dedicated publica-
tion and are summarized in the Supporting Information
(Text S2) [51].

Additionally, in-vehicle air temperature (in-vehicle T,
degree Celsius) and relative humidity (in-vehicle RH, per-
centage) were measured by using a data logger with inte-
grated sensor (Hobo U12, Onset Computer Corporation,
Bourne, MA, United States; Accuracy T = ±0 35°C; RH =
±2 5%).

2.3. Traffic Variables and Leading Vehicle Characteristics. A
video camera (model Dash Cam 45, Garmin Ltd., Olathe,
KS, United States) was fixed to the windscreen to record
the view in front of the study vehicle. The video camera
embedded a global navigation satellite system receiver, and
it also showed the exact location (GPS coordinates; Garmin
GPS receivers are typically accurate to within 10m) and
the instantaneous driving speed of the study vehicle. Both
the monitoring devices and the video camera clocks were
synchronized before each test. The video recordings were
carefully watched by an operator to extract information
about real-time traffic variables. In this regard, variables
related to road characteristics and traffic conditions were
retrieved, specifically:

- changing points between the different road types (i.e.,
rural roads, extraurban bypass roads, extraurban roads
that connected two cities, and urban roads);

- traffic jam situations (i.e., when the speed of the study
vehicle was lower than 40 km/h and there was more
than one leading vehicle in front of it; these criteria
were arbitrarily chosen);

- stops at traffic lights.

Moreover, the characteristics of the leading vehicles were
also retrieved, in particular:

- presence (i.e., a leading vehicle was detected in front of
the study vehicle) or absence (i.e., empty road condi-
tions: no leading vehicle in front of the study vehicle);

- type (i.e., light- or heavy-duty) [53, 54];

- fuel type (i.e., petrol, diesel, hybrid, petrol, and com-
pressed natural gas-CNG dual fuel, petrol);

- European emission standard level [43].

The detailed procedures to obtain and process data con-
cerning the characteristics of the leading vehicles were

already presented in a previous publication and are reported
in the Supporting Information (Text S3) [19]. It is impor-
tant to note that, in a few cases, the information concerning
both fuel types and European emission standard levels was
not available from the public Italian vehicle registration
database. This occurred especially for passenger cars and
trucks belonging to private companies or coming from
other countries.

2.4. Environmental Variables. Since the exposure to TRAPs
inside vehicle cabins varied according to ambient factors
(i.e., ambient air pollution and meteorological variables)
[25, 55], even those variables were considered in the statisti-
cal analysis. Specifically, CO hourly mean (parts per mil-
lion), NO2 hourly mean (parts per billion), PM10 daily
mean (micrograms per cubic meter), PM2.5 daily mean
(micrograms per cubic meter), ambient T (degree Celsius),
ambient RH (percentage), wind direction (degree), and wind
velocity (meters per second) (since the measurements were
performed during dry weather conditions, the rainfall data
were not examined) were inserted in the models as ambient
pollutant concentrations and meteorological variables,
respectively. All these data were retrieved from fixed air
quality and meteorological monitoring stations managed
by the regional environmental protection agency (ARPA
Lombardia), which were chosen based on two criteria: (1)
proximity to the monitoring route and (2) data availability.

1

23

4

Figure 1: Location of the instruments. The devices considered in
the present research are indicated with numbers: (1) optical
particle counter (PM fractions), (2) diffusion size classifier
miniature (UFPs), (3) aethalometer (eBC), and (4) passive
electrochemical sensor (CO). The circle indicates the position of
eBC, fine PM, and UFP sampling inlets. Before conducting the
measurements, several tests were performed to verify that the
tubes would not significantly affect the results. The tests showed
that the relative instrument errors with the tubes versus without
the tubes were < 10% (on average) for all particle size fractions of
interest (< 2.5 μm).
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Especially, when feasible, it was tried to build the database
combining data from the two types of fixed stations (i.e.,
air quality and meteorological) to every single section of
the route (see Section 2.1). The selected fixed monitoring
stations are indicated on the map that is reported in the Sup-
porting Information (Figure S1).

2.5. Data Cleaning. In total, N = 10,435 data observations
were collected. Since the missing values were less than
5% of the total values and were missing completely at ran-
dom (problems occurred with the analyzers), the listwise
deletion (i.e., elimination of an entire case if it has missing
data on any of the measured pollutant variables) was applied
[56, 57]. Accordingly, N = 10,030 observations were then
included in the statistical analysis.

2.6. Statistical Analysis. Data were evaluated by standard
descriptive statistics. Frequencies and percentages were
calculated for categorical variables. Continuous data were
expressed as mean ± SD, median and interquartile range
(25th–75th percentile), and minimum and maximum value.
The generalized estimating equation (GEE) models were
applied to evaluate average changes in in-vehicle TRAP con-
centrations over time (dependent variables) associated with
the leading vehicles, their characteristics, and boundary con-
ditions (e.g., road types and traffic situations) (independent
variables) accounting for trip variables (covariates) such as
ambient pollutant concentrations and meteorological vari-
ables. The GEE method focuses on average changes in
response over time and the impact of covariates on these
changes and is appropriate for repeated measures. The
method models the mean response as a linear function of
covariates of interest via a transformation or link function.
An identity link function was used as the response variables
are continuous. In addition, to account for variation in the
correlation between repeated measures, GEE allows the
specification of the correlation structure. We chose an
exchangeable correlation structure based on the quasi-
information criterion (QIC), as the same correlation is
assumed for all measurements on the same trip variable,
irrespective of their timing. The first step was the identifica-
tion of specific determinant factors (independent variables)
per in-vehicle TRAP (dependent continuous variable)
through a separate GEE univariate. Since the TRAP data dis-
tribution was not normal, they were log-transformed to cor-
rect skewness. The potential determinant factors were
chosen based on the results yielded from a recent review of
the literature [25]. Due to the small sample size of both the
outdated emission standard levels (from Euro 0 to Euro 3)
and the dual-fuelled leading vehicles (petrol&CNG and
hybrid) (see Table 1 in the next section), these categories
were merged and analyzed as a single category in the respec-
tive categorical variable. The continuous and categorical
covariates included in the univariate models are presented
in Table 2.

Variables that were associated with statistically signifi-
cant changes of in-vehicle TRAP concentrations in the uni-
variate analysis were included in the multiple models. The
final set of covariates for each TRAP was selected after the

preliminary inspection of fit in the model and kept in the
final models only when significant. The results were pre-
sented as the percentage change (delta% [Δ%]) in in-
vehicle TRAP concentrations related to each predictor (i.e.,
a statistically significant determinant factor found in the
multiple analysis), the relative 95% CI, and the p value.
The Δ% was calculated using the following formula: Δ% =
exp β − 1 ∗ 100. A positive coefficient reveals that as
the value of the independent variable increases (when it is
continuous) or moves from the reference category to
another one (if it is categorical), the mean of the dependent
variable (i.e., the pollutant concentrations) also tends to
increase. A negative coefficient suggests that as the indepen-
dent variable increases, the dependent variable tends to
decrease.

All analyses were performed with the statistical software
SAS software (Version 9.4; SAS Institute Inc., Cary, North
Carolina, Unitec States, https://www.sas.com). Statistical sig-
nificance was considered when p < 0 05.

3. Results and Discussion

3.1. In-Cabin TRAP Concentrations. The in-cabin TRAP
concentrations measured during the monitoring campaigns
are summarized in Table 3. The summaries of the single
campaigns (summer and winter) data are reported in the
Supporting Information (Tables S1 and S2, respectively).

First of all, it is important to underline that the in-cabin
pollutant concentrations are generally difficult to compare
among the various studies, mainly because of the different
experimental designs in terms of (i) monitoring period
(e.g., seasonality and time of day), (ii) traffic conditions,
and (iii) vehicle characteristics (in particular the ventilation
settings) [25]. Nevertheless, several comparisons among the
central tendency of the data collected in this study and other
similar research are here reported. Regarding CO, the mean
in-vehicle concentration measured in this study (1.5 ppm)
was slightly higher than the mean concentrations observed
in previous studies performed in several different traffic
environments. Specifically, Kaur and Nieuwenhuijsen found
1.1 ppm inside passenger cars and 1.05 ppm inside taxicabs
in the urban area of London [58]. Still, inside taxis, Hachem
et al. reported a mean concentration of 0.42 ppm in the
urban and suburban areas of Paris [55]. A lower mean con-
centration (1.3 ppm) was observed also inside a car on a
main trunk road in Newcastle [24]. At last, Flachsbart and
Ott reported a mean of 0.5 ppm inside a motor vehicle on
a major arterial highway in the San Francisco Peninsula
[59]. However, several other studies showed higher in-
vehicle CO concentrations with respect to the present work.
Firstly, a study performed by Spinazzè et al. on a very busy
road in the urban area of Milan indicated a median in-car
concentration of 2.45 ppm [60]. In addition, another
research observed a mean concentration of 5.6 ppm inside
a car in commercial and residential areas of Mumbai (India)
[24]. At last, de Nazelle et al. found an in-vehicle CO mean
of 7.3 ppm on a typical commuting route in the urban area
of Barcelona [37]. Regarding eBC, the same study found a
mean in-cabin concentration (16.7μg/m3) higher than our
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work (7.3μg/m3) [37]. Conversely, lower concentrations
were measured in both electric and diesel-fuelled taxis in
central London (3.6 and 6.8μg/m3, respectively) [61]. More-
over, the median concentration (4.9μg/m3) observed in our
study was lower than the median concentration measured in

several types of passenger cars (5.9μg/m3) on central and
peripheral roads of Milan [18]. Concerning fine PM inside
car cabins, the mean PM0.3–1 concentration observed in this
study (39 particles/cm3) was lower than that (63 particles/
cm3) collected in a similar study carried out in northern Italy
in 2019 [19]. On the contrary, the mean PM1–2.5 concentra-
tions showed an opposite behavior (0.27 vs. 0.21 particles/
cm3) [19]. Although those two studies were characterized
by similar investigation approaches, a few dissimilarities in
terms of in-cabin TRAP concentrations may be attributable
to the different monitoring trips. Moreover, in the present
work, the mean values were calculated whether with leading
vehicles ahead or not, whereas in the other publication, the
means were computed with leading vehicles ahead only
[19]. Regarding UFPs, the mean in-vehicle concentration
measured in this study (23,713 particles/cm3) was lower
than those monitored inside passenger cars along (1) a main
road in Basel, (2) on a typical commuting route in Barcelona
(31,784 and 117,600 particles/cm3, respectively), and (3) in-
taxis in the urban and suburban areas of Paris (29,700 parti-
cles/cm3) [48, 55]. On the other hand, our result was higher
than the mean in-car concentrations measured in two differ-
ent studies performed in the urban and peripheral areas of
Como (9158 and 16,142 particles/cm3, respectively) [19,
49]. Finally, the UFP median in-cabin concentration
(13,404 particles/cm3) was about four times lower than the
median in-car concentration (54,000 particles/cm3) mea-
sured in the urban area of Milan [60, 62]. As previously
specified, the differences may be mainly related to several
in-cabin exposure determinants, in particular ventilation set-
tings, traffic conditions, self-pollution, and seasonality [25].
The descriptive statistics of the other continuous variables
are reported in the Supporting Information (Tables S3, S4,
and S5).

3.2. Measurement Trip Characteristics. Characteristics of the
categorical covariates in terms of the frequency of the obser-
vations are described in Table 1.

From Table 1, the frequency of the observations was
similar between the categories of the variables “campaign,”
“day,” and “roundtrip.” Regarding the variable “road types,”
the extraurban roads showed higher percentages, probably
because they are longer than both urban and rural roads.
As expected, traffic congestion and vehicle stop situations
were characterized by lower observations than normal traffic
conditions (less than 30% and 10%, respectively). The num-
ber of observations, in which a leading vehicle was ahead,
was higher (more than 80%) than with the study vehicle in
empty road conditions. Moreover, about 76% of the leading
vehicles were light-duty. At last, most of them were petrol-
and diesel-fuelled (38.4% and 36.9%, respectively) and were
characterized by Euro 4, 5, and 6 emission standard levels
(21.4%, 23.7%, and 24.6%, respectively). As previously
specified, the categories Euro 0, 1, 2, and 3; hybrid; and
petrol&CNG were considered as single categories in the
pertaining categorical variable. Other information about
the number of leading vehicles encountered per categorical
variable and the features of each roundtrip in terms of num-
ber of observations, trip duration, and number of leading

Table 1: Frequency of the observations per category of the
categorical variables.

Variable Category n (%)

Campaign
Summer 4565 (45.5)

Autumn 5465 (54.5)

Day

1 1959 (19.5)

2 1889 (18.9)

3 2049 (20.4)

4 2060 (20.5)

5 2073 (20.7)

Roundtrip
Outward 4579 (45.6)

Return trip 5451 (54.4)

Road types

EU city connection 3919 (39.1)

EU bypass 2908 (29.0)

Rural 1483 (14.8)

Urban 1720 (17.1)

Traffic jam
No 7079 (70.6)

Yes 2951 (29.4)

Stop at traffic light
No 9170 (91.4)

Yes 860 (8.6)

Leading vehicle
No (absence) 1671 (16.7)

Yes (presence) 8359 (83.3)

Leading vehicle types

Absence 1671 (16.7)

Heavy-duty 468 (4.7)

Light-duty 7634 (76.1)

No data 257 (2.5)

Leading vehicle emission
standard level

Absence 1671 (16.7)

Euro 0 19 (0.2)

Euro 1 9 (0.1)

Euro 2 152 (1.5)

Euro 3 734 (7.3)

Euro 4 2149 (21.4)

Euro 5 2376 (23.7)

Euro 6 2468 (24.6)

No data 452 (4.5)

Leading vehicle fuel type

Absence 1671 (16.7)

Diesel 3700 (36.9)

Hybrid 163 (1.6)

No data 490 (4.9)

Petrol 3856 (38.4)

Petrol&CNG 150 (1.5)

Note: The category “no data”means that no information about the emission
standard levels and fuel types was retrievable from the public Italian vehicle
registration database.
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vehicles is reported in the Supporting Information (Tables S6
and S7). It is important to notice that due to operational
problems with the monitoring equipment, the outward trip
of the second day of the summer campaign consisted of a
much smaller number of observations than the other moni-
toring days.

3.3. Determinant Factors Affecting In-Vehicle Exposure to
TRAPs Identified Through GEE Models. The present study
identified several determinant factors of in-cabin exposure
to TRAPs. Most of them were linked to the leading vehicles
and their characteristics, whereas the other determinants
were associated with monitoring seasons, road characteris-
tics, and in-vehicle and meteorological variables (Table 4).

The results of the GEE univariate and multiple models of
the in-cabin TRAP concentrations are reported in Support-
ing Information from Tables S8–S22.

3.3.1. In-Vehicle Exposure to TRAPs: Determinant Factors
Related to Leading Vehicle Characteristics. The identified
determinant factors associated to the leading vehicles and
their characteristics are summarized in Figure 2.

Obtained results revealed that the leading vehicles played
a crucial role in explaining the variability of in-cabin TRAP
concentrations. The strongest effect was detected for in-
cabin eBC concentrations (+67.5%), even though also CO,
PM0.3–1, PM1–2.5, and UFP concentrations showed impor-

tant increases (ranging from +14.6% to +30.6%) with leading
vehicles ahead. As also highlighted in a literature review, to
date, only a few studies have focused on the leading vehicle
effects on in-cabin TRAP concentrations [25]. Nevertheless,
a more recent publication found that following a heavy emit-
ter increased in-vehicle NO2 concentrations (with a percent-
age change of 2.1%), but no statistically significant results
were observed for in-cabin PM2.5, probably because they
tested different ventilation settings compared to the present
study [63]. Except for the one just mentioned, other
researches have only assumed that high in-cabin TRAP con-
centrations could be explained by high-emitting vehicles
ahead without quantifying the effect. For instance, Joodatnia,
Kumar, and Robins observed that short-term increases of
UFPs were correlated to the proximity of leading vehicles,
and Kadiyala and Kumar explained that high and medium
in-bus UFP concentrations were apparently determined by
leading vehicles exhaust emissions [64, 65]. The results
obtained from the multiple analyses also showed statistically
significant associations with several leading vehicle charac-
teristics. Firstly, the fuel type was another important predic-
tor of in-cabin CO and eBC concentrations. In particular,
the in-cabin CO and eBC concentrations were, respectively,
lower (−7.2%) and greater (+45.3%) with diesel-fuelled lead-
ing vehicles with respect to petrol-fuelled ones (Table 4 and
Figure 2). It is well known that CO is a by-product of incom-
plete combustion of carbonaceous fuels, especially from

Table 2: Continuous and categorical covariates included in the univariate models.

Continuous covariates

In-vehicle air temperature (in-vehicle T) Degree Celsius

In-vehicle relative humidity (in-vehicle RH) Percentage

Vehicle speed Kilometers per hour

Ambient PM2.5
a Micrograms per cubic meter

Ambient PM10
a Micrograms per cubic meter

COa Parts per million

NO2
a Parts per billion

Ambient Tb Degree Celsius

Ambient RHb Percentage

Wind directionb Degree

Wind velocityb Meters per second

Categorical covariates

Campaign Summer-reference vs. autumn

Day Day 1-reference vs. Day 2, Day 3, Day 4, Day 5

Roundtrip Outward-reference vs. return-trip

Leading vehicle No (absence)-reference vs. yes (presence)

Types of leading vehicles Light-duty-reference vs. absence and heavy-duty

Emission standard levels of the leading vehicles Euro 0, 1, 2, and 3-reference vs. Euro 4, Euro 5, Euro 6

Fuel types of the leading vehicles Petrol-reference vs. absence, diesel, petrol&CNG+hybrid

Traffic jam No-reference vs. yes

Traffic light stops No-reference vs. yes

Road types
Rural-reference vs. extraurban (EU) city connection,

EU bypass, urban
aData from fixed air quality monitoring stations.
bData from fixed meteorological monitoring stations.
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petrol-fuelled motor vehicles that represent a major source
of CO [66]. Regarding eBC, previous studies found that
eBC emissions from diesel vehicles were up to seven times
greater than those from petrol vehicles [67, 68]. Among
the leading vehicle features, emission reduction technologies
were identified as a noteworthy determinant of in-cabin
exposure. Both in-cabin eBC and PM0.3–1 concentrations
showed statistically significant decreases (up to about
−47% and −19%, respectively) when leading vehicles were
characterized by the latest emission standard levels (i.e.,
Euro 4, 5, and 6) compared to Euro 0, 1, 2, and 3 vehicles.
In this regard, significant reductions of the in-cabin concen-
trations with both Euro 5 and 6 leading vehicles were
observed. Also, in a recent publication, on the contrary, non-
significant differences were reported comparing Euro 4 with
older leading vehicles [19]. Regarding in-cabin CO concen-
trations, significantly lower concentrations were detected
with both Euro 5 and 6 compared to the Euro 0–3 leading
vehicles (about −20% and −17.5%, respectively). According
to a study dedicated to exhaust emissions from pre-Euro to
Euro 4 vehicles, the CO-measured values were progressively
and significantly lowered from older to newer petrol passen-
ger cars. In particular, the median concentrations were
0.95%, 0.29%, 0.13%, 0.03%, and 0.02% for pre-Euro, Euro
1, 2, 3, and 4 vehicles, respectively. That study did not
observe statistically significant differences for diesel-fuelled
passenger cars, taxis, and light goods [21]. This finding
may explain why in the present study, in which petrol and
diesel cars were considered together, nonsignificant reduc-
tions were found between Euro 4 and Euro 0–3 leading vehi-
cles. Concerning in-cabin UFP concentrations, the GEE
model results showed a statistically significant reduction
(about −29%) with Euro 5 compared to Euro 0–3 leading
vehicles. Another research indicated that the greatest
decreases were found for Euro 5 leading vehicles compared
to those equipped with previous generation emission reduc-
tion technologies [19]. In relation to PM1–2.5 concentrations,
a statistically significant reduction was observed with Euro 6
with respect to Euro 0–3 leading vehicles (−12.5%). In this
regard, a recent study observed that the median in-cabin
PM1–2.5 concentrations were statistically lower comparing
Euro 6 with Euro 0–3 leading vehicles (both analyzing pet-
rol- and diesel-fuelled leading vehicles) [19]. Lastly, the
GEE model results showed that the in-cabin PM1–2.5 con-
centrations were statistically greater (about +30%) with
heavy-duty compared to light-duty leading vehicles. This
association may be related to both tailpipe emissions of

heavy-duty leading vehicles and the resuspension of pave-
ment and soil dust during their passage [69].

3.3.2. In-Vehicle Exposure to TRAPs: Other Identified
Determinant Factors. Among the identified predictors, sev-
eral well-known determinant factors of in-cabin TRAP con-
centrations were found (Figure 3).

First, a strong effect of the season on CO concentrations
was observed. As expected, the in-cabin concentrations were
higher during the autumn than during the summer. A simi-
lar finding was observed in a previous study, in which the
ambient T explained 11% of in-vehicle CO concentration
variability [58]. However, in the present study, it was calcu-
lated that the in-vehicle CO concentrations increased by
about 5% with each 1°C increase of the in-vehicle T. This
result was in contrast with previous studies dedicated to
exposure to TRAPs inside vehicles. For instance, research
performed in public transport buses observed high concen-
trations of CO (> 35 ppm) with low (< 4.4°C) to medium
indoor T (from 4.4°C to 22.2°C) [70]. Nevertheless, in this
work, the explanation of the positive association between
in-cabin CO and in-cabin T should be looked for in other
predictors. Indeed, as revealed by the model results, the in-
vehicle CO concentrations were significantly greater on both
urban and EU city connection roads. These roads were trav-
eled at the end part of the morning (outward trip—on urban
roads) and in the middle part of the afternoon (return
trip—on EU city connection roads) monitoring trips, when
the T was higher than the other sections of the trip (e.g.,
in-vehicle T was 6.5°C—on average—higher on urban roads
than on rural roads during the summer campaign). There-
fore, it can be assumed that indoor T was not a predictor
of in-cabin CO exposure, but rather it was an inherent fea-
ture of this study. Moreover, the GEE model results showed
positive and significant associations between in-cabin CO
concentrations and both traffic jam situations (+5.8%) and
traffic light stops (+6.7%). In these regards, it has been
widely demonstrated that an increase in traffic intensity is
an important factor affecting CO concentrations inside vehi-
cles [58, 71–74]. However, these traffic situations are typi-
cally characterized by high CO exhaust emissions due to
vehicle engines running at low revolutions per minute and
frequent stop-and-go events [75]. Curiously, CO concentra-
tions were lower (about −12%) when running on EU bypass
roads (vs. EU city connection roads), whereas both eBC and
UFP concentrations (about +37%) were significantly greater.
A possible explanation was probably related to more traffic

Table 3: Descriptive statistics for CO, eBC, fine PM fractions, and UFP concentrations monitored in the study vehicle (n = 10,030).

In-cabin TRAPs Min. 25th perc. Mean SD Median 75th perc. Max

CO (ppm) 0.2 1.1 1.5 0.7 1.5 1.9 9.1

eBC (μg/m3) 0.2 2.8 7.3 8.6 4.9 8.3 145

PM0.3–1 (particles/cm
3) 1.8 22 39 22 37 51 176

PM1–2.5 (particles/cm
3) 0.01 0.16 0.27 0.15 0.24 0.38 1.5

UFPs (particles/cm3) 365 8 6 × 103 2 4 × 104 4 9 × 104 1 3 × 104 2 3 × 104 1 0 × 106

Abbreviations: 25th perc. = 25th percentile; 75th perc. = 75th percentile; Max =maximum; Min =minimum; SD = standard deviation.
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Table 4: Summary of the determinants identified through multiple regression using GEE models relating to in-cabin TRAP concentrations.
The Δ% with the corresponding 95% confidence interval and p value (< 0.05 [one asterisk], < 0.01 [double asterisks], < 0.005 [triple
asterisks], and < 0.0001 [quadruple asterisks]) were reported.

In-cabin CO In-cabin eBC In-cabin PM0.3–1 In-cabin PM1–2.5 In-cabin UFPs
Δ% Δ% Δ% Δ% Δ%

(95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

Campaign

Autumn
130.6∗∗∗∗

(87.4; 183.7)
— — — —

Summer Ref

Leading vehicle

Yes (presence)
20.1∗∗∗

(9.0; 32.3)
67.5∗∗∗∗

(27.1; 120.8)
21.7∗

(2.3; 44.8)
14.6∗

(3.4; 27.1)
30.6∗

(3.7; 64.5)

No (absence) Ref

Leading vehicle types

Heavy-duty — — —
30.4∗∗∗

(10; 54.6)
—

Light-duty Ref

Leading vehicle emission standard level

Euro 4 —
−32.9∗∗

(−49.6; −10.8)
−14∗

(−26.1; −0.1) — —

Euro 5
−20.5∗∗∗∗

(−27.2; −13.2)
−39.4∗∗∗

(−54.4; −19.5)
−13.9∗

(−25.2; −1.0) —
−28.9∗

(−45.0; −8.0)

Euro 6
−17.4∗∗∗∗

(−23.4; −11.0)
−46.7∗∗∗∗

(−61.6; −26.0)
−18.7∗∗∗

(−29.1; −6.9)
−12.5∗∗

(−20.4; −3.9) —

Euro 0123 Ref

Leading vehicle fuel type

Diesel
−7.2∗∗

(−12.2; −1.9)
45.3∗∗∗∗

(20.0; 75.9)
— — —

Petrol Ref

Traffic jam

Yes
5.8∗∗∗

(2.2; 9.5)
— — — —

No Ref

Road types

EU bypass
−11.8∗∗∗

(−17.9; −5.3)
36.4∗

(6.7; 74.2)
— —

37.7∗

(6.8; 77.5)

Rural
−26.2∗∗∗∗

(−34.6; −16.6)
−28.5∗∗

(−43.2; −9.9)
−25.5∗∗∗

(−38.4; −9.9)
−26.2∗∗∗∗

(−35.7; −15.2)
−46.2∗∗∗∗

(−60.1; −27.4)

Urban
13.9∗∗∗

(4.9; 23.6)
20.8∗

(1.1; 44.3)
— — —

EU city connection Ref

Traffic light stops

Yes
6.7∗∗∗

(2.3; 11.3)
— — — —

No Ref

In-cabin T
4.9∗∗∗∗

(3.1; 6.8)
— — — —

In-cabin RH — —
21.7∗

(2.3; 44.8)
—

2.6∗

(0.4; 4.9)

Sine of wind direction — — —
8.3∗

(1.1; 16.1)
—
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jam situations and traffic light stops (determinant factors of
in-cabin CO concentrations) on EU city connection roads.
Regarding eBC and UFPs, greater in-cabin concentrations
on EU bypass roads might be related to a greater number
of high-emitting leading vehicles (diesel-fuelled, especially
for in-cabin eBC concentrations). All monitored TRAPs
showed significantly lower in-cabin concentrations when
running on rural roads compared to EU city connection
roads. This was expected because the ambient TRAP con-
centrations (especially eBC and UFPs) were generally the
lowest on the rural roads [76]. Moreover, concerning eBC,
it was already demonstrated that average in-vehicle exposure
was lowest in rural areas but highest in urban areas [77]. By
the way, as reported in Figure 3, also in this study, the results
showed that in-cabin exposure to eBC was higher on urban
roads with respect to EU city connection roads. A possible
explanation was related to differences in traffic intensity
[77] which may also have resulted in dissimilarities in the
frequency of the leading vehicles on these road types: 17%
for rural roads versus more than twice (35.7%) for urban
roads (see Table S6 in the Supporting Information). The
GEE model results also revealed that in-vehicle RH levels
were significantly associated with increases in both in-
cabin PM0.3–1 (+21.7%) and UFPs (+2.6%) concentrations.
As reported in the scientific literature, the increase in
relative humidity from 10% to 90% led to greater particle
number concentration (i.e., by a factor of 6), whereas the
critical nucleus diameter decreased by approximately 30%
[78]. Lastly, the results showed a positive statistically
significant association between wind direction and in-cabin

PM1–2.5 concentrations (+8.3%), which contributed to high
PM2.5 concentration variation for both in-cabin and on-
roadway commuting modes as demonstrated by previous
research findings [79]. In particular, distinct patterns of
exposure concentrations in different wind direction sectors
were found in that study linked to pollution episodes that
occurred when specific winds were prevailing. It is possible
to suppose similar pollution events also in the present
study, although it must be stated that this association is
not easy to interpret.

3.4. Weakness and Strengths and Suggestions for Future. The
main limitation of this study is related to the impossibility of
quantifying the effect of the distance between the instru-
mented vehicle and the leading vehicles on in-cabin TRAP

eBC

PM0.3-1

PM1-2.5

UFPs

CO

eBC

eBC

PM0.3-1

CO

eBC

PM0.3-1

UFPs
COeBC

PM0.3-1

PM1-2.5

PM1-2.5

CO

+30.4

+20.1

+67.5

+21.7

+14.6
+30.6

+45.3−7.2

−32.9
−14

−20.5

−39.4

−13.9
−28.9

−17.4

−46.4

−18.7
−12.5

Factor

Diesel LVs vs. petrol LVs
Euro 4 vs. Euro 0-3
Euro 5 vs. Euro 0-3

Euro 6 vs. Euro 0-3

Heavy-duty vs. light-duty

LVs presence vs. LVs absence

Figure 2: The graph reports the Δ% of in-cabin TRAP
concentrations per predictor relating to the leading vehicles. Only
the statistically significant results of the multiple regressions using
GEE models are shown. Leading vehicles are abbreviated as “LVs.”

eBC

CO

CO

PM1-2.5 PM0.3-1

UFPs

CO

CO

eBC

UFPsCOeBCPM0.3-1

PM1-2.5

UFPs

CO

CO

+13.9

+20.8

+5.8

+6.7
+8.3 +130.6

+21.7

+2.6

+4.9

+36.4

+37.7

−11.8

−26.2
−28.5

−25.5

−26.2

−46.2

Factor

Autumn campaign vs. summer campaign
In-vehicle relative humidity
In-vehicle temperature
Road types: E.U. by-pass vs. E.U. cities connection
Road types: rural vs. E.U. cities connection
Road types: urban vs. E.U. cities connection
Traffic jam presence vs. traffic jam absence
Traffic light stop presence vs. Traffic light stops absence
Wind direction (sin)

Figure 3: The graph reports the Δ% of in-cabin TRAP
concentrations per predictor related to monitoring seasons, road
characteristics, and in-vehicle and meteorological variables. Only
the statistically significant results of the multiple regressions using
GEE models are shown.
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concentrations. That parameter may be acquired as reported,
for instance, in two recent publications [80, 81]. However, in
those cases, the leading vehicle was always the same and part
of the study, whereas in our work the data were collected in
real traffic conditions in which getting accurate distance values
would have been too complicated. Therefore, we decided not
to analyze that parameter. However, we believe that con-
ducting measurements in real-world driving situations with a
large variability in leading vehicle characteristics is a signifi-
cant strength of our work. Anyway, as reported by Matthaios
et al., increasing the distance between vehicles can lead to a
reduction in in-vehicle exposure to TRAPs [63].

Another limitation concerns the fact that only one type
of ventilation setting and study vehicle type were tested, thus
limiting the generalizability of the present research. Never-
theless, several researches were focused on in-cabin air qual-
ity during different ventilation conditions, and their results
could be applied to the outcomes of the present study using
appropriate models.

In the end, the COVID-19 outbreak in the Lombardy
region of Italy during winter–spring 2020 caused the forced
stop of the measurements, and, consequently, no data were
collected in the winter season.

Overall, future studies need to be designed to test more
ventilation settings, including air conditioning and recircula-
tion systems, to verify their effects in protecting occupants
from leading vehicle emissions. Additionally, it would also
be important to perform the analysis of the differences
between open windows and closed windows, mainly because
car drivers can expect their greatest and lowest exposures
when driving using those two ventilation settings, respec-
tively [44]. Moreover, new measurements could be per-
formed by means of an electric-powered study vehicle,
reasonably eliminating any potential self-pollution [82].
Anyhow, our suggestion is to focus future research on mea-
suring during the winter season, since the importance of sea-
sonality mainly depends on in-vehicle concentrations of
gaseous compounds [25]. In this respect, due to the lack of
sufficiently accurate instrumentation in our laboratory, the
present study was limited only to measuring the in-vehicle
CO concentrations. Therefore, more efforts should be made
to expand the range of gases, including also NO2, VOCs
(e.g., HC), and aldehydes.

The principal strength of this study lies in the capacity to
obtain a substantial amount of information regarding the
characteristics of leading vehicles (e.g., emission standard
levels, fuel types, and vehicle-type categories). This is achieved
through the utilisation of video analysis and the Italian public
vehicle registration database, which has the effect of resolving
some outstanding questions regarding the impact of leading
vehicles on the air quality within vehicle cabins.

4. Conclusions

The original contribution of this article lies in the quantifica-
tion of leading vehicle emission effects on in-cabin TRAP
concentrations. Several important learning points were
gained, including the following:

- In-cabin TRAP concentrations were significantly
higher with leading vehicles ahead than during empty
road conditions (from +14.6% to +67.5%);

- Euro 5 and 6 leading vehicles played a pivotal role in
the decrease of in-cabin exposure to TRAPs with
respect to older ones (from −12.5% to −46.7%);

- Diesel-fuelled leading vehicles as compared to petrol-
fuelled leading vehicles showed significant impacts on
in-cabin CO (−7.2%) and eBC (+45.3%) concentra-
tions, respectively;

- Emissions coming from heavy-duty than light-duty
leading vehicles revealed a strong effect (+30.4%) on
in-cabin PM1–2.5 concentrations.

Concluding, along with other well-known predictors
mainly associated with route and traffic characteristics, the
present study allowed to include the leading vehicle emis-
sions among the most important determinant factors of
exposure to TRAPs inside vehicle cabins, emphasizing their
greater importance with respect to local pollution and mete-
orological conditions, except for rainfall effects that were not
tested in this study. The emission reduction technologies
were therefore important in decreasing not only the environ-
mental pollutant concentrations but also the in-cabin TRAP
concentrations.

Nomenclature

BC black carbon
CNG compressed natural gas
CO carbon monoxide
eBC equivalent black carbon
EU extra-urban
GEE generalized estimating equation
GPS Global Positioning System
km/h kilometers per hour
LV leading vehicle
μg/m3 micrograms per cubic meter
m/s meters per second
OPC optical particle counter
Particles/cm3 number of particles per unit volume (cubic

centimeter)

PM particulate matter
PM1–2.5 particulate matter with aerodynamic diame-

ter between 1 and 2.5μm
PM0.3–1 particulate matter with aerodynamic diame-

ter between 0.3 and 1μm

PPB parts per billion
PPM parts per million

QIC quasi-information criterion
RH relative humidity
T temperature
TRAPs traffic-related air pollutants
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UFPs ultrafine particles (particle matter with aero-
dynamic diameter < 0 1μm)
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