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We investigate the cosmological implications of an effective gravitational action, inspired
by Sakharov’s idea of induced gravity, containing non-local contributions from the operator
(� + β)−1 R. The β term is a novel feature in the panorama of non-local models of gravity, and
arises naturally within Sakharov theory from the potential of a non-minimally coupled scalar field
after a spontaneous symmetry breaking takes place. In this class of models the non-local contribu-
tion can acquire an oscillatory behaviour, thereby avoiding the divergence of the Hubble parameter
at late times, which is another characteristic feature of the non-local models treated in the literature.
Furthermore, the effective gravitational coupling Geff inherits the oscillatory behaviour, resulting
in alternating epochs of stronger and weaker gravity. This framework is argued to have potentially
interesting implications for the H0 and the σ8 tensions.

I. INTRODUCTION

Non-local gravity has received interest because it is able to provide a natural explanation for the observed accelerated
expansion of the universe without introducing a new mass scale, see e.g. Refs. [1–7] for reviews. Amongst the
simplest non-local corrections we can add to the Einstein-Hilbert action there are those containing the inverse of
some differential operator acting on the Ricci scalar, such as �−1R [8], R times a function (dubbed distortion
function) of �−1R in the Deser-Woodard (DW) model [9, 10], or even powers of the latter like in the R �−2R model
[11, 12]. Besides explaining dark energy, non-local models have been studied also in different frameworks such as the
propagation of gravitational waves [13, 14], bouncing cosmology [15, 16], black holes [17, 18] and as solution of the
cosmological constant problem [19, 20].

The effectiveness of such non-local deformations in providing an accelerated expansion is readily explained by
looking at their (retarded) integral representations on a Friedmann-Lemâıtre-Robertson-Walker (FLRW) background.
Consider, for example, the simplest non-trivial DW term [9]:

1

�
R(t) = −

∫ t

0

dt′
1

a3(t′)

∫ t′

0

dt′′a3(t′′)R(t′′) , (1)

where a is the scale factor. If radiation dominates the energy density of the Universe, i.e. assuming that the non-
locality is negligible at early times, then a ∝ t

1
2 . This, in turn, implies R = 0, and the right hand side of the above

equation vanishes. On the other hand, if the the scale factor evolution changes to a different power-law a ∝ ts at a
time teq, then the above integration could be performed explicitly:

1

�
R(t̄) = −6s (2s− 1)

(3s− 1)

[
log t̄+

1

3s− 1

(
−1 + t̄3s−1

)
+

1

4

]
, (2)

where t̄ = t/teq. It is straightforward to realize from the above equation that the non-local contribution, which was
vanishing during radiation domination, diverges at least logarithmically with time for a different power law (s 6= 1/2)
and might induce an accelerated expansion.

A different non-local correction to the Einstein-Hilbert Lagrangian can be obtained as the effective action of a
non-minimally coupled scalar field. For example, non-local corrections emerge naturally within the framework of
Sakharov’s induced gravity [21], see also [22–25]. In this theory one is able to have standard gravity, i.e. the Einstein
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Hilbert Lagrangian density, plus corrections induced by spontaneous symmetry breaking of the scalar field. We will
see the details of this construction in Sec. II, but let us anticipate that the resulting effective action is of the type:

Seff =
1

2κ

∫
d4x
√
−g
[
(R− 2Λ) +Rf

(
1

� + β
R

)]
, (3)

which recovers the action of the DW model for β = 0. However, in the general case the non-local term is essentially
the Green function for a Klein Gordon field with squared mass β acting on the Ricci scalar. As we are going to show,
a non-vanishing β can dramatically change the evolution of the non-local content. In particular, the picture suggested
by Eqs. (1) and (3) of a diverging field does not (necessarily) apply anymore, with interesting phenomenological
consequences.

The structure of the paper is the following: in Sec. II we review Sakharov’s construction, and show how it naturally
leads to an effective action of the form (16), with f(x) ∝ x. In Sec. III we derive a localized version of the action (16)
and the field equations for a general f . In Sec. IV we specialize our investigation to a flat FLRW background and
discuss few interesting phenomenological implications, focusing on the main differences with respect to other non-local
theories. Finally, in Sec. V we summarize and elaborate our results.

II. SAKHAROV INDUCED GRAVITY

The goal of this section is to review Sakharov’s induced gravity, and to show how it is effectively described by an
action of the form (16). It is known that, in semi-classical gravity, in order to have a consistent (renormalizable and
unitary) quantum field theory on curved space one needs to extend the usual Einstein-Hilbert action:

SEH =
1

2κ

∫
d4x
√
−g(R− 2Λ) , (4)

where κ ≡ 8πG, to include higher-derivative contributions:

SHD =

∫
d4x
√
−g(α1C

2 + α2E4 + α3R
2 + α4�R) , (5)

where C2 is the square of the Weyl tensor and E4 is the Gauss-Bonnet term; α1,2,3,4 are dimensionless parameters.
Moreover, Newton’s constant G and the cosmological constant Λ in the Einstein-Hilbert action (4) have to be intended
as “bare” (as well as α1,2,3,4). In fact, they acquire radiative corrections due to the quantum nature of the matter
fields. The two actions (4) and (5) form together the “vacuum” action, to which one has to add the matter one, in
order to have the complete theory. See e.g. Ref. [26] for a textbook review of these concepts.

The starting point of Sakharov’s construction is to assume the absence of the vacuum action, and consider instead
only a simple matter model consisting of a complex scalar field ϕ with action:

Sϕ =

∫
d4x
√
−g [gµν∂µϕ

∗∂νϕ− V (ϕ,ϕ∗)] , (6)

where the Higgs-like potential V (ϕ):

V (ϕ,ϕ∗) = −µ2
0ϕ
∗ϕ− ξRϕ∗ϕ+ λ (ϕ∗ϕ)

2
, (7)

is chosen in order to comply with renormalizability and in order to implement the spontaneous symmetry breaking
mechanism, though modified by the presence of the ξR|ϕ|2 term. In other words, one assumes that gravity is no
more a fundamental interaction but still retains the non-minimal coupling of the scalar field to curvature. Thanks to
the latter, one is able to have gravity induced by spontaneous symmetry breaking. To illustrate this explicitly, let us
consider the only equation of motion of the theory, obtained via variation with respect to ϕ∗ of the action (6):

−�ϕ+ µ2
0ϕ+ ξRϕ− 2λϕ3 = 0 . (8)

In absence of minimal coupling, i.e. ξ = 0, one obtains the value:

ϕ2
0 =

µ2
0

2λ
, (9)

and thus a continuum of classical vacua with U(1) symmetry. However, once that the scalar field relaxes around one
of these vacuum state, the symmetry is broken and a Nambu–Goldstone boson appears. If the scalar field is coupled



3

to a massless gauge vector field, after the symmetry breaking the latter acquires mass, realizing the well-known Higgs
mechanism.

On the other hand, if ξ 6= 0, there is no constant solution for the classical vacuum (unless R is constant, too). Let
us assume:

ξR� µ2
0 , λϕ

2 . (10)

Following Ref.[27], we can then treat ξR as a small perturbation and solve Eq. (8) by successive approximations. That
is, assume an expansion:

ϕ = ϕ0 + ϕ1 + ϕ2 + . . . , (11)

where ϕ0 is the flat space solution (9) and ϕn = O[(ξR)n]. Keeping just the first order we obtain:

ϕ1 =
ξϕ0

� + 4λϕ2
0

R . (12)

Now, if we replace the above solution, up to second order, into the action (6), we obtain:

Sind =

∫
d4x
√
−g
[
λϕ4

0 + ξRϕ2
0 + ξ2ϕ2

0R
1

� + 4λϕ2
0

R

]
. (13)

This is an effective action, valid within the approximation made in Eq. (10), in which gravity is induced (note the
Einstein-Hilbert-like term ξRϕ2

0).1

In particular, if gravity is totally induced, up to first order in ξ we recover the standard Einstein-Hilbert action,
with induced gravitational and cosmological constants [compare with Eq. (4)]:

ξϕ2
0 =

1

2κind
, −2Λind =

λϕ4
0

ξϕ2
0

=
λϕ2

0

ξ
. (14)

Whilst the above action effectively describes General Relativity plus non-local corrections, it is unfortunately in-
consistent with cosmological observations. Since λ must be positive, otherwise the spontaneous symmetry breaking
mechanism could not be implemented, the constant contribution λϕ4

0 is positive. In the Minimal Standard Model, the
vacuum expectation value of the Higgs field is ϕ0 ' 246 GeV and the measured Higgs mass is of order ' 125 GeV.
So, λ = O(1). Then, we have a contribution to the cosmological constant density of order ' 108 GeV4, against the
observed value of ' 10−47 GeV4. Moreover, since ξ has to be positive in order to have a positive Newton’s constant,
and thus gravity as an attractive force, we see that the induced cosmological constant has the wrong sign. We would
have a huge, negative cosmological constant, totally incompatible with observation. Whereas the problem of the sign
could be addressed by redefining the Lagrangian up to a minus sign, the problem of the huge value cannot be solved,
if gravity is totally induced. Whilst this is a strong argument against the interpretation of gravity as a totally induced
phenomenon, one could interpret Eq. (13) as a non-local correction on top of a non-vanishing vacuum Einstein-Hilbert
Lagrangian (4) as follows:

Seff =

∫
d4x
√
−g
[(

1

2κ
R+ ξRϕ2

0

)
+

(
λϕ4

0 −
Λ

κ

)
+ ξ2ϕ2

0R
1

� + 4λϕ2
0

R

]
. (15)

On the basis of the discussion above, since ϕ0 ' 246 GeV and 1/κ is of the order of the Planck mass, we can neglect
the correction induced on the gravitational constant.2 For the cosmological constant, in order for the above to be
compatible with observation, we need to assume that the bare value Λ almost cancels the induced one, implying that
this model is helpless against the fine-tuning problem of the cosmological constant.3

Under these assumptions we can rewrite the effective action as follows:

Seff =

∫
d4x
√
−g
[

1

2κ
(R− 2Λ) + β1R

1

� + β2
R

]
, (16)

1 In other words, we found that when the scalar field oscillates around one of its classical vacua, its fluctuations in curved space-time
produce an effective gravitational action. Notice that the notion of spontaneous symmetry breaking is well defined only for the constant,
zero-th order solution φ0 in flat space. Thus, strictly speaking, in the present case is meaningful only at perturbative level.

2 This is possible provided that ξ is of order one, or not too large, which must be the case by construction of the effective action.
3 Exacerbating the fine-tuning, we may also think that Λ = κλϕ4

0, thereby making the effective cosmological constant vanishing. In this
case, the non-local term only would drive the cosmic accelerated expansion.
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where we have redefined the cosmological constant:

λϕ4
0 −

Λ

κ
−→ −Λ

κ
, (17)

in order to avoid carrying on fastidious subscripts, and with:

β1 ≡ ξ2ϕ2
0 , β2 ≡ 4λϕ2

0 , (18)

both of order 104 GeV2, but not necessarily equal.4

As promised, we found (following Refs. [26, 27]) a new kind of non-local term featuring an unusual β2 contribution,
which is a particular case of the action (16) with the simplest non-trivial choice for the free function f(x) = β1x, and
with β = β2.

III. THE LOCALIZED THEORY

When cosmological implications of a non-local theory are addressed, it is often helpful to work within a localized
formulation of the theory, following the strategy adopted in Ref. [28] for the DW model [9].

The localization procedure goes as follows. Let us introduce two auxiliary fields U and V such that:

S =
1

2κ

∫
d4x
√
−g (R− 2Λ) +

1

2κ

∫
d4x
√
−g [Rf + V (�U + βU −R)] + Sm . (19)

The role of V is that of a Lagrange multiplier, and the variation of the action with respect to it gives us the equation
of motion of the localized field U :

�U + βU = R . (20)

The variation of the action with respect to U gives us the equation of motion for V :

�V + βV = −f̄R , (21)

where f̄ ≡ ∂f/∂U . Once again, the extra β term in the equations for the localized fields is a new feature of this class
of non-local gravity models and we will pay special attention to it in the following.5 Finally, variation with respect
to the metric yields the modified Einstein equations:6

Gµν (1 + f − V ) + gµνΛ +
gµν
2

(∂ρU∂
ρV )− β

2
gµνUV +Dµν (f − V )− 1

2
(∂µU∂νV + ∂µV ∂νU) = κTµν , (22)

where Gµν is the Einstein tensor and we have defined the operator:

Dµν ≡ gµν�−∇µ∇ν , (23)

for simplicity of notation. The energy-momentum tensor of matter is, as usual, defined as:

Tµν ≡ −
2√
−g

δSm
δgµν

. (24)

Note that our effective action (15) has only two propagating degrees of freedom, those of the metric. Now, after
localization, it seems that we have gained two extra scalar degrees of freedom, U and V . This is strange, especially
if we consider that V is a mere Lagrange multiplier. As extensively discussed in Ref. [4], U and V might give rise to
spurious degrees of freedom if we take into account the general solutions to Eqs. (20) and (21), because these contain
the homogeneous solutions:

�Uhom + βUhom = 0 , �Vhom + βVhom = 0 . (25)

4 Note that the existence of other Higgs bosons related to spontaneous symmetry breaking taking place at higher energies is not ruled
out. Therefore, β1 and β2 can be also thought of being larger.

5 This extra term might call to mind how Einstein introduced the cosmological constant in his seminal work [29], as a correction to the
Poisson equation.

6 Note that, being in the action a non-minimal coupling of gravity with the localized field U one might also adopt in the present calculation
the Palatini formalism. We pursue this path in another paper.
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However, these homogeneous solutions are not required for passing from the action (13) to (19).7 Therefore, we
need particular solutions to Eqs. (20) and (21), for fixed boundary conditions.8 These boundary conditions might be
considered as our “degrees of freedom”, but not propagating ones. We stress that the above arguments are heuristic,
and the proper way to count the number of degrees of freedom of the localized theory is through a Hamiltonian
analysis.

Note also that the induced corrections are emerging from the fundamental action in Eq. (6), so that we do have
a scalar degree of freedom beyond the metric ones. Has this scalar degree of freedom been lost? In some sense yes,
because the non-local action (13) is effective, i.e. it has been obtained by fixing ϕ to its vacuum expectation value
(corrected by ξ), so that it is no more a degree of freedom.

IV. INDUCED COSMOLOGY

A. Background equations

In this section we investigate the effect of the induced non-local term of action (13) to cosmology. To this purpose,
we adopt a spatially flat FLRW metric

ds2 = −dt2 + a(t)2δijdx
idxj , (26)

and assume a perfect fluid energy momentum tensor

Tµν =
∑
i

(ρi + pi)uµuν + pigµν , (27)

where i = m, r,Λ, i.e. a non-interacting mixture of matter, radiation, and a cosmological constant. Using the e-fold
number N = log a as time parameter the metric field equations (22) can be written as follows:

(1 + f − V ) =
Ωm + Ωr + ΩΛ

h2
+

1

6

(
U ′V ′ − β

h2
UV

)
− (f ′ − V ′) , (28)

− (2α+ 3) (1 + f − V ) = 3

(
wΩm + wΩr − ΩΛ

h2

)
+

1

2

(
U ′V ′ +

β

h2
UV

)
+[f ′′ − V ′′ + f ′ (α+ 3)− V ′ (α+ 3)] , (29)

where we have introduced the normalized Hubble factor h ≡ H/H0 and its logarithmic derivative α ≡ h′/h, the
normalized energy densities Ωi ≡ 8πGρi/3H

2
0 , the and redefined the parameter β → β/H0. Using these variables the

equations of motion for the non-local fields become:

U ′′ + (3 + α)U ′ − β

h2
U = −6 (2 + α) , (30)

V ′′ + (3 + α)V ′ − β

h2
V = +6f̄ (2 + α) . (31)

B. Qualitative Behaviour of U across the cosmological evolution

Initial conditions: Radiation domination

Let us stress once more that in order to avoid the propagation of spurious degrees of freedom, we should discard
the homogeneous part of the above field equations and consider only particular, retarded solutions. In order to do so,
we have to specify initial conditions for the fields at the initial time N = Ni. If at the initial time Ni we also want the

7 It would be like adding a zero to the Lagrangian density in the action (13) and then demanding the existence of a scalar field such that
�Uhom + β2Uhom = 0. This seems a pretty nonsensical thing to do.

8 In other words, specifying the boundary conditions allow us to consider only the retarded Green function of the non-local differential
operator, which makes the emerging ghost-like behaviour of the localized field harmless. However, it has been argued in Ref.[30] that a
mixing of the advanced and retarded Green functions is unavoidable at the level of the equation of motion and the non-local theories
might intrinsically suffer of a acausality problem. The phenomenology arising from a negative β might resolve the latter problem since
the auxiliary field U , as we are going to show, its not necessarily classically unstable in this scenario.
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universe to be compatible with the ΛCDM evolution, i.e. h2(Ni) = Ωm(Ni) + Ωr(Ni) + ΩΛ, then the Friedmann-like
equation (28) gives:

f(Ni)− V (Ni) =
1

6

[
U ′(Ni)V

′(Ni)−
β

h2(Ni)
U(Ni)V (Ni)

]
− f ′(Ni) + V ′(Ni) . (32)

If we want to recover the standard Friedmann equation at early times, we can satisfy the above constraint with the
choice U(Ni) = U ′(Ni) = V ′(Ni) = V (Ni) = 0 and assuming that f is a homogeneous function of U . This choice is
also compatible with the Klein Gordon equation (30) since during radiation domination we have α = −2. Therefore,
as it is common for many similar models, non-localities become important only at a later stage of the evolution of
the universe. This is desirable (and not ad hoc) if we do not want to spoil the successes of the standard model at
early-times and, at the same time, justify why the expansion of the universe speeds up at late times.

Qualitative analysis: Matter domination

When Ωm is not anymore negligible with respect to Ωr radiation domination ends, α 6= 0 and the non-local field U
starts to evolve. If the latter grows slowly enough for the Universe to become dominated by its pressure-less matter
content (i.e. dust dominates also over the non-localities), then h2 ∝ e−3N and α = −3/2. In this regime the equation
for the field U becomes

U ′′ +
3

2
U ′ − βe3NU = −3 , (33)

which admits analytic solutions. For β = 0 the solution is U ≈ 2N + k, where k is a constant depending on the time
at which vanishing initial conditions have been set. Thus, in the standard DW model and similar nonlocal theories,
the field U grows linearly during matter domination. However, a non-vanishing β can severely change this picture.
If β ≤ 0, it induces oscillations in the field U after it reaches a maximum value, as showed in Fig. 1. In particular,
it is possible to choose β in such a way that the field starts to oscillate arbitrarily close to the initial time Ni, thus
suppressing the linear growth of U before the end of matter domination. This feature is unique of this particular class
of non-local models, and results in a number of interesting phenomenological implications, which we discuss in detail
in Sec. V. On the other hand, if β ≥ 0, the field U at some point starts to grow exponentially.

β= 0

β = -1

β = -103

β = -106

-5 -4 -3 -2 -1 0

-8

-6

-4

-2

0

β = 0

β = 1

β = 5

β = 10

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-30

-25

-20

-15

-10

-5

FIG. 1. The evolution of the field U in a matter-dominated background for different values of β obtained from the analytical
solutions of Eq. (33). Vanishing initial conditions for U and U ′ have been imposed at Ni = −5.
Left: A negative β < 0 induces an oscillatory evolution for the field U . The largest the value of |β|, the quickest the field ceases
its linear growth and starts to oscillate.
Right: a positive β ≥ 0 induces an exponential evolution for the field U , exacerbating its classical instability. The largest the
value of |β|, the quickest the field transition from the linear to the exponential growth.
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Qualitative analysis: Late time evolution

Because of the divergence of the field U , the late time evolution of the universe for most non-local gravity models
is usually different from the ΛCDM one. In particular, if U enters explicitly the field equations, it has been shown
in Ref. [5] that at late-times the non-local contributions behave as a phantom fluid, and the asymptotic effective
equation of state parameter approaches asymptotically from below the one of a cosmological constant w = −1. On
the other hand, including the β term could suppress the growth of U , as we have shown earlier for β < 0 during matter
domination. Let us suppose that the non-local energy density contribution in Eq. (28) is still negligible compared to
the cosmological constant one ΩΛ, and that the latter dominates over the dust one. This regime is thus effectively
described by a de Sitter background, for which h ' constant and α = 0. The Klein Gordon equation for U in this
regime is given by:

U ′′ + 3U ′ − β̃U = −12 , (34)

where we have defined β̃ = β/h2. Some solutions for varying β̃ are plotted in Figs. 2 and 3 for negative and positive
values of β. In the former case the field U approaches asymptotically a constant value, which is also a novel feature of
this class of non-local models, in net contrast with the approximately linear growth that U experiences on a de Sitter
background when β = 0. Similarly to the matter dominated case, we notice that a positive β induces an exponential
growth of the field U .

β= 0

β = -1

β = -102

β = -103

-5 -4 -3 -2 -1 0 1 2

-25

-20

-15

-10

-5

0

β = -102

β = -103

-5 -4 -3 -2 -1 0
-0.20

-0.15

-0.10

-0.05

0.00

FIG. 2. Left : The evolution of the field U in a de Sitter background for different values of β ≤ 0 predicted by the analytical
solutions of Eq. (34). Vanishing initial conditions for U and U ′ have been imposed at Ni = −5. It is straightforward to realize
that the presence of a negative β stops the linear growth of the field U , which relaxes asymptotically towards a constant value.
The largest the value of |β| is, the quickest the field relaxes to a constant value.
Right : A zoom on the evolution of U for β = −102 and β = −103, showing that U evolves through decaying oscillations towards
a constant value.

C. Simplest non-trivial model: f(U) = β1U

Let us now specialize to the action functional (16), i.e. let us choose f(U) = β1U . It is straightforward to realize
that in this case the Klein-Gordon equations (20) and(21), choosing vanishing initial conditions for both fields and
scaling the Lagrange multiplier V → kβ1V become identical, and therefore V = −β1U . The dynamical field equations
hence can be written:

1 + 2β1U =
Ωm + Ωr + ΩΛ

h2
− β1

6

(
U ′2 − β2

h2
U2

)
− 2β1U

′ , (35)

− (2α+ 3) (1 + 2β1U) = 3

(
wΩm + wΩr − ΩΛ

h2

)
− β1

2

(
U ′2 +

β2

h2
U2

)
+ 2β1 [U ′′ + U ′ (α+ 3)] , (36)

U ′′ + (3 + α)U ′ − β2

h2
U = −6 (2 + α) . (37)
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β = 0

β = 1

β = 5

β = 10
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-1500
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-10
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FIG. 3. Left : The evolution of the field U in a de Sitter background for different values of β ≥ 0 predicted by the analytical
solutions of Eq. (34). Vanishing initial conditions for U and U ′ have been imposed at Ni = −5. It is straightforward to realize
that the presence of a negative β induces an exponential growth for the field U . The largest the value of |β|, the quickest the
transition from the linear to the exponential evolution.
Right : A zoom on the evolution of U for β = 0 and β = 1, showing that for smaller values of |β| the transition to the exponential
regime occurs at later times.
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FIG. 4. Left : The evolution of h obtained integrating numerically Eqs. (36), and (37) for different values of β2 ≤ 0. We
assumed vanishing initial conditions for U and U ′ during radiation domination, at Ni = −15, and the present day energy
densities Ωm(0) = 0.3− 9.2× 10−5, Ωr(0) = 9.2× 10−5, and ΩΛ(0) = 0.7. It is straightforward to realize that the presence of
a negative β2 induces an oscillatory behaviour for the Hubble factor, which however approaches asymptotically the same value
as in the ΛCDM model.
Right : The relative difference between the h predicted from the models with β2 < 0 and the ΛCDM expansion history in
percent units.

In Figs. 4 and 5 we plot the evolution of the Hubble parameter in this model for different values of β2 and a fixed
value for β1 = 10−3. For negative β2 < 0, the oscillatory behaviour of the non-local terms makes the model different
but qualitatively similar to the ΛCDM behaviour at all times. On the other hand, we see that the effect of a positive
β2 is to exacerbate the classical instability of the non-local energy density contribution at late times.

V. DISCUSSION

In this work we studied the cosmological impact of a non-local modification of the Einstein Hilbert action involving
the operator (� + β)

−1
acting on the Ricci scalar. The presence of the β term is a novelty in the landscape of proposed

non-local modifications of gravity, and results in an interesting and rich phenomenology. In Sec. III we derived the
field equations for the theory described by the action (3), containing an arbitrary function f of the aforementioned
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FIG. 5. Left : The evolution of h obtained integrating numerically Eqs. (36) and (37) for different values of β2 ≥ 0. We
assumed vanishing initial conditions for U and U ′ during radiation domination, at Ni = −15, and the present day energy
densities Ωm(0) = 0.3− 9.2× 10−5, Ωr(0) = 9.2× 10−5, and ΩΛ(0) = 0.7. We see that the presence of a positive β2 induces an
exponential growth for h, with the transition to the exponential regime being faster for larger values of |β2|.
Right : The relative difference between the h predicted from the models with β2 ≥ 0 and the ΛCDM expansion history in
percent units.

operator. On a fundamental level such an action can arise from a non-minimal coupling of the (quantum) matter
Lagrangian with the space-time curvature. In particular, we shown in Sec. II that a simple model with f(x) ∝ x is
straightforwardly obtained in the contest of Sakharov induced gravity, see Eq. (13), from a complex scalar field with
Higgs-like potential. It is often convenient to work within a localized version of these non-local theories by defining
the auxiliary field U = (� + β)

−1
R, and a Lagrange multiplier V which enforces the definition of U at the level of the

action. In terms of U and V we can rewrite the action in the form of a multi scalar-tensor theory, even if care must
be taken in the choice of initial conditions to avoid the introduction of unphysical propagating degrees of freedom.

From the phenomenological point of view we can distinguish between two classes of models depending on the sign
of β. It is well known that for β = 0 the field U evolves linearly with time (measured in units of e-folds N) during
the matter dominated epoch, and therefore will eventually dominate over the matter content itself. For β > 0 the
behaviour is initially qualitatively similar, but at some point the field U grows faster than linearly, thus exacerbating
the usual classical instability typical of non-local theories. On the other hand, a negative β results in a drastically
different behaviour. Indeed, we shown in Sec. IV that for β < 0 the field U acquires an oscillatory behaviour and
approaches at late times a constant value. These oscillations start already in the matter dominated epoch, and
thus may have important consequences on the formation and growth of large scales structures. For example, from
Eq. (35) we see that this model predicts an effective gravitational coupling Geff = GN/(1 + 2β1U). Since U can
oscillate between positive and negative values, the resulting picture is one where the universe, through its evolution,
experiences alternating epochs of weaker and stronger gravity.

We argue that such a rich phenomenology is particularly suited to address the cosmic tensions on the cosmological
parameters σ8 and H0 [31–35]. Indeed, we proved that in this model we can have at the same time a faster (potentially
phantom-like) expansion rate today (the oscillations on U also imply an oscillating Hubble factor, see Fig. 4) and a
weaker gravity regime at the epoch of structure formation. These two properties are, according to Ref. [36], necessary
conditions to be satisfied in order to address the H0 tension through late-times modifications of the expansion history
without worsening the σ8 tension. As argued in Ref. [37], a time-varying gravitational coupling might also result in
a lower luminosity of local supernovae, thus alleviating the Hubble tension. Furthermore, in Ref. [38] it has been
shown that late-time resolutions of the H0 tension require dynamical DE crossing the phantom line w < −1 which
also need to have integrated energy density smaller than the one of the cosmological constant in ΛCDM. This last
requirement could be potentially satisfied if the gravitational coupling varies with time. With a number of analysis
[39–42] indicating that late times phantomic DE alone is not enough to solve the Hubble tension, we argue that the
phenomenology presented in this work makes this class of models particularly interesting. Despite the fact that it
might be premature to interpret the σ8 tension as a hint towards new physics, see for example Refs. [43, 44], recent
analysis highlighted a discrepancy between the measured growth rate of structures and the one predicted by ΛCDM,
see for example Ref. [45] and Fig.11 of Ref. [46]. In light of these results, we believe that a model predicting an
oscillating gravitational coupling, as long as the average of the fluctuations evolves significantly between different
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redshift bins, might be particularly interesting. Furthermore, whilst many non-local modifications of gravity are ruled
out by constraints on the variation of G from Lunar Laser Ranging (LLR) experiments, see for example Ref. [47], if
U approaches a constant value at late times instead of diverging the latter constraints might not apply.

It must be stressed that a negative β is not compatible with the effective action of Eq. (13), since for the latter
we have β = 4λφ2

0 which must be positive for the spontaneous symmetry breaking to occur. Nevertheless, it is
encouraging that this type of non-local terms can arise in such a simple and natural way, and one could conceive that
a negative β might be obtained using different potentials for the scalar field, or a different non-minimal coupling of the
matter Lagrangian. Our main take away is that the phenomenology described here provides an effective tool to modify
the cosmological evolution only for a brief window of time somewhere between the matter and cosmological constant
dominated epoch. It also provides a proof of concept that non-local modifications are not necessarily unstable, and in
particular that non-local effects might only be important during matter domination rather than later. In order to fully
understand their impact on structure formation one of course needs to study the evolution of linear perturbations,
which might differ significantly from their evolution in the ΛCDM model, even if their background is arbitrarily close.
See, for example, Refs. [48–50] where the issue of structure formation has been studied for the DW model. We plan
to address these compelling questions in future investigations.

Acknowledgments

LG acknowledge support from the Australian Government through the Australian Research Council Laureate
Fellowship grant FL180100168.

[1] Christof Wetterich. Effective nonlocal Euclidean gravity. Gen. Rel. Grav., 30:159–172, 1998. arXiv:gr-qc/9704052,
doi:10.1023/A:1018837319976.

[2] R. P. Woodard. Nonlocal Models of Cosmic Acceleration. Found. Phys., 44:213–233, 2014. arXiv:1401.0254, doi:

10.1007/s10701-014-9780-6.
[3] Michele Maggiore. Nonlocal Infrared Modifications of Gravity. A Review. Fundam. Theor. Phys., 187:221–281, 2017.

arXiv:1606.08784, doi:10.1007/978-3-319-51700-1_16.
[4] Enis Belgacem, Yves Dirian, Stefano Foffa, and Michele Maggiore. Nonlocal gravity. Conceptual aspects and cosmological

predictions. JCAP, 03:002, 2018. arXiv:1712.07066, doi:10.1088/1475-7516/2018/03/002.
[5] Leonardo Giani and Oliver Fabio Piattella. Late-times asymptotic equation of state for a class of nonlocal theories of

gravity. Phys. Rev. D, 100(12):123508, 2019. arXiv:1906.10480, doi:10.1103/PhysRevD.100.123508.
[6] Leonardo Giani, Tays Miranda, and Oliver F. Piattella. Cosmology and Newtonian limit in a model of gravity with

nonlocally interacting metrics. Phys. Dark Univ., 26:100357, 2019. arXiv:1905.02720, doi:10.1016/j.dark.2019.100357.
[7] Salvatore Capozziello and Francesco Bajardi. Nonlocal gravity cosmology: An overview. Int. J. Mod. Phys. D,

31(06):2230009, 2022. arXiv:2201.04512, doi:10.1142/S0218271822300099.
[8] Valeri Vardanyan, Yashar Akrami, Luca Amendola, and Alessandra Silvestri. On nonlocally interacting metrics, and a

simple proposal for cosmic acceleration. JCAP, 03:048, 2018. arXiv:1702.08908, doi:10.1088/1475-7516/2018/03/048.
[9] Stanley Deser and R. P. Woodard. Nonlocal Cosmology. Phys. Rev. Lett., 99:111301, 2007. arXiv:0706.2151, doi:

10.1103/PhysRevLett.99.111301.
[10] Luca Amendola, Yves Dirian, Henrik Nersisyan, and Sohyun Park. Observational Constraints in Nonlocal Gravity: the

Deser-Woodard Case. JCAP, 03:045, 2019. arXiv:1901.07832, doi:10.1088/1475-7516/2019/03/045.
[11] Michele Maggiore and Michele Mancarella. Nonlocal gravity and dark energy. Phys. Rev. D, 90(2):023005, 2014. arXiv:

1402.0448, doi:10.1103/PhysRevD.90.023005.
[12] Luca Amendola, Nicolo Burzilla, and Henrik Nersisyan. Quantum Gravity inspired nonlocal gravity model. Phys. Rev. D,

96(8):084031, 2017. arXiv:1707.04628, doi:10.1103/PhysRevD.96.084031.
[13] Enis Belgacem, Yves Dirian, Andreas Finke, Stefano Foffa, and Michele Maggiore. Nonlocal gravity and gravitational-wave

observations. JCAP, 11:022, 2019. arXiv:1907.02047, doi:10.1088/1475-7516/2019/11/022.
[14] Salvatore Capozziello and Maurizio Capriolo. Gravitational waves in non-local gravity. Class. Quant. Grav., 38(17):175008,

2021. arXiv:2107.06972, doi:10.1088/1361-6382/ac1720.
[15] D. Jackson and R. Bufalo. Non-local gravity in bouncing cosmology scenarios. JCAP, 05(05):043, 2022. arXiv:2110.10008,

doi:10.1088/1475-7516/2022/05/043.
[16] Che-Yu Chen, Pisin Chen, and Sohyun Park. Primordial bouncing cosmology in the Deser-Woodard nonlocal gravity.

Phys. Lett. B, 796:112–116, 2019. arXiv:1905.04557, doi:10.1016/j.physletb.2019.07.024.
[17] Utkarsh Kumar, Sukanta Panda, and Avani Patel. Metric for Rotating object in Infrared Corrected Nonlocal Gravity

Model. Phys. Rev. D, 98(12):124040, 2018. arXiv:1808.04569, doi:10.1103/PhysRevD.98.124040.
[18] Qi-Ming Fu, Shao-Wen Wei, Li Zhao, Yu-Xiao Liu, and Xin Zhang. Shadow and Weak Deflection Angle of a Black Hole

in Nonlocal Gravity. Universe, 8(7):341, 2022. arXiv:2203.05157, doi:10.3390/universe8070341.

http://arxiv.org/abs/gr-qc/9704052
https://doi.org/10.1023/A:1018837319976
http://arxiv.org/abs/1401.0254
https://doi.org/10.1007/s10701-014-9780-6
https://doi.org/10.1007/s10701-014-9780-6
http://arxiv.org/abs/1606.08784
https://doi.org/10.1007/978-3-319-51700-1_16
http://arxiv.org/abs/1712.07066
https://doi.org/10.1088/1475-7516/2018/03/002
http://arxiv.org/abs/1906.10480
https://doi.org/10.1103/PhysRevD.100.123508
http://arxiv.org/abs/1905.02720
https://doi.org/10.1016/j.dark.2019.100357
http://arxiv.org/abs/2201.04512
https://doi.org/10.1142/S0218271822300099
http://arxiv.org/abs/1702.08908
https://doi.org/10.1088/1475-7516/2018/03/048
http://arxiv.org/abs/0706.2151
https://doi.org/10.1103/PhysRevLett.99.111301
https://doi.org/10.1103/PhysRevLett.99.111301
http://arxiv.org/abs/1901.07832
https://doi.org/10.1088/1475-7516/2019/03/045
http://arxiv.org/abs/1402.0448
http://arxiv.org/abs/1402.0448
https://doi.org/10.1103/PhysRevD.90.023005
http://arxiv.org/abs/1707.04628
https://doi.org/10.1103/PhysRevD.96.084031
http://arxiv.org/abs/1907.02047
https://doi.org/10.1088/1475-7516/2019/11/022
http://arxiv.org/abs/2107.06972
https://doi.org/10.1088/1361-6382/ac1720
http://arxiv.org/abs/2110.10008
https://doi.org/10.1088/1475-7516/2022/05/043
http://arxiv.org/abs/1905.04557
https://doi.org/10.1016/j.physletb.2019.07.024
http://arxiv.org/abs/1808.04569
https://doi.org/10.1103/PhysRevD.98.124040
http://arxiv.org/abs/2203.05157
https://doi.org/10.3390/universe8070341


11

[19] Shin’ichi Nojiri, Sergei D. Odintsov, Misao Sasaki, and Ying-li Zhang. Screening of cosmological constant in non-local
gravity. Phys. Lett. B, 696:278–282, 2011. arXiv:1010.5375, doi:10.1016/j.physletb.2010.12.035.

[20] Ying-li Zhang and Misao Sasaki. Screening of cosmological constant in non-local cosmology. Int. J. Mod. Phys. D,
21:1250006, 2012. arXiv:1108.2112, doi:10.1142/S021827181250006X.

[21] A. D. Sakharov. Vacuum quantum fluctuations in curved space and the theory of gravitation. Dokl. Akad. Nauk Ser. Fiz.,
177:70–71, 1967. doi:10.1070/PU1991v034n05ABEH002498.

[22] A. Zee. Spontaneously Generated Gravity. Phys. Rev. D, 23:858, 1981. doi:10.1103/PhysRevD.23.858.
[23] Stephen L. Adler. Einstein Gravity as a Symmetry-Breaking Effect in Quantum Field Theory. Rev. Mod. Phys., 54:729,

1982. [Erratum: Rev.Mod.Phys. 55, 837 (1983)]. doi:10.1103/RevModPhys.54.729.
[24] Matt Visser. Sakharov’s induced gravity: A Modern perspective. Mod. Phys. Lett. A, 17:977–992, 2002. arXiv:gr-qc/

0204062, doi:10.1142/S0217732302006886.
[25] Ilya L. Shapiro. Effective Action of Vacuum: Semiclassical Approach. Class. Quant. Grav., 25:103001, 2008. arXiv:

0801.0216, doi:10.1088/0264-9381/25/10/103001.
[26] Iosif L. Buchbinder and Ilya Shapiro. Introduction to Quantum Field Theory with Applications to Quantum Gravity. Oxford

Graduate Texts. Oxford University Press, 3 2021.
[27] Eduard V. Gorbar and Ilya L. Shapiro. Renormalization Group and Decoupling in Curved Space: III. The Case of

Spontaneous Symmetry Breaking. Journal of High Energy Physics, 2004(2):060, February 2004. arXiv:hep-ph/0311190,
doi:10.1088/1126-6708/2004/02/060.

[28] Shin’ichi Nojiri and Sergei D. Odintsov. Modified non-local-F(R) gravity as the key for the inflation and dark energy.
Phys. Lett. B, 659:821–826, 2008. arXiv:0708.0924, doi:10.1016/j.physletb.2007.12.001.

[29] Albert Einstein. Cosmological Considerations in the General Theory of Relativity. Sitzungsber. Preuss. Akad. Wiss. Berlin
(Math. Phys. ), 1917:142–152, 1917.

[30] Ying-li Zhang, Kazuya Koyama, Misao Sasaki, and Gong-Bo Zhao. Acausality in Nonlocal Gravity Theory. JHEP, 03:039,
2016. arXiv:1601.03808, doi:10.1007/JHEP03(2016)039.

[31] Eleonora Di Valentino et al. Cosmology Intertwined III: fσ8 and S8. Astropart. Phys., 131:102604, 2021. arXiv:2008.11285,
doi:10.1016/j.astropartphys.2021.102604.

[32] Lavrentios Kazantzidis and Leandros Perivolaropoulos. σ8 Tension. Is Gravity Getting Weaker at Low z? Observational
Evidence and Theoretical Implications. 7 2019. arXiv:1907.03176, doi:10.1007/978-3-030-83715-0_33.

[33] Jose Luis Bernal, Licia Verde, and Adam G. Riess. The trouble with H0. JCAP, 10:019, 2016. arXiv:1607.05617,
doi:10.1088/1475-7516/2016/10/019.

[34] Elcio Abdalla et al. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with
the cosmological tensions and anomalies. JHEAp, 34:49–211, 2022. arXiv:2203.06142, doi:10.1016/j.jheap.2022.04.
002.

[35] L. Verde, T. Treu, and A. G. Riess. Tensions between the Early and the Late Universe. Nature Astron., 3:891, 7 2019.
arXiv:1907.10625, doi:10.1038/s41550-019-0902-0.

[36] Lavinia Heisenberg, Hector Villarrubia-Rojo, and Jann Zosso. Can late-time extensions solve the H0 and σ8 tensions?
Phys. Rev. D, 106(4):043503, 2022. arXiv:2202.01202, doi:10.1103/PhysRevD.106.043503.

[37] Valerio Marra and Leandros Perivolaropoulos. Rapid transition of Geff at zt'0.01 as a possible solution of the Hubble
and growth tensions. Phys. Rev. D, 104(2):L021303, 2021. arXiv:2102.06012, doi:10.1103/PhysRevD.104.L021303.
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