
Computers & Security 142 (2024) 103898

A
0
n

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

NERO: NEural algorithmic reasoning for zeRO-day attack detection in the
IoT: A hybrid approach
Jesús F. Cevallos M., Alessandra Rizzardi, Sabrina Sicari ∗, Alberto Coen Porisini
Dipartimento di Scienze Teoriche e Applicate, Universita‘ degli Studi dell’Insubria, via O. Rossi 9, Varese, 21100, VA, Italy

A R T I C L E I N F O

Keywords:
Network intrusion detection systems
Internet of things
Neural algorithmic reasoning
Meta-learning

A B S T R A C T

Anomaly detection approaches for network intrusion detection learn to identify deviations from normal
behavior on a data-driven basis. However, current approaches strive to infer the degree of abnormality of
out-of-distribution samples when these appertain to different zero-day attacks. Inspired by the successes of
the neural algorithmic reasoning paradigm to leverage the generalization of rule-based behavior, this paper
presents a deep learning strategy for solving zero-day network attack detection and categorization. Moreover,
focusing on the particular scenario of the Internet of Things (IoT), the privacy preservation requirement may
imply a low training data regime for any learning algorithm. To this respect, the presented framework uses
metric-based meta-learning to achieve few-shot learning capabilities. The presented pipeline is called NERO, as
it imports the encode-process-decode architecture from the NEural algorithmic reasoning blueprint to converge
zeRO-day attack detection policies within constrained training data.
1. Introduction

IoT threat intelligence is a rapidly evolving field that aims to
identify and mitigate security threats in IoT systems (Heidari and
Jabraeil Jamali, 2023). Network intrusion detection (NID) is one of the
most critical aspects of IoT security. According to the type of detec-
tion, NID systems can be classified as anomaly-based and signature-
based (Jayalaxmi et al., 2022). Anomaly or behavior-based detection
is based on the idea of identifying deviations from normal behav-
ior (Khraisat and Alazab, 2021). It involves creating a baseline of ex-
pected behavior and monitoring network and device activity for devia-
tions from such a baseline. As a data-driven technique involving statisti-
cal analyses, anomaly-based detection is typically implemented through
Machine Learning (ML) and Deep Learning (DL) (Santhoshb Kumar
et al., 2023). Instead, signature-based detection, often called rule-based,
involves identifying known malicious patterns or signatures in traf-
fic data. This technique compares traffic-related observations with a
known attack patterns or signatures database.

The common advantages of anomaly-based over signature-based
NID are associated with detecting previously unknown attacks. More-
over, the potential adaptability to changing threat behaviors allows
dynamically and periodically adjusting the definition of normal behav-
ior in anomaly-based approaches. However, anomaly-based detection
can produce high false-negative rates, especially when high traffic
bursts or other infrequent events occur at the inference phase (Khraisat
et al., 2019). Another disadvantage of anomaly-based approaches is

∗ Corresponding author.
E-mail address: sabrina.sicari@uninsubria.it (S. Sicari).

the lack of explainability and transparency of many black-box function
approximators based on deep Artificial Neural Networks (ANN).

In this regard, the research community has recently reawakened
an interest in the benefits of hybrid NID techniques that combine
rule-based and anomaly-based detection to exploit the best of both
approaches (Maseno et al., 2022). This manuscript stresses that a
promising research direction towards these hybrid NID mechanisms
may be the application of a set of recent algorithmic Inductive Biases
(IB), mainly imported from the Neural Algorithmic Reasoning (NAR)
blueprint (Veličković and Blundell, 2021) and from prototypical or
metric-learning strategies for meta-learning (Snell et al., 2017).

This work focuses on IBs that combine the benefits of both neural
networks and symbolic reasoning, our main argument being that the
combination of these instruments may be an effective strategy that
leads to data-efficient and interpretable NID models that learn to detect
and potentially categorize previously unseen instances of attacks. Recent
successes of algorithmic IBs in finding complex non-linear correlations
over noisy and high-dimensional data (Derrow-Pinion et al., 2021),
aligning to algorithms (Veličković et al., 2019), and giving hints to
synthesize new rule-based reasoning (Pándy et al., 2022) back up and
motivate our hypothesis.

Main contribution. To the best of the authors’ knowledge, the un-
supervised categorization of Zero-day attacks (ZdA) considering the
vailable online 13 May 2024
167-4048/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.cose.2024.103898
Received 13 November 2023; Received in revised form 9 April 2024; Accepted 9 M
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ay 2024

https://www.elsevier.com/locate/cose
https://www.elsevier.com/locate/cose
mailto:sabrina.sicari@uninsubria.it
https://doi.org/10.1016/j.cose.2024.103898
https://doi.org/10.1016/j.cose.2024.103898
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2024.103898&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computers & Security 142 (2024) 103898Jesús F. Cevallos M. et al.

2

t
i
I
c
i
a
s
p
a
t
o
H

l
d
c
a
i
i
2

2
r

s
o
f
n
f
i
a
C
f
g
K

p
c
T
w
a
t
d

degree of novelty has not been previously addressed by the ZdA de-
tection research community. In this respect, this paper proposes a
DL-based pipeline to tackle such a challenge, where multiple test ZdA
classes are kept out of the training distribution and are given no labels.
Moreover, focusing on the particular IoT scenario, our DL pipeline
aims to be data-efficient, demonstrating the generalization of known
attack detection and zero-shot ZdA categorization within constrained
training data. Our proposed DL-based pipeline is named NERO because
it uses NEural algorithmic reasoning for zeRO-day attack detection in IoT
environments.

Outline. This paper is organized as follows: Section 2 describes Neural
Algorithmic Reasoning and the inherent algorithmic reasoning require-
ments of Zero-day attack detection. Section 3 gives a detailed descrip-
tion of our proposed framework, pointing to the potential advantages
derived from its use. Section 4 offers experimental evidence about the
effectiveness of the paradigm proposed by this work. Section 5 gives an
overview of recent works related to symbolic inductive biases for Zero-
day attack detection systems, pointing to the novelty of our proposal in
this respect. Finally, Section 6 concludes the paper by pointing to the
potential future research directions.

2. Background and motivation

2.1. Hybrid artificial intelligence

In Artificial Intelligence (AI), classic, symbolic, or rule-based AI
is usually seen as a combination of classical programming, discrete
optimization, and meta-modeling, leveraging compositionality, concept
generalization, and transparency. On the other hand, sub-symbolic, per-
ceptive, or statistical AI uses data and gradient-based optimization to
extract opaque, efficient, and parametric transformations that approx-
imate complex functions. Hybrid-AI (Raedt et al., 2020) stands for the
combination of both symbolic and sub-symbolic approaches that com-
bine the best of both worlds. Metric-based meta-learning is one applica-
tive example of hybrid AI in which rule-based IBs like centroid compu-
tation and distance-based discrimination permit bias in the statistical
learning towards the meta-knowledge hidden in data. Inspired by these
IBs, the Neural Algorithmic Reasoning (NAR) blueprint (Veličković and
Blundell, 2021) is used in this paper to imitate algorithmic behavior
over high-dimensional manifolds, as explained in the following.

2.2. Neural algorithmic reasoning

The NAR blueprint helps apply algorithmic computations over
information-rich environment observations (termed natural inputs).
Such algorithmic computations have two main benefits: first, they can
obtain fine-grain-precise outputs, providing applicability of algorithms
to real-world scenarios, and second, algorithmically-aligned neural
networks tend to generalize over out-of-distribution input dimensions.

The NAR pipeline is based on a encode-process-decode neural pipeline
that is composed of three main ANNs:

1. An Encoder network, 𝑓 , that learns to encode high-dimensional
natural inputs into high-dimensional latent representations. The
encoders are devoted to learning to transform data into a high-
dimensional latent space whose geometry is aligned with the
abstract inputs an algorithm operates over. Encoders acquire fea-
ture importance, release representational pressure, and decouple
representation learning from algorithmic reasoning learning.

2. A Processor Network, 𝑃 , that receives in input the output of the
encoder networks and operates over the corresponding latent
space. This network is taught to imitate or align it is input–
output mapping to the individual steps of a given algorithm
𝐴. Note the output representations of the processor network
are still high-dimensional. Processor networks are often offline
2

trained with synthetic input–output algorithm step-wise sam-
ples. These networks should be distribution agnostic in that they
should imitate the algorithmic processing irrespective of input
data distributions. For this reason, processor networks often use
relational inductive biases such as message passing. In this sense,
the processor network can be said to align with neuro-symbolic
AI, while the encoder and decoder networks are more purely
perceptive in their working principle.

3. A Decoder network, 𝑔̂, whose parameters are optimized to map
the high-dimensional latent representations of 𝑃 to human-
readable outputs that align desired outcomes of algorithm 𝐴
over the natural inputs. The decoder (and encoder) networks are
distribution-specific and are trained using a pre-trained frozen
processor network. Decoder networks do not necessarily need
to leverage the final outputs of an algorithm but can be used
to back-propagate through single algorithm step computations,
provided that step-wise supervisory signals are available.

.3. Prototypical meta-learning

The term prototypical learning (PL) (Snell et al., 2017) is used to refer
o the usage of DL for learning a representational space whose geometry
s congruent with the semanticity of the use-case inferences in output.
n Snell et al. (2017), a class prototype is defined as the latent space
entroid of the (labeled) input samples associated with such a class. In
ts basic form, prototypical learning involves a DL model whose outputs
re a function of the similarity distribution between the latent repre-
entations of other (unlabeled) input samples and the different class
rototypes. Refinements of Snell et al. (2017) have been proposed to
dapt to complexifications of the learning task, for example, optimizing
he underlying metric using another neural module, refining the set
f prototypes through self-attention, among others (Wang et al., 2020;
ospedales et al., 2021).

Aside from these refinements, the main benefit of prototypical
earning is that it potentially incorporates algorithmic reasoning by
esign: focusing on the relation between inputs, PL is decoupled from
lass-specific distributions and thus enables learning a task in a higher
bstract level, i.e., meta-learning. Such a task can then be evaluated
n inference time with out-of-distribution inputs without degradation
n the semantic significance of the corresponding outputs (Wang et al.,
020).

.4. The privacy preservation requirement in IoT and low-training data
egimes.

Deep learning models learn to make inferences from trends in the
tatistical distributions of training data. Generally, NID systems based
n DL rely on discovering correlations between attack vectors and
eatures of traffic traces and system logs. A DL-based NID system might
eed high amounts of data before converging to practical detection
unctionalities (Dixit and Silakari, 2021). In IoT, however, sensitive
nformation such as end-user location, health status, social interactions,
nd industrial asset status may be the main content of communication.
onsequently, training data for IoT NID systems may be related to con-

idential information, and even governmental regulations may impede
athering these data to train data-driven detection systems (Chanal and
akkasageri, 2020).

In this respect, the models that use prototypical learning reach a
otential decoupling between the abstract reasoning related to classifi-
ation and the specific training data distributions (Snell et al., 2017).
his decoupling also has the possible advantage of efficient inference
ithin low-data regimes (Wang et al., 2020). Such a Few-Shot Learning
bility of prototypical meta-learning is a crucial aspect of our proposal
hat reduces the need for training data to converge towards ZdA
etection.

Computers & Security 142 (2024) 103898Jesús F. Cevallos M. et al.

d
a

2.5. Zero-day attacks

New attack signatures are continuously being developed, and at-
tackers are adding new variants of well-known attacks. When the
cyber-treat intelligence community discovers a new intrusion vector
after the attacks are perpetuated, the attack is qualified as a Zero-day
attack, in that the defensive party has zero-days to act countermeasures
or mitigation strategies. In this sense, ZdAs are new types of cyber
threats that exploit vulnerabilities in software or hardware that have
not yet been patched or fixed by the vendors. Recent examples of ZdAs
are the Mirai botnet (Affinito et al., 2023) and the Memcached DDoS.1
According to a recent survey (Al-Zewairi et al., 2020), considering
a two-level taxonomy of attacks where macro-categories of attacks
contain other micro-categories, one can define two types of ZdAs:
type_A ZdAs are attacks that might need the definition of a new macro-
class of attack. Type_B ZdAs, instead, are those attacks whose features
might be similar to those of a known macro-category to some extent,
but variations in its signature may suggest these samples belong to a
new micro-category for this attack.

2.6. Motivation

In ML-based cyber-attack detection scenarios, the open-world as-
sumption asserts that the dataset used to train the model is inherently
limited regarding the representativity of all the existent attacks that
might be encountered during inference time. In this respect, Type_B
ZdAs correspond to any evaluation sample whose macro-class was
included in the training data but whose micro-class was not. Instead,
the macro and micro classes of Type_A ZdAs are missing in the training
data by definition.

From a probabilistic perspective, both Type_A and Type_B ZdAs may
represent data sampled from different probability distributions with
respect to the one that generated the training data. According to the
previous observation, the ZdA detection problem can be framed as a
meta-learning problem, where the base-learning level task is related to
closed-set classification. Instead, the meta-learning level task is associ-
ated with the optimal definition of the set of classes upon which such
a closed-set classification is performed. Thus, the supervisory signal for
the meta-learning task is related to the ability of the meta-learner to
discover new attack instances.

However, the generalization of algorithmic reasoning is a histori-
cally challenging requirement for pure data-driven AI instruments (Liu
et al., 2021b). One example of failure in algorithmic reasoning learn-
ing for traditional ML algorithms is that encountered in the case of
distribution shifts: If the statistical behavior of data in inference time
diverges from the training one, the statistical assumption of querying
a model with Independent and Identically Distributed observations –
which is the working principle of traditional ML – is broken. This
failure mode is also called an out-of-distribution (OOD) generalization
failure (Liu et al., 2021b). Another exemplary failure occurs when the
model converges to identifying the wrong features as discriminative of
the input–output mapping.

In this respect, the NAR paradigm offers explicit guidelines for
building a DL pipeline that follows an abstract reasoning-based supervi-
sory signal. Our main hypothesis is that the meta-level reasoning might
be a key enabler for the ZdA detection and categorization process, as
described in Section 2.5. In other words, the abstract reasoning that
rules the design of NERO may enable one to differentiate between

1 https://www.zdnet.com/article/memcached-ddos-the-biggest-baddest-
enial-of-service-attacker-yet/.
3

o

known and unknown environment observations and to provide special-
ized inferences about the degree of abnormality of the latter within a
low-training data regime.

3. Our proposed framework for zero-day attack detection and
categorization in the IoT

This section describes NERO in its architectural components and
operating principles. As a NAR pipeline, NERO has three main learn-
ing goals. First, the processor layers’ computations should learn a
distribution-agnostic algorithmic task. Second, the encoder network
must learn to project the instances of natural observations to abstract
representations over which the processor network performs such a
task. Lastly, the decoder network must learn to extract low-dimensional
indicators from the outputs of the processor network. Fig. 1 contains a
schematic representation of our proposed scheme.

3.1. Encoder network

In any NAR pipeline, the encoder network is trained to produce
high-dimensional encodings of the information sources. This network
learns to transfer the natural inputs to a set of abstract latent represen-
tations. The processor network subsequently ingests such encodings to
perform algorithmic computations in the hidden space.

In NERO, the natural inputs are assumed to be formed by the
observed network traffic features. If we denote the input space with 𝐈,
the mapping from such input space to the latent space of the processor
network can be denoted as:

Enctraffic ∶ 𝑖 ←←→ 𝑧𝑖 ∈ R𝑑 ,∀𝑖 ∈ 𝐈traffic

The encoder networks can be implemented using any architecture
that accommodates the shape of the input space observations. In our ex-
periment, a Multi-Layer Perceptron (MLP) is used for the encoder. The
main reason for such an architectural preference over Convolutional
Networks is the inherent low dimensionality of input data.2 Although
convolutional filters represent a parameter-sharing mechanism, this
reduction of parameters may harm low-dimensional data with skewed
importance attributes, as noted in Nguyen and Le (2023). Although
some literature has used recurrent modules for NID (Imrana et al.,
2021), our encoder should not assume temporal correlations between
successive flow-related entries. This is because the scope of this re-
search is the classification of flows per se without inferring temporal
correlations between the class of multiple flows. To this respect, it is
worth mentioning that our encoder is a non-linear projection of the
input space, with the unique goal of releasing representational pressure
for the processor. The latter module exploits the inter-record relational
attention, as explained in the following.

3.2. Processor network

The main goal of the NERO’s processor network will be to ma-
nipulate the hidden representations following an algorithmic bias to
produce other representations that align with the desired outcomes of
the ZdA detection task. Recall that such outcomes involve inference
about (1) known classes of traffic (either benign or malign) or unknown
types of traffic, in the form of potential (2) type_B and (3) type_A
zero-day Attacks. In this respect, our processor uses two hidden layers.
The first layer helps differentiate between known and unknown micro-
categories as defined in Section 2.5. The second layer, instead, operates
on the representations of the first processor and helps to distill the
association of unknown observations to classes (2) and (3).

2 See Amiri et al. (2023) for a study on the different neural architectures
nd their potential strengths and limitations in terms of pattern recognition
n different types of data.

https://www.zdnet.com/article/memcached-ddos-the-biggest-baddest-denial-of-service-attacker-yet/
https://www.zdnet.com/article/memcached-ddos-the-biggest-baddest-denial-of-service-attacker-yet/

Computers & Security 142 (2024) 103898Jesús F. Cevallos M. et al.
Fig. 1. Schematic representation of the Neural Algorithmic Reasoning blueprint applied to the task of Zero-day attack detection. The pipeline is trained iteratively with a set of
specialized layer-wise supervisory signals. Two decoder modules differentiate the learning goals in our hierarchical classification task.
Our proposal is to map the abstract reasoning behind ZdA detection
on a set of specialized prototypical learning operations. Our processing
modules adopt geometric inductive biases to push the neural compu-
tations explicitly towards distribution-agnostic classification. In other
words, the processor network uses metric-based meta-learning to align
with the algorithmic rationale of ZdA detection.

Following the NAR paradigm, NERO performs intrusion detection
as if it were a graph representation learning task. Thus, our pipeline
encodes the input observations on a graph. Inside this design strategy,
our pipeline is taught to produce node representations that can be de-
coded as a set of desired outputs, i.e., the artifacts (1)-to-(3) mentioned
before.

The graph representing the input space will be denoted by 𝒢 =
(𝒱 ,ℰ), where 𝒱 = {𝑣1, 𝑣2,… , 𝑣

|𝒱 |

} is the set of vertices or nodes and
ℰ = {𝑒𝑖,𝑗}, ∀𝑖, 𝑗 ∈ 𝒱 is the set of edges. The nodes of the graph
will correspond to the environment observations, while the edges will
encode the semantic relationships between nodes. The neighborhood of
𝑣, usually denoted with 𝒩 (𝑣), corresponds to the set of nodes that
are connected to 𝑣 by the edges of the graph. Our graph includes
node-level features or attributes. These features are represented using
a real-valued matrix 𝐗 ∈ R|𝒱 |×𝑚 where 𝑚 is the dimension of the node-
level feature space. The feature vector of a node 𝑣𝑖 ∈ 𝒱 coincides with
a row of 𝐗 and will be denoted as 𝑥𝑖.

An edge between the nodes 𝑣𝑖 and 𝑣𝑗 will instead be denoted by
𝑒𝑖,𝑗 ∈ ℰ . Note that the whole set of edges can be represented by an
adjacency matrix 𝐀|𝒱 |×|𝒱 |. The processor neural network of NERO will
receive a partial graph where only a subset of observations will be
labeled and thus connected between them through graph edges. The
inference of potential links between the unlabeled observations will be
the main task learned by the processor network.

In our experiments, the main architectural choice for a processor
network in the NAR paradigm was followed: In fact, these components
were implemented using Graph Attention Networks with dynamic at-
tention, also termed GATV2, Brody et al. (2021), which are used to
learn dynamic refinements of the input adjacency matrix for the mes-
sage passing among neighboring nodes. The NAR blueprint proposes
optimizing each layer’s parameters of such a GNN using a specific
supervisory signal within each layer. Such a supervisory signal fol-
lows a task-specific underlying algorithmic reasoning. In NERO, the
reasoning process must effectively conduce towards ZdA detection and
categorization and will be explained in Section 3.4.
4

From a practical viewpoint, there are two important components in
the NERO processor network:

• Episodic meta-learning. In episodic training, the input batches
have two types of samples: support samples are input obser-
vations accompanied by their labels. In contrast, query sam-
ples are unlabeled, and the model has to infer such a label.
In NERO, the processor network will implicitly infer the label
by learning to approximate the semantic adjacency matrix 𝐀.
Importantly, to teach the pipeline to learn an abstract rationale
over distribution-specific inputs, meta-training implies sampling
data from a variety of different classes and packing these data in
different training batches. In our experiments, such a task sam-
pling procedure helped to avoid overfitting our representational
machinery to training data distributions.

• Manifold learning. A key component that helps the conver-
gence of the processor network is regularizing the latent space
with manifold learning (Lei et al., 2020). Our processor net-
work is encouraged to pull apart the hidden representations of
nodes appertaining to different classes and to put the representa-
tions of same-class observations closer. Specifically, we explicitly
minimize two cross-entropies (CE): first, the CE between the dis-
tributions of the baseline and predicted adjacencies, and second,
the CE between the respective complementary distributions. The
former CE term acts as an attractive force that pushes together
latent space representations of the same class, while the second
acts as a repulsive force analogously. The resultant effect is a
clustering-friendly latent space, which, as shown in Section 4,
helps to generalize prototypical classification out-of-distribution.

Our processor uses support labels at each forward pass to initialize
the adjacency matrix. By default, each connection from a support to
a query sample and between two query samples is initialized to 1.
The attention mechanisms in the layers of the NERO processor, which
are instances of the GATV2 architecture, then learn to refine such
connections. For more information on the GATV2 layer architecture,
the interested reader is referred to the original paper (Brody et al.,
2021).

Computers & Security 142 (2024) 103898Jesús F. Cevallos M. et al.

ℬ
e

𝐜

𝑧
n
q
c
l

p
i
i
l
p
c
b
t
r

3

m
a
t
I
c
e

h
p
d

3.3. Decoder networks

The outcomes of the NERO pipeline will be obtained from the
decoder networks. This paper proposes implementing two distinct de-
coder networks, one for each processor layer. The first decoder will be
fed by the representations provided by the first processor layer, and the
second decoder will ingest the representations of the processor’s second
layer. Each decoder will have two streams related to closed-set and
open-set classification, respectively. The first decoder will help assess
whether an input is potentially related to known or unknown types of
traffic. The second decoder, instead, will classify its inputs, associating
them to the potentially corresponding classes.

Prototypical decoding is at the core of the decoding process in
NERO. In other words, the support samples will be used at each training
iteration step to compute the centroids of class-specific clusters in
the latent space. More specifically, the decoding will be performed
as follows. First, a set of encoded inputs 𝐳1, 𝐳2,… , 𝐳

|ℬ|

from a batch
is given to the decoder network. Second, the decoder takes these

mbeddings and computes the centroids in the latent space:

𝑖 =
1
𝑁𝑖

𝑁𝑖
∑

𝑗=1
𝐳𝑗 , ∀𝐜𝑖 ∈ 𝒞 (1)

where 𝑁𝑖 is the number of data points in cluster 𝑖.
Third, a similarity score 𝑠𝑖𝑗 is computed between each query input

𝑗 ∈ |ℬ| and the latent centroid vectors 𝐜𝑖 ∈ 𝒞 . The open-set decoder
eural networks judge if any significant similarity score indicates the
uery sample is related to a known class. Instead, the closed-set de-
oders associate samples to the corresponding nearest centroid in the
atent space.

When a new attack is discovered, namely, in the form of correctly
redicted type_A or type_B ZdA, new knowledge can be incorporated
nto the training data by simply including samples of such a new class
n the support set of the following input batches. Closed-set decoding is
earned by minimizing the multi-class cross-entropy loss on the query
redictions whose label is among the set of known classes. Open-set
lassification is optimized instead by reducing the known/unknown
inary-cross-entropy loss. The following section details how each pro-
otypical step aligns with the steps of a ZdA classification and catego-
ization algorithm by design.

.4. The algorithmic reasoning behind zero-day attack detection

Our NAR-based pipeline detects and alerts about potential align-
ents of the environment observations to known attack fingerprints

nd to what potentially represents novel classes of attacks. To meet
his goal, high-level supervisory signals must be defined for training.
n NERO, such signals coincide with explicit evidence of examples of
lasses (1)-to-(3), as defined in 3.2, among the training data. A detailed
xplanation of the proposed labeling strategy follows.

Our proposal is to align the layers of the processor network to a
ierarchical inference schematized in algorithm 1. The following is one
ossible design specification of the step-wise tasks in our specific ZdA
etection problem:

1. Using the open-set and closed-set decoders as defined in 3.3,
the representations provided by the first layer of the processor
network will be optimized to classify an observation 𝑜 between
a set of 𝐾𝑚𝑖𝑐𝑟𝑜 + 1 classes, where 𝐾𝑚𝑖𝑐𝑟𝑜 corresponds to the sum
of the total number of known micro-classes. The added class slot
corresponds to the unknown_1 class in lines 1–5 of algorithm 1.

2. The representations of the second processor layer will instead
be optimized through a classification task between 𝐾𝑚𝑎𝑐𝑟𝑜 + 1
classes. This classification task will provide the basis to associate
the observations previously marked as unknown_1 to one of the
𝐾𝑚𝑎𝑐𝑟𝑜 known macro-attacks or the unknown_2 class. (lines 6–12
5

of algorithm 1).
Algorithm 1 Algorithm for Zero-day Attack detection
Require: A set of environment observations 𝑂
1: for each environment observation 𝑜 ∈ 𝑂 do
2: Try to associate 𝑜 to one of the following: a known micro-class

or the unknown_1 class.
3: if 𝑜 is associated to a known micro-class then
4: continue
5: else
6: Try to associate 𝑜 to a known macro-class, or unknown_2 class.

7: if 𝑜 is associated with a known macro class then
8: associate 𝑜 to a a type_B ZdA.
9: continue

10: else
11: associate 𝑜 to a a type_A ZdA.
12: end if
13: end if
14: end for

Besides known-class classification, the main assumption made for
the effectiveness of ZdA detection in NERO is then the following: If an
observation 𝑜 is classified as unknown_1 at the first stage, and associated
with an instance of a known macro-class at the second stage, then it
plausibly means that 𝑜 is a type_B ZdA. Instead, if 𝑜 is associated with
the unknown_2 class at stage 2, then it potentially represents a type_A
ZdA.

It is worth stressing that NERO minimizes multiple loss functions,
each tailored to step-wise algorithmic goals. Moreover, to prove gener-
alization over ZdA detection, evaluating our pipeline should involve
assessing the classification of new classes of type_A and type_B ZdAs
concerning those observed during the training. These two observations
lead to a final question. How to train the proposed DL pipeline to
(1) learn a hierarchical closed and open-set classification task and (2)
generalize open-set classification out-of-distribution. In this respect, the
following section details our training and evaluation framework.

3.5. Training and validation framework for our zero-day attack detection
pipeline

To provide supervisory signals for training the processor network,
a closed-set labeled dataset for NID is manipulated as described be-
low. First of all, the train-validation-split should respect two main
conditions:

1. The set of all data points corresponding to some pre-selected set
of type_A ZdAs must be kept only in the validation dataset.

2. The points related to a chosen subset of type_B ZdAs must also
be kept only in the validation dataset.

Without losing generality in ZdA detection, one can include data
from all the known classes in the training and evaluation datasets.
However, having done any train-validation-split that respects the two
conditions stated above, two labeling schemes for each dataset must be
created. A detailed explanation of constructing these two versions from
the train and validation datasets follows. In the following, the training
and validation datasets are indistinctly referred to as datasets.

• Each version of these datasets has the same input data points, but
the variation between the first and second versions regards the
labels associated with such data points.

• In the first version of each dataset, the labels regarding a sub-
set of micro-classes are labeled as unknown_1. The micro-classes
whose labels are manipulated must belong to at least two dif-
ferent macro-attack classes. Moreover, to resemble the situation
in which a complete macro-class is unknown, i.e., to model the

Computers & Security 142 (2024) 103898Jesús F. Cevallos M. et al.

s
t
m
o
t
c
e
p

4

t
i
a

4

m
v
A
t
t

E
c
A
T
t

P
2
f
f
i
o
o

D
t
f
S

m

c
s
Z
c
m
i
c

m
a

r
i
c
f
c
d
c

r

p

existence of type_A ZdAs, the set of manipulated labels must cover
at least one entire macro-class.

• Macro classes are the labels of each data point in the second
version of the dataset. Importantly, the elements previously la-
beled as unknown_1 and belonging to a known macro-class will
now be labeled with the corresponding macro-class label. In
contrast, the rest of the unknown_1 records will be instead labeled
as unknown_2. This dataset constitutes a supervisory signal for
learning to differentiate among type_A and type_B ZdAs.

By manipulating the labels of the datasets in such a way, a step-wise
upervisory signal for the processor network is created. Specifically,
he first version of the dataset encodes a supervisory signal for opti-
izing/evaluating the classification task of the first NAR phase (both

pen and closed-set). Instead, the second version of the dataset guides
he learning and evaluation of the second processor layer and its
orresponding decoders. The following section provides a case-study
valuation based on synthetic and real data that offers evidence of the
otential effectiveness of our proposal.

. Experimental case study

Evidence on the effectiveness of the NAR blueprint for ZdA detec-
ion in IoT is given in this section as a realistic use case. Our belief
s that these preliminary results on ZdA generalization may encourage
nd shed light on the construction of a delivery-ready instrument.

.1. Implementation of the NERO pipeline

All our code is implemented in Python 3.10.10, and our neural
odules are implemented using the PyTorch deep learning library,

ersion 2.0.1. The NERO neural modules were trained on an NVIDIA
100-SXM4 GPU with 80 GB of RAM. The working principles and

raining data for our encoder, processor, and decoder networks are
hose explained in Section 3.

ncoder . Our encoder consists of two sequential linear layers pre-
eded by a Batch Normalization and with a Dropout intermediate layer.
fter each linear transformation, a ReLU activation function is applied.
he first layer expands the input dimension to half the dimension of
he latent space.

rocessor . Our processor consists of a GATV2 Layer (Brody et al.,
021) with different learnable weight matrices for the linear trans-
ormations of senders and receiver nodes, respectively. The activation
unction is the Leaky ReLU with a slope of 0.2. A Dropout Layer
s applied to the attention matrix before the final message passing
peration. A second Leaky ReLU with the same slope is applied to the
utput of the GATV2 Layer.

ecoder . Our closed-set decoder is implemented as specified in Sec-
ion 3.3. The open-set decoder is implemented through a linear trans-
ormation matrix with an output dimension of one followed by a
igmoid activation function.

Additional parameters and hyperparameters used for our experi-
ents are detailed in Table 1.

In our implementation, samples for four distinct macro-classes (and,
onsequently, micro-classes) are taken at each batch. One of the four
ampled classes corresponds to a type_A ZdA and the other to a type_B
dA. By doing so, our pipeline can be assessed in the differentiation
apability between the two types of unknown attacks, avoiding a
acro-class collapse in the last phase. In future works, a more flex-

ble decoding architecture should permit inference over batches that
ontain class collapses.

Concerning the open-set decoding, the ZdA samples were given
ore weight in the loss computation to deal with the inherent imbal-

nce of known/unknown input samples. Additionally, the closed-set
6

Table 1
Hyperparameter specifications.

Hyperparameter Specification

Learning rate (for all modules) 0.001
Support samples per class (K-SHOT) 15
Query samples per class 5
Classes per batch (N-WAY) 4
Total macro classes 10
Total micro classes 40
Dropout rate (processor and encoders) 0.1
Processors hidden space dimension 1024
Processor attention-heads 8
Batch size 80
Training batches 500
Test batches 50
Few-shot sampler worker threads 4
Loss function (Closed set classification) Multiclass cross-entropy
Loss function (Open set classification) Binary Cross-Entropy (BCE)
Positive weight for phase-1 BCE 1
Positive weight for phase-2 BCE 3
Optimizer Adam (without weight decay)
Max. number of attacks per class in the whole
dataset

10 000

Train-evaluation split (for known attacks) 80% 20%
Training epochs 80

gradient computation was restricted to the query samples of known
classes. By doing so, our encoder and processor are prevented from
pushing the latent representations of query samples that correspond to
unknown attacks to known class signatures, which would be incorrect.
Finally, the gradients related to the open-set loss were detached from
the rest of the pipeline to avoid overfitting the latent representations
to the ZdAs in the training data.

4.2. Dataset details

The Edge-IIoT dataset in Ferrag et al. (2022) is used in this work to
assess the ZdA detection accuracy of our methodology. Being released
in 2022, this is the most recent IoT-focused NID dataset. Concerning
other IoT-oriented datasets for NID, the Edge-IIoTset aims to include
traffic from both IoT and I-IoT. Another advantage of this dataset is the
labeled two-level taxonomy of attacks, which permits assessing type_A
and type_B Zda detection. Fourteen types of attacks are categorized
into five macro-categories: DoS/DDoS attacks, Information Gathering,
Man-In-The-Middle attacks, Injection attacks, and Malware attacks.

The preprocessed Edge-to-IIoTset dataset in Ferrag et al. (2022) con-
tains sixty-one features and is publicly accessible in the IEEE dataport.3
Having downloaded this dataset, our preprocessing follows further
author’s guidelines available in Kaggle4 and involves taking out various
features like IP addresses and ports that could be erroneously identified
as discriminant. The final data contains forty-two numerical and seven
categorical features. The latter were encoded using integers and further
treated as numerical.

Our training data is limited to 4 × 104 samples for the most-
epresented classes to resemble low-training data regimes. In the orig-
nal dataset, the Man-In-The-Middle class was not divided into micro-
lusters. Consequently, HDBScan clustering5 was performed on the
eature space to divide such a class into four synthetic microattack
lasses. This class was particularly underrepresented in the original
ataset. After removing the scattered points according to the soft-
lustering, we obtained a few samples to test the type_A ZdA detection.

3 https://ieee-dataport.org/documents/edge-iiotset-new-comprehensive-
ealistic-cyber-security-dataset-iot-and-iiot-applications.

4 https://www.kaggle.com/code/mohamedamineferrag/edge-iiotset-pre-
rocessing.

5
 https://hdbscan.readthedocs.io/en/latest/index.html.

https://ieee-dataport.org/documents/edge-iiotset-new-comprehensive-realistic-cyber-security-dataset-iot-and-iiot-applications
https://ieee-dataport.org/documents/edge-iiotset-new-comprehensive-realistic-cyber-security-dataset-iot-and-iiot-applications
https://www.kaggle.com/code/mohamedamineferrag/edge-iiotset-pre-processing
https://www.kaggle.com/code/mohamedamineferrag/edge-iiotset-pre-processing
https://hdbscan.readthedocs.io/en/latest/index.html

Computers & Security 142 (2024) 103898Jesús F. Cevallos M. et al.

4

t
a
T
b
a
Z
a
v

t

1

Table 2
Two-level Taxonomy of attack in the pre-processed Edge-to-IIoT Dataset in Ferrag et al. (2022). According to our proposed labeling strategy,
two macro-classes are labeled as type_A ZdAs, and multiple micro-classes are labeled as type_B ZdAs. Importantly, these classes may differ
between the train and test split to demonstrate the out-of-distribution generalization of ZdA detection.
Level 1 Level 2 ZdA Type Split Training samples

(per class)

DDoS

DDoS_HTTP Y B Test 4 × 104

DDoS_ICMP Y B Train 4 × 104

DDoS_TCP ZdA3 Known Both 4 × 104

DDoS_UDP ZdA3 Known Both 1.2 × 104

Information Gathering
Fingerprinting Y A Train 0.08 × 104

Port-scanning Y A Train 2 × 104

Vulnerability-scanning Y A Train 4 × 104

Injection
SQL injection Y B Test 4 × 104

Uploading Y B Train 3.6 × 104

Cross-site scripting Both Known Split2 1.5 × 104

Man-in-the-middle

MITM-0 Y A Test 35
MITM-1 Y A Test 123
MITM-2 Y A Test 44
MITM-3 Y A Test 35

Malware Backdoor Y B Train 2.4 × 104

Password Y B Test 4 × 104

Ransomware Both Known Split2 0.9 × 104

Normal Normal Both Known Split1 1.3 × 104
The Normal class is considered a macro-attack containing a unique
micro-attack for our experiments. Table 2 shows our training and
testing data details. To facilitate data exploration, the preprocessing
code has been open-sourced as a .ipynb notebook in a public GitHub
Gist.6

.3. Baselines

The following experiments compare our pipeline to another state-of-
he-art ZdA detection pipeline in Bovenzi et al. (2020), a hierarchical
pproach for disentangling known attack detection from ZdA detection.
he first phase of the pipeline in Bovenzi et al. (2020) performs a
inary classification in which normal traffic is separated from potential
ttacks. The second phase is a thresholding filter that signals potential
dAs when the classification confidence of attacks is low. The baselines
ssume a perfect anomaly detector in the first phase, separating normal
s. attack-related traffic with 100% accuracy.

Four variants for the baseline were tested: (1) Fixing the confidence
hreshold 𝜏𝑢 to 0.75. (2) Fixing the confidence threshold 𝜏𝑢 to 0.95.
(3) Online learning of the threshold and the known-attack classifier.
(4) Offline learning the threshold with a pre-trained classifier. The
following experiments implement two versions of each baseline to
compare each time with NERO. One is used for ZdA detection over
micro-attacks, and the other for macro-attacks.

Following the authors’ guidelines in Bovenzi et al. (2020), the
implementation of the anomaly detection module was equipped with
the same Dropout ratio as in our modules to preserve fairness in the
comparison. Two linear layers with a ReLU activation compose the
MLP, and we found the best-hidden layer dimension was the same as
the NERO pipeline. The multiclass classifier is naturally equipped with
a softmax operation after the output layer (the Sigmoid activation was
also tested, being the anomaly threshold unaware of relative entropy
among outputs, but the best results were found with the Softmax).
The chosen values for the threshold parameters were representative
of the authors’ experiments. It is also worth noting that avoiding
implementing the first phase does not prejudice the baseline, as the
assumption is to have a perfect anomaly detector in this baseline.

6 https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa
68#file-iiotset_graphviz-ipynb.
7

4.4. Metrics

The performance of the pipeline was measured using the following
metrics:

1. For the closed-set classification tasks, the accuracy measure
defined in Eq. (2) is used, where the number of total predictions
corresponds to the known attacks in each batch/epoch:

Acc =
Correct predictions
Total predictions (2)

2. For the open-set classification tasks, instead, the balanced accu-
racy is used as defined in Eq. (3):

̂Acc = TNP + TPP
2

(3)

where TNP is the true negative proportion and is defined as the
ratio of predicted negatives and the total number of negatives in
the episode:

TNP =
Predicted Negatives

Total Negatives (4)

Conversely, TPP is the true positive proportion and is defined
analogously:

TPP = Predicted Positives
Total Positives (5)

The reason for using (3) is that ZdAs – our positive samples in
the open-set classification – represent an unbalanced class, and
using (2) would result in a biased comparison: a deterministic
negative predictor would achieve better performance than any
other model, compressed a random baseline.

Training and testing configuration. The training epochs were made
of 500 batches, while the evaluation epochs contained 50 batches. A 4-
way 5-shot classification is performed at each batch: four micro-classes
are sampled from different macro-classes. One of such four classes is a
type_B ZdA, and one is a type_A ZdA; the other two are known attacks.
Five support samples and fifteen query samples are given for each
sampled class, and NERO classifies the query samples in the open and
closed set task of each phase.

4.5. Results

Fig. 2 contains the closed-set classification task evaluation results.
The mean accuracy over one hundred evaluation batches was computed

https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb
https://gist.github.com/QwertyJacob/ab87264bc5e6fba9bbd17bd0d7faa168#file-iiotset_graphviz-ipynb

Computers & Security 142 (2024) 103898Jesús F. Cevallos M. et al.
Fig. 2. Closed-set classification evaluation of our algorithm (NERO) and multiple baselines derived from the work in Bovenzi et al. (2020). Our algorithm is more data efficient
and generalizes well in distribution concerning the attacks in the Edge-to-IIotSet in Ferrag et al. (2022).
for all the baselines and NERO. The accuracy in each batch was
computed using (2). Finally, the exponential moving average with a
smoothing factor of 0.5 was computed and reported in the line plots of
Fig. 2. Such a figure shows a neat superiority of our method concerning
the rest of the baselines in the micro-attack (upper plot) and macro-
attack (lower plot) domain. Even if the baselines struggle to classify
attacks in the evaluation data set, their accuracy converges in the
training set from the first epochs. The accuracies with respect to the
training distributions are omitted for brevity.

As seen from Fig. 2, the micro-attack closed-set performance of
NERO is at 100% accuracy from the initial evaluation epochs. Such a
result does not contrast with recent literature focused on supervised
NID, nor is it difficult to understand the effectiveness of prototypical
learning when the latent space is regularized. To give a clear picture of
this effect, another experiment using synthetic data was made, in which
the hidden representations of the processor’s first layer were linearly
reduced to two dimensions using principal component analysis (PCA).
A scatter plot of these decompositions at the first training iterations is
shown in Fig. 3. A clear prototypical polarization is observed in such a
figure within a few training iterations.

Fig. 4 presents instead the results of the open-set classification task,
which is a binary classification task. In the first phase (upper plot),
the traffic is differentiated between known and unknown attacks, while
in the second phase (lower plot), the unknown traffic is differentiated
between type_A and type_B ZdAs. The plots contain an analogous aver-
aging as those of Fig. 2, but using the balanced accuracy in (3). As can
be seen from the figure, the NERO pipeline improves the performance
in both ZdA detection and type_A and type_B differentiation concerning
the baselines. From the figure, one can also notice that a great part
of the improvement in the A/B ZdA classification task is achieved
by using our open-set decoding strategy, which is a learnable linear
projection with a Sigmoid activation rather than a fixed threshold
as proposed in Bovenzi et al. (2020). Additional improvement apart
from our decoding strategy may be the merit of combining the NAR
paradigm and prototypical learning, as explained in the following.

The open-set classification tasks are challenging because new classes
of ZdAs are given at test time, and the absolute position of the corre-
sponding representations might be at any region of the latent space.
Moreover, prototypical classification is impossible with such attacks
because no support labels are given for new attacks. Hence, the NERO
8

pipeline must recognize that these representations belong to unidenti-
fied clusters. For making this inference, the rationale followed by the
open set decoder should consist of two steps: first, associating new
attacks to a unique class, and second, realizing that such a class is
not any of the support classes by looking at the similarity scores of
the unknown points and the prototypes of known classes. To visually
confirm that the representations ingested by the open-set decoders
are congruent with this rationale, another experiment was done with
synthetic data, keeping track of these representations. In Fig. 5, a two-
dimensional linear PCA decomposition of the inputs to the open-set
decoder in phase 1 is plotted at different training steps. One can easily
observe how the unknown classes, corresponding to type_A ZdAs (black
dots) and type_B ZdAs (gray dots), are pushed to a unique region
despite the particular ZdA classes being potentially different at each
batch.

5. Related works

5.1. Algorithmic-oriented inductive biases in deep learning

Neural Algorithmic Reasoning is a recently proposed paradigm.
However, empirical evidence of the effectiveness of such a paradigm
in other network-related scenarios exists. A successful and direct appli-
cation of the NAR blueprint is offered in Deac et al. (2020), where Deac
et al. showed improved data efficiency with respect to state-of-the-art
deep reinforcement learning models in the ATARI benchmark. Another
NAR pipeline is offered in Beurer-Kellner et al. (2022), where authors
teach an ANN to output candidate values for missing parameters on
network configuration specifications. Beurer-Kellner L. et al. used a
graph modelization of network configuration instances specified as lists
of facts where some parameters were masked. Then, the problem of
masked parameter completion was modeled as a graph-representation
learning task.

On the side of standardization, the work in Veličković et al. (2022)
proposed a benchmark dataset to assess the algorithmic reasoning
capabilities of neural networks. A successive work in Ibarz et al. (2022),
identified many inductive biases that lead to the convergence of a
unique GNN-based processor network that can solve many potentially
different dynamic programs. Instead, many other neural algorithmic
reasoning inductive biases are evidenced in Cappart et al. (2023),
where the focus goes beyond dynamic programming and concentrates
on the ability of GNNs to solve combinatorial problems.

Computers & Security 142 (2024) 103898Jesús F. Cevallos M. et al.
Fig. 3. Two-dimensional Principal Component Analysis decomposition of the hidden representations of the first layer of the NERO processor network. Different colors indicate the
sampling of different classes at each batch. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Results of the open-set classification evaluation for all the baselines and NERO with the proposed dataset.
5.2. Deep learning for network intrusion detection

Supervised (Tsimenidis et al., 2022), and unsupervised (Yang et al.,
2022) DL has been used for NID purposes for decades. Convolutional
Neural Networks (Ashiku and Dagli, 2021), Recurrent Modules (Gam-
age and Samarabandu, 2020), and Graph Neural networks (Dong et al.,
2023) are used in NID tmulticlassand perform inferences over network-
related data. Detection efficiency (Heidari et al., 2023b), data re-
balancing strategies (Liu et al., 2021a), and adversarial training tech-
niques (He et al., 2023), among others, have been modeled alongside
NID accuracy with the help of Deep Learning in the past years. How-
ever, being a statistical-driven paradigm, DL and ML generally strive
to generalize classification out of the training-data distribution (Liu
et al., 2021b). For this reason, ZdA detection might not be as easy as
closed-set multiclass classification in DL scenarios and could require a
meta-modeling strategy to learn a proto-distribution that generates the
9

attack distributions. The works reviewed in the following offer some
candidate strategies in this sense.

5.3. Zero-day attack detection

The authors of Zhang et al. (2020) relied on zero-shot learning to
achieve zero-day attack detection. They relied on descriptions of seen
and unseen classes and a multi-view learning paradigm in which an
autoencoder is trained to translate between the feature and semantic
domains. More specifically, the authors of this work used semantic prior
knowledge of attacks whose samples were not included in the training
dataset to compare its feature-domain translation with the testing data
at inference time. Our method instead avoids the assumption of hav-
ing second-domain information to perform inferences about unknown
attacks.

Computers & Security 142 (2024) 103898Jesús F. Cevallos M. et al.
Fig. 5. PCA decomposition of the hidden representations ingested by the open set phase-1 decoder. Despite type_A ZdAs (black dots) and type_B ZdAs (gray dots) potentially
appertain to different classes at each batch, focusing on similarities to known-class prototypes permits to map them to the same region of this latent space.
The authors in Bovenzi et al. (2020) introduced a hierarchical model
in which two anomaly-detection modules are considered. The first is
a lightweight anomaly detection component that permits the benign
traffic to bypass the second module, which operates open-set intru-
sion classification (thus, related to zero-day attack detection). Bovenzi
et al. designed two threshold parameters to control both the anomaly
criterion and the minimum confidence to associate an observation
to a known attack class rather than an unknown type. NERO also
differentiates between two types of unknown attacks, namely, type_A
and type_B attacks.

In Vu et al. (2020), an encoder–decoder paradigm is used to learn
effective representations of known attack vectors into a regularized
latent space. The authors in this work evaluated the convergence of
the latent space to representations that permit shallow-ML classifiers to
differentiate between regular traffic and unknown attack samples. The
data-distribution decoupling strategy in NERO permits the detection of
unknown attacks of more than one macro-category instead.

The work in Yang et al. (2021) offers a two-step ZdA attack de-
tection based on conditional and variational encodings. In the first
phase, a closed-set classification task is optimized in the latent space.
In the second stage, the conditioned reconstructions of the learned
latent variables are used to assess if an observation is an instance of an
unknown attack. Extreme Value Theory concepts are used to determine
the presence of unknown attacks as a function of the reconstruction
errors of the known-class latent samples. Concerning this work, NERO
uses episodic learning and thus incorporates a balancing technique for
training. At the same time, our proposal uses neural machinery to
learn to extract the novelty degree automatically through a specialized
labeling strategy.

The authors of Sarhan et al. (2023) realized many experiments
that resembled a zero-day attack detection problem by excluding one
class at a time from the training set of two ML-based NID systems.
The first was based on a random forest, and the second was based
on a multi-layer perceptron. Authors used the NetFlow v9 format of
the UNSW-NB15 dataset.7 They used a nearest-neighbor assignation
to classify out-of-distribution samples as attacks. Our work not only
detects anomalies but also makes inferences about their degree of
novelty.

The work in Hindy et al. (2020) compares the performance of ZdA
detectors based on Support Vector Machines and Autoencoders. The

7 https://www.kaggle.com/datasets/dhoogla/nfunswnb15v2.
10
authors of this work used the CIC-IDS20178 and NSL-KDD9 datasets
and trained both models using only normal data. During evaluation,
all the attack-related samples were fed to the models. The position of
the samples’ latent representations concerning the support hyperplane
and the reconstruction error were used to discriminate between attacks
and benign traffic.

The work in Sameera and Shashi (2020) uses manifold alignment
to create cluster correspondences between different slices of the same
datasets and between different datasets. The alignment between a full-
labeled source dataset and a partially labeled target dataset performs
zero-day attack inferences on the second. To assess their method, the
authors performed experiments using different chunks of the NSL-KDD
dataset. Unlike this work, in NERO, the eigenvalue decomposition of
big feature matrices is avoided using only deep learning-based latent
spaces.

The authors of Thein et al. (2023) presented a Few-Shot clas-
sification pipeline based on a fusion of the prototypical and graph
convolutional networks. Remarkably, they first transformed the flows’
traffic captures to expressive bidimensional images using open-source
tools. Then, they performed Few-Shot learning on the image embed-
dings. They validated their algorithm with a fraction of the IoT-23
dataset.10 In contrast to the Few-Shot setting of this work, our method
infers unknown attacks on an open-set basis, i.e., without using labels.

The authors of Nguyen and Le (2023) presented a pipeline for
NID that inverts the approach of Bovenzi et al. (2020). First, a high-
dimensional latent space is constructed, and a CNN divides inputs
between benign and known attacks. Then, two anomaly-based classi-
fiers analyze the traffic deemed as benign to identify oversights and
novel attacks. The authors differentiate between novelty (type_B) and
out-of-distribution (type_A) attacks and use their approach to detect
only the former. NERO instead combines meta-learning and NAR to
detect out-of-distribution attacks. Recent surveys on zero-day attack
detection are available in Ahmad et al. (2023), Mearaj and Arif Wani
(2023) and Guo (2023).

Most of the state-of-the-art related to zero-shot detection of novel at-
tack types relies on multidomain meta-learning, where parallel feature
domain(s) that describe the new kinds of attacks are assumed to be given
at inference time. Other works focus on anomaly detection techniques
but tend not to address the assessment of the degree of novelty of

8 https://www.unb.ca/cic/datasets/ids-2017.html.
9 https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

10 https://www.stratosphereips.org/datasets-iot23.

https://www.kaggle.com/datasets/dhoogla/nfunswnb15v2
https://www.unb.ca/cic/datasets/ids-2017.html
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.stratosphereips.org/datasets-iot23

Computers & Security 142 (2024) 103898Jesús F. Cevallos M. et al.
anomalies. In this respect, the main contribution of our work relies
on a framework proposal that uses a cascading encode-process-decode
meta-learning strategy for learning to detect and potentially categorize
out-of-distribution attacks without auxiliary-domain labels and within
a low-training-data environment.

6. Conclusive remarks

This paper proposed NERO, a Deep Learning pipeline focused on
learning to detect Zero-day Attacks with a particular focus on the IoT
environment, i.e., with special care in training data efficiency. The Neu-
ral Algorithmic Reasoning and Prototypical meta-learning blueprint are
followed to augment data efficiency and to model high-level abstract
reasoning.

The presented algorithmic inductive biases represent a candidate
strategy to equip a DL pipeline with a meta-level abstraction mecha-
nism, decoupling its behavior from use-case-specific data distributions.
Our proposal has demonstrated to potentially generalize the concept
of type_A and type_B attacks regarding a two-level balanced binary
classification accuracy. In other words, the NERO processor network is
taught to distill the unknown hierarchy of distributions that generate
anomalous data at inference time through the NAR inductive biases.
The envisioned setting can be seen as an implicit or architectural
mapping for the conditional discriminative criteria modeled in other
recent works and extended to type_B and type_A ZdA distillation.

Other paradigms exist that seek to enable differentiable machine
learning over symbolic reasoning to achieve out-of-distribution gener-
alization. The interested reader can refer to some instances of neuro-
symbolic AI (Hitzler and Kamruzzaman Sarker, 2022) as exemplary
techniques. We mainly opt for the NAR prototypical blueprint over
neuro-symbolic AI because the IoT scenario may require low compu-
tational and network overhead (Heidari et al., 2023a). In contrast,
neuro-symbolic approaches may assume to work with a distributed
modular system compressing knowledge bases and other processing
subsystems that may be online queried.

The main future research direction consists of deploying the NERO
pipeline in real IoT scenarios to assess its ability to online learn-
ing to detect type_A and type_B ZdAs. Additionally, research efforts
should be devoted to enhancing the evaluation of open-set classification
accuracies of the current version of our pipeline.

CRediT authorship contribution statement

Jesús F. Cevallos M.: Writing – review & editing, Writing – original
draft, Methodology, Formal analysis, Conceptualization. Alessandra
Rizzardi: Writing – review & editing, Writing – original draft, Fund-
ing acquisition, Conceptualization. Sabrina Sicari: Writing – review
& editing, Investigation, Funding acquisition, Conceptualization. Al-
berto Coen Porisini: Writing – review & editing, Funding acquisition,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work was supported in part by the SERENA-IIoT project, which
has been funded by MUR (Ministero dell’Università e della Ricerca),
Italy under the PRIN 2022 program (project code 2022CN4EBH), and
in part by project SERICS (project code PE00000014), under the NRRP
11

MUR program funded by the EU - NGEU, Italy.
References

Affinito, Antonia, Zinno, Stefania, Stanco, Giovanni, Botta, Alessio, Ventre, Giorgio,
2023. The evolution of mirai botnet scans over a six-year period. J. Inf. Secur.
Appl. 79, 103629.

Ahmad, Rasheed, Alsmadi, Izzat, Alhamdani, Wasim, Tawalbeh, Lo’ai, 2023. Zero-day
attack detection: a systematic literature review. Artif. Intell. Rev. 1–79.

Al-Zewairi, Malek, Almajali, Sufyan, Ayyash, Moussa, 2020. Unknown security attack
detection using shallow and deep ann classifiers. Electronics 9 (12), 2006.

Amiri, Zahra, Heidari, Arash, Navimipour, Nima Jafari, Unal, Mehmet, Mousavi, Ali,
2023. Adventures in data analysis: A systematic review of deep learning techniques
for pattern recognition in cyber–physical-social systems. Multimedia Tools Appl.
1–65.

Ashiku, Lirim, Dagli, Cihan, 2021. Network intrusion detection system using deep
learning. Procedia Comput. Sci. 185, 239–247.

Beurer-Kellner, Luca, Vechev, Martin, Vanbever, Laurent, Veličković, Petar, 2022.
Learning to configure computer networks with neural algorithmic reasoning. arXiv
preprint arXiv:2211.01980.

Bovenzi, Giampaolo, Aceto, Giuseppe, Ciuonzo, Domenico, Persico, Valerio,
Pescapé, Antonio, 2020. A hierarchical hybrid intrusion detection approach in iot
scenarios. In: GLOBECOM 2020-2020 IEEE Global Communications Conference.
IEEE, pp. 1–7.

Brody, Shaked, Alon, Uri, Yahav, Eran, 2021. How attentive are graph attention
networks?. arXiv preprint arXiv:2105.14491.

Cappart, Quentin, Chételat, Didier, Khalil, Elias.B, Lodi, Andrea, Morris, Christopher,
Velickovic, Petar, 2023. Combinatorial optimization and reasoning with graph
neural networks. J. Mach. Learn. Res. 24, 130–131.

Chanal, Poornima M., Kakkasageri, Mahabaleshwar S., 2020. Security and privacy in
iot: a survey. Wirel. Pers. Commun. 115, 1667–1693.

Deac, Andreea, Veličković, Petar, Milinković, Ognjen, Bacon, Pierre-Luc, Tang, Jian,
Nikolić, Mladen, 2020. Xlvin: executed latent value iteration nets. arXiv preprint
arXiv:2010.13146.

Derrow-Pinion, Austin, She, Jennifer, Wong, David, Lange, Oliver, Hester, Todd,
Perez, Luis, Nunkesser, Marc, Lee, Seongjae, Guo, Xueying, Wiltshire, Brett, et al.,
2021. Eta prediction with graph neural networks in google maps. In: Proceedings of
the 30th ACM International Conference on Information & Knowledge Management.
pp. 3767–3776.

Dixit, Priyanka, Silakari, Sanjay, 2021. Deep learning algorithms for cybersecurity
applications: A technological and status review. Comp. Sci. Rev. 39, 100317.

Dong, Guimin, Tang, Mingyue, Wang, Zhiyuan, Gao, Jiechao, Guo, Sikun, Cai, Lihua,
Gutierrez, Robert, Campbel, Bradford, Barnes, Laura E., Boukhechba, Mehdi, 2023.
Graph neural networks in iot: A survey. ACM Trans. Sensor Netw. 19 (2), 1–50.

Ferrag, Mohamed Amine, Friha, Othmane, Hamouda, Djallel, Maglaras, Leandros,
Janicke, Helge, 2022. Edge-iiotset: A new comprehensive realistic cyber security
dataset of iot and iiot applications for centralized and federated learning. IEEE
Access 10, 40281–40306.

Gamage, Sunanda, Samarabandu, Jagath, 2020. Deep learning methods in network
intrusion detection: A survey and an objective comparison. J. Netw. Comput. Appl.
169, 102767.

Guo, Yang, 2023. A review of machine learning-based zero-day attack detection:
Challenges and future directions. Comput. Commun. 198, 175–185.

He, Ke, Kim, Dan Dongseong, Asghar, Muhammad Rizwan, 2023. Adversarial machine
learning for network intrusion detection systems: a comprehensive survey. IEEE
Commun. Surv. Tutor..

Heidari, Arash, Jabraeil Jamali, Mohammad Ali, 2023. Internet of things intrusion
detection systems: A comprehensive review and future directions. Cluster Comput.
26 (6), 3753–3780.

Heidari, Arash, Navimipour, Nima Jafari, Jabraeil Jamali, Mohammad Ali, Akbar-
pour, Shahin, 2023a. A green, secure, and deep intelligent method for dynamic
iot-edge-cloud offloading scenarios. Sustain. Comput.: Inform. Syst. 38, 100859.

Heidari, Arash, Navimipour, Nima Jafari, Unal, Mehmet, 2023b. A secure intrusion
detection platform using blockchain and radial basis function neural networks for
internet of drones. IEEE Internet Things J..

Hindy, Hanan, Atkinson, Robert, Tachtatzis, Christos, Colin, Jean-Noël, Bayne, Ethan,
Bellekens, Xavier, 2020. Utilising deep learning techniques for effective zero-day
attack detection. Electronics 9 (10), 1684.

Hitzler, Pascal, Kamruzzaman Sarker, Md., 2022. Neuro-Symbolic Artificial Intelligence:
The State of the Art. IOS Press.

Hospedales, Timothy, Antoniou, Antreas, Micaelli, Paul, Storkey, Amos, 2021. Meta-
learning in neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 44
(9), 5149–5169.

Ibarz, Borja, Kurin, Vitaly, Papamakarios, George, Nikiforou, Kyriacos, Bennani, Mehdi,
Csordás, Róbert, Dudzik, Andrew Joseph, Bošnjak, Matko, Vitvitskyi, Alex,
Rubanova, Yulia, et al., 2022. A generalist neural algorithmic learner. In: Learning
on Graphs Conference. PMLR, pp. 1–2.

Imrana, Yakubu, Xiang, Yanping, Ali, Liaqat, Abdul-Rauf, Zaharawu, 2021. A bidirec-
tional lstm deep learning approach for intrusion detection. Expert Syst. Appl. 185,
115524.

Jayalaxmi, Pls, Saha, Rahul, Kumar, Gulshan, Conti, Mauro, Kim, Tai-Hoon, 2022.
Machine and deep learning solutions for intrusion detection and prevention in iots:
A survey. IEEE Access.

http://refhub.elsevier.com/S0167-4048(24)00200-1/sb1
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb1
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb1
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb1
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb1
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb2
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb2
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb2
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb3
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb3
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb3
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb4
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb4
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb4
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb4
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb4
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb4
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb4
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb5
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb5
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb5
http://arxiv.org/abs/2211.01980
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb7
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb7
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb7
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb7
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb7
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb7
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb7
http://arxiv.org/abs/2105.14491
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb9
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb9
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb9
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb9
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb9
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb10
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb10
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb10
http://arxiv.org/abs/2010.13146
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb12
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb12
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb12
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb12
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb12
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb12
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb12
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb12
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb12
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb13
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb13
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb13
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb14
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb14
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb14
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb14
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb14
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb15
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb15
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb15
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb15
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb15
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb15
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb15
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb16
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb16
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb16
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb16
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb16
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb17
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb17
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb17
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb18
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb18
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb18
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb18
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb18
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb19
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb19
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb19
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb19
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb19
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb20
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb20
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb20
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb20
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb20
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb21
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb21
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb21
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb21
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb21
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb22
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb22
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb22
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb22
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb22
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb23
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb23
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb23
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb24
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb24
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb24
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb24
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb24
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb25
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb25
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb25
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb25
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb25
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb25
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb25
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb26
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb26
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb26
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb26
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb26
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb27
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb27
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb27
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb27
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb27

Computers & Security 142 (2024) 103898Jesús F. Cevallos M. et al.
Khraisat, Ansam, Alazab, Ammar, 2021. A critical review of intrusion detection systems
in the internet of things: techniques, deployment strategy, validation strategy,
attacks, public datasets and challenges. Cybersecurity 4, 1–27.

Khraisat, Ansam, Gondal, Iqbal, Vamplew, Peter, Kamruzzaman, Joarder, 2019. Survey
of intrusion detection systems: techniques, datasets and challenges. Cybersecurity
2 (1), 1–22.

Lei, Na, An, Dongsheng, Guo, Yang, Su, Kehua, Liu, Shixia, Luo, Zhongxuan, Yau, Shing-
Tung, Gu, Xianfeng, 2020. A geometric understanding of deep learning. Engineering
6 (3), 361–374.

Liu, Xiaodong, Li, Tong, Zhang, Runzi, Wu, Di, Liu, Yongheng, Yang, Zhen, 2021a.
A gan and feature selection-based oversampling technique for intrusion detection.
Secur. Commun. Netw. 2021, 1–15.

Liu, Jiashuo, Shen, Zheyan, He, Yue, Zhang, Xingxuan, Xu, Renzhe, Yu, Han, Cui, Peng,
2021b. Towards out-of-distribution generalization: A survey. arXiv preprint arXiv:
2108.13624.

Maseno, Elijah M., Wang, Zenghui, Xing, Hongyan, et al., 2022. A systematic review
on hybrid intrusion detection system. Secur. Commun. Netw. 2022.

Mearaj, Nowsheen, Arif Wani, M., 2023. Zero-day attack detection with machine
learning and deep learning. In: 2023 10th International Conference on Computing
for Sustainable Global Development (INDIACom). IEEE, pp. 719–725.

Nguyen, Xuan-Ha, Le, Kim-Hung, 2023. Robust detection of unknown dos/ddos attacks
in iot networks using a hybrid learning model. Internet Things 23, 100851.

Pándy, Michal, Qiu, Weikang, Corso, Gabriele, Veličković, Petar, Ying, Zhitao,
Leskovec, Jure, Liò, Pietro, 2022. Learning graph search heuristics. In: Learning
on Graphs Conference. PMLR, pp. 10–11.

Raedt, Luc De, Dumančić, Sebastijan, Manhaeve, Robin, Marra, Giuseppe, 2020. From
statistical relational to neuro-symbolic artificial intelligence. arXiv preprint arXiv:
2003.08316.

Sameera, Nerella, Shashi, M., 2020. Deep transductive transfer learning framework for
zero-day attack detection. ICT Express 6 (4), 361–367.

Santhoshb Kumar, SVN., Selvi, M, Kannan, A, et al., 2023. A comprehensive survey on
machine learning-based intrusion detection systems for secure communication in
internet of things. Comput. Intell. Neurosci. 2023.

Sarhan, Mohanad, Layeghy, Siamak, Gallagher, Marcus, Portmann, Marius, 2023. From
zero-shot machine learning to zero-day attack detection. Int. J. Inf. Secur. 1–13.

Snell, Jake, Swersky, Kevin, Zemel, Richard, 2017. Prototypical networks for few-shot
learning. Adv. Neural Inf. Process. Syst. 30.

Thein, Thin Tharaphe, Shiraishi, Yoshiaki, Morii, Masakatu, 2023. Few-shot learning-
based malicious iot traffic detection with prototypical graph neural networks. IEICE
Trans. Inf. Syst. 106 (9), 1480–1489.

Tsimenidis, Stefanos, Lagkas, Thomas, Rantos, Konstantinos, 2022. Deep learning in iot
intrusion detection. J. Netw. Syst. Manage. 30, 1–40.

Veličković, Petar, Badia, Adrià Puigdomènech, Budden, David, Pascanu, Razvan,
Banino, Andrea, Dashevskiy, Misha, Hadsell, Raia, Blundell, Charles, 2022. The
clrs algorithmic reasoning benchmark. In: International Conference on Machine
Learning. PMLR, pp. 22084–22102.
12
Veličković, Petar, Blundell, Charles, 2021. Neural algorithmic reasoning. Patterns 2 (7),
100273.

Veličković, Petar, Ying, Rex, Padovano, Matilde, Hadsell, Raia, Blundell, Charles, 2019.
Neural execution of graph algorithms. arXiv preprint arXiv:1910.10593.

Vu, Ly, Nguyen, Quang Uy, Nguyen, Diep N., Hoang, Dinh Thai, Dutkiewicz, Eryk,
et al., 2020. Learning latent representation for iot anomaly detection. IEEE Trans.
Cybern. 52 (5), 3769–3782.

Wang, Yaqing, Yao, Quanming, Kwok, James T., Ni, Lionel M., 2020. Generalizing from
a few examples: A survey on few-shot learning. ACM Comput. Surv. (CSUR) 53 (3),
1–34.

Yang, Jian, Chen, Xiang, Chen, Shuangwu, Jiang, Xiaofeng, Tan, Xiaobin, 2021.
Conditional variational auto-encoder and extreme value theory aided two-stage
learning approach for intelligent fine-grained known/unknown intrusion detection.
IEEE Trans. Inf. Forensics Secur. 16, 3538–3553.

Yang, Zhen, Liu, Xiaodong, Li, Tong, Wu, Di, Wang, Jinjiang, Zhao, Yunwei, Han, Han,
2022. A systematic literature review of methods and datasets for anomaly-based
network intrusion detection. Comput. Secur. 116, 102675.

Zhang, Zhun, Liu, Qihe, Qiu, Shilin, Zhou, Shijie, Zhang, Cheng, 2020. Unknown attack
detection based on zero-shot learning. IEEE Access 8, 193981–193991.

Jesús F. Cevallos M. received a Ph.D. in Computer Science Engineering from Sapienza
University (Rome) in 2022. He now covers a post-doc researcher position at University
of Insubria (Varese). His main research interests are industrial applications of Deep
Learning over heterogeneous networks, with a special focus on Deep Reinforcement
Learning and Graph Representation Learning.

Alessandra Rizzardi is Assistant Professor at University of Insubria (Varese), where
she received BS/MS degree in Computer Science 110/110 cum laude in 2011 and
2013, respectively. In 2016 she got Ph.D. in Computer Science and Computational
Mathematics at the same university, under the guidance of Prof. Sabrina Sicari. Her
research activity is on WSN and IoT security issues. She is member of ETT, ITL, and
Sensors editorial board. She is IEEE member.

Sabrina Sicari is Associate Professor at University of Insubria (Varese). She received
degree in Electronical Engineering, 110/110 cum laude, from University of Catania, in
2002, where in 2006 she got Ph.D. in Computer and Telecommunications Engineering,
followed by Prof. Aurelio La Corte. She is member of COMNET, IEEE IoT, ETT, ITL
editorial board. Her research activity security, privacy and trust in WSN, WMSN, IoT,
and distributed systems. She is IEEE senior member.

Alberto Coen Porisini received Dr. Eng. degree and Ph.D. in Computer Engineering
from Politecnico di Milano in 1987 and 1992. He is Full Professor of Software Engi-
neering at Università degli Studi dell’Insubria since 2001, Dean of the School of Science
from 2006 and Dean from 2012 to 2018. His research regards specification/design of
real-time systems, privacy models and WSN.

http://refhub.elsevier.com/S0167-4048(24)00200-1/sb28
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb28
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb28
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb28
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb28
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb29
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb29
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb29
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb29
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb29
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb30
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb30
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb30
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb30
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb30
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb31
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb31
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb31
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb31
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb31
http://arxiv.org/abs/2108.13624
http://arxiv.org/abs/2108.13624
http://arxiv.org/abs/2108.13624
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb33
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb33
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb33
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb34
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb34
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb34
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb34
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb34
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb35
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb35
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb35
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb36
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb36
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb36
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb36
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb36
http://arxiv.org/abs/2003.08316
http://arxiv.org/abs/2003.08316
http://arxiv.org/abs/2003.08316
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb38
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb38
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb38
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb39
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb39
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb39
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb39
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb39
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb40
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb40
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb40
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb41
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb41
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb41
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb42
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb42
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb42
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb42
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb42
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb43
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb43
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb43
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb44
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb44
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb44
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb44
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb44
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb44
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb44
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb45
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb45
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb45
http://arxiv.org/abs/1910.10593
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb47
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb47
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb47
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb47
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb47
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb48
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb48
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb48
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb48
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb48
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb49
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb49
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb49
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb49
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb49
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb49
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb49
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb50
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb50
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb50
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb50
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb50
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb51
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb51
http://refhub.elsevier.com/S0167-4048(24)00200-1/sb51

	NERO: NEural algorithmic reasoning for zeRO-day attack detection in the IoT: A hybrid approach
	Introduction
	Background and Motivation
	Hybrid Artificial Intelligence
	Neural Algorithmic Reasoning
	Prototypical meta-learning
	The privacy preservation requirement in IoT and low-training data regimes.
	Zero-day Attacks
	Motivation

	Our proposed framework for Zero-day Attack detection and categorization in the IoT
	Encoder network
	Processor network
	Decoder networks
	The Algorithmic Reasoning behind zero-day attack detection
	Training and validation framework for our Zero-day attack detection pipeline

	Experimental Case Study
	Implementation of the NERO pipeline
	Dataset Details
	Baselines
	Metrics
	Results

	Related Works
	Algorithmic-oriented inductive biases in Deep Learning
	Deep Learning for Network Intrusion Detection
	Zero-day attack detection

	Conclusive Remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

