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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a cancer with one of the highest mortality
rates in the world. Several studies have been conductedusing preclinical experiments in mice to find
new therapeutic strategies. Experimental ultrasound, in expert hands, is a safe, multifaceted, and
relatively not-expensive device that helps researchers in several ways. In this systematic review, we
propose a summary of the applications of ultrasonography in a preclinical mouse model of PDAC.
Eighty-eight studies met our inclusion criteria. The included studies could be divided into seven main
topics: ultrasound in pancreatic cancer diagnosis and progression (n: 21); dynamic contrast-enhanced
ultrasound (DCE-US) (n: 5); microbubble ultra-sound-mediated drug delivery; focused ultrasound
(n: 23); sonodynamic therapy (SDT) (n: 7); harmonic motion elastography (HME) and shear wave
elastography (SWE) (n: 6); ultrasound-guided procedures (n: 9). In six cases, the articles fit into
two or more sections. In conclusion, ultrasound can be a really useful, eclectic, and ductile tool in
different diagnostic areas, not only regarding diagnosis but also in therapy, pharmacological and
interventional treatment, and follow-up. All these multiple possibilities of use certainly represent
a good starting point for the effective and wide use of murine ultrasonography in the study and
comprehensive evaluation of pancreatic cancer.

Keywords: pancreatic cancer; experimental animal models; mouse; diagnostic imaging; ultrasound
imaging; ultrasonic therapy; ultrasonography; interventional; high-intensity focused ultrasound
ablation; translational research

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal tumours with a
five-year survival rate inferior to 10% and a growing incidence;thus, it may soon become the
second leading cause of cancer death [1,2]. It is characterized by a prominent desmoplastic
stroma that limits therapeutic drug access and is highly resistant to standard chemo-
and radiotherapy.

Recently, several studies have been conductedusing preclinical experiments for new
therapeutic strategies in genetically engineered mouse models of pancreatic cancer [3–7].
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New invitro models have been developed and improved in the last two decades,
including tridimensional-culture spheroids and organoids. However, animal studies remain
of fundamental importance before clinical studies are performed. Orthotopic grafting and
syngeneic grafting are robust modelsused to test drug efficiency in a tumour and its
microenvironment, and mice remain the most studied type of animal model in pancreas
research [8].

In mice, the pancreas develops from two endodermal outgrowths of the primitive gut
that fuse to give rise to the branched ductular mass characteristic of the exocrine gland.
In humans, the gland is distinct and well-defined, whereas in mice it is a rather diffuse
organ enclosed in the dorsal mesentery. The adult mouse pancreas is softer than the human
one, and it is surrounded by the stomach, duodenum, proximal jejunum, and spleen [9,10].
Macroscopically, three lobes can be identified: the duodenal, the splenic (which is the
largest), and the gastric. Respectively, they correspond to the head, the body/tail, and the
pyramidal process of the human pancreas [11].

The use of animals for research purposes has long been a matter of debate in respect
to animals’ sentience, the sufferance that might be caused to them during the experiments,
and whether the justification for such harms is acceptable [12]. Today, studies on animals
are based on the application of the Three Rs (replacement; reduction; refinement) and their
tendency to respond to these concerns [13]. Especially regarding the second R, imaging
techniques are of fundamental importance; if it is necessary to use animals, as few animals
as possible should be used to achieve the study objectives. The main advantages of in vivo
imaging techniques, as they do not require animal sacrifice, is the possibility of longitudinal
studies, thus allowing a fewer number of animals and a lower cost to laboratories [9].

The ultrasound devices dedicated to the study of animal models, such as rodents,
include high-frequency probes up to 60 MHz, through which high-resolution images
can be obtained [9]. In addition to their diagnostic capabilities, ultrasound devices are
also able to contribute, with a large number of therapeutic and interventional techniques
to research. Experimental ultrasound, CEUS, and US-related techniques were widely
employed using the murine model in different tumours to promote new drugs, molecules,
or other innovative therapies with promising translational perspective [14–23].

The purpose of this systematic review was to analyse the role of ultrasound-based
techniques in preclinical research for pancreatic cancer in the murine model.

2. Materials and Methods

A systematic literature search of major databases was conducted of murine studies
investigating the diagnostic accuracy and utility of conventional ultrasound imaging for
pancreatic adenocarcinoma in orthotopic mouse models. The study followed the Preferred
Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy
(PRISMA) [24].

2.1. Search Strategy

A standardized search was performed in PubMed, using the following search terms:
(“pancreatic tumor” and “ultrasound” and “murine”, “pancreatic tumor” and “ultrasound”
and “mouse”, “pancreatic cancer” and “ultrasound” and “murine”, “pancreatic cancer” and
“ultrasound” and “mouse”, “pancreatic adenocarcinoma” and “ultrasound” and “mouse”,
“pancreatic adenocarcinoma” and “ultrasound” and “murine”). The search was conducted
from February 2013 to May 2023 with no language restrictions.

2.2. Study Selection

Two authors screened and selected studies independently based on the eligibility
criteria described below. Studies identified from different databases were de-duplicated
after screening. Articles that passed the initial screening were reviewed for the full text.
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2.3. Eligibility Criteria

Studies were considered eligible for this systematic review if they fulfilled the follow-
ing criteria: (1) murine studies investigating the usefulness of ultrasound-based techniques
for pancreatic cancer; (2) all diagnostic tests must have been performed on the mouse
model of pancreatic adenocarcinoma; and (3) both prospective and retrospective studies
were eligible.

We excluded studies when they met one of the following criteria: (1) experimentation
on humans or animals other than mice; (2) studies based on investigation techniques differ-
ent from ultrasounds, such as computed tomography and magnetic resonance imaging;
and (3) cases with other types of abdominal tumours different from pancreatic cancer.

3. Results

One hundred and forty-five studies were identified in our search. After assessing the
titles and abstracts, 101 full texts were screened, as shown in Figure 1. Based on our selection
criteria, 13 of those studies were excluded, while 88 studies met our inclusion criteria.
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Figure 1. PRISMA flow diagram.

The included studies could be divided into seven main topics: ultrasound in pancreatic
cancer diagnosis and progression (21 papers) [3–6,25–41]; dynamic contrast-enhanced ultra-
sound (DCE-US) (five papers) [6,42–45]; microbubble ultrasound-mediated drug delivery
(18 papers) [7,46–62]; focused ultrasound (23 papers) [43,63–84]; sonodynamic therapy
(SDT) (seven papers) [58,69,85–89]; harmonic motion elastography (HME) and shear wave
elastography (SWE) (six papers) [67,68,90–95]; ultrasound-guided procedures (nine pa-
pers) [96–104].

In six cases, the articles fit into two or more sections [6,43,58,67–69].

4. Discussion

Although the role of ultrasound in the diagnosis and progression of pancreatic adeno-
carcinoma is certainly a broad field of application for this imaging technique, it has been
shown that the majority of studies were concerned with the therapeutic potential of HIFU as
an effective treatment for pancreatic cancer in mouse models. In addition, the combination
of ultrasound and microbubble has previously shown particular interest as a tool used to
enhance tissue distribution and intracellular drug delivery, such as chemotherapeutics and
other anticancer drugs, as it resulted from our research (Figure 2).
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4.1. Ultrasound in Pancreatic Cancer Diagnosis and Progression

Ultrasound in pancreatic disorders is a very useful imaging modality from screening
to diagnosis. The main ultrasonographic features of pancreatic cancer are represented by
its isoechogenicity or mild hypoechogenicity, irregularity of margins, and the presence
of a central hyperechogenic region as the tumour enlarges. Other findings may include
dilatation of the main pancreatic duct and its branches, atrophy, pancreatic cysts, dilatation
of the bile duct, and lymphadenopathy [105].

Through imaging studies performed on transgenic mouse models, such as ultrasound,
color Doppler imaging, or nonlinear contrast imaging frames, better early diagnosis and
progress on therapeutic treatments could be achieved [6,25]. Hruban RH et al. have offered
an update on pancreatic intraepithelial neoplasia (PanINs) as a precursor to invasive
pancreatic cancer in genetically engineered mouse models [26]. In a recent study, Thy1
(thymocyte differentiation antigen 1) was identified and validated as a new biomarker
in the diagnosis of pancreatic adenocarcinoma that can be outlined by ultrasounds in
mice [27]. To define tumour-staging criteria using magnetic resonance (MR) and ultrasound
(US), a four-class tumour staging system has been defined, ranking from stage 1 to 4 [28].
In vivo molecular imaging using Thy1-scFv (single-chain variable fragment) conjugated
to an ultrasound contrast agent (MBThy1-scFv) demonstrated signal enhancement on a
transgenic pancreatic ductal adenocarcinoma (PDAC) mouse model, suggesting potential
for the early diagnosis of PDAC [29].

Endosonography with fine-needle aspiration biopsy (EUS-FNA) has become a widely
available clinical tool used to diagnose numerous different benign and malignant lesions
in humans. EUS-FNA is frequently used for tissue-based diagnoses, such as lymphatic
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diseases (ranging from tuberculosis/sarcoidosis to malignant lymphoma) or solid tumours
(such as pancreatic carcinoma, neuroendocrine tumours, sub-epithelial gastrointestinal
tumours, and others) [106]. Chiba M et al. used endoscopic ultrasound-guided fine needle
aspiration (EUS-FNA) to quantify the S100P protein to discriminate between pancreatic
adenocarcinoma (PCA) and benign pancreatic lesions (BPL). They found a significantly
higher concentration of the S100P protein in the EUS-FNA samples rather than in the
BPL cases [30]. EUS-FNA was also used to collect some samples of pancreatic ductal
adenocarcinoma (PDAC) to test their responsiveness to treatments, such as for the dose of
the 5-aza-dC DNA methyltransferase inhibitor [31]. Other studies have suggested a high
correlation between fluorescence imaging and ultrasound imaging in assessing tumour
burden and tumour progression in orthotopic mouse models of human cancer [32,33], while
Rojas JD et al. demonstrated that combining BLI (bioluminescence imaging) and robotic US
could provide an effective screening tool for pancreatic cancer in mouse models [34]. Several
studies have analysed the role of high-resolution ultrasound in monitoring tumour onset,
tumour volume quantification, tumour growth, metastatic progression, and therapeutic
response in genetically engineered pancreatic cancer models [3–5,35–39]. Some of these
cases have highlighted the relevance of ultrasound-guided photoacoustic imaging (US-
PAI) providing multiparametric information on tumour vasculature and function and
demonstrating the importance of changes in tissue oxygen saturation to predict treatment
response, particularly tumour growth rate [40,41].

4.2. Dynamic Contrast-Enhanced Ultrasound (DCE-US)

Due to a low signal-to-noise ratio, Doppler US can outline blood flow information only
in relatively large vessels, and it cannot evaluate microvasculature and tissue perfusion.
By their physical properties, US contrast agents transcend this limitation. Their structure
is an outshell of proteins, lipids, or polymers filled with air or various gases to form a
microbubble. When a US contrast agent is administered, the backscatter of the ultrasound
waves in the vascular system is enhanced by resonance within sonic windows. This results
in the marked amplification of the signals from the blood flow and provides additional
information about the microvasculature [107–109].

In this sense, the role of CEUS in pancreatic injury found on ultrasoundscould be very
useful for making a more rapid diagnosis, especially of pancreatic cancer [110]. CEUS plays
an important role in the differential diagnosis and characterization of pancreatic lesions
thanks to the ability of the contrast agent to evaluate the haemodynamics of organs or
lesions, as well as in the flow signal of arterial vessels [105].

Barrefelt A. et al. explored the potential application of air-filled polyvinyl alcohol
microbubbles (PVA-MBs) as ultrasound contrast agents to visualize blood flow within
the tumoral lesion in mouse models of pancreatic cancer. The authors also marked the
bubbles with a near-infrared fluorophore to use them as a contrast agent for multimodal
imaging with 3D-fluorescence imaging co-registered with 3D-µCT imaging [42]. DCE-US
can be useful not only in the diagnostic phase but also for therapeutic monitoring. Kim
JH et al. used DCE-US in PANC-1- nude mice to investigate therapeutic response after
treatment with gemcitabine, high-intensity focused ultrasound (HIFU), and a combination
of them [43]. Non-invasive microbubble contrast-enhanced ultrasound imaging offered a
satisfying method for monitoring and quantifying vascular effects of antitumoral therapy,
such as sunitinib or anti-vascular endothelial growth factor (VEGF) monoclonal antibodies,
and/or gemcitabine [44,45].

To measure the kinetics of tumour blood flow (rise time, time to peak, and wash-in
rate), Chen CT et al. injected a bolus of a microbubble contrast agent into the mice via
tail vein catheterization and assessed the dynamics of the agent with ultrasound-based
harmonic imaging [6].
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4.3. Microbubble Ultrasound-Mediated Drug Delivery

With recent and significant advances in ultrasound and contrast agent technology,
it has been possible to analyse the therapeutic ultrasound-mediated microbubble oscil-
lation, which has demonstrated that this method can increase the permeability of the
microvessel walls, improving the release and absorption of drugs into target tissues. To
increase the permeability of microvessels, it is necessary to temporarily create pores in the
cell membranes, and this is possible through a phenomenon called sonoporation, which
is based on the use of high-intensity ultrasound and microbubbles or other cavitation
agents [111]. Sonoporation succeeds optimally in improving drug absorption through the
microbubble-potentiated enhancement of microvascular permeability [111]. Using low-
intensity ultrasound, sonoporation can be caused by microbubbles oscillating with a stable
motion, or stable cavitation, to stimulate the absorption of different drugs, while at higher
ultrasound intensities, the explosive growth and collapse of microbubbles is achieved to
induce the formation of pores and the direct cytoplasmic absorption of drugs [112].

The combination of ultrasound and microbubbles has offered promising results as
a tool to increase cell membrane permeability and to obtain a better tissue distribution
and intracellular drug release;thus, the therapeutic efficacy of the ultrasound-mediated
drug delivery of molecules, nanoparticles, and other therapeutic agents (like nab-paclitaxel,
gemcitabine, haemoglobin S) is evaluated in multiple preclinical studies [46–52]. Some of
these use the mechanism of ultrasound-targeted microbubble destruction (UTMD) [53–55].
It has resulted in a viable approach for the targeted release of the drug to solid tumours
and involves using low-intensity ultrasound to interrupt microbubbles in the tumour
vasculature, releasing encapsulated or attached drugs, for example, using a combination
of irinotecan and oxaliplatin [56], a combination of gemcitabine and paclitaxel [57], or a
combination with chemo-sonodynamic therapy [58]. Feng S et al. explored the use of
low-intensity ultrasound (LIUS) combined with microbubble to enhance tumour blood
perfusion and improve local drug concentration in nude mice bearing pancreatic cancer [59].
In other works, a SonoVue® ultrasound contrast agent was used in combination with a
focused ultrasound transducer to produce sonoporation in the localised tumoral region
only in an orthotopic xenograft model of human pancreatic cancer to demonstrate that
combined sonoporation and gemcitabine therapy significantly impedes primary tumour
development [60]. Moreover, Kotopoulis S et al. compared three different microbubble
formulations to determine which of them was the best for low-intensity sonoporation of
pancreatic ductal adenocarcinoma [61].

Locally focused ultrasound at a frequency of 1 MHz was employed to activate oxygen
peroxide to deliver NO in pancreatic xenografted tumour-bearing nude mice to generate
more highly reactive oxygen-contained species, demonstrating an effect in killing pancreatic
tumour cells [66]. Kulkarni et al. used ultrasound and bubbles of echogenic polymersomes
to target, penetrate, and deliver anticancer drugs in the hypoxic tissues of mice growing
xenograft tumours of pancreatic cancer cells by subcutaneously injection [62].

4.4. Focused Ultrasound

HIFU (high-intensity focused ultrasound) is a non-invasive ultrasound tool based on
focusing high-frequency ultrasound on a specific tissue to obtain a thermal effect and the
subsequent tissue modulation up to percutaneously ablation [113]. The therapeutic poten-
tial of HIFU is represented by its ability to achieve the localized deposition of high-energy
doses in deep tissues of the body, with the advantage of not damaging surrounding tissues
and not making use of needles, probes, or electrodes, unlike other ablation methods [114].
This procedure has been evaluated for the treatment of both benign and malignant tumours,
such as uterine fibroids in women [115], localized prostate cancer [116], neurological disor-
ders [117–119], painful bone metastases [120], and various malignancies including in the
liver, kidney, and breast [121–123]. One of the most common fields of application of HIFU
is certainly human pancreatic tumours, in which HIFU ablation has an important role in
palliative treatment thanks to its capacity to induce coagulative necrosis as well as tissue
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destruction and to reduce pain [124,125]. Pulsed high-intensity focused ultrasound (pHIFU)
has been shown to be very useful as an effective treatment for pancreatic cancer in mouse
models and, due to enhanced vascular permeability, in the disruption of tumour barriers
and enhanced drug penetration into tumoral tissue through acoustic cavitation [63–65].
HIFU ablation was used to substantially restrict PDAC (pancreatic ductal adenocarcinoma)
hematogenous metastasis and provided effective tumour control locally, as shown by
Yu Q et al. [66]. In addition, HIFU treatment could be monitored by a new clinical tool,
such as the harmonic motion imaging-guided focused ultrasound (HMIgFUS) technique,
which offers the ability to successfully identify thermal injury and control lesion growth
or reduction in real time in vitro and in vivo in abdominal tumours, such as pancreatic
cancer [67,68]. Maeda M et al. showed that sonodynamic therapy, through the use of HIFU,
produces cytotoxic reactive oxygen species (ROS) in and around cancerous cells in a mouse
model of pancreatic cancer [69].

Several treatment strategies for pancreatic cancer have been designated and evaluated
by combining focused ultrasound ablation, such as histotripsy, hyperthermia, electro-
poration, and antibody therapies, with conventional ablation techniques [70]. Some of
these have demonstrated the feasibility of using histotripsy for pancreatic cancer ablation.
Histotripsy is an ultrasound-based, non-invasive technique that, similar to other tumour
ablation techniques, is able to mechanically destroy target cells. To study the effects of
histotripsy on pancreatic adenocarcinoma, the release of potential antigens obtained by the
histotripsy treatment of pancreatic adenocarcinoma in vitro model and by other ablation
techniques was compared. Su JJ et al. evaluated irreversible electroporation (IRE) treatment
in a nude mouse model, obtaining many potential advantages over conventional ablation
techniques. In addition, hyperthermia induced by HIFU can be an efficient system used to
enhance the localised release and spread of doxorubicin or gemcitabine inside pancreatic
cancer to induce cell death and regions of apoptosis and necrosis [70–74].

Several papers showed that combining HIFU ablation with chemotherapy can con-
tribute to improve survival. In fact, in many of these studies, HIFU was used to analyse
the feasibility and efficacy of a combination of focused US and gemcitabine or doxorubicin
in a mouse model of pancreatic cancer. This combined treatment was shown to bea more
effective therapeutic response compared to other treatments [43,75–77].

In other cases, the synergistic effects of HIFU and the chemotherapic-loaded mi-
crobubble complex has been shown to increase the assimilation and therapeutic reaction of
conventional chemotherapy in murine orthotopic pancreatic ductal adenocarcinoma and
can effectively suppress tumour growth [78–81]. Additionally, the combined treatment
of HIFU + immune checkpoint inhibitors was investigated in pancreatic cancer murine
models, demonstrating apoptosis in pancreatic cancer cells [82,83].

Similar to HIFU, low-intensity low-frequency ultrasound (LILFU) may downregulate
the expression levels of ABC transporters by inhibiting a specific cell-signalling pathway to
improve the effect of chemotherapy and reverse tumour drug resistance in gemcitabine-
resistant cells in pancreatic cancer, as demonstrated by QUI et al. [84].

4.5. Sonodynamic Therapy

Sonodynamic therapy (SDT) is a new therapeutic tool for non-invasive cancer treat-
ment founded on the combined use of ultrasound and sonosensitizer drugs. Unlike conven-
tional therapies, it is minimally invasive, site-specific, highly effective with minimal adverse
consequences, and it is also capable of eliciting an antitumour immune response [126]. SDT
produces reactive oxygen species (ROS) by ultrasonic excitation to kill cancer cells. Thanks
to the creation of enough ROS, a cascade of biological events can be activated, including
DNA fragmentation, cytoskeletal shrinkage, and chromatin condensation, leading to apop-
tosis [127]. It has been reported that sonoporation was successfully utilized to enhance
nucleic acid delivery to neoplasms, skeletal muscle, and kidneys [128]. Sonoporation can
be used with satisfactory results as a monotherapy or as an additional treatment option for
inoperable or borderline resectable pancreatic ductal adenocarcinoma, as demonstrated
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in a study on ectopic murine pancreatic tumours [85]. For realizing minimally invasive
cancer treatment, one study demonstrated the effectiveness and feasibility of drug delivery
system-based SDT, which combined a small dose of NC-6300 and the low energy of HIFU
in mouse models of pancreatic cancer [69]. Some new works have revealed good results
by combining chemotherapy and sonodynamic therapy for the treatment of pancreatic
tumours [58,86,87], while Nesbitt H et al. demonstrated that, when SDT was combined
with anti-PD-L1 immune checkpoint inhibition in a murine model of pancreatic cancer, it
induced a significant decrease in tumour volume when compared to treatment with SDT
only [88]. Pigula M et al. showed the unique ability of longitudinal treatment monitoring
to reveal a tumour size-dependent response to benzoporphyrin-derivative photodynamic
therapy and irinotecan [89].

4.6. Harmonic Motion Elastography (HME) and Shear Wave Elastography (SWE)

Stiffness is an important biomechanical property of tumours. Harmonic motion
imaging (HMI) is a radiation-force-based ultrasound elasticity imaging technique that is
used for both tissue-related stiffness imaging and high-intensity focused ultrasound (HIFU)
treatment monitoring [129]. Radiofrequency signal tracking is the method on which HMI
was based to localize oscillatory motion caused by the harmonic radiation force given by
two focused ultrasound transducer elements with overlapping beams oscillating at distinct
frequencies [130]. Studies have indicated that using electronic steering can greatly increase
the rate of tissue coagulation and reduce the total treatment time [129,131]. In this view,
the harmonic motion imaging system can help as a new clinical tool for HIFU ablation
monitoring [67,68].

Ultrasound elastography can measure tissue stiffness noninvasively and can be per-
formed during theroutine imaging of some tumours. Among the techniques used to acquire
elastographic data, shear-wave elastography (SWE) allows for more reproducible, quan-
titative measurement of tissue stiffness and yields quantitative SWE parameters, such as
the minimum, mean, and maximum elasticity in a region of interest [132]. In addition,
elastography aims to quantitatively image the Young’s E modulus, the physical parameter
corresponding to the stiffness. It exhibits important variations between different biological
tissues, which makes it ideal for the characterization of different tissues with an excellent
contrast. Young’s modulus characterizes the stiffness of a tissue, which is exactly the
quantitative reproduction of a clinician’s palpation and has relevant diagnostic value [133].

Therefore, harmonic motion elastography (HME) is a quantitative ultrasound-based
imaging method used to calculate Young’s modulus (YM) in human and mouse models
of pancreatic adenocarcinoma. HME has been used to estimate pancreatic rigidity in the
murine representation of pancreatitis and pancreatic cancer and in several types of recently
resected human pancreatic tumours [90]. It also has the ability of differentiating between
different levels of fibrosis in transgenic mice based on the change in collagen density for
detecting, staging, and delineating PDAC tumour margins [91,92]. In addition, by using
STL-SWE (single-track location-shear wave elastography), Ahmed R et al. demonstrated,
for the first time, that the stiffness changes occurring inside metastatic murine pancreatic
tumours, as in liver metastasis, can be monitored over long-time scales (up to 9 weeks) [93].
Alvarez R et al. used endoscopic ultrasound elastography to evaluate the effects of nab-
paclitaxel and gemcitabine in a mouse model of advanced pancreatic cancer, assessing
tumour softening [94]. In a recent study, to characterize the performance of two newly
optimized ultrasound-based analyses, shear wave and H-scan scattering analyses were
applied to repeated trans-abdominal ultrasound scans of a murine model of metastatic
pancreatic cancer [95].

4.7. Ultrasound-Guided Procedures

Ultrasound-guided intervention radiology procedures are a popular and valuable tool
for performing imaging-guided procedures, providing good quality and real-time visibility
of the needle or of the instrument to be advanced in the subject tissues.
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In order to design new drugs to counter pancreatic adenocarcinoma, it is necessary
to develop preclinical mouse models that best reproduce in vivo characteristics of this
tumour. For this purpose, it is possible to use the ultrasound-guided injection of human
pancreatic cancer cells to create an orthotopic xenograft mouse model of pancreatic cancer,
as demonstrated by some recent studies [96–98]. Huynh AS et al. compared ultrasound-
guided injection to highly invasive surgical orthotopic injection methods [99]. Surgical
orthotopic tumour implantation models of PDA maintain the immunobiological hallmarks
of the specific tumour microenvironment (TME) but require a time-intensive procedure
and introduce aberrant inflammation. In another study, pancreatic cancer was induced
in an ultrasound-guided orthotopic mouse model to evaluate the effects of high-affinity
peptides on reversing chemotherapy-induced multidrug resistance (MDR) [100]. Through
ultrasound guidance, pancreatic tumour cells were implanted orthotopically and led to
pancreatic tumour formation in mice to analyse tumour-suppressive effects by treatment
with a synthetic lipopeptide or intratumoral immunization with tumour RNA-pulsed
dendritic cells [101,102].

Other studies have assessed the therapeutic efficacy of endoscopic ultrasound (EUS)-
guided injection of ethanol versus 3-bromopyruvate to treat the orthotopic xenograft
murine model of pancreatic cancer obtaining tumour necrosis, and the procedure was safe
and effective [103,104].

5. Conclusions

In conclusion, through our research, it was seen that ultrasound can be a really useful,
eclectic, and ductile tool in different diagnostic areas, not only regarding diagnosis but also
in therapy, pharmacological and interventional treatment, and follow-up. All these multiple
possibilities of use certainly represent a good starting point for the effective and wide use
of murine ultrasonography in the study and comprehensive evaluation of pancreatic cancer
with real translational perspectives.
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