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Abstract
We show that an ideal I on the positive integers is meager if and only if there exists a bounded
nonconvergent real sequence x such that the set of subsequences [resp. permutations] of x
which preserve the set ofI-limit points is comeager and, in addition, every accumulation point
of x is also an I-limit point (that is, a limit of a subsequence (xnk ) such that {n1, n2, . . . , } /∈
I). The analogous characterization holds also for I-cluster points.

Keywords Ideal limit point · Ideal cluster point · Meager ideal · Subsequences ·
Permutations.

Mathematics Subject Classification Primary: 40A35; Secondary: 11B05 · 54A20.

1 Introduction

By a known result due to Buck [7], almost every subsequence, in the sense of measure, of a
given real sequence x has the same set of ordinary limit points of the original sequence x .
Extensions and other measure-related results may be found in [1, 17, 18, 22–24]. The aim
of this note is to prove its topological [non]analogue in the context of ideal convergence,
following the line of research in [3, 19, 21, 25]. This will allow us to obtain a characterization
of meager ideals in Theorem 1.4; the adjective “another” in the title hints at the known
characterization of meager ideals due to Talagrand in [26], cf. also [12, 15, 27, 28] for related
works.
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We recall briefly the main definitions given in [3]. Let I be an ideal on the positive integers
N, that is, a proper subset ofP(N) closed under taking finite unions and subsets and containing
the family Fin of finite sets. Ideals will be regarded as subsets of the Cantor space {0, 1}N
endowed with the product topology. Hence, it makes sense to speak about Fσ -ideals, meager
ideals, etc; note that an ideal I on N is meager if and only if its dual filter {A ⊆ N : Ac ∈ I}
is so, via the homeomorphism A �→ Ac. Let also x = (xn) be a sequence taking values in a
topological space X , which will be always assumed Hausdorff. Then, denote by �x (I) the
set of its I-cluster points, that is, the set of all η ∈ X such that {n ∈ N : xn ∈ U } /∈ I for all
neighborhoods U of η. Lastly, let Lx := �x (Fin) be the set of ordinary accumulation points
of x .

Following the same notations as in [3], define

� :=
{
σ ∈ NN : σ is strictly increasing

}
.

For each σ ∈ �, we denote by σ(x) the subsequence (xσ(n)). We identify each subse-
quence of (xkn ) of x with the function σ ∈ � defined by σ(n) = kn for all n ∈ N. Similarly,
define

� :=
{
π ∈ NN : π is a bijection

}

and write π(x) for the rearranged sequence (xπ(n)). Endow both � and � with their relative
topology and note, since they are Gδ-subsets of NN, they are Polish spaces by Alexandrov’s
theorem. In particular, they are not meager in themselves. Finally, denote by

�x (I) := {
σ ∈ � : �σ(x)(I) = �x (I)

}

the set of subsequences of x which preserve the I-cluster points of x , and by
�x (I) := {

π ∈ � : �π(x)(I) = �x (I)
}

its permutation analogue.
Following the informal argument that an ideal I on N can only be meager if it is reg-

ular enough, as in having the Baire Property, the following result has been shown in [3,
Theorem 2.2]:

Theorem 1.1 Let x be a sequence taking values in a first countable space X such that all
closed sets are separable and let I be a meager ideal on N.

Then the following are equivalent:

(C1) �x (I) is comeager;
(C2) �x (I) is not meager;
(C3) �x (I) is comeager;
(C4) �x (I) is not meager;
(C5) �x (I) = Lx .

It is worth to remark that the class of first countable spaces such that all closed sets are
separable contains also nonmetrizable spaces, and that there exists a separable first countable
space with a nonseparable closed subset, see [3, Examples 2.3 and 2.4]. In addition, there
exists a first countable space outside this family which satisfies the statement of Theorem 1.1,
see [3, Example 2.5].

Given a sequence x = (xn) taking values in a topological space X , we denote by 	x (I)

the set of I-limit points of x , that is, the set of all η ∈ X such that lim σ(x) = η for some
σ ∈ � such that σ [N] /∈ I. It is well known and easy to show that 	x (I) ⊆ �x (I) ⊆ Lx ,
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see e.g. [20, Lemma 3.1]. Further relationships between I-cluster points and I-limit points
have been studied in [2]. Similarly, we denote by

�̃x (I) := {
σ ∈ � : 	σ(x)(I) = 	x (I)

}

and

�̃x (I) := {
π ∈ � : 	π(x)(I) = 	x (I)

}

the analogues of �x (I) and �x (I), respectively, for I-limit points.
Our first main result is the exact analogue of Theorem 1.1 for I-limit points.

Theorem 1.2 Let x be a sequence taking values in a first countable space X such that all
closed sets are separable and let I be a meager ideal on N.

Then the following are equivalent:

(L1) �̃x (I) is comeager;
(L2) �̃x (I) is not meager;
(L3) �̃x (I) is comeager;
(L4) �̃x (I) is not meager;
(L5) 	x (I) = Lx .

We remark that Theorem 1.2 provides an affirmative answer to the open question stated at
the end of Sect. 2 in [3]. In addition, several special cases of Theorem 1.1 have been already
obtained in the literature:

(i) [21, Theorem 2.3] for the case where X = R, I = Z := {A ⊆ N : limn |A ∩
[1, n]|/n = 0}, and the equivalences (L1) ⇐⇒ (L2) ⇐⇒ (L5);

(ii) [19, Theorem2.3] for the casewhere X is chosen as in Theorem1.2, I is a generalized
density ideal, and the equivalences (L1) ⇐⇒ (L2) ⇐⇒ (L5);

(iii) [3, Theorem 2.9] for the case where X is chosen as in Theorem 1.2 and I is an
analytic P-ideal;

(iv) [25, Theorem 1] for the case where X = R with the equivalence (L1) ⇐⇒ (L5).

At this point, as it has been shown in [3, Example 2.6], it is worth noting that, if I
is maximal (that is, the complement of a free ultrafilter), then there exists a bounded real
sequence x which satisfies (C2) but not (C5), cf. Remark 1.6 below. Hence the statement of
Theorem 1.1 (and similarly for Theorem 1.2) certainly does not apply to all ideals.

We are going to showbelow that this is not a coincidence, roughlymeaning that the hypoth-
esis of meagerness of the ideal I is essential for all the above equivalences. In other words,
some of the above equivalences turn out to be necessary and sufficient for the meagerness of
the ideal I.

Beforewe present this characterization, we recall a similar result on series of real numbers.
To this aim,we need some additional notation: for each real sequence x , let Sx be the sequence
of its partial sums, that is, Sx = (Snx) with Snx := ∑

i≤n xi for all n ∈ N. The sequence
x is said to be I-bounded if {n ∈ N : |xn | > k} ∈ I for some k ∈ N. The vector space of
I-bounded sequences, denoted by 
∞(I), has been studied, e.g., in [6, 10]. Then, define

�S,x (I) := {σ ∈ � : Sσ(x) ∈ 
∞(I)}.
Accordingly, the following result has been shown in [4, Theorem 4.1].

Theorem 1.3 Let x be a real sequence such that the series
∑

n xn is not unconditionally
convergent and let I be a meager ideal on N. Then:
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(S1) �S,x (I) is meager.

A related result on series taking values in Banach spaces has been shown in [5, Corollary 3.3],
cf. also [4, Theorem 3.4 and Example 2]. It is worth bearing in mind that, if lim infn xn > 0,
then the series

∑
n xn is not unconditionally convergent and, for each σ ∈ � and all ideals

I, the sequence of partial sums Sσ(x) has limit infinity, hence �S,x (I) = ∅; this example
proves that the condition (S1) alone cannot provide a characterization of meager ideals.

For the sake of exposition, let A be the set of all sequences taking values in some first
countable space X such that all closed sets are separable, and N1 be its subset of noncon-
vergent sequences with at least one (ordinary) accumulation point. Lastly, let D be the set of
real sequences x with dense image {xn : n ∈ N}.
Theorem 1.4 Let I be an ideal on N. Then the following are equivalent:

(M1) For all sequences x ∈ A we have (C1) ⇐⇒ (C5);
(M2) For all sequences x ∈ A we have (C3) ⇐⇒ (C5) ;
(M3) For all sequences x ∈ A we have (L1) ⇐⇒ (L5);
(M4) For all sequences x ∈ A we have (L3) ⇐⇒ (L5);
(M5) There exists a sequence x ∈ N1 such that both (C1) and (C5) hold;
(M6) There exists a sequence x ∈ N1 such that both (C3) and (C5) hold;
(M7) There exists a sequence x ∈ N1 such that both (L1) and (L5) hold;
(M8) There exists a sequence x ∈ N1 such that both (L3) and (L5) hold;
(M9) There exists a sequence x ∈ D such that (S1) holds;
(M10) I is meager.

Considering that real bounded nonconvergent sequences belong toN1 and the equivalence
(M7) ⇐⇒ (M10) in Theorem 1.4, we obtain the following corollary (which is stated in the
abstract):

Corollary 1.5 An ideal I on N is meager if and only if there exists a real bounded
nonconvergent sequence x such that 	x (I) = Lx and �̃x (I) is comeager.

Note that the definition of N1 imposes that each of its elements has at least one accu-
mulation point. This constraint cannot be removed. Indeed, if x ∈ A verifies Lx = ∅, then
�σ(x)(I) ⊆ Lσ(x) ⊆ Lx = ∅ for all σ ∈ �. Hence �x (I) = �, independently of the choice
of the ideal I. This would imply that both (C1) and (C5) hold true, also for nonmeager ideals,
and it would provide a counterexample to the equivalence (M5) ⇐⇒ (M10) in Theorem 1.4.

Remark 1.6 It may be hypothesized that (M10) is equivalent, e.g., also to the following:

(M11) There exists a sequence x ∈ N1 such that both (C2) and (C5) hold.

However we can prove that this is false by the following example. Let I be a maximal ideal.
Since I is maximal, there exists a unique A ∈ {2N+1, 2N+2} such that A ∈ I. Accordingly,
let x be the sequence defined by xn = n if n ∈ A and xn = 0 otherwise. Then x →I 0 and
�x (I) = Lx = {0}, hence x ∈ N1 and (C5) holds. In addition,

�x (I) = {σ ∈ � : {n ∈ N : xσ(n) ≥ 1} ∈ I} = {σ ∈ � : σ−1[A] ∈ I}.
It follows by [3, Example 2.6] that �x (I) is not meager, hence also (C2) holds. (Note that
the same argument shows that �x (I) is not comeager, hence (C1) fails.) This proves that
(M11) is verified, while (M10) is not. (The same example works with I-limit points.)
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2 Proof of Theorem 1.2

The following result strenghtens [3, Lemma 3.3].

Lemma 2.1 Let x be a sequence taking values in a first countable space X and let I be a
meager ideal on N. Then

{σ ∈ � : η ∈ 	σ(x)(I)} and {π ∈ � : η ∈ 	π(x)(I)}
are comeager for each η ∈ Lx .

Proof Assume that Lx 
= ∅, otherwise there is nothing to prove. Fix η ∈ Lx and let (Uη,m)

be a decreasing local base at η. Since I is a meager ideal, its dual filter {A ⊆ N : Ac ∈ I}
is meager too. It follows by Talagrand’s characterization of meager filters [26, Theorem 21]
that there exists an increasing sequence (ιn) of positive integers such that A /∈ I whenever
In := [ιn, ιn+1) ⊆ A for infinitely many n. For each m ∈ N define

Sm(η) :=
⋃
k≥m

{σ ∈ � : xσ(n) ∈ Uη,m for all n ∈ Ik}. (1)

Since
⋂

m Sm(η) is contained in {σ ∈ � : η ∈ 	σ(x)(I)} by the previous observation,
it will be sufficient to show that each Sm(η) is comeager. To this aim, fix m ∈ N and let
C = {σ ∈ � : σ(1) = a1, . . . , σ (k) = ak} be a basic open set, for some positive integers
a1 < · · · < ak . Note that the set E := {n ∈ N : xn ∈ Uη,m} is infinite since η ∈ Lx . At this
point, it is enough to see that

{σ ∈ C : σ(n) = en for all n with k < n < ιak+m},
for some increasing values en ∈ E \ [1, ak], is a nonempty open set contained in C ∩ Sm(η).
This proves that Sm(η) is comeager, completing the first part. The second part of the proof
concerning permutations proceeds verbatim. ��

We are ready for the proof of Theorem 1.2.

Proof of Theorem 1.2 (L1) �⇒ (L2) It is obvious.
(L2) �⇒ (L5) Suppose that there exists 
 ∈ Lx\	x (I). Then �̃x (I) is contained in

�\{σ ∈ � : η ∈ 	σ(x)(I)}, which is meager by Lemma 2.1.
(L5) �⇒ (L1) Suppose that Lx 
= ∅, otherwise the claim is trivial. LetL be a countable

dense subset of Lx , and denote by (Uη,m : m ≥ 1) a decreasing local base at each η ∈ X . As
is shown in the proof of Lemma 2.1, the set Sm,η defined in (1) is comeager for all m ∈ N
and η ∈ Lx , therefore also S := ⋂

m≥1
⋂

η∈L Sm(η) is comeager. Note that, equivalently,

S = {σ ∈ � : ∀η ∈ L , ∃∞k ∈ N,∀n ∈ Ik, xσ(n) ∈ Uη,m}. (2)

Since S ⊆ {σ ∈ � : η ∈ 	σ(x)(I) for all η ∈ L }, we have that L ⊆ 	σ(x)(I) for all
σ ∈ S. To conclude the proof, we claim that S is contained in �̃x (I).

To this aim, fix σ ∈ S. On the one hand, we have

	σ(x)(I) ⊆ Lσ(x) ⊆ Lx = 	x (I).

Conversely, fix η ∈ Lx . Since L is dense, there exists a sequence (ηt ) in L which is
convergent to η. Without loss of generality we can assume that ηt ∈ Uη,t for all t ∈ N. At
this point, for each t ∈ N, there exists mt ∈ N such that Uηt ,mt ⊆ Uη,t . By the explicit
expression (2), S is contained in

{σ ∈ � : ∀t ∈ N, ∃∞k ∈ N,∀n ∈ Ik, xσ(n) ∈ Uηt ,mt }.
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It follows that the subsequence σ(x) has a subsubsequence σ̂ (σ (x))which is convergent to η

and such that σ̂ [N] contains infinitely many intervals Ik , hence η is an I-limit point of σ(x).
Therefore

	x (I) = Lx ⊆ 	σ(x)(I).

This proves that S ⊆ �̃x (I), completing the proof.
The proof of (L3) �⇒ (L4) �⇒ (L5) �⇒ (L3) goes verbatim. ��

3 Proof of Theorem 1.4

The following result will be the key tool in the proof of the characterization of meager ideals.

Theorem 3.1 Let I be an ideal on N and let x be a nonconvergent sequence in a topological
space X such that there exists η ∈ X for which at least one among

{σ ∈ � : η ∈ �σ(x)(I)} and {π ∈ � : η ∈ �π(x)(I)} (3)

is comeager. Then I is meager.

Proof First, assume that we can fix η ∈ X such that S := {σ ∈ � : η ∈ �σ(x)(I)} is
comeager. Hence there exists a decreasing sequence (Gn) of dense open subsets of � such
that

⋂
n Gn ⊆ S. In addition, since x is not convergent to η, there is a neighborhood U of η

such that

E := {n ∈ N : xn /∈ U }
is infinite.

At this point, consider the following game defined by Laflamme in [16]: Players I and II
choose alternately subsets C1, F1,C2, F2, . . . of N, where the sets C1 ⊇ C2 ⊇ . . ., which
are chosen by Player I, are cofinite and the sets Fk ⊆ Ck , which are chosen by Player II,
are finite. Player II is declared to be the winner if and only if

⋃
k Fk /∈ I. Note that we may

suppose without loss of generality that Fk ∩ Ck+1 = ∅ and Ck = [ck,∞) for all k ∈ N
(hence, the sequence (ck) corresponds to arbitrary (large enough) choices made by Player I).
By [16, Theorem 2.12], Player II has a winning strategy if and only if I is meager. Hence,
the rest of the proof consists in showing that Player II has a winning strategy.

To this aim, we will define recursively, together with the description of the strategy of
Player II, also a decreasing sequence of basic open sets A1 ⊇ B1 ⊇ A2 ⊇ B2 ⊇ · · ·
in � (recall that a basic open set in � is a cylinder of the type D = {σ ∈ � : σ(1) =
a1, . . . , σ (n) = an} for some positive integers a1 < · · · < an , and we set m(D) := an).
Suppose that the setsC1, F1, . . . ,Ck−1, Fk−1,Ck ⊆ N have been already chosen and that the
open sets A1, B1, . . . , Ak−1, Bk−1 ⊆ � have already been defined, for some k ∈ N, where
we assume by convention that B0 := � andm(�) := 0. Then we define the sets Ak, Bk , and
Fk as follows:

(i) Ak := {σ ∈ Bk−1 : σ(n) = en for all n with m(Bk−1) < n < ck} for some increas-
ing values en ∈ E which are bigger than σ(m(Bk−1)) (note that this is possible since
E is infinite);

(ii) Bk is a nonempty basic open set contained in Gk ∩ Ak (note that this is possible since
Gk is open dense and Ak is nonempty open);
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(iii) Fk := {n ∈ N : xσ(n) ∈ U } ∩ [ck,m(Bk)] (note that this is a finite set, possibly
empty).

We obtain by construction that there exists σ� ∈ � such that

σ� ∈
⋂
k

Bk ⊆
⋂
k

Gk ⊆ S,

so that η is an I-cluster point of the subsequence σ�(x), which implies that {n ∈ N : xσ�(n) ∈
U } /∈ I. At the same time, by the definitions above we get

{n ∈ N : xσ�(n) ∈ U } =
⋃
k

{n ∈ [ck,m(Bk)] : xσ�(n) ∈ U } =
⋃
k

Fk .

This proves that Player II has a winning strategy. Therefore I is meager, concluding the
first part of the proof.

For the second part, recall that a basic open set in � is a cylinder of the type D = {π ∈
� : π(1) = a1, . . . , π(n) = an} for some distinct a1, . . . , an ∈ N, and set m(D) :=
max{a1, . . . , an}. Minor modifications are necessary in the definitions of the corresponding
sets Ak and Bk as it follows:

(i) Ak := {π ∈ Bk−1 : π(n) = en for all n with m(Bk−1) < n < ck} for the smallest
possible values of en ∈ E which have not been chosen before in the previous steps;

(ii) Bk is a nonempty basic open set contained in Gk ∩ Ak with the additional condition
that if π ∈ Bk then {π(1), . . . , π(m(Bk))} coincides with {1, . . . ,m(Bk)} (this is
still possible replacing Bk , if necessary, with a smaller subset which satisfies this
condition).

It follows by construction that
⋂

k Bk contains an element π� which is a permutation on N.
Finally, the proof of the permutations case follows the same lines as above. ��
Corollary 3.2 Let I be an ideal on N and x be a nonconvergent sequence in a topological
space X such that there exists η ∈ X for which at least one among

{σ ∈ � : η ∈ 	σ(x)(I)} and {π ∈ � : η ∈ 	π(x)(I)}
is comeager. Then I is meager.

Proof This follows by Theorem 3.1 and the fact that every I-limit point is necessarily an
I-cluster point. ��

Now, we show that the converse of Theorem 1.3 holds, provided that the sequence x has
a dense image.

Theorem 3.3 Let x ∈ D such that �S,x (I) is meager. Then I is meager.

Proof We follow the same lines of proof as in Theorem 3.1. Suppose that �\�S,x (I) is
comeager, hence it contains

⋂
n Gn , where (Gn) is a decreasing sequence of dense open sets

in �. Using the same Laflamme game, we modify the construction of the sets Ak and Fk as
it follows:

(i) Ak := {σ ∈ Bk−1 : σ(n) = en for all n with m(Bk−1) < n < ck}, where the
increasing values en are chosen such that |Snσ(x)| < 1 (note that this is possible
since x has a dense image; here, recall that Snσ(x) = ∑

i≤n xσ(i));
(ii) Fk =: {n ∈ N : |Snσ(x)| ≥ 1} ∩ [ck,m(Bk)].
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Similarly, we obtain that there exists σ� ∈ ⋂
k Bk ⊆ �\�S,x (I), so that Sσ�(x) is not

I-bounded. It follows that
⋃

k
Fk =

⋃
k
{n ∈ [ck,m(Bk)] : |Snσ�(x)| ≥ 1}

= {n ∈ N : |Snσ�(x)| ≥ 1} /∈ I,

which proves that player II has a winning strategy. ��

We can finally proceed to the proof of Theorem 1.4.

Proof of Theorem 1.4 (M1) �⇒ (M5) First, note that the ideal I cannot be maximal: indeed,
otherwise, by Remark 1.6, there exists a real sequence x such that (C5) holds and (C1) does
not. Since I has to be not maximal, there exists a set A /∈ I such that Ac /∈ I. At this point,
it follows that condition (C5) holds for the real sequence x defined by xn = 1 if n ∈ A and
xn = 0 otherwise. Hence (C1) also holds by (M1), proving the implication.

(M5) �⇒ (M10) Assume that �x (I) = Lx 
= ∅. Then

�x (I) = {σ ∈ � : �σ(x)(I) = Lx } =
⋂

η∈Lx

{σ ∈ � : η ∈ �σ(x)(I)}.

Hence (3) holds and the implication follows by Theorem 3.1.
(M10) �⇒ (M1) This follows by Theorem 1.1.
The proof of (M2) �⇒ (M6) �⇒ (M10) �⇒ (M2) runs verbatim as above.
The proofs of (M3) �⇒ (M7) �⇒ (M10) �⇒ (M3) and (M4) �⇒ (M8) �⇒

(M10) �⇒ (M4) go along the same lines, replacing Theorem 1.1 and Theorem 3.1 with
Theorem 1.2 and Corollary 3.2, respectively.

The equivalence (M9) ⇐⇒ (M10) follows by Theorem 1.3 and 3.3. ��

4 Concluding remarks

Let us identify each σ ∈ � with the real number
∑

n≥1 2
−σ(n). This provides a homeomor-

phism h : � → (0, 1]. Denote by λ the Lebesgue measure on (0, 1] and let λ̂ := λ ◦ h be its
pushforward on �, cf. e.g. [13, 14].

At this point, one may hope for a measure analogue of Theorem 1.4. However, for the
subsequences case, this does not seem to be possible as it follows from the next two examples:
(i) the ideal I := {A ⊆ N : ∑

a∈A 1/a < ∞} is Fσ and, by [17, Proposition 2.3 and
Theorem 3.1], we have λ̂(�x (I)) = 1 for all real sequences x ; (ii) the Fubini sumP(N)⊕Fin
(see e.g. [11, Sect. 1.2]), which can be identified with J := {A ⊆ N : |A∩ (2N+ 1)| < ∞},
is also Fσ and, by [1, Example 2], there exists a real sequence x such that λ̂(�x (J )) = 0.

On the other hand, a [non]analogue for the permutations is more difficult to obtain for
lack of a natural candidate for a measure on�. Indeed, since� is a Polish group which is not
locally compact, we cannot speak about Haar measure. An alternative could be to consider
the notion of prevalent set as introduced by Christensen in [8]: a set S ⊆ � is called prevalent
if it is universally measurable (i.e., measurable with respect to every complete probability
measure on � that measures all Borel subsets of �) and there exists a (not necessarily
invariant) Borel probability measure μ over � such that μ(ζ S) = 1 for all permutations
ζ ∈ �, cf. also [9]. We leave as an open question whether �x (I) and/or �̃x (I) are prevalent
sets whenever I is a meager ideal.
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