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Abstract
In this paper we investigate the L1-Liouville property, underlining its connection
with stochastic completeness and other structural features of the graph. We give a
characterization of the L1-Liouville property in terms of the Green function of the
graph and use it to prove its equivalencewith stochastic completeness onmodel graphs.
Moreover, we show that there exist stochastically incomplete graphs which satisfy the
L1-Liouville property and prove some comparison theorems for general graphs based
on inner–outer curvatures. We also introduce the Dirichlet L1-Liouville property of
subgraphs and prove that if a graph has a Dirichlet L1-Liouville subgraph, then it is
L1-Liouville itself. As a consequence, we obtain that the L1-Liouville property is not
affected by a finite perturbation of the graph and, just as in the continuous setting, a
graph is L1-Liouville provided that at least one of its ends is Dirichlet L1-Liouville.

Keywords Infinite weighted graphs · L1-Liouville property · Stochastic
completeness · Curvature comparison
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1 Introduction

The study of stochastic properties of weighted graphs, such as parabolicity, stochastic
completeness and the Feller property, tomention some of themost relevant, essentially
deals with properties of solutions to classical equations (Poisson and heat) involving
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the Laplace operator of the graph. It is of great importance because it highlights
a mutual interaction between analytic and geometric properties of the graph under
consideration.

This area of investigation has undergone a rapid growth in the past several years
also in relation to analysis on metric spaces [8, 12–15, 18, 19]. In particular, the study
of weighted graphs where the measure is possibly unrelated to the coefficients of
the discrete Laplacian produces a very rich theory which exhibits many unexpected
features, see, to mention just a few [19, 22, 23, 29, 31] and the comprehensive up to
date account in [20].

Because of this, conditions implying parabolicity, stochastic completeness, etc.may
be substantially different from those valid in the setting of Riemannian manifolds, of
which graphs represent in many ways a natural discretization.

We mention, among others, the sharp logarithmic curvature lower bound for
stochastic completeness [23, Theorem 4.11], the fact that curvature, in particular the
Ollivier curvature, does not control volume as well as on manifolds [2], (although, in
this respect, we recall that Bonnet–Meyers results may be obtained assuming positive
lower bounds on the Ollivier curvature [21, 23, 24]) and, more generally, the fact that
the Laplacian of the distance function is not so tightly tied to volume growth and
stochastic properties, see [1, Example 6.1].

This originates from the fact that in the graph setting there is not a close relationship
between themetric, themeasure and the coefficients of the Laplace operator (weighted
graphs should be really compared to weighted manifolds). At a technical level, the
discrete structure of a graph introduces unexpected difficulties, generally arising from
non-locality and the lack of a chain rule.

Moreover, it should be noted that geometric objects that agree in the continuous
setting are different on graphs. However, by using compatible metrics, or considering
suitable structures, in many cases it has been possible to find exact analogues of results
valid on manifolds (see the interesting and exhaustive surveys [17, 31]).

Since the (super/sub)-harmonicity of a function does not depend on the measure,
it is always possible, given a non-constant (super/sub)-harmonic function f , to find
a sufficiently small measure m such that f ∈ L p(V ,m) for every p ∈ (0,∞) (see
[22]). On the other hand, under the assumption that a compatible intrinsicmetric exists,
an analogue of Karp’s Liouville Theorem for p > 1 [16, Theorem 2.2], was proved
in [12]. There, extending a construction in [11, Examples 4.1 and 4.2], the authors
also exhibit an example of a graph with a compatible intrinsic metric (which may be
interpreted as ametric completeness condition on the graph) supporting a non-constant
harmonic function in L p for every p ∈ (0, 1]. This shows that a version of the Yau’s
Liouville theorem for p < 1 [32, Theorem 3], extended by Sturm [26, Theorem 1]
to the case of local Dirichlet forms, does not hold on graphs. However, it would be
interesting to investigate if an L p-Liouville result for p ≤ 1 can be established under
suitable geometric conditions on the graph.

In this paper we consider the limit case p = 1 and address the problem of the
existence of non-constant, non-negative L1 super-harmonic functions. We say that a
graph satisfies the L1-Liouville property, or it is L1-Liouville, if every non-negative,
super-harmonic function in L1 is constant. Of course, starting from a non-parabolic
graph and suitably changing the measure one can always find a non-constant, non-
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negative L1 super-harmonic function. Thus, the problem only makes sense if one
introduces suitable restrictions on the graph as in the extension of Karp’s result.

Rather than assuming the existence of a compatible intrinsicmetric, we consider the
relationship of the L1-Liouville propertywith other stochastic properties,most notably
stochastic completeness. Our study follows the lines of [4, 25] in the setting of Rieman-
nian manifolds. The main issues originate from the, already underlined, non-locality
of the Laplacian operator, which yields in turn the lack of a chain rule. Despite these
remarkable differences, we are able to obtain various analogues of results valid for Rie-
mannian manifolds. In particular, after having recalled that stochastic completeness
implies the L1-Liouville property (see [12]), we first show that these properties are
equivalent formodel graphs and thenwe exhibit examples of stochastically incomplete
graphs with the L1-Liouville property (Examples 3.6 and 3.9) and establish compar-
ison results in terms of inner–outer curvatures (Theorems 4.2 and 4.6). In the final
part of the paper we introduce the Dirichlet L1-Liouville property of subgraphs and
prove that if a graph has a Dirichlet L1-Liouville subgraph, then it is L1-Liouville
itself. As in the Riemannian case, this is in contrast to what happens for stochastic
completeness which holds if and only if all ends are stochastically complete (see [13]
and [18, Theorem 4] for a general result in the discrete setting). As a consequence, the
L1-Liouville property is not affected by a finite perturbation of the graph and, just as
in the continuous setting, a graph is L1-Liouville provided that at least one of its ends
is Dirichlet L1-Liouville (Theorem 5.6).

The paper is organized as follows: in Sect. 2 we introduce some basic notations and
definitions of graph theory. In Sect. 3 we define the L1-Liouville property, we describe
its relationship with stochastic completeness and, after having proved that the two
concepts are equivalent for model graphs, we exhibit two examples of stochastically
incomplete graphs with the L1-Liouville property. In Sect. 4 we prove two comparison
results with model graphs. They are proved by transplanting to the graph the Green
function, respectively, the mean exit time, of the model. In Sect. 5 we introduce the
Dirichlet L1-Liouville of a subgraph and study its relationships with the L1-Liouville
property of the ambient graph.

2 Set Up and Basic Facts

Agraph is a tripleG = (V , b,m),whereV is the set of nodes of the graph,b : V×V →
[0,∞) is a symmetric function vanishing on the diagonal and m : V → (0,∞) is a
measure of full support. Consider two nodes x, y ∈ V . When b(x, y) �= 0 we say that
x and y are neighbors and we write x ∼ y. A path is a (possibly infinite) sequence
of neighbors and we say that a graph is connected if, for every x, y ∈ V , there exists
a finite path connecting x and y, that is ∃ x = x0 ∼ x1 ∼ ... ∼ xn−1 ∼ xn = y for
some x1, ..., xn−1 ∈ V . In this case n is the (combinatorial) length of the path and we
define the (combinatorial) distance d(x, y) between x and y to be the infimum of the
length of paths connecting x and y.

We say that a graph is locally finite if, for every x ∈ V , |{y : b(x, y) �= 0}| < ∞,
where | · | denotes the cardinality of a set. In particular, local finiteness implies that,



44 Page 4 of 20 Journal of Fourier Analysis and Applications (2023) 29 :44

for every x ∈ V ,

1

m(x)

∑

y∈V
b(x, y) < ∞.

The quantity in the above equation is called degree at x and it is denoted by Deg(x).
From now on, we always assume graphs to be connected and locally finite.

We denote by C(V ) the set of all functions f : V → R. Under the assumption of
local finiteness, it is immediate to see that the Laplacian � : C(V ) → C(V ) of the
graph, defined by the formula

� f (x) = 1

m(x)

∑

y∈V
b(x, y) ( f (x) − f (y)) ,

is well defined for every f ∈ C(V ).
A subgraph N ofG = (V , b,m) is a triple N = (W , b|W×W ,m|W ), whereW ⊂ V .

We denote by intN = {y ∈ W : � x ∈ V \W such that b(x, y) �= 0} the interior of N
and by ∂N = N\intN its (inner) boundary. Given a fixed vertex x0 ∈ V and r ≥ 0,
we write Br (x0) = Br = {y ∈ V : d(x0, y) ≤ r} and Sr (x0) = Sr = {y ∈ V :
d(x0, y) = r}.

The inner and outer curvatures k±(x) of a graph at x ∈ Sr (x0) are defined by

k±(x) = 1

m(x)

∑

y∈Sr±1

b(x, y).

When k± are spherically symmetric functions, i.e. when k±(x) = k±(x ′) for every
x, x ′ ∈ Sr (x0), for every r ≥ 0, we say that the graph is weakly spherically symmetric,
or that it is a model with root x0. Following [19], we set

∂B(r) =
∑

x∈Sr

∑

y∈Sr+1

b(x, y).

The heat kernel pt (x, y) is theminimal positive fundamental solution of the continuous
time heat equation on G, namely,

{
(∂t + �y) pt (x, y) = 0 ∀x, y ∈ V and t > 0

p0(x, y) = δx (y)
m(x) ,

and it can be obtained via exhaustion of the graph (see, for example, [28]). In particular,
the heat kernel is the monotone limit of the Dirichlet heat kernels, which we denote by
prt (x, y), on the exhaustion {Br }r≥0, which satisfy the initial value problem in int Br
and Dirichlet boundary conditions, i.e., prt (x, y) = 0 for all t > 0 if x or y are in ∂Br .



Journal of Fourier Analysis and Applications (2023) 29 :44 Page 5 of 20 44

It is well-known that

∑

y∈V
pt (x, y)m(y) ≤ 1

and we say that the graph (or, more precisely, the Brownian motion driven by the
Laplace operator) is stochastically complete if, for every x ∈ V and every t > 0,

∑

y∈V
pt (x, y)m(y) = 1.

Recall also that the graph is said to be non-parabolic (or transient) if it admits a
Green kernel, that is, a minimal positive fundamental solution to the Poisson equation

�yg(x, y) = δx (y)

m(x)
.

The Green kernel can be obtained via time integration of pt (x, y) as follows:

g(x, y) =
∫ ∞

0
pt (x, y)dt,

so that transience is equivalent to the finiteness of the integral on the right hand side.
Similarly, the Dirichlet Green kernels are given by

gr (x, y) =
∫ ∞

0
prt (x, y)dt,

and the Green kernel of G is then the monotone limit of the Dirichlet Green kernels
of an exhaustion.

3 The L1-Liouville Property

In this sectionwefirst define the L1-Liouville property, then give some characterization
and preliminary results about it in the context of general graphs.

Definition 3.1 We say that a graph G = (V , b,m) satisfies the L1-Liouville property,
or, shortly, that it is L1-Liouville, if every non-negative super-harmonic function in
L1(V ,m) is constant, that is, every non-negative function u ∈ L1(V ,m) such that

�u ≥ 0

is constant.

Recalling that parabolicity is equivalent to the fact that every non-negative super-
harmonic function is constant, all parabolic graphs are trivially L1-Liouville, so we
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can concentrate our study to non-parabolic ones. We start with the following charac-
terization of the L1-Liouville property in terms of the (non)integrability of the Green
function g of the graph. This is the analogue of a result in [9] and is the content of The-
orem 1.7 in [12]. We provide a slightly different proof based on the strong minimum
principle according to which if a non-constant function u satisfies

{
�u ≥ 0 on int D

u ≥ 0 on ∂D

on a finite subgraph D, then u > 0 on intD (see, for example, [6, 10, 27]).

Theorem 3.2 A graph G = (V , b,m) is L1-Liouville if and only if, for some (any)
x ∈ V , g(x, ·) /∈ L1(V ,m), that is,

∑

y∈V
g(x, y)m(y) = ∞.

Proof ⇒ This implication is obvious: g is a super-harmonic, non-negative func-
tion. Since g is non-constant and the graph is L1-Liouville, it follows that g(x, ·) /∈
L1(V ,m) for every x ∈ V .

⇐ Let u : V → R be a non-negative, non-constant, super-harmonic function and
let x0 ∈ V be a fixed vertex. We need to show that g(x0, ·) /∈ L1(V ,m) implies u /∈
L1(V ,m). There exists C > 1 such that g(x0, x0) ≤ Cu(x0). Note that the function
v(x) := Cu(x) − gr (x0, x), where gr is defined as above, satisfies the following
system:

{
�v(x) ≥ 0 for all x ∈ int Br (x0) \ {x0}
v(x) ≥ 0 for all x ∈ ∂Br (x0) ∪ {x0}.

It follows by the maximum principle that v ≥ 0 on Br (x0) for every r ≥ 1. By passing
to the limit as r → ∞ and using the fact that C > 1, we obtain Cu ≥ g(x0, ·), so that
u /∈ L1(V ,m) by the assumed non-integrability of g(x0, ·). ��

Recalling the connection between the Green function g of a graph and its heat
kernel, we obtain the following immediate corollary (see [12, Theorem 1.7]).

Corollary 3.3 Every stochastically complete graph G = (V , b,m) satisfies the L1-
Liouville property.

Proof Indeed, by applying Tonelli’s Theorem,

∑

y∈V
g(x0, y)m(y) =

∑

y∈V

∫ ∞

0
pt (x0, y)dt m(y)

=
∫ ∞

0

∑

y∈V
pt (x0, y)m(y) dt

=
∫ ∞

0
1dt = ∞
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and the graph is L1-Liouville by Theorem 3.2. ��

3.1 The L1-Liouville Property and Stochastic Completeness of Model Graphs

In this subsectionwewant to show that for amodel graph the two properties of stochas-
tic completeness and L1-Liouville actually coincide, which represents the analogue of
a result in [4]. It is well known, see [19, Theorem 1], that if a graph is a model then the
heat kernel is a spherically symmetric function, meaning that pt (x0, x) = pt (r) for
every x ∈ Sr (x0) and every r ∈ N0. This implies that, on model graphs, the function
g(x0, ·) is a spherically symmetric function.

Indeed, a straightforward computation shows that the Green function of a model
graph centered at the root x0 is given by

g(x0, x) = g(r) =
∞∑

k=r

1

∂B(k)
, (1)

for every x ∈ Sr (x0) and r ≥ 0. Moreover, when g ≡ ∞, i.e. when the graph
is parabolic, or recurrent, then it is trivially stochastically complete and, therefore,
satisfies the L1-Liouville property. We are then interested in the case where G is a
model graph and g �= ∞, that is,

∑
k

1
∂B(k) < ∞.

We also recall the following result (see [13, Theorem 5.10] for the unweighted case
and [19, Theorem 5] and [29, Theorem 4.8] for the general case):

Theorem 3.4 A model graph G is stochastically complete if and only if the series

∞∑

k=0

m(Bk)

∂B(k)

diverges.

With this preparation we have the following theorem.

Theorem 3.5 Let G = (V , b,m) be a model graph. Then G is L1-Liouville if and only
if it is stochastically complete.

Proof We may assume that G is not parabolic and therefore that
∑

k
1

∂B(k) < ∞.
Changing the order of summation and using Eq. (1), we see that

∞∑

r=0

g(r)m(Sr ) =
∞∑

r=0

∞∑

k=r

m(Sr )

∂B(k)
=

∞∑

k=0

k∑

r=0

m(Sr )

∂B(k)
=

∞∑

k=0

m(Bk)

∂B(k)
,

so that the condition for the L1-Liouville property to hold coincides with the one for
the stochastic completeness. This completes the proof. ��
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At this point, one couldwonderwhether stochastically incomplete graphs satisfying
the L1-Liouville property exist, or if a converse of Corollary 3.3 is true. We give two
examples to show that in fact there exist graphs which are stochastically incomplete,
but satisfy the L1-Liouville property. The first one is an analogue of an example
proposed in [4] and is similar to other examples in [12, 13], while the second is based
on the notion of antitree, which we will briefly introduce after the first example.

Example 3.6 We start by considering two graphs M1 = (V1, b1,m1) and M2 =
(V2, b2,m2).

We make the following assumptions on M1 and M2:

(1) m1(M1) = ∑
x∈V1 m1(x) = ∞, that is, M1 has infinite volume.

(2) M2 is stochastically incomplete, for instance, M2 is a model graph with∑∞
k=0

m2(Bk )
∂B(k) < ∞.

We define a new graph M = (V , b,m) by gluing the two graphs M1 and M2 at a
single vertex, that is V := V1 ∪ V2, b|(Vi×Vi ) := bi , m|Vi := mi and there exist two
and only two vertices x1 ∈ V1 and x2 ∈ V2 such that b(x1, x2) > 0. Since M2 is
stochastically incomplete, it turns out that M is stochastically incomplete as well (see
[13, 18]) and, therefore, it is not parabolic. We want to show that it is possible to define
a conformal change of the measure so that stochastic incompleteness is preserved and
M becomes L1-Liouville.

Let m̃(y) = λ2(y)m(y) for all y ∈ V ,whereλ(y) = 1 if y ∈ V2 andλ2(y)g(x, y) ≥
1 for y ∈ V1, where g is the Green function of the graph M = (V , b,m). We claim
that this conformal change of the measure preserves the Green function, that is g̃ = g,
where g̃ is the Green function of the graph M̃ = (V , b, m̃). Indeed, using the trivial
fact that the Laplacian on M̃ is �̃ = 1

λ2
� and the property of the Green function,

f (x) =
∑

y∈V
�yg(x, y) f (y)m(y)

=
∑

y∈V

�yg(x, y)

λ2(y)
f (y)λ2(y)m(y)

=
∑

y∈V
�̃yg(x, y) f (y)m̃(y),

proving our claim. Note that, since λ2 = 1 on V2, �̃ = �M2 on V2\{x2}, and it
follows easily that M̃ is stochastically incomplete by the weak Omori–Yau maximum
principle [13, Theorem 2.2].

We conclude our example by showing that M̃ is L1-Liouville. Indeed,

∑

y∈V
g̃(x, y)m̃(y) =

∑

y∈V
g(x, y)λ2(y)m(y) ≥

∑

y∈V1
m(y) = ∞

and M̃ is L1-Liouville by Theorem 3.2.
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Antitrees have been used to construct various examples in [5, 7, 19, 27, 29]. We use
this notion to produce a graph which is stochastically incomplete, L1-Liouville and
has only one end, i.e., the complement of any finite subset has only one unbounded
connected component. Note that the graph constructed in the previous example has at
least two ends, corresponding to the two different graphs glued together.

Definition 3.7 A graph G = (V , b,m) is called antitree if m ≡ 1, b(x, y) ∈ {0, 1}
and k+(r) = |Sr+1| for all r ∈ N0. This last requirement is equivalent to saying that
every vertex in Sr is connected to every vertex in Sr+1.

Remark 3.8 For our purposes we also require that there are no internal connections on
each sphere. Such spherical connections would play a crucial role in the calculation of
some notions of curvature such as the Ollivier curvature, see, for instance [5], where
the authors require that every vertex is connected with every other vertex in the same
sphere.

Example 3.9 Let A = (V , b,m) be an antitree with root x0 and no spherical connec-
tions. We assume A to be stochastically incomplete. Since A is a model, using the
definition of an antitree, this amounts to the fact that

∞∑

k=0

m(Bk)

∂B(k)
=

∞∑

k=0

|Bk |
|Sk ||Sk+1| < ∞.

Let γ be an infinite path {xi }∞i=0 in A, where xi ∈ Si for all i . We now apply a confor-
mal change of the measure to guarantee the L1-Liouville property, while preserving
stochastic incompleteness. Let λ : V → R such that λ ≥ 1, λ(x) = 1 for all x /∈ γ

and λ(x) ≥ g(x0, x)−
1
2 for all x ∈ γ . We now consider the graph Ã = (Ṽ , b̃, m̃),

where Ṽ = V , b̃ = b and m̃ = λ2 m.
As in the above example g̃(x0, x) = g(x0, x), and it is easily verified that Ã has

the L1-Liouville property. Indeed,

∑

y∈Ṽ
g̃(x0, y)m̃(y) ≥

∑

y∈γ

g(x0, y)λ
2(y)m(y) ≥

∑

y∈γ

m(y) = ∞

and the graph is L1-Liouville.
To conclude we need to show that the graph is stochastically incomplete or, equiv-

alently, that it does not satisfy the weak Omori–Yau maximum principle (see [13,
Theorem 2.2]).

Letting r(x) = d(x0, x) and al = |Bl ||Sl ||Sl+1| , we define f ∗ = ∑∞
l=0 al < +∞ and

f (x) =

⎧
⎪⎨

⎪⎩

∑r(x)−1
l=0 al x /∈ γ

f ∗ − ε for x = xi , for all i ≥ n − 1

0 otherwise,



44 Page 10 of 20 Journal of Fourier Analysis and Applications (2023) 29 :44

with ε and n to be determined. Then f is bounded above with sup f = f ∗ and, if
x ∈ Sr \ γ , we have:

�̃ f (x) =
∑

y∈Sr−1

( f (x) − f (y)) +
∑

y∈Sr+1

( f (x) − f (y))

= (|Sr−1| − 1) ar−1 + f (x) − f (xr−1) + (1 − |Sr+1|) ar + f (x) − f (xr+1).

Note that

(|Sr−1| − 1) ar−1 + (1 − |Sr+1|) ar = |Br−1|
|Sr | − ar−1 + ar − |Br |

|Sr |
= −1 + ar − ar−1,

so that, inserting into the above expression, we get

�̃ f (x) = −1 + ar − ar−1 + 2
r−1∑

l=0

al − 2 f ∗ + 2ε.

Now we choose ε > 0 and n > 1 such that

(1) −1 + 3ε < 0,
(2) ar − ar−1 < ε for all r ≥ n − 1,
(3) f ∗ − ∑n−2

l=0 al < ε,

and let α = ∑n−2
l=0 al , so that

	α = {x : f (x) ≥ α} = Bc
n−2(x0) \ γ.

It follows that if x ∈ 	α , then r(x) ≥ n − 1 and

�̃ f (x) ≤ −1 + ar − ar−1 + 2ε

< −1 + 3ε < 0,

showing that f violates the weak maximum principle at infinity and therefore Ã is
stochastically incomplete, as claimed.

4 Comparison Theorems

In this section we state and prove two comparison results with model graphs based on
the notions of stronger/weaker curvature growth (see [1, 2, 19, 30], where they are used
to prove comparison theorems concerning volume growth, stochastic completeness
and the Feller property). The first theorem is obtained by transplanting the Green
function of the comparison model. The second uses the characterization of the L1-
Liouville property in terms of mean exit time and, again, a transplantation technique.
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Definition 4.1 Let G̃ = (Ṽ , b̃, m̃) be a model. We say that a graph G = (V , b,m) has
stronger curvature growth than G̃ outside a finite set if there exists a vertex x0 ∈ V
and R ≥ 0 such that

k+(x) ≥ k̃+(r) and k−(x) ≤ k̃−(r)

for all x ∈ Sr (x0) in G with r ≥ R.
We say that G has weaker curvature growth than G̃ outside of a finite set if there

exists x0 ∈ V and R ≥ 0 such that opposite inequalities hold.
In the case where R = 0 we simply say that G has stronger/weaker curvature

growth than G̃.

Theorem 4.2 Let G = (V , b,m) be a weighted graph and let G̃ = (Ṽ , b̃, m̃) be a
model graphwith root o. Suppose that G has stronger curvature growth than G̃ outside
a finite set and m(Sr (x0)) ≤ Cm̃(Sr (o)) for some C > 0 and all r large enough. If G̃
is not L1-Liouville, then G is not L1-Liouville.

Remark 4.3 A result in [2] shows that ifG has stronger curvature than amodel graph G̃
outside a finite set then there exists a constant c > 0 such thatm(Sr (x0)) ≥ cm̃(Sr (o)).
The assumption that m(Sr (x0)) ≤ Cm̃(Sr (o)) amounts to asking that the volume
growth of G is controlled from below and from above by the volume growth of the
comparison model graph. This is due to the fact, already stressed in the previous
section, that L1-Liouville property depends on the behaviour of the volume at infinity.

Proof Assume that G̃ is not L1-Liouville, so that by Theorem 3.2

∑

r

g̃(r)m̃ (Sr (o)) < ∞.

In order to negate the L1-Liouville property, we need to find a function which is
integrable, non-negative, super-harmonic and non-constant. For x ∈ Sr (x0) define

v(x) := g̃(r),

and note that, by the explicit expression (1) of g̃, v is a decreasing radial function.
Assuming that G has stronger curvature than G̃ if r(x) ≥ R for some R > 0, for all
such x we have

�v(x) = k+(x)(v(r) − v(r + 1)) + k−(x)(v(r) − v(r − 1))

≥ k̃+(r) (g̃(r) − g̃(r + 1)) + k̃−(r) (g̃(r) − g̃(r − 1)) = �g̃(r) ≥ 0,

showing that v is non-negative and super-harmonic in BR(x0)c. It follows that the
function u = min{v(x), g̃(R + 1)} is non-costant, non-negative, and super-harmonic
on G.
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Moreover, by increasingC , we may assume thatm(Sr (x0)) ≤ Cm̃(Sr (o)) for every
r ≥ R, so that

∑

x∈V
u(x)m(x) ≤ C +

∑

r≥R

g̃(r)m (Sr (x0)) ≤ C
∑

r

g̃(r)m̃ (Sr (o)) < ∞,

as required to conclude that G is not L1-Liouville. ��
The following is a non-trivial application of the previous theorem with C = 1.

Example 4.4 We define G̃ = (N0, b̃, m̃) and G = (N0, b,m) by

m̃(r) =
{
1 r = 0

e−r + 2 r ≥ 1,
b̃(r , r + 1) = (r + 1)3 for all r ≥ 0 and

m(r) = 2
er

er + 1
, b(r , r + 1) = 2er+1

er+1 + 1
· (r + 1)3

e−(r+1) + 2
for all r ≥ 0.

Straightforward computations give

k̃+(r) = (r + 1)3

e−r + 2
for all r ≥ 1

and

k+(r) = (r + 1)3

e−(r+1) + 2

e(er + 1)

er+1 + 1
for all r ≥ 0,

so that k̃+(r) ≤ k+(r) for all r ≥ 1. Moreover,

k̃−(r) = k−(r) = r3

e−r + 2
,

so that G̃ has weaker curvature growth than G outside a finite set.
Note that, since

∞∑

r=0

∑r
i=0 e

−i

(r + 1)3
< ∞

and

∞∑

r=0

2(r + 1)

(r + 1)3
< ∞,

G̃ is stochastically incomplete, hence, not L1-Liouville.
Finally, using the fact that m̃(r) ≥ m(r) for all r ≥ 1 and Theorem 4.2, we conclude

that G is not L1-Liouville.
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4.1 Mean Exit Time and L1-Liouville

Let Er be the solution of the following problem:

{
�Er = 1 in int Br (x0)

Er = 0 on ∂Br (x0).

Note that Er either diverges at every point, or it converges to a function E satisfying
�E ≡ 1. Indeed, by the maximum principle, Er is positive and strictly increasing so
that limr Er (x) = E(x) exists, finite or infinite. Assume that E(x0) < ∞ for some
x0. Since �Er (x0) = 1, rearranging we get

m(x0) +
∑

y

b(x0, y)Er (y) = Er (x0)
∑

y

b(x0, y)

whence, letting r → ∞ and using the monotone convergence theorem, we deduce
that the limit of the left hand side is finite, so in particular E(y) < ∞ for all y ∼ x0
and �E(x0) = 1. A connectedness argument then shows that E(y) < ∞ for every y
and �E = 1.

We also note that we have an explicit representation of Er in terms of the Dirichlet
Green’s kernel gr (x0, x) of Br (x0),

Er (x) =
∑

y∈Br (x0)
gr (x, y)m(y).

In particular

Er (x) ↗ E(x) =
∑

y∈V
g(x, y)m(y),

with g being the Green kernel of G, so that the graph G is not L1-Liouville if and only
if E(x) < ∞ for some/every x ∈ G.

Before stating and proving the main theorem of this subsection, we recall the fol-
lowing result, which was proved in [19].

Theorem 4.5 (Theorem 6 in [19]) If a weighted graph G = (V , b,m) has stronger
(respectively, weaker) curvature growth than a weakly spherically symmetric graph
G̃ = (Ṽ , b̃, m̃) which is stochastically incomplete (respectively, complete), then G is
stochastically incomplete (respectively, complete).

Theorem 4.6 Let G̃ be a model graph and let G be a graph.

(1) If G has weaker curvature growth than G̃ and G̃ is L1-Liouville, then G is L1-
Liouville.

(2) If G has stronger curvature growth than G̃ and G̃ is not L1-Liouville, then G is
not L1-Liouville.
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Proof The first statement follows immediately by combining the equivalence between
L1-Liouville property and stochastic completeness on model graphs described in The-
orems 4.5 and 3.5.

To prove the second statement, note that, by the above considerations, we only need
to show that E(x) = ∑

y∈G g(x, y)m(y) < ∞ for some x ∈ G. To do so, we first
notice that the curvature assumption implies that, for every R, int BR(x0) = BR−1(x0)
and ∂BR(x0) = SR(x0). Next, consider the spherically symmetric function on G̃ given
by

FR(r) =
R−1∑

k=r

m̃(Bk)

∂ B̃(k)
,

where, as usual, we set ∂ B̃(k) = k̃+(k)m̃(Sk) for every k ≥ 0. By the assumption of
stochastic incompleteness and Theorem 3.4 we have that the function

F(r) =
∞∑

k=r

m̃(Bk)

∂ B̃(k)

is finite for every r and by monotonicity we get FR ↗ F . Consider now the trans-
planted function FR(r(·)) on G and note that the curvature condition yields

�FR(r(x0)) = 1

m(x0)

∑

y∈S1(x0)
(FR(r(x0)) − FR(r(y))) b(x0, y)

= k+(x0)
m̃(o)

k̃+(o)m̃(o)
≥ 1

and, for x ∈ Sr (x0), 0 < r ≤ R − 1,

�FR(r(x)) = 1

m(x)

∑

y∈Sr+1(x0)

(FR(r) − FR(r + 1)) b(x, y)

+ 1

m(x)

∑

y∈Sr−1(x0)

(FR(r) − FR(r − 1)) b(x, y)

= k+(x)
m̃(Br )

k̃+(r)m̃(Sr )
− k−(x)

m̃(Br−1)

k̃+(r − 1)m̃(Sr−1)
.

Writing m̃(Br ) = m̃(Br−1) + m̃(Sr ), using the fact that (see, for example, [19])

k̃+(r − 1)m̃(Sr−1) = k̃−(r)m̃(Sr ) = k̃−(r)∂ B̃(r)

k̃+(r)
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and the hypothesis of stronger curvature growth, we conclude that, for every x ∈
Sr (x0), 0 < r ≤ R − 1,

�FR(r(x)) = m̃(Br−1)

∂ B̃(r)

[
k+(x) − k−(x)

k̃+(r)

k̃−(r)

]
+ k+(x)

m̃(Sr )

∂ B̃(r)

≥ k̃+(r)m̃(Sr )

∂ B̃(r)
= 1.

Summing up we have that the function FR(r(·)) − ER(·) satisfies
{

�(FR(r(·)) − ER(·)) ≥ 0 in int BR(x0)

FR(r(·)) − ER(·) = 0 on ∂BR(x0).

By the maximum principle we then conclude that FR(r(·)) ≥ ER(·) over BR(x0), so
that, by passing to the limit as R → ∞, we have that ∞ > F(r(·)) ≥ E(·) and G is
not L1-Liouville. ��
Remark 4.7 Note that since stochastic completeness/incompleteness of a (model)
graph is not affected by finite sets perturbations (see, [13, 18]), the conclusions of
Theorem 4.6 hold if the curvature assumptions hold outside a finite set.

Note also that Statement 2 of the above theorem is valid under the assumption of
stronger curvature growth as in [1, Definition 3.1].

5 The Dirichlet L1-Liouville Property

In this section we introduce the concept of D-L1-Liouville property (Dirichlet Liou-
ville property) of infinite subgraphs modeled on the construction carried out in [25,
Section 3] in the setting of Riemannian manifolds. After providing a useful character-
ization, we prove a criterion for the validity of the L1-Liouville property and deduce
that a graph is L1-Liouville if and only if at least one of its ends is D-L1-Liouville.
This is in contrast to what happens for stochastic completeness, which holds provided
that every end of the graph is stochastically complete (see [13, 18], where ideas similar
to those one in [3] are developed in the context of weighted graphs).

Let N ⊂ G be an infinite, connected subgraph of G. Consider an exhaustion by
finite sets {	r } of int N . Given x0 ∈ int N , we denote by Dgr the positive solution of
the following system:

{
�Dgr (x0, y) = δx0 (y)

m(x0)
in int	r

Dgr (x0, y) = 0 on ∂	r .

Exactly as seen before, the sequence Dgr is increasing and converges to a function Dg
which is the Dirichlet Green function on N .

We are now ready to give the following definition.
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Definition 5.1 We say that a subgraph N ⊂ G isD-L1-Liouville if every non-negative
function in L1(N ) which satisfies

{
�u ≥ 0 in int N

u = 0 on ∂N

vanishes identically.

In order to give a characterization of the D-L1-Liouville property of a subgraph
we introduce the notion of Dirichlet Mean Exit Time, which will be crucial for our
derivations.

Definition 5.2 We denote by DE the minimal positive solution of the system

{
�DE = 1 in int N
DE = 0 on ∂N .

(2)

Remark 5.3 Note that DE can be obtained via exhaustion of N . Indeed, let DEr denote
the solution of

{
�DEr = 1 in int	r
DEr = 0 on ∂	r

(3)

for an exhaustion {	r } of N . The same argument used in the previous section shows
that DEr either diverges at every point, or it converges to a function DE which is the
minimal solution of (2). Moreover, applying the maximum principle to the function
E − DEr on 	r shows that E ≥ DEr , so that E ≥ DE .

We can now give a characterization of the D-L1-Liouville property similar to the
one given above for the L1-Liouville property which relates the former to the nonin-
tegrability of the Dirichlet Green function.

Theorem 5.4 The following are equivalent:

(1) N is not D-L1-Liouville;

(2) Dg(x, ·) is in L1(N ) for every x ∈ N;

(3) DE is finite for every x ∈ N and

DE(x) =
∑

y∈N
Dg(x, y)m(y).

Proof (1) ⇔ (2): Let 0 ≤ u ∈ L1 be a function violating theD-L1-Liouville property.
Then

{
�u ≥ 0 in int N

u ≥ 0 on ∂N .
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Since there exists x0 ∈ N such that u(x0) > 0 we get that u > 0 on N by the minimum
principle.

Let C > 1 be a large enough constant such that

Dg(x0, x0) ≤ Cu(x0).

Applying now the maximum principle to the functions u−Dgr on an exhaustion {	r }
of N\{x0}, where Dgr is harmonic, we get that Dg(x0, y) ≤ Cu(y) holds for every
y ∈ N . It follows that

∑

y∈N
Dg(x0, y)m(y) ≤ C

∑

y∈N
u(y)m(y) < ∞.

On the other hand, if Dg(x, ·) ∈ L1(N ), then Dg(x, ·) is a summable, non-negative,
non-constant, super-harmonic function violating the D-L1-Liouville.

(2) ⇔ (3) Consider an exhaustion {	r } of N and let Dgr denote the cor-
responding Dirichlet Green function. It is clear by construction that the function∑

y∈	r
Dgr (x, y)m(y) is the unique solution to problem (3), so that it coincides with

DEr . By passing to the limit as r → ∞ we get

DE(x) = lim
r→∞

DEr (x) = lim
r→∞

∑

y∈N
Dgr (x, y)χ	r (y)m(y) =

∑

y∈N
Dg(x, y)m(y),

where we used the fact that Dgr (x, y) ↗ Dg(x, y) as r → ∞ and monotone conver-
gence. ��

As an immediate corollarywe have the following result, which establishes a connec-
tion between the global L1-Liouville and theD-L1-Liouville of an (infinite) subgraph.
This is an analogue of [4, Corollary 30] valid on Riemannian manifolds.

Corollary 5.5 Let G be a graph and let N ⊂ G be an (infinite) subgraph of G. If
N is D-L1-Liouville, then G is L1-Liouville. Moreover, if there exists a sequence of
subgraphs {Nk}k such that DENk (x0) → ∞ as k → ∞ for some x0 ∈ D, then G is
L1-Liouville.

Proof Both statements follow by combining the previous theorem and Remark 5.3. ��
Recall that an end relative to a given finite set K is any unbounded connected

component of V \ K . We can now state and prove the main result of this section,
which says that the validity of the L1-Liouville property depends on the validity of
the D-L1-Liouville property on (at least) one of its ends relative to any finite set K .

Theorem 5.6 Let G = (V , b,m) be a graph.

(1) Let N = (W , b|W×W ,m|W ) be a subgraph of G such that V \ W is finite.
Then G is L1-Liouville if and only if N is D-L1-Liouville.

(2) G is L1-Liouville if and only if at least one of its ends relative to any fixed finite
set K is D-L1-Liouville.
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Proof (1) In view of the previous corollary, we only need to prove that if G is L1-
Liouville, then N is D-L1-Liouville.

Let g be the Green kernel of G. By assumption and Theorem 3.2

∑

x∈V
g(x, y)m(x) = ∞

for every y ∈ V . By construction g is obtained asmonotone limit of theDirichletGreen
kernels gr of an exhaustion {	r } of G, and we may assume that V \W ⊂ int	1. Let u
be a non-negative, non-constant function such that �u ≥ 0 in intN and u = 0 in ∂N .
We need to show that u is not integrable. By the minimum principle u > 0 in int N
and therefore there exists a constant c1 > 0 such that

min
∂	1

u = c1 > 0.

On the other hand, having fixed y0 ∈ 	1, we have that

max
x∈∂	1

g(x, y0) = c2 < ∞,

so that there exists a positive constant λ > 0 such that u(x) ≥ λg(x, y0) for every
x ∈ ∂	1. Since g ≥ gr it follows that u ≥ λgr on ∂	r ∪ ∂	1 and, by the maximum
principle, we conclude that u ≥ λgr in	r\	1 and therefore u ≥ λg in V \	1. Finally,

∑

x∈W
u(x)m(x) ≥ λ

∑

x∈W\	1

g(x, y0)m(x) = ∞

as required to show that N is D-L1-Liouville.
(2) We already know that if at least one end with respect to a given finite set is

D-L1-Liouville, then G is L1-Liouville. Next, suppose by contradiction that there
exists a finite set K such that every unbounded connected component Fi , i = 1, ...,m,
of G\K is not D-L1-Liouville. Due to the local finiteness of the graph, by enlarging
K if necessary, we may assume that G\K = ⋃m

i=1 Fi and
DEFi are finite functions

for every i = 1, ...,m. Since ∂Fi ∩ ∂Fj = ∅ if i �= j , setting DEFi = 0 outside Fi
it follows that DEG\K = DEF1 + . . . + DEFm , which is finite, and the contradiction
follows from part 1). ��
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