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● New datasets of T4-hTTR competing 
potencies of chemicals were generated.

● Three new robust QSAR models were 
developed based on simple molecular 
descriptors.

● The models were validated through in
ternal and external validation 
procedures.

● Mechanistic interpretation highlighted 
relevant structural features.

● Models to support the Thyroid Hor
mone System-Disrupting Chemicals 
hazard assessment.
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A B S T R A C T

The use of New Approach Methodologies (NAMs), such as Quantitative Structure-Activity Relationship (QSAR) 
models, is highly recommended by international regulations to speed up hazard and risk assessment of Endocrine 
Disruptors, which are known to be linked to a wide spectrum of severe diseases on humans and wildlife. A very 
sensitive target for these chemicals is the thyroid hormone system, which plays a key role in regulating metabolic 
and cognitive functions. Several chemicals have been demonstrated to compete with the thyroid hormone 
thyroxine (T4) for binding to human thyroid hormone distributor protein transthyretin (hTTR). In this work, we 
generated three new datasets composed by T4-hTTR competing potencies of more than 200 heterogeneous 
chemicals measured by three different in vitro assays. These datasets were used for the development of new 
regression QSAR models. The best models were thoroughly validated by internal and external validation pro
cedures. The mechanistic interpretation of the selected molecular descriptors provided information on structural 
features which are relevant to characterise hTTR binders, such as the presence of hydroxylated and halogenated 
aromatic rings. PCA analysis was used to rank the studied chemicals according to their increasing T4-hTTR 
competing potency. Hydroxylated and halogenated bicyclic aromatic compounds are ranked as the strongest 
hTTR binders. The new QSARs are useful to screen potential Thyroid Hormone System-Disrupting Chemicals 
(THSDCs), and to support the identification of sustainable alternatives to hazardous chemicals.
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1. Introduction

The concern about Endocrine Disrupting Chemicals (EDCs) is 
significantly increasing worldwide, owing to spreading evidences of 
endocrine-related disorders both in human and wildlife, such as reduc
tion of fertility, cancers, metabolic and developmental dysfunctions [1, 
2]. According to the World Health Organization International Pro
gramme on Chemical Safety (WHO/IPCS), an endocrine disruptor is 
defined as “an exogenous substance or mixture that alters function(s) of the 
endocrine system and consequently causes adverse health effects in an intact 
organism, or its progeny, or (sub)populations" [3]. The risk assessment of 
EDCs is extremely challenging [4,5] due to their structural heteroge
neity and large variety of physicochemical properties and environ
mental behaviours, their multiple emission sources, and the complexity 
of the endocrine system [3]. These features, on the one hand, lead to the 
ubiquitous presence of EDCs in the environmental compartments, 
increasing the number and complexity of the potential exposure path
ways, while, on the other hand, determine several modes of action and 
toxicity pathways by which those chemicals exert their adverse effects 
on living organisms [6]. In Europe, several political and scientific efforts 
followed the Community Strategy for Endocrine Disruptors [7], aiming 
to fill knowledge gaps, to set validated test methods and to harmonize 
the current chemical legislations [8]. A priority of the recent European 
Green Deal [9] is to improve the protection of human health and of the 
environment against harmful chemicals, moving towards a toxic-free 
environment through a Chemical Strategy for Sustainability (CSS) 
[10], by strengthening and harmonizing the European regulatory sys
tem, with a significant focus on endocrine disruptors such as in the 
recent Classification, Labelling and Packaging (CLP) Regulation update 
[11].

Among EDCs, a variety of industrial chemicals, pesticides, plasti
cizers, surfactants, pharmaceuticals and personal care products [12-15]
have been recognised to interfere with multiple molecular targets 
involved in the Hypothalamic-Pituitary-Thyroid (HPT) axis through 
several mechanisms, altering the Thyroid Hormones (THs) homeostasis 
[16,17]. Alterations of the TH homeostasis may induce severe adverse 
diseases to nervous system development, metabolism, immune and 
cardiovascular systems [18,19]. Substances able to exert this type of 
activity are known as Thyroid Hormone System-Disrupting Chemicals 
(THSDCs) [20,21]. Triiodothyronine (T3) and thyroxine (T4) represent 
the two main hormones produced by the thyroid gland, from where THs 
are transported into the bloodstream by the activity of THs transporters 
(e.g., monocarboxylate transporter 8 or MCT8) [20,22]. In mammals, T4 
is the predominant TH form secreted by the thyroid, while T3 is the more 
biologically active one, due to its higher binding affinity with Thyroid 
Hormone Nuclear Receptors (TRs). T4 is often referred to as a "pro
hormone", as it is converted to T3 in peripheral tissues through deiodi
nation catalysed by deiodinase enzymes [23,24]. Nearly all the amount 
of THs in human blood is bound to distributor proteins, such as trans
thyretin (TTR), thyroxine-binding globulin (TBG), and albumin (ALB) 
[25]. Differently from TBG and ALB, which are primarily synthetised by 
the liver, TTR is also synthetised by the choroid plexus, by the retinal 
pigment epithelium of the eye, and by other tissues and/or organs, 
implying that TTR is involved in multiple biological processes [26,27]. 
Among these different functions, TTR has the role to buffer abnormal 
alterations of free THs physiological concentrations. Free THs are 
devoted to reach the target tissues to guarantee the proper functioning of 
the TH system [28]. Any alteration in the THs binding to distributor 
proteins can modulate the free THs physiological concentrations in 
blood, leading to TH system dysfunctions. Particular attention is posed 
in studying the ability of THSDCs to displace the thyroid hormone T4 
from the TTR. Differently from the other TH distributor proteins, TTR 
has a key role in delivering T4 in cerebrospinal fluid [18] across the 
blood-brain barrier and placenta during foetal development: exogenous 
chemicals able to bind to TTR could be transferred to the foetus, leading 
to a T4 deficiency and subsequent severe, irreversible effects, primarily 

cognitive dysfunctions [19,29]. For these reasons, the identification of 
chemicals with this behaviour is considered a priority [20,22].

In the literature, several chemical classes of compounds have been 
experimentally demonstrated to compete with T4 for binding to the 
human TTR (hTTR), such as per- and polyfluoroalkyl substances (PFAS) 
[30], bisphenols [31], halogenated phenols [32], polychlorinated bi
phenyls (PCBs) [33], polybrominated diphenyl ethers (PBDEs) [34] and 
both PCBs and PBDEs hydroxylated metabolites [35,36]. The traditional 
approach based on in vivo experiments became inadequate and unsus
tainable for testing the potential endocrine properties of all the existing 
substances, and so for the identification of potential THSDCs [20,37]. In 
particular, the development of New Approach Methodologies (NAMs), 
such as in vitro test (e.g. in vitro assays to detect estrogen [38] and 
androgen [39] receptors agonists and antagonists), and in silico methods 
(e.g. Quantitative Structure-Activity Relationships (QSARs)), is highly 
recommended in the literature, and by several authorities, to support the 
identification of EDCs, as well as of THSDCs [8,20,37,40–42]. World
wide, several efforts and projects aimed for an integration of the results 
in the Weight of Evidence (WoE) approach [43-46]. Focusing on the 
prediction of the hTTR binding potencies of chemicals, a limited number 
of regression QSARs have been developed so far using techniques such as 
Multiple Linear Regression (MLR) [32,47–50], k-Nearest Neighbors 
(k-NN) [50], and 3D QSAR approaches [51,52]. Most of these QSARs are 
based on small datasets (between 15 and 32 chemicals) mainly repre
sentative for specific chemical classes (such as PBDEs, perfluorinated 
compounds (PFCs), halogenated phenols and thiophenols). Among the 
aforementioned models, only those developed by Yang and coworkers 
[50] have a wide applicability domain in terms of structural heteroge
neity represented in their training sets. Statistical performances of the 
existing regression models range, in terms of fitting (R2), between 0.810 
and 0.960. However, with the exclusion of the models by Yang and 
coworkers [50], the structural and response domains of these QSARs is 
very narrow due to the limited size of the respective training sets. 
Furthermore, the use of commercial software for the calculation of the 
molecular descriptors, such as the Dragon software, may limit their 
application.

This study aims to develop new regression QSAR models, following 
the OECD guidelines for QSAR development [53], for the identification 
of potential hTTR binders. This work takes into account current research 
shortcomings [41,54] and in particular the need for new QSAR models 
for endocrine disruption modalities different than androgen and estro
gen (e.g. here thyroid hormone system disruption), based on curated 
datasets and with broad applicability domains. To this end, the QSARs 
proposed in this work were developed using three new and curated 
datasets based on data collected from the literature, which include 
values of T4-hTTR competing potencies for more than 200 different 
chemicals, expressed as Relative competitive Potency (RP), and calcu
lated from experimental binding affinities measured using three in vitro 
assays (the 8-anilino-1-naphthalenesulfonic acid (ANSA) based binding 
assay [20], the fluorescence conjugate isothiocyanate (FITC)-T4 based 
binding assay [20], and the radiolabeled [125I]-T4 binding assay 
(RLBA) [34]). The development of models, based on these datasets, 
extends the experimental and chemical information contained in pre
vious QSAR studies for the same endpoint. Furthermore, since the three 
datasets cover a wide range of different chemicals, each QSAR is 
applicable to fill the experimental data gaps for ANSA, FITC-T4, and 
RLBA assays. The experimental and predicted RP values for more than 
200 chemicals were used to screen potential hTTR binders using the 
QSAR models developed for the different in vitro assays, to evaluate their 
agreement. A final important aspect that was considered in this study 
was the need to ease the reproducibility and the application of the new 
QSARs by implementing them in a non-commercial software.
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2. Material and methods

2.1. Datasets

The raw dataset reported in the Supplementary Material S1 lists 
binding affinity (commonly quantified in terms of IC50, i.e. half- 
maximal inhibitory concentration) or RP values measured for 240 
different chemicals, mostly aromatic and halogenated. This collection 
includes, to the best of our knowledge, all the binding affinity or RP 
values currently available in the literature [29,30,32–36,55–86]. RP is 
defined as the ratio between the binding affinity of T4 and the binding 
affinity of a chemical with hTTR. When only binding affinity values were 
available in the original literature, their RP values were calculated and 
included in the raw dataset (Supplementary Material S1). The use of RP 
values to define the hTTR binding affinity reduces the data bias caused 
by minor modifications of the procedures within the same in vitro assays, 
and by their measurements in different laboratories [84]. Data for 
mixtures, ambiguous molecular structures, and unclear chemical iden
tifiers, were not included in the raw dataset. Moreover, in order to avoid 
further reduction of the already limited structural and experimental 
information, two chiral forms of the same chemical (hex
abromocyclodecane alpha and beta) were converted in the non-chiral 
form, while structures of salts and anions (11 chemicals) were con
verted to their respective acid, as in a previous work [87]. Geometric 
mean of RP values was calculated when multiple experimental data were 
available for one chemical [88].

Three datasets (i.e. ANSA, FITC-T4, and RLBA), reported in Supple
mentary Material S2, were extracted from the raw dataset to develop 
QSAR models for the prediction of T4-hTTR competing potencies, ac
cording to different in vitro assays explained as follows. The radiolabeled 
[125I]-T4 binding assay (RLBA), firstly described by Somack et al. [89], 
and further elaborated by minor modifications [34,35], uses radioactive 
iodine-125 (125I) to label T4 in order to make T4 detectable. A gamma 
counter is used to measure the radioactivity of the radiolabeled-T4 
bound with TTR. Variation in the measured signal in the presence of a 
competitor is used to quantify the relative binding [34,35,89]. The 
8-anilino-1-naphthalenesulfonic acid (ANSA) based binding assay 
(firstly described by Nilsson et al. [90], and further elaborated by minor 
modifications [55,71]), and the fluorescence conjugate isothiocyanate 
(FITC)-T4 based binding assay (firstly described by Smith et al. [91], and 
further elaborated by minor modifications [36,72]) are two competitive 
fluorescence displacement assays: based on different principles, the TTR 
binding of chemicals is quantified by measuring the degree of reduction 
of the fluorescence signal [20]. Particularly, competitive fluorescence 
displacement assays have been highlighted as powerful methods to 
detect chemicals able to interfere with TH distributor proteins TTR and 
TBG [84], and have been recently used in the Joint Research Centre 
(JRC)’s EURL ECVAM thyroid validation study for the validation of 
methods for THSDCs identification [20].

The raw dataset also includes 35 binding affinities measured with 
Surface Plasmon Resonance-based Bioassay (SPRB) [69] and Isothermal 
Titration Calorimetry (ITC) [85], reported in Supplementary Materials 
S1. However, these data were too limited for modelling purposes and 
were excluded from further analysis.

Dataset ANSA includes 79 compounds, such as hydroxylated PBDEs, 
hydroxylated PCBs, sulfated PCBs, phosphates, fatty acids, halogenated 
phenols and thiophenols, and halogenated and/or hydroxylated benzoic 
acids. Dataset FITC-T4 is composed by 50 compounds, such as PFAS, 
bisphenols, hydroxylated PBDEs, PCBs, hydroxylated PCBs, sulfated 
PCBs, parabens, phthalates, and halogenated phenols. Dataset RLBA 
includes 137 compounds, such as PBDEs, hydroxylated PBDEs, PCBs, 
hydroxylated PCBs, PFAS, halogenated phenols, bisphenol A de
rivatives, and xanthones. RP values were log transformed prior to QSAR 
modelling. Finally, all the experimental LogRP values from the ANSA, 
FITC-T4, and RLBA datasets, were combined into Dataset I, which in
cludes 223 chemicals. Missing experimental LogRPs were filled by 

applying the respective assay-specific QSAR model developed in this 
work. This procedure led to the development of Dataset II, which in
cludes 3 assay-specific columns of experimental and, where not avail
able, predicted LogRP values. Finally, only predicted LogRPs within the 
range of the experimental response of the respective training set, with a 
prediction uncertainty below the maximum uncertainty predicted for 
the respective training set, and calculated for chemicals within the 
structural applicability domain of each model, were included into 
Dataset III (150 unique chemicals). Principal Component Analysis 
(PCA) [92] was applied to evaluate the relationships between the LogRP 
values within Dataset III. Dataset I, II, and III, are reported in Supple
mentary Material S2.

2.2. Molecular descriptors

The chemical structures were coded as SMILES (Simplified Molecular 
Input Line Entry System), which were downloaded from the PubChem 
website (available at https://pubchem.ncbi.nlm.nih.gov/) or calculated 
by drawing the chemical structures in the ACD/ChemSketch software v. 
2021.1.1 (available at https://www.acdlabs.com/, ACDLabs, Toronto, 
ON, Canada). SMILES were harmonized using the Open Babel software 
v. 2.4.1 (available at https://openbabel.org/) [93] to generate unique 
strings for the same molecular structure, and were used as input by the 
PaDEL-Descriptor software v. 2.21 [94] for the calculation of 7185 
mono- /bi- dimensional theoretical molecular descriptors and finger
prints, which encode for the structural features of the compounds. Mo
lecular descriptors were filtered using the QSARINS software [95] prior 
to modelling, in order to reduce useless and redundant information. 
Descriptors with at least one missing value, as well as those character
ized by low variance (i.e., the same value for more than 80 % of the 
molecules) or a pairwise correlation exceeding 95 %, were excluded 
from the further analysis. At the end of this procedure, 546, 483 and 503 
molecular descriptors were selected for the datasets i.e., ANSA, FITC-T4 
and RLBA, respectively.

2.3. Splitting

To estimate the ability of the QSAR models to make reliable pre
dictions, each dataset was split in a training set for the model develop
ment, and in a test set for the external validation. Chemicals were sorted 
by response, then one every three chemicals were assigned to the test 
set, and the remaining chemicals were assigned to the training set. The 
first and the last chemicals were assigned to the training set, in order to 
limit the endpoint experimental space of the model and to reduce 
extrapolation. Finally, each training set was further pre-filtered using 
QSARINS by removing low variance and highly correlated descriptors, 
as described in Section 2.2.

2.4. Modelling procedure

QSARs were developed using MLR by means of Ordinary Least 
Squares (OLS), and several statistical metrics were calculated to verify 
their goodness-of-fit (Coefficient of Determination, R2, and Root Mean 
Square Error of the training set, RMSETR), internal robustness (leave- 
one-out, Q2

LOO, and leave-more-out, Q2
LMO, which are cross validation 

metrics), and external predictive ability (RMSEPR, Q2
F3). Details about 

the calculation of these metrics are reported in Supplementary Material 
S3.

The descriptors selection procedure applied to the filtered de
scriptors (see Section 2.3) explored, in a first step, all their combinations 
(all-subset) up to two descriptors; in a second step, a Genetic Algorithm 
(GA) was applied to explore the most promising combinations of three or 
more descriptors [95]. Q2

LOO was used as the fitness function both for 
all-subset and GA.

Moreover, to further check for the QSAR models robustness, both the 
QUIK rule [96] and the Y-scrambling procedures [97] were applied. The 
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QUIK rule was performed to ensure that the correlations among the 
modelling descriptors is lower than their correlation with the response 
(in this work, models were filtered according to KXY − KX > 0.015 [96]). 
To check for chance correlation between the molecular descriptors and 
the response of the developed QSARs, 2000 QSARs were developed 
using training sets with random shuffled responses (Y-scrambling). The 
average of R2 and Q2

LOO (called R2
YS and Q2

YS, respectively) of the 2000 
QSARs should be much lower than the ones of the QSARs under scrutiny, 
since the structure-activity relationship of the scrambled QSARs should 
be negligible.

Calculations concerning the QSARs and the corresponding perfor
mances were performed using the QSARINS software [95].

2.5. Applicability domain

The definition of the Applicability Domain (AD) of a QSAR model is 
required to evaluate the reliability of predictions and/or the degree of 
extrapolation. Each QSAR model was developed using the structural and 
the experimental information included in the respective training set, 
which defines the space of the AD. Concerning the chemical structures, 
the AD of each model was defined by the leverage approach, with the 
graphical support of the Williams plot. In particular, this charts plots the 
standardized residuals of predictions (a measure of the response AD) on 
the y-axis, allowing for the identification of response outliers (i.e., 
chemicals with standardized residuals that fall outside the range defined 
by ±2.5 standard deviation units), and the leverage values (HAT matrix 
diagonal elements) of the chemicals on the x-axis, allowing for the 
identification of structural outliers (i.e., chemicals with a leverage value 
greater than h*, defined as 3 *(p + 1)/n, where p is the number of model 
descriptors and n is the number of the chemicals in the training set). The 
HAT matrix, also known as leverage or influence matrix, is calculated as 

HAT = X(XTX)− 1XT (1) 

where X is the data matrix consisting of n rows and p columns.
The leverage value of each chemical is a measure of its distance from 

the centroid of the model. It quantifies the influence of each chemical on 
the model and the reliability of the predictions. Predictions associated to 
hat values larger than h* (defined above) are considered outside the 
structural AD of the model and, therefore, are less reliable than those 
falling within the h* cut off value. The inclusion of predictions for new 
chemicals within the AD of the here proposed models can be verified in 
the QSAR-ME Profiler beta version 1.02 software available at 
https://dunant.dista.uninsubria.it/qsar/.

To further evaluate the QSAR models, the normality of the distri
bution of the residuals was graphically inspected through the QQ plots 
(quantile–quantile plots).

2.6. Prediction of missing LogRPs in Dataset I

The prediction of missing experimental LogRP values of chemicals 
included in Dataset I was performed by applying the QSAR models re
ported in Eqs. 3, 5 and 7, as described in the Section 2.1, using the QSAR- 
ME Profiler beta version 1.02 software (available at https://dunant. 
dista.uninsubria.it/qsar/) leading to Dataset II. This software allowed 
for the evaluation of the reliability of predictions by identifying the 
chemicals within the applicability domains, and by comparing the un
certainty of predictions with the range of the uncertainty in the training 
sets. This procedure led to the development of Dataset III, as described in 
Section 2.1. Predicted LogRPs, hat values, and uncertainties values, are 
reported in Supplementary Material S2. Additional details on the 
calculation of uncertainties in the training and in the test set are re
ported in Supplementary Material S3.

3. Results and discussion

The ANSA, FITC-T4, and RLBA datasets, were modelled following the 
principles proposed by the OECD for the regulatory acceptability of 
QSARs [53]. A population of about 100 QSAR models was generated for 
each dataset, as the result of the GA variables subset selection procedure 
applied in QSARINS. The maximum number of descriptors in each 
population was kept as low as possible, to reduce the possibility of 
overfitting, and in agreement to the parsimony principle. The ratio 
“number of chemicals/number of molecular descriptors”, calculated for 
the best models developed from the three datasets, was about 15, which 
is largely above the suggested regulatory threshold of five [53]. The best 
model from each population was selected on the basis of the best balance 
between fitting and measures of internal cross validation, taking into 
account both the applicability domain and the residuals distribution of 
the predicted endpoints. The plot of experimental versus predicted 
LogRP values from the ANSA, FITC-T4, and RLBA models, are reported 
in Fig. S1, Fig. S4, and Fig. S7, respectively. All the points are regularly 
distributed along the diagonal, and no relevant anomalies can be high
lighted from these plots.

3.1. QSAR model for the ANSA dataset

The best QSAR model developed for the ANSA dataset is based on 
four molecular descriptors and is reported in Eq. 2: 

LogRPANSA = − 1.2 (±0.30) + 1.6 × 102 (±23) • AATSC1c

+ 1.7 (±0.24) • PubchemFP381 + 1.5 × 10− 2 (±4.8

× 10− 3) • ATSC2s + 0.28 (±7.6 × 10− 2) • nX
(2) 

(n◦ Training set = 59; n◦ Test set = 20; R2 = 0.89; RMSETR = 0.38; Q2
loo =

0.86; Q2
lmo = 0.86; ΔK = 0.088; Q2

F3 = 0.88; RMSETEST = 0.39; R2
YS =

0.070; Q2
YS = − 0.11)                                                                           

The model fits well (R2 = 0.89; RMSETR = 0.38), is internally robust 
(Q2

loo = 0.86; Q2
lmo = 0.86), and externally predictive (Q2

F3 = 0.88 
RMSETEST = 0.39). Furthermore, R2

YS = 0.070 and Q2
YS = − 0.11 exclude 

chance correlation between the selected descriptors and the response, 
while positive value of ΔK confirms the absence of multicollinearity. 
This QSAR covers a wider structural domain compared to literature ones 
with similar performances and complexity [50].

Fig. S1 shows the plot of experimental versus predicted LogRP values 
by the ANSA model (Eq. 2). As was mentioned above, the analysis of the 
AD of the model reported in Fig. S2 does not highlight problematic 
chemicals. Only 2,3,4,5,6-Pentafluorobenzoic acid (ID = 54) has a 
leverage value (h = 0.26) slightly larger than the threshold (h* = 0.25). 
This is probably due to the fact that only ID 54 and ID 73 (3,5-Dibromo- 
4-hydroxybenzotrifluoride) contain fluorine atoms in Dataset ANSA. 
Indeed, not surprisingly, ID 73 has a leverage value (h = 0.24) lower but 
very close to the threshold. However, LogRP is correctly predicted for 
both chemicals with standardised residuals smaller than ± 2.5 standard 
deviation units. The QQ plot (Fig. S3) indicates reasonably normally 
distributed residuals.

The four molecular descriptors selected in Eq. 2 are listed and 
defined in Table S1. These descriptors have a positive relationship with 
LogRP (i.e., positive value of the regression coefficient in Eq. 2), 
meaning that an increase of their values promotes the binding with 
hTTR of chemicals. AATSC1c and PubchemFP381 are the most influ
ential descriptors of Eq. 2, which are also the two most frequently 
selected descriptors across the whole population of developed models. 
AATSC1c is an autocorrelation descriptor which takes into account the 
spatial distribution of charges along the molecular structure at lag 1, 
where the lag is the topological distance between pairs of atoms. Pre
vious literature work [32] demonstrated that the dominant binding in
teractions between halogenated thiophenols and hTTR mainly involve 
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noncovalent interactions, where the spatial distribution of charges can 
play an important role. Since halogenated thiophenols are those with the 
highest values of AATSC1c, among chemicals included in the training 
set, this descriptor could encode information about the tendency of 
chemicals in forming intermolecular bonds with hTTR. PubchemFP381 
is a fragment that, concerning our training set, distinguishes chemicals 
with a phenoxy group (i.e., PubchemFP381 = 1 when at least one oxy
gen atom in the structure is bound to an aromatic ring) from those 
missing this feature (in this case, PubchemFP381 = 0). In the training 
set, this descriptor allows for the identification of phenols, hydroxylated 
PBDEs, and hydroxylated PCBs. The selection of this descriptor is in line 
with literature findings [19,82], showing that the binding with hTTR is 
favoured by the presence of hydroxyl groups, aromatic rings, and 
halogen atoms, which recall the main structural features of THs. This is 
supported by the fact that most of the training set chemicals with 
PubchemFP381 = 1 are those with the largest values of experimental 
RPs. The ATSC2s descriptor reflects how electronic properties, such as 
polarizability and electronegativity, are distributed along the molecular 
structure at a lag 2 distance [98]. As seen for AATSC1c, also ATSC2s 
encodes useful information about the formation of intermolecular bonds 
with hTTR, such as hydrogen bonds where electronegativity is the 
relevant factor [99]. Both AATSC1c and ATSC2s are calculated from the 
Moreau-Broto’s autocorrelation coefficient [100]. The nX descriptor is a 
counter of the number of halogen atoms. Previous studies demonstrated 
that halogen atoms are relevant to the binding of chemicals with the 
hTTR [32,35], recalling the presence of iodine atoms in the THs mo
lecular structures. Globally, in the training set, chemicals with the 
highest experimental response values include from three to six halogen 
atoms. Chemicals with the lowest LogRP values include a lower number 
of halogen atoms, ranging from zero to three. After demonstrating the 
model’s predictive potential through external validation, the model was 
re-developed by combining both training and test sets, in order to use all 
the available information which is expected to improve the model reli
ability. The equation of the model is reported below: 

LogRPANSA = − 1.1 (±0.26) + 1.7 × 102 (±20) • AATSC1c

+ 1.7 (±0.20) • PubchemFP381 + 0.29
(
6.7 × 10− 2)

• nX + 1.5 × 10− 2 (±4.1 × 10− 3) • ATSC2s
(3) 

(n◦ Training set = 79; R2 = 0.89; RMSETR = 0.38; Q2
loo = 0.87; Q2

lmo =

0.87; ΔK = 0.14; R2
YS = 0.052; Q2

YS = − 0.082)                                     

As expected, taking into account the good results of the external 
validation of Eq. 2, as well as the distribution of the training and test sets 
in Fig. S1 and Fig. S2, the values of the intercept and of the coefficients in 
Eq. 2 and in Eq. 3 are very similar. This further confirms the robustness 
of the selected descriptors, and Eq. 3 can be suggested as a reliable QSAR 
for the prediction of LogRP ANSA of new chemicals.

3.2. QSAR model for the FITC-T4 Dataset

The equation of the best QSAR model developed using the infor
mation included in the Dataset FITC-T4 is: 

LogRPFITC− T4 = − 0.84 (±0.35) + 0.32 (±4.8 × 10− 2) • naasC

− 1.6 (±0.48) • SpMin4_Bhs+ 1.0 × 10− 2 (±6.2

× 10− 3) • VE3_Dzs (4) 

(n◦ Training set = 38; n◦ Test set = 12; R2 = 0.85; RMSETR = 0.38; Q2
loo =

0.81; Q2
lmo = 0.80; ΔK = 0.030; Q2

F3 = 0.83; RMSETEST = 0.40; R2
YS =

0.082; Q2
YS = − 0.5)                                                                             

This model has good fitting (R2 = 0.85; RMSETR = 0.38), is internally 
robust (Q2

loo = 0.81; Q2
lmo = 0.80), and has a good external predictive 

potential (Q2
F3 = 0.83; RMSETEST = 0.40). The absence of chance 

correlation between the descriptors and the response is confirmed by the 
Y-scrambling procedure (R2

YS = 0.082; Q2
YS = − 0.15), while the absence 

of multicollinearity is confirmed by the positive value of ΔK.
The plot of experimental versus predicted LogRP values by the FITC- 

T4 model is reported in Fig. S4.
The Williams plot, reported in Fig. S5, shows that all the chemicals 

fall into the structural applicability domain of the model. Only tetra
bromobisphenol A-mono (allyl ether) (ID = 21) has a standardised re
sidual in prediction of –2.6, slightly exceeding the reference range of 
± 2.5 standard deviation units. It is interesting to note that this chemical 
is the only bisphenol derivative in the test set, having also the largest 
value of experimental RP compared to all the bisphenol derivatives 
included in the dataset. This may be the reason of the large residual in 
prediction. The QQ plot (Fig. S6) shows reasonably normally distributed 
residuals. The three molecular descriptors selected in Eq. 4 are listed in 
Table S2.

The most important molecular descriptor is naasC, positively corre
lated with the response. This suggests that larger values of this 
descriptor contribute to a greater binding ability with hTTR. NaasC is an 
electrotopological state index [101], encoding for electronic and topo
logical information, such as electronegativity and polarizability, as seen 
for ATSC2s in Eq. 2; it counts the number of bonds that involve aromatic 
carbons, excluding those with hydrogen and carbon atoms in the same 
aromatic ring. This descriptor, in the training set of the FITC-T4 model, 
discriminates between more and less substituted diphenyls (mainly in 
terms of hydroxyl groups, halogen atoms, ether bonds), phenols, and not 
aromatic chemicals (such as PFAS), with naasC values decreasing in this 
order. Globally, chemicals with the highest values of experimental RPs 
are those with the highest values of naasC. Overall, it seems that the 
presence of hydroxyl groups, aromatic rings, and halogen atoms, is 
important in promoting the binding affinity with the hTTR. These results 
are in agreement with those highlighted for the ANSA model, despite the 
use of different training sets for the development of the two models.

The second most important molecular descriptor is SpMin4_Bhs, 
which takes into account the topology of the chemicals and has negative 
sign in Eq. 4. Indeed, in this dataset, the smallest values of this descriptor 
are calculated for PFAS, which are known to bind with hTTR [30,47,62, 
74]. The correlation between SpMin4_Bhs and LogRP values for the 14 
PFAS in the training set is − 0.88. These results are supported by the 
dependency of SpMin4_Bhs with the carbon chain length of PFAS, which 
specularly reflects the dependency of the binding capacity of PFAS with 
their own carbon chain length. In the literature, it is demonstrated that 
PFAS with a terminal carboxylic acid group, and with a carbon chain 
length between six and ten, are more potent hTTR binders than the 
equivalents with a longer or shorter carbon chain length [47]. For sul
fonic PFAS, a carbon chain length equal to eight optimises the binding 
with hTTR [47,74]. In the studied dataset, SpMin4_Bhs values are lower 
for PFAS with a terminal carboxylic acid group and with a carbon chain 
length between six and ten, while are higher for the equivalents with a 
longer or shorter carbon chain length. Similarly, SpMin4_Bhs values 
exhibited a decreasing trend with increasing length of the carbon chain 
in sulfonic PFAS, reaching a minimum value for the eight-carbon sul
fonic PFAS (sulfonic PFAS with a carbon chain length larger than eight 
are missing in the studied dataset). Therefore, the selection of this 
descriptor in Eq. 4, seems to be particularly related to PFAS disruptive 
effect on hTTR functions, considering its negative sign in Eq. 4. It should 
be noted that naasC and SpMin4_Bhs are two of the most frequently 
selected descriptors across the population of developed models, and the 
two most frequent ones in the population of models developed with 
three variables. VE3_Dzs is the less influential descriptor, which is 
calculated from the Barysz distance matrix that accounts simultaneously 
for heteroatoms and multiple bonds. In Eq. 4, it has a positive correlation 
with the response, suggesting that heteroatoms and multiple bonds 
together have a role in increasing the binding affinity with hTTR. In 
particular, the value of this descriptor increases with the response for 
chemicals that share the same value of naasC. Therefore, VE3_Dzs 
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provides additional information to discriminate different molecular and 
atomic aspects for chemicals having the same value of naasC.

Finally, FITC-T4 model was re-developed by combining both training 
and test sets in order to use all the available information. The equation of 
the full model is reported as follows (Eq. 5): 

LogRPFITC− T4 = − 0.97 (±0.30) + 0.33 (±4.3 × 10− 2) • naasC

− 1.5 (±0.42) • SpMin4_Bhs + 1.1 × 10− 2 (±5.8

× 10− 3) • VE3_Dzs (5) 

(n◦ Training set = 50; R2 = 0.84; RMSETR = 0.38; Q2
loo = 0.81; Q2

lmo =

0.80; ΔK = 0.058; R2
YS = 0.061; Q2

YS = − 0.11)                                     

As was described for Eq. 2 and Eq. 3, the values of the intercept and 
of the coefficients in the Eq. 4 and Eq. 5 are very similar. Eq. 5 is the final 
QSAR for the prediction of LogRP FITC-T4 for new chemicals.

3.3. QSAR model for RLBA Dataset

The first modelling attempt performed on Dataset RLBA highlighted 
four chemicals as frequent outliers in the population of models, which 
may negatively affect their performances: 3,3’,5,5’-tetrachlorobiphenyl 
(ID = 46), 3,3’,4,4’,5-pentachlorobiphenyl (ID = 93), 3,3’,4,5,5’-pen
tachlorobiphenyl (ID = 75), and perfluorobutanesulfonic acid (ID =
109). The LogRP value (0.85) of 3,3’,5,5’-tetrachlorobiphenyl is 2 log 
units larger than LogRP reported for the other four tetrachlorobiphenyls, 
which ranges from − 1.1 to − 1.3. By excluding the two penta
chlorobiphenyls listed above from the dataset, LogRP ranges from − 1.8 
to 0.44 for the other nine pentachlorobiphenyls, while 3,3’,4,4’,5-pen
tachlorobiphenyl and 3,3’,4,5,5’-pentachlorobiphenyl LogRP values are 
respectively − 3.4 and 0.91. Perfluorobutanesulfonic acid is also an 
outlier, whose LogRP value (− 2.5) is smaller compared to the other 
three perfluorinated sulfonic acids included in the dataset (LogRP range 
between − 1.2 and − 0.77). It is important to highlight that the LogRP 
values of these outliers are not averages of experimental values taken 
from different sources, which internal variability may have affected the 
quality of the model.

By removing the aforementioned four chemicals from the dataset, a 
population of models was developed, and the following QSAR was 
selected: 

logRPRLBA = − 32 (±7.0) + 1.8 (±0.29) • PubchemFP590

+ 7.7 (±1.8) • SpMax1_Bhe − 1.3 (±0.43)

• PubchemFP18 − 1.2 (±0.39) •GATS5c − 20 (±7.9)

• AATSC1e + 4.9 × 10− 3 (±2.0 × 10− 3) • AATS4v
(6) 

(n◦ Training set = 100; n◦ Test set = 33; R2 = 0.81; RMSETR = 0.52; Q2
loo 

= 0.77; Q2
lmo = 0.77; ΔK = 0.073; Q2

F3 = 0.69; RMSETEST = 0.66; R2
YS =

0.061; Q2
YS = − 0.088)                                                                         

The RLBA model has good validation metrics values, slightly worse 
compared to the ANSA and FITC-T4 models. This could be due to the 
higher structural heterogeneity and size of the RLBA dataset, compared 
to the other datasets. However, the model has good fitting according to 
R2 and RMSETR values, Q2

loo and Q2
lmo values support the model internal 

robustness, while Q2
F3 and RMSETEST support its external predictivity 

when applied to new chemicals. The R2
YS and Q2

YS values exclude chance 
correlation, while ΔK value greater than zero excludes multicollinearity. 
The removal of the aforementioned outliers led to an improvement of 
the model performances in terms of fitting and internal robustness (i.e. 
former QSARs with six descriptors had R2 from 0.72 to 0.75, RMSETR 
from 0.61 to 0.64, while Q2

loo from 0.68 to 0.71).
Experimental versus predicted LogRP values of RLBA model can be 

found in Fig. S7.

The Williams plot, reported in Fig. S8, shows that most chemicals are 
within the applicability domain of the model, confirming the absence of 
both response and structural outliers, with an exception for the chemical 
perfluoro-n-pentanoic acid (ID = 120). Despite this chemical has a 
leverage value (h = 0.24) greater than the defined threshold (h* = 0.21), 
the model predicts reasonably LogRP (standardised residual smaller 
than ±2.5 standard deviation units). Residuals are reasonably normally 
distributed according to the QQ plot (Fig. S9). The selected molecular 
descriptors are listed in Table S3.

The PubchemFP590 descriptor encodes for the presence of hydrox
ylated aromatic rings in the molecular structure (value 1 of the 
descriptor). It is the most relevant variable in Eq. 6, and its positive sign 
indicates that the presence of the molecular fragment leads to an in
crease of the binding affinity with hTTR. In the training set, this 
descriptor identifies chemicals such as hydroxylated PCBs and PBDEs, 
phenols, parabens, hydroxylated dioxins and furans, hydroxylated 
xanthones, and bisphenol A derivatives. Most of the chemicals with 
PubchemFP590 = 1, included in the training set, are those with the 
greatest values of experimental RPs. This is in agreement with the 
structural information selected in ANSA and FITC-T4 models, despite 
using different training sets. Furthermore, PubchemFP590 highlights 
the same critical structural feature that promotes the binding with hTTR, 
previously highlighted.

The second most relevant descriptor in Eq. 6 is SpMax1_Bhe, which is 
calculated from the Burden matrix and is weighted by relative Sander
son electronegativities. SpMax1_Bhe belongs to the same family of de
scriptors as SpMin4_Bhs, selected in the FITC-T4 model. In Eq. 6, this 
descriptor has a positive sign, indicating its correlation with the 
response. Chemicals with the greatest values of this descriptor are 
mainly PCBs, hydroxylated PCBs, hydroxylated xanthones, then PBDEs, 
hydroxylated PBDEs, PFAS, bisphenol A derivatives, and finally phenols. 
The role of this descriptor may be to take into account the binding ability 
of non-hydroxylated biphenyls (i.e. PCBs, PBDEs) and PFAS, which is 
not considered by PubchemFP590. Phenols are the compounds with the 
smallest SpMax1_Bhe value and the lowest binding affinity, compared to 
chemicals with two aromatic rings. This is not surprising, since the 
binding activity of a chemical is affected by the structural similarity to 
THs (which is high for halogenated and hydroxylated biphenyls and 
biphenyls ethers).

The third most relevant molecular descriptor is PubchemFP18, 
which has an absolute standardized coefficient comparable to 
SpMax1_Bhe in Eq. 6 (–0.45 and 0.46, respectively). In this training set, 
PubchemFP18 identifies chemicals with one or more oxygen atoms 
(value 1 of the descriptor) but no hydroxyl groups bound to the aromatic 
ring. Therefore, the combination of PubchemFP18 and PubchemFP590 
allows for the correct modelling and the discrimination across the ac
tivity of hydroxylated aromatics, mentioned above, from non- 
hydroxylated aromatics (mainly PBDEs) and not aromatic but hydrox
ylated compounds (mainly carboxylic and sulfonic PFAS).

The three less important molecular descriptors selected in Eq. 6 are 
GATS5c, AATSC1e, and AATS4v, which belong to the 2D autocorrela
tion descriptors, which are known for their usefulness and applicability 
[99]. In this context, these descriptors capture the topological distri
bution of several properties of the chemical structures. Differently from 
the other autocorrelation descriptors, which are calculated from the 
Moreau-Broto’s autocorrelation coefficient, GATS5c is calculated from 
the Geary’s coefficient and is related to the distribution of charges across 
the molecules.

Once the model’s predictive ability was demonstrated through 
external validation, training and test sets were pooled and the model 
was re-developed, resulting in the following equation: 
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LogRPRLBA = − 30 (±6.4) + 1.9 (±0.28) • PubchemFP590

− 1.5 (±0.42) • PubchemFP18 + 7.4 (±1.6)

• SpMax1Bhe − 22 (±7.1) • AATSC1e − 1.3 (±0.38)

•GATS5c + 4.9 × 10− 3 (±1.8 × 10− 3) • AATS4v
(7) 

(n◦ Training set = 133; R2 = 0.78; Q2
loo = 0.75; Q2

lmo = 0.75; RMSETR =

0.55; ΔK = 0.067; R2
YS = 0.045; Q2

YS = − 0.065)                                   

Consistently with former models, considering the similarities be
tween the Eq. 6 and Eq. 7, Eq. 7 is suggested for the prediction of LogRP 
RLBA of new chemicals.

Finally, it is interesting to highlight that the main structural features 
selected in Eq. 2, Eq. 4, and Eq. 6, are similar. Although the structural 
information included in the training set of each model led to the selec
tion of different sets of molecular descriptors, the mechanistic inter
pretation of the overall set of the selected descriptors mainly converges 
towards the same key molecular structures that affect binding capacity 
of compounds, as was previously described.

PubchemFP381, selected in the ANSA model, distinguishes chem
icals with a phenoxy group (mainly hydroxylated aromatic compounds). 
Similar structural information (i.e. the discrimination of non- 
hydroxylated aromatic compounds from hydroxylated aromatic com
pounds (e.g., PBDEs and PCBs from their hydroxylated metabolites)) is 
encoded by the combination of PubchemFP590 and PubchemFP18 
selected in the RLBA model. Furthermore, the relevance of substituted 
aromatic rings (in terms of hydroxyl groups and halogen atoms, based on 
our training set) is encoded by naasC descriptor selected in the FITC-T4 
model.

The descriptor nX selected in the ANSA model counts the number of 
halogen atoms, as well as VE3_Dzs, selected in the FITC-T4 model, is 
sensitive to this structural feature.

Autocorrelation descriptors, selected in the ANSA and RLBA models, 
encode for the topological distribution of different properties along the 
chemical structure, which can influence the tendency of compounds in 
forming chemical bonds with hTTR. In particular, the same descriptor 
AATSC1, weighted on charges (i.e., AATSC1c) and on electronegativity 
(i.e., AATSC1e), is selected in the ANSA and RLBA models, respectively. 
The influence of charges is also encoded by the descriptor GATS5c, 
which is selected in the RLBA model.

3.4. Models application to Dataset II and PCA analysis of Dataset III

Equations calibrated on the full datasets ANSA, FITC-T4, and RLBA, 
respectively Eq. 3, Eq. 5 and Eq. 7, were applied to predict missing 
experimental values of T4-hTTR competing potencies of 223 chemicals 
included in Dataset I, leading to Dataset II. Among these chemicals, 73 
belonging to different chemical classes were discarded from further 
analysis because of unreliable predictions provided by at least one QSAR 
(see Section 2.1), mainly due to poor representation of these chemicals 
in the QSARs training sets. In particular, predictions were excluded for 
PFAS and non-hydroxylated PBDEs (ANSA model), as well as for phos
phates and fatty acids (FITC-T4 and RLBA models). Experimental and 
reliable LogRP predictions were available for 150 chemicals and 
included in Dataset III, which was explored by PCA. Fig. 1 shows the 
PCA biplot (scores and loadings) of the first two components, where the 
first component explains more than 65 % of the total variance (cumu
lative explained variance for PC1 and PC2 is about 85 % of the total 
variance). Scores and loadings values calculated for the first two prin
cipal components are reported in Supplementary Material S2.

The loadings are positively correlated and equally important along 
PC1 (internal correlations: LogRP ANSA – LogRP FITC-T4 = 0.44; LogRP 
ANSA – LogRP RLBA = 0.52; LogRP FITC-T4 – LogRP RLBA = 0.49), 
while PC2 highlights intra methods differences between LogRP FITC-T4 
and LogRP ANSA (loadings are opposite in sign).

Considering the values of the loadings and their agreement in the 
biplot, PC1 ranks chemicals from right to left according to their 
increasing T4-hTTR competing potency. Chemicals on the left side of the 
graph are strong hTTR binders with large LogRP values, either experi
mental or predicted by the three QSARs. On the contrary, chemicals on 
the right side of the graph have small values of LogRP, and consequently 
are weak hTTR binders. As expected, the strongest hTTR binders have 
two hydroxylated or non-hydroxylated aromatic rings with a high 
number of halogen atoms (at least three), such as PCBs, PBDEs, and their 
hydroxylated metabolites, halogenated bisphenol A derivatives (e.g. 
tetrabromobisphenol A), halogenated dioxins (e.g. 2-hydroxy-1,3,7,8- 
tetrachlorodibenzo-4-dioxin), highly halogenated phenols (e.g. pentab
romophenol), and thiophenols (e.g. pentachlorothiophenol). Chemicals 
with less or no substituents as hydroxyl groups and halogen atoms, with 
one or two aromatic rings, and with heteroatoms such as nitrogen and 
sulphur in their structure, are less powerful competitors with T4 in hTTR 

Fig. 1. Biplot resulting from PCA analysis carried out on Dataset III to compare experimental or predicted LogRPs for the three in vitro assays ANSA, FITC− T4, and 
RLBA. For graphical visualization, all the compounds in Dataset III have been categorised on the basis of their respective experimental or predicted LogRPs, according 
to the classes defined by Yang et al. (strong hTTR binder: LogRP ≥ − 1.26; moderate hTTR binder: − 2.26 ≤ LogRP < − 1.26; weak hTTR binder: LogRP < − 2.26) [50]. 
Different combinations of the aforementioned classes in experimental or predicted data define categories from 1 to 8 (e.g., a chemical falls into category 1 if it is a 
strong hTTR binder according to each experimental or predicted LogRP; a chemical falls into category 8 if it is a weak hTTR binder according to each experimental or 
predicted LogRP). Additional details on the definition of the eight categories are reported in Supplementary Material S2.
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binding. Examples of weaker hTTR binders are non-hydroxylated and 
low halogenated PCBs and PBDEs, and related sulfated metabolites, one 
or two halogen-substituted thiophenols (e.g. 2-bromothiophenol) and 
phenols (e.g. 3-chlorophenol), xanthone derivatives (e.g. 2-hydroxy-1- 
methoxyxanthone), and parabens (e.g. ethyl- and propylparaben). Tris 
(2-chloroethyl) phosphate has the lowest LogRP values experimentally 
measured with the ANSA method and predicted by FITC-T4 and RLBA 
models (all LogRPs less than –3). This chemical does not have any aro
matic ring.

Finally, PC2, which explains about 20 % of the residual variance, 
highlights that intra methods differences are more evident between 
LogRP-FITC and LogRP-ANSA values, in particular for moderate/weak 
binders. These differences may be explained by a prevalence of pre
dicted LogRP values by Eq. 3 and/or Eq. 5 for substances with PC2 scores 
smaller than − 1 or PC2 scores greater than 1. Therefore, the separation 
of the loadings LogRP FITC-T4 and LogRP-ANSA along PC2, is probably 
due to the uncertainty in prediction and to the intra methods experi
mental uncertainty.

4. Conclusions

On the basis of the increasing concern against EDCs and the need for 
their early identification using in silico approaches, this work was pri
marily focused on the development of three new MLR QSARs, to detect 
THSDCs by predicting the competition with the T4 for the binding with 
hTTR. These QSARs were developed using new and curated datasets 
which included, to the best of our knowledge, all the currently available 
quantitative experimental binding affinity values measured using three 
vitro assays (i.e., ANSA, FITC-T4, and RLBA). QSARs developed to pre
dict LogRP values for the ANSA and RLBA datasets, which are based on 
heterogeneous training sets characterised by broad response ranges 
(from weak to strong hTTR binders), have wider applicability domains 
compared to existing similar QSARs. To our knowledge, no QSARs have 
been developed, so far, to predict LogRP measured with the FITC-T4 
methodology, other than the here proposed model.

The mechanistic interpretation of the descriptors selected in Eq. 2, 
Eq. 4 and Eq. 6, is coherent with the most important structural features 
which are known to be involved in the binding of chemicals to hTTR, 
such as hydroxylated and halogenated aromatic rings, as well as de
scriptors encoding for specific electronic environments. The binding of 
chemicals to hTTR was further investigated running PCA analysis on 
experimental and reliable LogRPs predictions for the three datasets. PCA 
ranked the studied chemicals along PC1, according to their relative 
competitive potency and confirmed that the structural features 
mentioned above are relevant to distinguish between strong and weak 
binding activity.

A limitation of this study is related to the fact that some specific 
chemical classes (i.e. PFAS, non-hydroxylated PBDEs, phosphates, and 
fatty acids) were not included in all the training sets, and therefore they 
were predicted outside the applicability domain of one or more of the 
here proposed QSARs. This led to the exclusion of these chemicals from 
the PCA analysis, which underlines the need for additional in vitro tests 
in these specific areas of the structural space. These new data would be 
useful to refine the existing QSARs, and to generate new models 
covering wider structural domains. Furthermore, as the proposed 
models target only hTTR binders, they may overestimate the binding 
affinity of inactive compounds.

However, the here proposed QSARs, which are characterised by low 
complexity and are statistically robust and predictive, can be applied for 
the early screening of THSDCs on the basis of the molecular structure. To 
ease their application and support hazard assessment procedures, they 
have been implemented in the QSAR-ME Profiler beta version 1.02 
software (freely available at https://dunant.dista.uninsubria.it/qsar/).

Environmental implication

Thyroid Hormone System-Disrupting Chemicals (THSDCs) are 
endocrine disruptors able to induce severe adverse effects in living or
ganisms. International regulations call for the identification, regulation, 
and substitution of these hazardous substances. This study provides in 
silico models to identify potential THSDCs from the molecular structure. 
These models are based on a new curated collection of data for het
erogeneous organics and cover large applicability domains. The models 
are valid, time and cost-effective alternatives to experimental tests to 
speed up hazard and risk assessment procedures, and to provide sug
gestions and mechanistic insight for the identification of THSDCs.
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