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The scientific theorist is not to be envied. For Nature, or more precisely experiment,
is an inexorable and not very friendly judge of his work. It never says “Yes” to a theory.

In the most favorable cases it says “Maybe”, and in the great majority of cases simply “No”.
... Probably every theory will some day experience its “No”.

Most theories, soon after conception.
A. Einstein apud J. Agassi [7].



Abstract

The present investigation is a return to an old, and yet open, discussion about the relation between
gravitational and weak interactions. Pauli’s conjecture on the possibility of new physics being related
to the square root of the gravitational constant is addressed. A particular framework were gravity is
induced by four-fermions is formulated. A general analysis of the internal consistency of spin connections
in Riemannian geometry is considered, with special attention to the arbitrariness entailed by the Fock
connection. In particular, the Fock connection is a non-Abelian gauge field of the Clifford bundle. We
propose, as a possible synthesis of this analysis, that new degrees of freedom may arise from the group
of automorphisms of the associated Clifford bundle. If this theory results internally consistent, a new
framework embracing the electroweak model and sterile neutrinos coupled to gravity is envisaged, without
changing the (external) properties of the physical spacetime.
Keywords: algebra automorphisms, enlarged internal groups, gravitational four-fermions, Pauli square
root conjecture, spin connection.
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1. Introduction

One should always guard against getting too attached to one particular line of thought.
P. A. M. Dirac in [11], p.135.

Few topics, if any, were more systematically scrutinized in theoretical physics than the theory of
fermions in Clifford algebras. Immediately after its introduction in physics by the seminal papers of Dirac,
“The quantum theory of the electron” (1928) [122, 123], it became a subject of analysis in Lorentzian
manifolds [24, 98, 174, 175, 179, 242, 259, 349, 392, 419, 425, 446, 447, 463, 469, 545–547, 554, 560,
567], as well as in higher dimensional [60, 126, 270, 281, 390, 391, 399, 400, 464], Euclidean [74, 385],
projective [465–468, 491, 492, 519, 520], and quaternionic [91, 119, 297–300] spaces1.

In the 1950s, new directions for inquiring nature were unveiled with the detection of the electron
neutrino [429–431], and the violation of spatial reflection in the 𝛽-decay [561] and 𝜇-decay [188, 195]
processes. Those experiments2 demarcated a new stage for the problem of parity conservation in weak
interactions, under discussion since, at least, the work by Bargmann and Wigner [26], followed by Yang
and Tiomno [496, 565], Zharkov [578], Berestetskiĭ [28, 29], Schwinger [474], Caianiello [69], Wick,
Wightman and Wigner [552], Lüders and B. Zumino [328–330] (see, in particular, the note 2 in [330]),
Zeldovich [569, 570, 574, 575], Gulmanelli [213], T. D. Lee and Yang [312], Salam [442], and Watanabe
[530], to name but a few.

If the neutrino is massive or not, which translates into the question if the neutrino has a Dirac or a
Majorana spinor representation, is a key problem within parity violation of weak interactions that received
two divergent interpretations: T. D. Lee and Yang [312], Landau [303], and Salam [442] suggested the
two-component theory of longitudinal neutrinos; in dissonance, following Gell-Mann and Pais [200] idea
of 𝐾𝑜 ⇄ 𝐾̄𝑜 oscillations, Bruno Pontecorvo [420] leaded the avenue of mixed neutral particles, violating
the transitions 𝜈𝐿 ⇄ 𝜈̄𝑅 forbidden by the two-component theory [41]. Despite the experimental success of
the first, the second was not excluded, and this divergence remains open up to date [40].

Consequently, a review of Fermi’s contact interaction [163, 164],

LF = −𝐺𝐹√
2

[︂
Ψ𝑝 (𝑥)𝛾𝜇Ψ𝑛 (𝑥) Ψ𝑒 (𝑥)𝛾𝜇Ψ𝜈 (𝑥)

]︂
+ h.c. (1.1)

was advanced3 by Sudarshan and Marshak [489, 490], and followed by Feynman and Gell-Mann [168,
1For an historical appraisal of the development of Clifford algebras, see Dieudonné’s review in [84], and Lounesto in [432].
2Some authors, including Wigner himself, suggested that Madame Wu’s results could had been anticipated by Cox,

McIlwraith and Kurrelmeyer [92] in 1928. See the discussion session after Yang’s contribution [562] to the Colloque International
sur l’Histoire de la Physique des Particules (Paris, 1982).

3In contradiction with the current empirical data at the time [10], according to which “the beta interaction is scalar”,
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199], Sakurai [441], and J. Leite Lopes [314], in terms of the weak 𝑉 − 𝐴 current interaction [579],

Leff = −𝐺𝐹√
2
𝐽†𝜇 (𝑥) 𝐽𝜇 (𝑥) + h.c. (1.2)

where

𝐽𝜇 (𝑥) = Ψ𝑒 (𝑥)𝛾𝜇 (1 − 𝛾5)Ψ𝜈 (𝑥) = 2𝑒𝐿 (𝑥)𝛾𝜇𝜈𝑅 (𝑥). (1.3)

The first synthesis4 of an intense decade of debate came in 1961 when Glashow [206] achieved the
electro-weak unification. The standard model of particle physics became self-contained in 1967 with the
introduction of the Higgs boson by Salam [443], and Weinberg [533]. The extension to include quarks
came in 1970, by Glashow, Iliopoulos, and Maiani [207]. This period is widely known and extensively
documented [1, 39, 64, 75, 82, 296, 311, 315, 354, 373, 424, 481, 487, 522, 536, 540, 563, 580].
Currently, Fermi’s theory (1.2) is assumed to correspond to the effective (tree level) low energy limit of the
intermediate vector boson theory, where the weak current 𝐽𝜇 (𝑥) in (1.2) is decomposed into the leptonic
and hadronic sectors [82, 413, 579].

What seems less emphasized in the literature is the way how parity violation in weak interactions
became the seed for a renewed interest in to understand the language connecting neutrinos to the gravita-
tional interaction, and, in particular, the algebra of spinors in curved spaces. Why gravity? Because it was
believed, in the 1950s, that the neutrino of the electron, the only known type of neutrino at the time5, was
massless, electromagnetically neutral, and weakly universal.

Dicke [115], and by Brill and Wheeler [62] figure among the pioneer papers to address this situation
soon after the refutation of parity conservation by neutrinos and muons. We shall recall that Wheeler
was a fervent supporter of the geometrization program of all fundamental interactions [341, 548–550], an
interpretation that became predominant in the gravitational physics of the second-half of the 20th century.
For the neutrino-gravity coupling in particular, Wheeler stated the problem of reducing the neutrino to the
metric field, known in the literature as the Rainich problem for neutrinos [243, 294]. The authors of [62]
conclude with the typical puzzle posed by spinor fields to the geometrization program:

What is there about the description of the geometry of space which is not already adequately
covered by ordinary scalars, vectors, and tensors of standard tensor analysis? To this question

Zeldovich and Gershtein [575] discussed in 1955, with “no practical significance but only methodological interest”, how the
conservation of weak vector and electromagnetic currents might be related. In 1955, Landau [304] discuss the limits of QED at
high energies, recognizing the nonrenormalizability of the pseudovector coupling.

4According to J. Tiomno in [12], the idea of unify electromagnetism and weak interactions was proposed in 1958 by J. Leite
Lopes [314]. Back in 1938, O. Klein [281] suggested a 5D theory of gravity where the neutrino and the electron constitute the
same family, both described by massless Dirac spinors (but one should recall that there was no distinction, at that point, between
strong and weak interactions, cf. [212]). See also Salam and Ward comments in [445], Weinberg Nobel lecture [535], and Leite
Lopes lectures on weak interactions [316].

5The distinction between the electron neutrino 𝜈𝑒 and the muon neutrino 𝜈𝜇 was introduced only in 1962 with the Brookhaven
neutrino experiment [95]; the third generation of neutrinos, namely the tau neutrino 𝜈𝜏 , was announced in 2000 by the DONUT
Collaboration [282]; see also [39].
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the mathematics of spinor fields gives a well known answer: spinors allow one to describe
rotations at one point in space completely independently of rotations at all other points in
space−rotations that have nothing to do with the coordinate transformations that are treated
in the usual tensor analysis. Fully to see at work this machinery of independent rotations at
each point in space, we do best to consider the spinor field in a general curved space, as in this
paper. But the deeper part of such rotations in the description of nature is still mysterious.
Brill & Wheeler [62], p.479.

The explanation why spinors do not behave like vectors, and how they can be defined in (pseudo)
Riemannian manifolds, only came to light after the meeting of topology with differential geometry, and the
subsequent introduction of Ehresmann’s connections and the theory of fibrations in theoretical physics, cf.
Rudolph and Schmidt [436]; we also refer to Dieudonné [118, Part 3, Chp. III], and Kay [261].

Besides, parity has an additional deviation from the classical theory of transformations, as inaugurated
in physics by H. Weyl [452, 545, 546]: while Weyl identified gauge symmetry with the group of continuous
transformations that leaves invariant the physics described by the theory, parity 𝑃 ∈ Aut(𝐶𝑙 (𝑉, q)) is, in
the case of fermions, a Clifford algebra automorphism, and belongs to the set of discrete automorphisms
A = {𝐶, 𝑃,𝑇} along with charge conjugation 𝐶 (Dirac, 1931 [125]), and time inversion 𝑇 (Wigner, 1932
[555]). Together, 𝐶𝑃𝑇 constitutes a fundamental symmetry to be satisfied by any local Lorentz invariant
theory of fermions [50, 104, 265, 579].

In this way, the puzzle on spinors and curved space, neutrinos and gravity, discrete and continuous
transformations, seems to be inextricably linked to the dialectic inquiry into the realms of algebra and
geometry. In the 1950s, a variety of alternative views to tackle the neutrino-gravity coupling problem
emerged. Some seeking for the geometrization of spinors, some dealing with the spinor-algebraic char-
acterization of spacetimes. However lay the emphasis on algebraic or geometrical methods, the decade
post-1957 portrays a vivid and fecund chapter in the history of theoretical physics, as we shall evoke some
examples in the following.

1956a Mario Schönberg [455, 456, 462] was among the first to explore the properties of Graßmann and
Clifford algebras, as well as its extensions to symplectic spinors, towards an unified approach to
field theories; subsequently, in the Part IV of a series of five communications [457–461], Schönberg
addresses the possibility of the Lee-Yang theory be related to the intrinsic orientability of spacetime:

The recent discoveries about the breakdown of reflection invariance in the interactions
involving neutrinos show that the space-like sections of the space-time are endowed with
a screw-orientation, an intrinsic orientation not depending on the embedding into the
four-dimensional space-time.
M. Schönberg [460], p. 276.

A partial account of Schönberg’s ideas is presented in [186]. About a decade later, Hestenes [237,
238] eventually started to pursue a similar path towards an algebraic definition of spinors [347].
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Symplectic spinors were treated by Kostant [286], while symplectic Dirac operators were defined
only in 1995 by Katharina Habermann, cf. [215, 216, 336].

1956b Oskar Klein [273, 276] and Bertel Laurent [305] review Bargmann’s paper [24] on the introduction
of Dirac’s theory in curved spacetime, insofar as to discuss a generalized Dirac adjoint that preserves
unitarity; Laurent [306–308] further analysed Klein’s covariant formulation by relaxing the unitarity
of the Jacobian; a perspective from the Palatini variational principle is carried on by Klein [277–280]
so as to embrace a generalized principle of equivalence in the unified picture including gravity (see
also Dirac in [121]);

1959 Louis Witten [558] establishes the first correspondence between the invariants of GTR and spinors,
by using Petrov’s classification of Einstein spaces [105, 414]; in 1960, Penrose [404] rephrases
Petrov’s method in a spinor approach to GTR; a new variant, self-contained version of the spinor
method was proposed by Newman and Penrose [358] in terms of double-null tetrades; the spinor
method was systematically extended to the theory of twistors by Penrose and Rindler [406], where
the spacetime is replaced by the space of light rays (see also [334, 418]).

1960 Louis de Broglie [99] revives his iconic program of Double Solution, with a critical appraisal of his
original ideas (1925-1927), Pauli’s objections at the 1927 Solvay Congress, Dirac’s theory (1928),
and further developments by Bohm, Vigier, and Petiau (1952-1954); de Broglie inherits Einstein’s
classical approach to physics, without ignoring the dense discussion in the 1930’s and 1940’s on the
role of Planck’s constant in the quantum approach to gravity [88, 98]; and yet pursues, in a rather
independent path, a defense of objective particles’s trajectories aiming at a dynamical synthesis of
gravity and matter:

The goal to be achieved would be to represent every type of particle (including the photon)
as a singular region in a 𝑢-wave field properly incorporated into the structure of space-
time. (...) Einstein has called these fields containing strong local condensations, which
he thinks must be the true representation of particles, “bunch-like fields”. (...) the 𝑢-wave
theory may perhaps one day help to achieve a magnificent synthesis of General Relativity
and Quantum Theory.
de Broglie [99], pp.291-292.

Currently, a modified version of de Broglie’s program is referred to as the de Broglie-Bohm theory,
and has unique implications in cosmology, where the Copenhagen interpretation unequivocally fails
due to the inexistence of an external observer in a classical domain [387, 415].

1961a C. Møller [343–345] evaluate gravity as described by all the 16 degrees of freedom of tetrad fields,
which are required to be invariant under constant tetrad rotations; the consequences and further
extension to the coupling with neutrinos were investigated by Pellegrini and Plebański [403]; there,
the torsion appears to be naturally identified with the antisymmetric part of the energy-momentum
tensor of Dirac’s theory; independently of Møller’s hypothesis, Finkelstein [171], Rodičev [434],
and Ivanenko [246] arrived at the neutrino-gravity coupling via torsion;
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1961b Kibble [264] applies the Palatini variational principle to infer a non-symmetric contribution to
the Levi-Civita connection of GTR; the interpretation given by the author is that fermions in a
gravitational potential, in the gauge approach of Utiyama [513], give rise to a repulsive axial-axial
coupling term ∼ 𝜅(𝜓𝛾𝜇𝛾5𝜓)2 due to the torsion of spacetime structure; since then, the Einstein-
Cartan theory has been taken as an alternative avenue to address the strong regime field of gravity in
high energy physics [32, 52, 71, 101, 117, 158, 159, 196, 226, 235, 244, 331, 504, 516];

1963a E. Lubkin [327] approaches, apparently for the first time, gauge invariance in the fibre bundle
language, introducing a new perspective on Utiyama’s approach [513] to the analogy between the
Yang-Mills theory and GTR;

1963b in parallel, the definitions of spin manifolds and Clifford modules appeared for the first time in the
literature with the works by Milnor [340], and Atiyah, Bott and Shapiro [19], respectively;

1964-70 Lichnerowicz [318–320], Trautman [502, 503], Penrose [405], Geroch [202, 203], and Hermann
[236], among others, push forward a systematic development of field theory in the fibre bundle
language; in this period, it is formulated our modern view of matter and gauge fields [350, 436];

After the theoretical completion of the Salam-Glashow-Weinberg model, and its acknowledge at the
1978 Tokyo conference as the standard model of electro-weak interactions, the neutrino-gravity coupling,
although still present in the literature [101, 107–109, 162, 197, 198, 204, 294, 482, 559], started to lose its
appeal as the road to unification. In its place, it was believed that strong gravity could play a distinctive
role in the hadronic sector [102, 226, 244, 482].

Besides, the Bargmann-Wigner formalism [26] of Dirac’s equation received a plethora of modifications
so as to include explicit dependence on the chiral element of the relying Clifford algebra [214, 254, 356,
531, 532]. Also, the Fierz-Pauli formalism [170] of generalized spin became an attractive point of
discussion [253], specially with respect to the half-integral spin of Rarita-Schwinger theory [428], that
would eventually lead to the so-called theory of supergravity [112, 134, 184, 185, 334].

Furthermore, a variety of extensions to the SGW-model brought to light the properties of Clifford
algebras and spin structures, as the Spin(10) model, proposed independently by Georgi and Glashow [201],
and Fritzsch and Minkowski [189]; the Pati-Salam model [342, 388, 389]; and more recently, the division
algebras in the lines of Dixon [129], Furey [190–192] and Singh [480], as well as the spinor-algebraic
approaches developed by Trayling and Baylis [506], Castro [78, 79], Lopes and da Rocha [325], Hoff da
Silva et al [239, 240], Prinz [423], Todorov [497–500], Krasnov [292, 293], Varlamov [518], to mention a
few. Partial accounts are given by Krasnov and Percacci [291], and Chester, Marrani and Rios [83].

Unification might be aimless, though, if no better understanding of each interaction, gravity and weak
interactions, is achieved previously. Explanation, rather than reduction, should guide our inquiry, even if
the latter is desirable as an emergent6 synthesis of our theories in its maturity. While unification aims at

6This is Pauli’s view of unification, as presented in the Sec. 2.2. Later, I also found in Popper [421, pp.290-295] a very
similar analysis.
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the mathematical structure of our theories, explanation inevitably entails bold physical conjectures. New
physics, or new synthesis as I prefer, is more likely to emerge from new conjectures, a feature that hardly
will be achieved in terms of mathematical resets. Hence, focusing on Clifford algebras per se could be a
pseudodirection.

At this point, an unavoidable question arises: is it still possible to look at parity violation of weak
interactions, and its relation with gravity, from a renewed perspective? Are there elements claiming for a
critical revision of the standard structures of theoretical physics? The present work’s proposition pursue
an affirmative answer not only as possible, but as inexorable.

For a unnoticed conjecture, that goes back to Bohr, Pauli, and Wataghin, on the relation between
gravity and weak interactions will be retaken into consideration. Although the Planck scale has an eminent
position in quantum approaches to gravity, its relation to Fermi’s coupling scarcely play a key role in the
deductive structure of physical theories. To bring back this situation to current research is the next chapter’s
challenge (Chapter 2).

The following steps correspond to a preliminary implementation of Pauli’s conjecture (Chapter 3),
and to the critical revision of its internal consistency (Chapter 4). Each section of the following chapters is
interpreted by the author as an open line of research. The challenge is how to make of them a consistent,
and coherent, research program of long term. To our view, a potential synthesis should retain, from
epistemology, the role of deducibility in the construction of new testable physical theories; from theoretical
physics, field thery and the weight of bold conjectures, as exemplified by Pauli’s square root conjecture;
and from mathematical physics, the theory of fiber bundles as the natural language to deal with Clifford
algebra automorphisms associated to Riemannian geometry.
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2. Gravity and weak interactions

Whenever the need for a new theory is felt in some field of factual science, both the theory builder and the
metascientist are confronted with the problem of choosing the kind of theory that should be tried next. Shall the

next endeavor be in the direction of increasing detail and depth (growth of the population of theoretical entities)? Or
shall it eschew speculation on what goes on in the innermost recesses of reality and focus, on the other hand, on data

fitting, with the sole help of fairly directly observable variables? In other words, shall the future theory be
representational or phenomenological, shall it be conceived as a more faithful picture of reality or only as a more

effective tool for summarizing and predicting observations?
M. Bunge [65], p.234.

The problem-situation posed by Mario Bunge in the excerpt above gives us a glimpse about the status
of field theories since Maxwell electrodynamics. From a logical point of view, one expect all physical
theories1 to share some degree of deducibility, that is to say one expect to infer its results from a minimal set
of initial hypotheses, as much as possible without relying upon eventual additional inputs to deal with the
difficulties appearing along the road. But the relevance of how much deductive a theory is only becomes
explicit when testability2 is taken into account. By increasing the degree of deducibility of a theory, one
also increases its degree of refutability. If so, then effective, or phenomenological, approaches can be
viewed as the method of weakening the deducibility of physical theories by recognizing, for instance, that
perturbative renormalizability is a too sharp razor to select the good candidates to admissible (quantum)
field theories.

Gravity is the perturbatively non-renormalizable interaction that experienced the transition from a
representational to a phenomenological picture to the fullest. The highest level of deducibility of the
General Theory of Relativity (GTR) is achieved with the vacuum solutions. The introduction of matter
into the Einstein-Hilbert action is the first step towards ambiguity. The further introduction of an unknown

1By theory, we shall refer, with a certain degree of ambiguity, to a not necessarily deduced (infinite) set of statements 𝜏
containing a minimal (finite) subset 𝜘 ⊂ 𝜏 of premises (principles, postulates, or axioms; these terms are often interchangeably
in the physics literature). We shall call 𝜘 the constituting set of a theory. In general, the subset of statements 𝜍 fixing the
physical boundary of a new theory 𝜏′ in terms of the already tested one may be classified into auxiliary, ad hoc, and constitutive
hypotheses. Besides, it is a rather non trivial aspect that the same theory may have different degrees of deducibility, as is the
case of GTR (Section 2.1).

2We follow the testability criteria introduced by Popper [422] to distinguish between auxiliary and ad hoc hypotheses. An
additional hypothesis that can be tested independently from the constituting set 𝜘 is auxiliary, rather than ad hoc. While ad hoc
hypotheses are typically invoked in order to avoid the theory’s refutation, the auxiliary hypotheses, on the contrary, increases
the degree of testability of the theory by fixing its limits of validity with respect to the already tested ones. Moreover, it is
clear that an ad hoc hypothesis may become auxiliary, as it happened, for instance, with Planck’s relation 𝐸 = ℎ𝜈, and Pauli’s
neutrino hypothesis. The Higgs boson and the Maldacena conjecture, on the other hand, seems to remain ad hoc up to date.
By ‘constitutive hypothesis’, we shall refer to those statements in 𝜘 that play the role of fixing the physical boundary of the
theory. Since a mathematical hypothesis may not necessarily carry physical content, it is natural to split the three categories of
statements (auxiliary, ad hoc, and constitutive) into mathematical and physical ones. In this way, gauge invariance can be seen
as a selection rule of those mathematical statements within the theory that are also physical.



8

type of matter as an additional source to the Einstein’s field equations aimed to save the data breaks its
refutability3. Thus, deducibility provide for a better elucidation when dealing with effective approaches in
theoretical physics. In short, testability should not be taken for granted.

Figure 2.1: Diagramatic view of deductive systems in theoretical (mathematical) physics: every leap is guided by
a physical (mathematical) conjecture. Only those tests that can potentially refute the theory are admissible as to
support it. Hence, ad hoc hypotheses are mainly responsible for precluding the theory’s testability. Adapted from
[138].

That GTR has to be modified was recognized in 1916 by Einstein [141] himself4. Nowadays, the
question is how to pursue a theory of gravity that can be made compatible with the picture of Quantum
Field Theories (QFTs). Such a candidate is expected to exhibit its typical features at the Planck scale as a
potential lower bound for all known interactions [2, 5, 103, 271, 272, 274, 275, 304, 381–383]. The search
for a ‘quantum gravity’, as it is refered to in the literature [3, 46, 47, 67, 90, 132, 167, 241, 265, 409, 494,
524, 576], is an open discussion, and a breakthrough in the road is still lacking5. It might be helpful to get
some insights from the most notable alternative programs to the standard picture composed by GTR and
the SGW-model. For the length scale problem may gives us a clue not only about the difficulties involved,
as well as how deducibility and testability are implicated by any new development (Section 2.1).

3The only empirical tests that are admissible as to support (or to corroborate) the theory are the ones that can potentially
refute it. According to Popper, irrefutability rules out the theory’s corroboration, and, therefore, its status as scientific. That
is why ad hocness should be avoided as far as possible. On the claim [346] that it is possible to falsify particular subcases of
GTR+ΛCDM, one might recall that unless the ad hoc hypothesis become auxiliary (testable independently from the model),
the multiplicity of ‘theoretical entities’ is innocuous. That is another reason to take deducibility into consideration, once it
allows one to measure the contrast between representational and phenomenological approaches without relying exclusively upon
refutability. In addition, theories can not be refuted by theories, as suggested by one of the reviewers of [367].

4See also Kiefer [265, pp.26-27].
5The leading difficulty with the program of quantum gravity is the lack of an objective problem to start with, which depends,

by its turn, on the yet open problem of how to describe the gravitational field. If gravity (as a spin 2 field) is expected to
be quantized as matter fields are, then GTR hardly is the proper framework for that path. If instead gravity is kept at the
semiclassical level and only matter fields are quantized, then one faces again inconsistent Einstein’s field equations. One shall
recall Feynman’s remark on the quantization of gravity: “It’s clear that the problem we are working on is not the correct problem;
the correct problem is: What determines the size of gravitation?” [576, p.77]. Then one is led, once again, to the claim of the
Planck scale as a lower bound for all known interactions. However, what explains the introduction of the quantum of action ℏ
into the framework of GTR?
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Coincidently or not, the weak interactions of old also are perturbatively non-renormalizable, bounded
by a well defined length scale, and the most universal6 among the currently known interactions−aside from
gravity. Due to dimensional reasons, these features were not unnoticed by Pauli, who identified in the
hierarchy problem between gravity and weak interactions the possibility of a distinct path in understanding
the quantum effects of gravity. An attempt to rescue this unfashionable discussion is presented in the
Section 2.2.

The most striking development in the search for the coupling between gravity and weak interactions
was achieved even before the electroweak unification in terms of the Einstein-Cartan theory, which is seem
as an effective approach in particle physics when gravity is taken into account [117, 337]. By effective, we
shall refer to any theory that cannot be built without ad hocness. This criteria seems to cover not only all
QFTs, including the so called Effective Field Theories (EFTs), as well as modified theories of gravity, as is
the case of ECT. This is the scope of Section 2.3.

2.1 The length scale problem

Constitutive, ad hoc, and auxiliary hypotheses − Deducibility in GTR − Extensions of GTR (Weyl,
Kaluza, Klein) − Discretization of spacetime − Born-Infeld theory − Heisenberg’s program.

There is hardly a more transversal problem in theoretical physics than the one of a characteristic,
fundamental, or minimal length (energy) scale associated to each one of the four interactions. This is a
modern way of stating the problem of how to demarcate the limits of validity of a physical theory in terms
of the typical range of the interaction under description. It is also a way of to quest for the truly existence of
four distinct, irreducible, albeit not completely independent, physical interactions. It contains the Cluster
Decomposition Principle [68, 536] as auxiliary hypothesis.

Some of the bold conjectures on gravity, electromagnetic, and weak interactions during the 1915-1939
period were able to present a well posed length scale, and hence a well defined structure of deducibility for
the respective physical theories. For this reason, the response to the length scale problem is often given by
a constitutive hypothesis, which shapes the new theory by including the old one as a limiting case7.

Schwarzschild solution. To illustrate this point, let us consider the spherically symmetric solutions of
GTR, namely [87, 418, 485]

𝑑𝑠2 = e2𝜈𝑑𝑡2 − e−2𝜈𝑑𝑟2 − 𝑟2 (𝑑𝜃 + sin2 𝜃𝑑𝜑2) , (2.1)

where

𝑔𝑜𝑜 = e2𝜈 = 1 + 𝐶
𝑟
+ 1

3
Λ𝑟2 + 𝑒

2

𝑟2 . (2.2)

6Only gluons, among the known elementary particles, do not interact weakly.
7That is precisely what constitutive is supposed to mean. See also [422, § 79].



10

The exact solution of Einstein’s vacuum equations,

𝑅𝜇𝜈 = 0, (2.3)

was found independently by K. Schwarzschild [472] and J. Droste [133], and it corresponds to the particular
case8 of (2.2) for Λ = 𝑒 = 0. In the weak field regime, the GTR is expected to reproduce Newtonian
gravity, which is fixed in the Schwarzschild solution by identifying the constant of integration 𝐶 in (2.2)
with the Newtonian potential 𝜙 [4, 87, 534],

𝑔𝑜𝑜 ≅ 1 + 2𝜙
𝑐2 ≅ 1 − 2𝐺N 𝑀

𝑐2𝑟
, 𝜙 = −𝐺N 𝑀

𝑟
, 𝑟 ≪ 𝑀 (𝑀 > 0). (2.4)

Hence, the Schwarzschild spacetime is a static9, oriented, 4-dimensional product manifold of R3 ∩
{𝑟 > 𝑎 > 2𝑚} ≅ 𝑆2 × R+ by R, endowed with a metric (2.1) with auxiliary condition (2.4). The notation
2𝑚 ≡ 2𝐺N𝑀/𝑐2 is oftenly used in order to absorb the gravitational constant 𝐺N and the velocity of light 𝑐.

Furthermore, the Schwarzschild spacetime is asymptotically flat: without any further assumption,
as 𝑟 → ∞, the solution of Einstein’s equations in vacuum reaches the Minkowski spacetime in spherical
coordinates. Also, the validity of (2.4) is restricted to the exterior region 𝑟 > 2𝑚,

2𝑚 =
2𝐺N 𝑀

𝑐2 ≈ 3
(︃
𝑀

𝑀⊙

)︃
km, (2.5)

where 𝑀⊙ = 2 · 1033g is the mass of Sun [526]. The Schwarzschild spacetime has a spurious singularity
at 𝑟 = 2𝑚, and a physical singularity at 𝑟 = 0. The region 𝑟 < 2𝑚 is only mathematically complementary
to 𝑟 > 2𝑚, where the constitutive (physical) part of the Schwarzschild spacetime holds. Notwithstanding,
the region 𝑟 < 2𝑚 is supplemented with auxiliary hypotheses (like the equation of state) in order to build
the so-called interior solutions [153, 418, 526].

The formal structure of the Schwarzschild spacetime is of particular interest once it shows why GTR
is the prototype of a deductive theory in physics: the three classical tests of GTR, namely the light bending,
the gravitational red shift, and the perihelion precession, are tests of the Schwarzschild-Droste solution.
It also exhibits how the degree of deducibility varies within GTR10, and the universal role of Einstein’s

8The other cases are: 𝐶 = 𝑒 = 0 (De Sitter, 1916), Λ = 0 (Reissner, 1916; Nordström, 1918), 𝑒 = 0 (Kottler, 1918). More
general solutions were found by Cahen and Defrise (1968), and by Kinnersley (1969), cf. [418]. Higher dimensional extensions
of spherical solutions are examined in [21].

9A result found independently by J. T. Jebsen (1921) and G. D. Birkhoff (1923), and usually refered as Birkhoff’s theorem.
See also the footnote on p. 174 of [418].

10“(...) energy-momentum tensors, however, must be regarded as purely temporary and more or less phenomenological
devices for representing the structure of matter, and their entry into the equations makes it impossible to determine how far the
results obtained are independent of the particular assumption made concerning the constitution of matter. Actually, the only
equations of gravitation which follow without ambiguity from the fundamental assumptions of the general theory of relativity
are the equations for empty space (...).” Einstein, Infeld, and Hoffmann [152, p.65]. According to Pauli [396], “this tensor
[of energy and momentum], as well as the constant of gravitation, remains the phenomenological constituents of the general
theory of relativity”. Nonetheless, there are other elements that makes this claim explicit, as the fact that not all classes of exact
solutions of GTR are asymptotically flat, cf. [485].
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Equivalence Principle (EEP) in a theory of gravitation, where the minimal coupling ‘principle’11 is a
particular subcase.

Weyl geometry. In his first attempt12 at a unified theory of gravity and electromagnetism, Weyl [543, 544]
introduced an extension of GTR through a length connection 𝜙 = 𝜙𝜇𝑑𝑥

𝜇 satisfying the Eichtransformations
[454]

𝜙′ = 𝜙 − 𝑑 (logΩ) , 𝑔′ = Ω2𝑔. (2.6)

The equivalence class of pairs (𝑔, 𝜙) defines a Weyl metric. In Weyl geometry (𝑀, 𝑔, 𝜙), the compatible
affine connection Γ = Γ(𝑔, 𝜙) is uniquely determined by (𝑔, 𝜙), and transfers the scale invariance to the
Riemann curvature as well as to the geodesics of (𝑀, 𝑔, 𝜙). Under the (auxiliary) integrability condition
𝑑𝜙 = 0, Weyl geometry is asymptotically Riemannian13. Despite its inability to describe the atomic
spectrum correctly due to the appearance of a second clock effect [4, 322], Weyl geometry remains an
active topic of research in conformal theories of gravity [453, 551].

Kaluza, Klein, and the fifth dimension. A similar pattern to Weyl’s geometry was followed, in 1921, by
Theodor Kaluza [260] in terms of a 5-dimensional14 relativistic extension to GTR as an alternative solution
to the problem of unification of gravity with electromagnetism. The line element of Kaluza’s theory is
given by

𝑑𝜎 =

√︂
(𝑑𝑥𝑜 + 𝛽𝜙𝜇𝑑𝑥𝜇)2 + 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 , 𝜇, 𝜈 = 1, 2, 3, 4 (2.7)

where {𝑥1, 𝑥2, 𝑥3, 𝑥4} are the coordinates of the 4-dimensional Minkowski spacetime, 𝜙𝜇 is the 4-potential
of Maxwell’s equations, and 𝑥𝑜 is the 5th coordinate. In natural units, the parameter 𝛽 has dimension of
length. The attempts to interpret the fifth dimension physically came five years later by H. Mandel [332,
333], V. Fock [173], Einstein [143], and O. Klein [267–269], independently. Klein called the attention to
the fact that, if 𝛽 has the value

𝛽 =
√︁

2𝜅𝐸 , (2.8)

11The role of the minimal coupling is more like a razor, or a constraint, inferred from EEP and imposed to the field equations
so as to prevent the energy-momentum tensor from representing the back-reaction of the gravitational field on matter [176, 177].
This partially explains why Einstein was assertive in regarding the energy-momentum tensors as provisional representations of
matter [148, 152].

12The second one [545, 546] was made in 1929 as a criticism to Einstein’s letters [144] on teleparallelism. There, Weyl gives
a different interpretation to the vierbeins so as to describe Dirac’s theory in a 4-dimensional curved space. A third development
comes in 1950 when Weyl [547] once again addresses the coupling of an electron to the gravitational field. See also [106, 208,
209, 451].

13This is an example of additional hypothesis that increases the refutability of the theory. See, for instance, [422, §20].
14In 1914, Gunnar Nordström[359] anticipated the idea of a 5-dimensional scalar unified field theory, where the 4-dimensional

spacetime of the Special Theory of Relativity is a surface embedded in a 5-dimensional geometry. Yet the works by Kaluza
and O. Klein are not directly linked to Nordström’s. Notwithstanding, it is possible that O. Klein started his interest in the 5D
formulation after his contact with P. Ehrenfest, who also worked in collaboration with Nordström , cf. [221].



12

where 𝜅𝐸 is the Einstein constant, and if 𝑝𝑜, the 5th component of the momentum of a particle, is
proportional to the electric charge,

𝑝𝑜 =
𝑒

𝛽𝑐
(2.9)

which also corresponds to an integer (positive or negative) multiple of a least quantum of action ℎ,

𝑝𝑜 =
𝑁ℎ

𝑙
(2.10)

then “any electric particle will in the 5-dimensional representation be periodic functions of 𝑥𝑜, the period-
icity introducing a fundamental length”

𝑙Klein :=
ℎ𝑐
√

2𝜅𝐸
𝑒

≈ 0.8 · 10−30cm. (2.11)

Klein sought to provide a less artificial explanation for introducing an extra dimension to the Minkowski
spacetime in terms of a boundary condition to the physics described in the 4-dimensional sector.

The small value of this length together with the periodicity in the fifth dimension may perhaps
be taken as a support of the theory of Kaluza in the sense that they may explain the non-
appearance of the fifth dimension in ordinary experiments as the result of averaging over the
fifth dimension. (...) Although incomplete, this result, together with the considerations given
here, suggests that the origin of Planck’s quantum may be sought just in this periodicity in the
fifth dimension.
O. Klein in [268].

Einstein and Bergmann [151] came in with an auxiliary topological condition to support Klein’s
interpretation. If one considers the fifth dimension as a long thin tube, then locally it looks like an extended
two-dimensional tube, while from very long distances it is just a one-dimensional string. Remarkably, what
remains physically invariant is its length. As conceived by Einstein and Bergmann, the extra dimension
would be controlled by a running universal parameter, the typical radius 𝑏 of the cylinder, that allows one
to reach the limiting classical fields as 𝑏 → 0, a clear resemblance of Born-Infeld theory as we shall see
below.

Notwithstanding, Einstein and Bergmann breaks the 5-dimensional symmetry by introducing an (ad
hoc) geodesic postulate in order to clamp down on the appearance of a massless scalar field (a dilaton
in modern theories) from the fluctuations in the length of the fifth dimension, which would lead to a
scalar-tensor theory of gravity, cf. [557]. Subsequently, Einstein, V. Bargmann, and P. Bergmann [150]
reduce Klein’s topological postulate to a circle.

It is particularly intriguing how Kaluza-Klein theory allowed such a wide range of variations, including
structural modifications in Theoretical Physics: a varying gravitational constant appears in Jordan’s 5D
cosmology [257]; Cartan’s exterior calculus is applied in the study of the global aspects of 5D relativistic
theories already in the 1940s, cf. [321]; in quantum optics, Yurii B. Rumer [439] ascribe to the 5th
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coordinate of a Riemannian space the quantum action with fundamental periodicity ℎ; the first fibre bundle
treatment appears in 1968 by R. Kerner [262], where the 5D perspective is generalized for non-abelian
theories. Since then, Kaluza-Klein theories were developed to attack a wide variety of problems: from the
existence of monopoles, chiral fermions, and scale hierarchy to quantum effects in gravity and cosmology
[18, 208, 380, 410, 418].

For some reason, Klein’s further developments15 [270–281] of his 5D research program did not receive
the attention as the earlier papers [267, 268]. In the 1950s, Klein suggests that a 5D Dirac theory allows
one to extend the unitarity of QED so as to embrace a generalized equivalence principle. The seeds of that
view are in Bargmann’s seminal paper of 1932 [24], although restricted to a 4-dimensional spacetime. We
will reconsider this interpretation in Chapter 4.

Discretization of spacetime. All field theories discussed above share the premise according to which
there is a continuous spacetime evolving dynamically, that allows one to describe matter by means of a
fixed background. Also, it is taken for granted the existence of points constituting the continuous fabric of
spacetime.

Motivated by Klein’s insights [267–269] on the existence of a fundamental length 𝑙, the idea that
protons and electrons could ocuppy only lattice points in a 3-dimensional cubic volume was proposed in
1930 by Ambarzumian and Iwanenko [14], and pushed forward by Arthur March [335], Heisenberg [230],
Snyder [483], Rosen [435], and Schild [449, 450], among others. While the discrete structure is ruled by
integral Lorentz transformations, the continuous background of special relativity is reached as 𝑙 → 0.

The discrete perspective in quantum approaches to gravity is mainly driven by spin-foam models,
where the path-integral is constructed in terms of spin networks in time [265, 409, 494].

Born-Infeld theory. The introduction of the length scale problem in electrodynamics came when, in the
early 1930’s, Max Born and Leopold Infeld [54, 55] tried to tackle the electron self-energy problem in
terms of a non-linear extension of Maxwell’s electrodynamics [38, 394, 473]. One shall recall that, by
dimensional analysis, no characteristic length in terms of the electric charge 𝑒, the Planck’s constant ℎ, and
the velocity of light 𝑐 can be constructed [194, 304].

In straight analogy16 with the Special Theory of Relativity (STR), where the velocity 𝑣 of a particle
of mass 𝑚, in any inertial frame, is limited by the velocity of light 𝑐,

L = −𝑚2𝑐2

√︃
1 − 𝑣

2

𝑐2 , (2.12)

15The very exceptional case is the paper [281], prepared for the Conference New Theories in Physics (Warsaw, 1938). There,
Klein suggests that Fermi’s 𝛽-decay theory, in analogy with Maxwell’s theory, should be mediated by charged vector bosons,
which would indicate an unification of electromagnetism with Yukawa’s theory of nuclear mesons. See also [212].

16To compare with [140], and [147, p.67].
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Born and Infeld conjectured that the classical radiation field must reach a maximal intensity 𝑏,

L𝐵𝐼 = 𝑏
2𝑐2

[︄
1 −

√︃
1 + 𝐹

2𝑏2 −
𝐺2

16𝑏4

]︄
, (2.13)

where 𝐹 and 𝐺 are denoting the Lorentz electromagnetic invariants,

𝐹 ≡ 𝐹𝜇𝜈𝐹𝜇𝜈 = 2(E2/𝑐2 −B2) , 𝐺 ≡
∗
𝐹𝜇𝜈𝐹𝜇𝜈 = −4(E · B). (2.14)

Without extracting from the theory a prediction for its value, the authors assumed that the upper bound
parameter 𝑏 has the dimension of the critical magnetic field B𝑐𝑟𝑖𝑡 . In SI units, it reads

[𝑏2] = [B2
𝑐𝑟𝑖𝑡] = L−4MT . (2.15)

In this way, (2.13) states that L𝐵𝐼 → L𝑀𝑎𝑥 as 𝑏 → ∞: the Maxwell theory is the weak regime of
Born-Infeld electrodynamics.

Since the motion of a free particle described by STR can be deduced from the least action principle,
Born and Infeld showed that the expression within the square root in (2.13) is the determinant of the
quantity

𝑔eff
𝜇𝜈 = 𝑔𝜇𝜈 +

1
𝑏
𝐹𝜇𝜈 . (2.16)

Another key feature of L𝐵𝐼 is that the self-energy of the classical electron is finite, possibly indicating
that the incompleteness of Maxwell’s theory relies typically upon its linearity, rather than upon its classical
level. The ultra limiting case of L𝐵𝐼 , when 𝑏 → 0, exhibits an infinite hierarchy of conservation laws [36,
37].

Despite its interesting achievements, the quantization of L𝐵𝐼 appeared to be a partial obstruction to
further developments of the theory [127]. The algebraic properties of a non-linear field theory constructed
from a Lagrangian of the form L = L(𝐹, 𝐺) were studied by Plebański [417], and Boillat [51]. In 1985,
the idea of an upper limit on the strength of the electromagnetic field was rescued in the context of brane
theory by Fradkin and Tseytlin [182, 183]. Another variation of BI models was proposed by Lisa Randall
and Sundrum [426, 427] in terms of a non-factorizable metric. Currently, light scattering is approached by
hadronic, dispersion relations and lattice models [48, 72]. For an extension of the hypercharge sector of
the electroweak model, see [100]. For a survey on BI modifications of gravity, see [252].

The relevant point here is that, by introducing 𝑏 as an upper bound limit to the electromagnetic field,
the Born-Infeld Lagrangian translated the problem of a characteristic length scale to the context of classical
radiation. With no parallel in field theory, L𝐵𝐼 is an attempt to understand the departure from the classical
standpoint: How to discern between nonlinear effects at the critical value (if any) of the classical radiation
field, and the non-linear effects of the quantized Maxwell field? Regarding this aspect, the Born-Infeld
scenario plays a straight analogy with GTR, once quantization is not necessary to introduce non-linear
effects (in the sense of self-interacting fields) into the theory [524].
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Euler-Heisenberg Lagrangian. The typical example of BI electrodynamics is the photon-photon system,
also refered to as the light by light scattering [249, 473]. In spinor QED, it appears as a quantum effect at the
fourth order of perturbation, as suggested by O. Halpern [220], Debye, and Heisenberg [228]. Heisenberg’s
students, Euler and Kockel [157], computed the leading quantum correction𝑂 (𝛼2) to Maxwell’s Lagrangian
due to vacuum polarization [413],

L𝐸𝐻 = L𝑀𝑎𝑥 +
𝛼2

𝑚4
𝑒

[︁
𝐶1 𝐹

2 + 𝐶2𝐺
2]︁ , (2.17)

where 𝛼 is the fine structure constant, the energy scale is fixed by the electron mass 𝑚𝑒, and

𝐶1 =
1

90
, 𝐶2 =

7
90
. (2.18)

Usually refered to as the Heisenberg-Euler model, L𝐸𝐻 is interpreted as the low energy of light scattering
[135, 136, 413], and constitutes an independent field theory from L𝐵𝐼 [181].

Heisenberg’s program. The question posed by Born and Infeld reflects the premise of Heisenberg’s
paper “Die Selbstenergie des Elektrons” [227], published in 1930. The common ground seems to be how
causality makes quantum mechanics and special relativity incompatible, at the same time that it is at the
origin of the singularities arisen after the quantization of relativistic field theories. In Heisenberg’s lines,
it should be possible to demarcate the limit of validity of quantum physics in terms of a characteristic
length17, as an universal invariant of spacetime. The price to pay, though, would be the breakdown of
Lorentz invariance. Quoting Heisenberg,

In particular, the statement that a minimum length exists is no longer relativistically invariant,
and one sees no way to reconcile the requirement of relativistic invariance with the fundamental
introduction of a minimum length. For the time being it seems more correct not to introduce

17The claim [241, p.7] that “Heisenberg was very worried about the non-renormalizability of Fermi’s theory of 𝛽-decay”
as early as 1936 is not only anachronistic, as mistaken. Renormalization as a method in field theory only arised in the late
1940s [76]. Yet, Heisenberg (as Dirac, Schrödinger, Wheeler) never took renormalizability as a serious requirement to any
fundamental field theory, otherwise it hardly would make sense Heisenberg dedicate his last three decades to a perturbatively
non-renormalizable spinor theory. Regarding the quantization of the nonlinear spinor field (see next section, Eq. (2.25)),
Heisenberg stated in 1955 [49, Series B-1, p.537]: “... we can divide all possible interactions in two types: one type can be
renormalized and shows what can be called weak interaction; the other type has what we may call strong interaction, and for
strong interactions this process does not work. This interaction here [𝑙2𝜓(𝜓+𝜓), 𝜓+ ≡ 𝜓†𝛾𝑜], however, belongs to the strong
interaction-type, and regardless of what kind of nonlinear wave equation we would write for spinor waves, we would always get
the strong-interaction type, which cannot be renormalized. Therefore, we have to invent a new scheme of quantization”. As also
explained by Dürr [49, Series A-3, pp.136-137], the correct argument is more likely to occur in the opposite direction: at the
limits of validity of quantum mechanics, whose breakdown would be measured by a characteristic length scale, a new theory
would face strong interactions type, and would be nonrenormalizable by definition (see also [154, pp.315-317]). Unlike Pauli,
Heisenberg saw renormalizable theories as the low energy, hence phenomenological, limiting case of (unknown) fundamental
ones containing a universal length parameter. This might give some clue on Pauli’s reluctance in associate the square root of
the gravitational constant with Fermi constant, cf. addressed in the next section.
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the length 𝑟𝑜 into the fundamentals of the theory, but to stick to the relativistic invariance.18
W. Heisenberg [227], p. 5; my translation.

Eight years later, Heisenberg [229] eventually changed his orientation, and the discussion about the
fundamental length became the background for his program of a unified field theory, cf. Dürr in [49, Series
A-2, pp. 133-141]. From 1950 until 1976, Heisenberg worked on the constituting hypothesis that all mass
spectrum of the elementary particles should be obtained from a fundamental equation with one coupling
parameter. While the basic elements of Einstein’s attempts at a unified field theory were of tensorial
character, Heisenberg agreed with de Broglie [98, 99], Dirac [124], Pauli [394], Jordan [255, 256], Born
[56], Wataghin [527–529], and Stückelberg [488] that a fundamental representation of matter should rest
on a spinor field19. This is the point where Pauli’s conjecture on the connection between gravity and weak
interactions comes in.

2.2 Pauli’s square root conjecture

Strengthening the degree of deducibility in Theoretical Physics − The attractive nature of the gravita-
tional constant − Phenomenological theories in Pauli’s view.

On coupling constants in theoretical physics. Although unfashionable nowadays, the problem of how
fundamental are the physical constants, and why their corresponding fields are attractive or repulsive,
belongs to the oldest, and still open, discussions in theoretical physics. Until 1948, the nature of the electric
charge, for instance, was, according to Pauli (and Einstein), one of the key problems left untouched whether
by relativity theory or quantum mechanics. According to Enz [154, p.255], “the question of the atomicity
of the electric charge ... was central to Pauli’s thinking”. In rather different historical moments (1921,
1949 and 1958), Pauli’s criticism remained the same regarding the role of the coupling constants in the
structure of physical theories. It might be enlightening to quote directly from his works, starting with the
Handbook article:

It is the aim of all continuum theories to derive the atomic nature of electricity from the
property that the differential equations expressing the physical laws have only a discrete
number of solutions which are everywhere regular, static, and spherically symmetric...
Furthermore, ... the continuum theories are forced to introduce special forces which keep the
Coulomb repulsive forces in the interior of the electrical elementary particles in equilibrium.
If we assume that these forces are electrical in nature, we have to assign an absolute meaning
to the four-vector potential... The other alternative, that the electrical elementary particles

18“Insbesondere ist die Aussage, daß eine kleinste Länge existiert, nicht mehr relativistisch invariant und man sieht keinen
Weg, die Forderung der relativistischen Invarianz mit der grundsätzlichen Einführung einer kleinsten Länge in Einklang zu
bringen. Es erscheint also einstweilen richtiger, die Länge 𝑟𝑜 nicht in die Grundlagen der Theorie einzuführen, sondern an der
relativistischen Invarianz festzuhalten.”

19See also Darrigol’s contribution to [217, pp.53-72].
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are held together by gravitational forces, is however countered by a very weighty, empirical,
argument. For one would expect, in such a case, that a simple numerical relation would
exist between the gravitational mass of the electron and its charge. Actually, the relevant
dimensionless number 𝑒/𝑚

√
𝜅) (𝜅 =ordinary gravitational constant) is of the order of 1020!

Pauli (1921) in [397, p.205].

The continuum theories refers to Einstein, Mie, and Weyl developments on the connection between gravity
and electromagnetism. The same problem is retaken by Pauli almost three decades later, in his contribution
to the provocative volume Albert Einstein, Philosopher-Scientist, which can be read as a continued review
of the relativity theory, now including ‘Einstein’s contributions to quantum physics’:

Inside physics in the proper sense we are well aware that the present form of quantum mechanics
is far from anything final, but, on the contrary, leaves problems open which Einstein considered
long ago. In his previously cited paper of 1909, he stresses the importance of Jean’s remark that
the elementary electric charge 𝑒, with the help of the velocity of light 𝑐, determines the constant
𝑒2/𝑐 of the same dimension as the quantum of action ℎ (thus aiming at the now well known
fine structure constant 2𝜋𝑒2/ℎ𝑐). He recalled “that the elementary quantum of electricity 𝑒
is a stranger in Maxwell-Lorentz’ electrodynamics” and expressed the hope that “the same
modification of the theory which will contain the elementary quantum 𝑒 as a consequence,
will also have as a consequence the quantum theory of radiation”. The reverse certainly turned
out to be not true, since the new quantum theory of matter and radiation does not have the
value of the elementary electric charge as a consequence, which is still a stranger in quantum
mechanics, too.
Pauli (1949) in [395], p.158.

The road to unity as envisaged by Pauli, though, goes vertically opposite to Einstein’s:

The theoretical determination of the fine structure constant is certainly the most important
of the unsolved problems of modern physics. We believe that any regression to the ideas of
classical physics (as, for instance, to the use of the classical field concept) cannot bring us
nearer to this goal. To reach it, we shall, presumably, have to pay with further revolutionary
changes of the fundamental concepts of physics with a still further digression from the concepts
of the classical theories.
Pauli, ibid.

The synthesis given by Pauli reads: any physical theory should be capable of entailing its coupling
constants, rather than being supplemented by it. Only then one would be able to explain its attractive or
repulsive nature, as well as its scale of range, and limits of validity hence. (One may recall Feynman’s
remark on the quantization of gravity: “It’s clear that the problem we are working on is not the correct
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problem; the correct problem is: What determines the size of gravitation?” [576, p.77].) The claim that
the analysis given by Pauli is not restricted to the electric charge, but encompasses any coupling constant,
may be supported by two further quotations. While the empirical content of Einstein’s constant is crucial
for Pauli since the Handbook article of 1921, Fermi’s constant will draw Pauli’s attention specially after
the fall of parity in 1957.

The general theory of relativity, therefore, does not provide a physical interpretation for the sign
(gravitational attraction, and not repulsion) and numerical value of the gravitational constant,
but takes these data from experiment.
Pauli (1921) [397, p.163].

For an emergent unifying scheme would be more likely to achieve such a disposition to a fundamental
relation between the coupling constants.

A point now appears to have been reached when the physics of the neutrino merges with
the more general physics of elementary particles. Nowadays we still describe each of these
particles by its own field and each type of interaction by its own coupling constants.
What, for example, is the significance of the small numerical value of the constant of the Fermi
interaction, of the dimension of a cross-section, compared with other cross-sections? The
next step, the suppression of the phenomenological physics of individual fields and coupling
constants in favour of a unified conception is likely to be much more difficult than what has so
far been achieved.
Pauli (1958) in [155, p.217].

Among ‘what has so far been achieved’, one may mention Klein [268] interpretation, back in 1926, of
the 5-dimensional Kaluza’s extension of GTR.Pauli [390, 391] developed Klein’s interpretation by setting
the projective spinor as Ψ = 𝜓 𝐹 𝑙 , where 𝜓 denotes the ordinary Dirac spinor, 𝐹 a real scalar, and 𝑙 a purely
imaginary phase given by (Eq. (56) in [391])

𝑙Pauli =
𝑖𝑒

ℏ
1
√
𝜅

1
𝑟
=

2𝜋𝑖
𝑙Klein

√
2
𝑟
. (2.19)

In Pauli’s notation [397, n.320 on p.163], 𝜅 is related to Newton’s constant 𝐺N by 𝜅 = 8𝜋 𝐺N/𝑐4. The
number 𝑟 is set by the redefined electromagnetic fields in the 4-dimensional spacetime (Eq. (44) in [390]),

𝑋𝑖 𝑗 = 𝑟 𝑓𝑖 𝑗 = 𝑟
√
𝜅𝐹𝑖 𝑗 . (2.20)

Note that the square root of Einstein’s constant appears in the description of the electromagnetic field as
a factor of ‘geometrization’ of the classical electron in the presence of gravity, an interpretation claimed
by Weyl since 1918 and never shared by Einstein, cf. [313]. But the point here is that Pauli arrived at a
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Dirac equation with a gravitational magnetic-moment coupling (Eq. (58) in [393]), where the anomalous
magnetic moment is given by

𝜇 = 𝑖
𝑟

8
√
𝜅. (2.21)

For a detailed account on Pauli’s scrutiny of Klein’s early formulation, we shall refer to [154, pp.260-270].
While the Born-Infeld theory was received by Pauli as rather unsatisfactory, once it left undetermined a
new parameter 𝑏 characterizing the maximal strength of the electromagnetic field, the Kaluza-Klein theory
was seen as ‘a general method’ for ‘a logical unification of the foundations of natural law’ [391, p.337].
Once again, a general method for, not a realization of, as stressed by Pauli himself in the supplementary
note 23 to [397].

But no attempt at a unified picture would make Pauli’s view more explicit than the nonlinear spinor
theory (NST), which raised structural changes in quantum mechanics. The indefinite metric problem aside,
Pauli and Heisenberg discussed qualitatively in the Unpublished Preprint of 1958 [234] three key problems
that would shape the construction of the NST:

(𝑃1) How to quantize nonlinear (self-interacting) fields?

(𝑃2) How to give mass to the elementary particles?

(𝑃3) How to deduce the coupling constants?

All the three points are detailed by Dürr in [49, Series B-1, pp.325-334], and Enz [154, pp.523-533]. What
is relevant here is to extract Pauli’s view on the formulation of a fundamental theory, as claimed in the
Introduction. The quantization of NST was answered with the group of canonical transformations found
by Pauli-Gürsey (Eqs. (I) in [234])

𝜓′ = 𝑎𝜓 + 𝑏𝛾5𝜓
𝑐 = 𝑎𝜓 + 𝑏𝛾5𝐶

−1𝜓 , 𝜓
′
= 𝑎∗𝜓 − 𝑏∗(𝜓𝑐)𝛾5 = 𝑎∗𝜓 + 𝑏∗𝜓𝐶𝛾5 , (2.22)

with |𝑎 |2 + |𝑏 |2 = 1, and Touschek (Eqs. (II) in [234])

𝜓′ = 𝑒𝑖𝛼𝛾5𝜓 𝜓
′
= 𝜓𝑒𝑖𝛼𝛾5 . (2.23)

In the authors notation, 𝜓𝑐 = 𝐶−1𝜓, 𝜓 ≡ 𝜓∗𝛾4 and 𝐶 is a unitary matrix set by (Eq. (6) in [234])

𝐶𝛾𝜇𝐶
−1 = −𝛾 𝑇

𝜇 , 𝐶𝛾5𝐶
−1 = 𝛾 𝑇

5 , 𝐶𝑇 = −𝐶. (2.24)

From the full group constituted by (I) and (II), it follows the obstruction of a mass term in the Lagragian;
the selection, among all five Lorentz invariants of Dirac theory, of the axial-axial current coupling; and the
doubling of the Dirac adjoint. The Lagrangian has the form (Eq.(11) in [234])

𝐿 = 𝜓𝛾𝜈𝜕𝜈𝜓 ± 𝑙2(𝜓𝛾𝜇𝛾5𝜓)2. (2.25)
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Since 𝐿 is now invariant under groups (I) and (II), a quantum theory based upon (2.25) should
be able to explain the existence of the two quantum numbers for [electric] charge and baryonic
charge, and of the isotopic spin.
In constructing this quantum theory it will be possible to give a precise mathematical meaning to
the three approximations, which are usually distinguished by the terms strong, electromagnetic
and weak interactions. It will, however, not be possible to introduce any arbitrary constants
into the theory.
Heisenberg and Pauli (1958) in [234], p.339.

In the rest of the preprint, Heisenberg and Pauli elaborate how the three interactions could follow from
the NST, how the masses of the particles would be related to a nontrivial vacuum, and how to calculate
an approximate value for the fine structure constant. As well known, Pauli withdrew his participation as a
co-author of the publication, being the reasons mainly attributed to his rejection of the vacuum degeneracy,
not to mention his personal relation with Heisenberg. A substantially reviewed version of [234] was further
elaborated Heisenberg in collaboration with Dürr, Mitter, Schlieder, and Yamazaki [137]. On the impacts
of Heisenberg’s program in the formulation of the SGW model and supersymmetry, see, for instance,
Weinberg [535], Nambu [354] and Shifman [478].

This brief account on Pauli’s conception of the coupling constants in physics might be helpful to put
its square root conjecture into a better perspective.

Pauli’s conjecture. In November 1934, Pauli [393] gave an appraisal on the current situation of theoretical
physics to the Philosophical Society in Zürich, by examining “the role of three universal constants of nature
− 𝑐 the velocity of light in vacuo, 𝜅 the constant of gravitation and ℎ Planck’s quantum of action”. Special
emphasis is given to the conservation law of the electric charge, which “has not yet found its appropriate
place beside the constants 𝑐, ℎ and 𝜅.”

It seems worth mentioning that a similar dimensional analysis of the relation between 𝑒, 𝑐, ℎ, and 𝜒
(the now called Newton’s constant,𝐺N in our notation) was made in 1928 by Gamow, Ivanenko and Landau
[194], where the impossibility of a well posed length scale in terms of 𝑒, 𝑐, and ℎ appears to be linked to
the fact that QED, as well as “a nonquantum electron in the general theory of relativity” are incomplete
systems. In other words, the dimensional analysis as discussed in the early days of QED was not restricted
to the necessity of introducing regulators when dealing with UV divergences entailed by the theory [241].
Rather, it was seen as related to the own shaping of every physical theory, being it classical or quantum,
continuous or discrete, statistical or not. In the absence of such a scale entailed by the theory, as is the
case of Dirac’s theory, its limits of validity would be fixed by an ad hoc length characterizing, ideally,
the transition from the continuous to the discrete domain of elementary particles. Dirac20, Bohr21, and
Heisenberg [227] agreed that a new departure from quantum mechanics in the late 1929s would be quite

20Niels Bohr Archive, BSC-DIR-291209t.
21Niels Bohr Archive, BSC-DIR-292312f.
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premature in a context where even physical principles like Lorentz invariance and energy conservation
were in dispute.

In particular, the statement that a minimum length exists is no longer relativistically invariant,
and one sees no way to reconcile the requirement of relativistic invariance with the fundamental
introduction of a minimum length. For the time being it seems more correct not to introduce
the length 𝑟𝑜 into the fundamentals of the theory, but to stick to the relativistic invariance.
Heisenberg (1930) in [227, p.5]; my translation.

Although Bohr’s objections to the law of energy conservation has been extensively examined in the
literature [250, 289], its impact on theoretical physics is far from being exhausted. According to Pauli
[155, p.202], “it was not until 1936 that [Bohr] completely accepted the validity of the energy law in beta
decay and the neutrino”. Two years earlier, though, Bohr wrote to Pauli:

I was also pleased that you understood the basic attitude of my concluding remarks about
energy conservation. Since then, however, I have become more skeptical with respect to the
implicit intention of these remarks, namely to use the theory of gravitation for a corresponding
derivation of the law of 𝛽-decay. The idea was that a neutrino, for which one assumes a zero
rest mass, can be nothing else than a gravitational wave with suitable quantization. However, I
have convinced myself that the gravitational constant is far too small to be able to justify such
a view, and [I am] therefore fully prepared to accept that we have here a really new atomic fact
before us, which could be equivalent to the real existence of the neutrino.22
Bohr to Pauli (15 March 1934), Doc. [366] in [525]; translation with the help of DeepL23.

To what extent Bohr’s objection to the neutrino’s existence was the seed of a new gedanken for Pauli’s
sharp intuition is left to further research. The relevant fact is that Pauli (and perhaps Fermi24) objectively
considered the possibility, raised by Bohr, of a deeper connection between the 𝛽-decay nuclear processes
and gravity.

Back to the 1934 lecture, Pauli concluded his appraisal sketching out the present difficulties in to
explain both the sign of 𝜅 within GTR and the 𝛽-decay processes, whose description was requiring a new
coupling constant:

22Det glædede mig ogsaa, at Du forstod Grundstemningen i mine Slutbemærkninger om Energibevarelsen. Jeg er dog siden
blevet mere skeptisk med Hensyn til det Haab, som implicit ligger i disse Bemærkninger, nemlig at benytte Gravitationsteorien
til en Korrespondensudledning af Loven for 𝛽-Straaleemissionen. Tanken var den, at en Neutrino, for hvilken man antager en
Hvilemasse 0, vel ikke kan være andet end en Gravitationsbølge med passende Kvantisering. Jeg har imidlertid overbevist mig
om, at Gravitationskonstanten er altfor lille til at kunne berettige en saadan Opfattelse og [er] derfor fuldt forberedt paa, at vi
her virkelig har et nyt Atomartræ for os, der kunde være ensbetydende med Neutrinoens reale Eksistens.

23I am thankful to Prof. Erhard Scholz for this tip.
24See the comments on Docs. [348] and [351] in [525]. Also, Kragh [288, pp.30-31].
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We cannot here enter into a general discussion of the unsolved problems of nuclear physics; we
may however add one further remark in this connection. There are several indications that the
phenomenon of so-called 𝛽-radioactivity i.e., the spontaneous emission of electrons by atomic
nuclei − as well as the related only recently discovered phenomenon of artificially induced
positron radioactivity − bears witness to a deeper level, so to speak, of physical reality, than
the other empirically known phenomena of nuclear physics. For these phenomena appear,
according to recent theories, to be governed by a further constant of nature, which cannot be
directly reduced to the usual constants of atomic physics. In this connection it is of interest to
point out that present-day classical field theories, including the relativistic theory of gravitation,
do not give a satisfactory interpretation of the essentially positive character of the constant
𝜅, which is responsible for the fact that gravitation manifests itself as an attraction and not a
repulsion of gravitating masses. Such an interpretation could consist only in the reduction of
the constant 𝜅 to the square of another constant of nature. This suggests looking for phenomena
in which the square root of the constant 𝜅 plays a part. While hitherto it has been regarded as
almost certain that gravitational phenomena play practically no part in nuclear physics, it now
appears that the possibility that the phenomena of 𝛽-radioactivity might be connected with the
square root of 𝜅 can no longer be rejected out of hand. It must however be left to the future to
decide whether or not this hypothesis is appropriate.
Pauli in [393], pp.104-105; italics as in the original.

This excerpt vividly contrasts to Pauli’s rigorous scrutiny of any physical theory. Notwithstanding
its loose conception, what makes Pauli’s argument very unique is the situation in which the attractive
character of the gravitational constant is outlined: at the frontiers of nuclear physics. The “another constant
of nature” is the key piece of Pauli’s reasoning, and was interpreted in a brief communication by Gleb
Wataghin [528], regarding the neutrino theory of light and the quantization of gravity, as corresponding to
Fermi’s constant:

It seems that one could achieve a remarkable simplification of the theory of gravitation by
accepting that the same neutrinos are responsible for the gravitational action. Indeed, it is
possible to apply the theory of Jordan (that allows one to obtain Bose’s statistics for the quanta
of gravitation from Fermi’s statistics for the neutrinos) to substitute, in every case, the action of
a gravitational quantum by a pair of neutrinos. In this way, ‘the sea of neutrinos with negative
energy’ would constitute a new kind of ether that determines the geodetics of the universe, and
allows one to distinguish locally between inertial and accelerated systems. This point of view
agrees with the idea expressed by W. Pauli on the existence of a relation between the square
root of the gravitational constant 𝑘 and the new constant 𝑔 introduced by Fermi in the theory
of 𝛽 rays.
G. Wataghin (1936) [528]; my translation.

For a further overview of Wataghin’s contributions, we refer to Hagar [218] and Rocci [433]. The relevant
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point here is: the unknown coupling interaction expected to be proportional to the square root of the
gravitational constant was, according to Pauli, not necessarily the Fermi’s one. In fact, Pauli considered
already in 1936, from an analysis of the Fermi length 𝑙2Fermi = 𝐺F/ℏ𝑐 in a lattice description of the field,
that “one would consider Fermi theory as being refuted” [154, pp.315-316].

A couple of days after receiving the results of Madame Wu’s experiments on parity violation by
𝛽-decay processes, Pauli recalls, in a letter to Victor Weisskopf, his early hypothesis:

Incidentally, I have published a remark in 1936 (in a somewhat hidden place) that perhaps the
constant of the Fermi interactions could be proportional to the square root of the gravitational
constant. No method exists to confirm or disprove such a conjecture. However, I think that
one should also keep in mind the possibility that a still unknown field plays a role here. That
this is just the case for the weak interactions may have its special reasons which ought to be
connected with the unknown physical nature of the fields. Many questions, no answers!
Pauli to Weisskopf (Zürich, 27/28 January 1957), Doc. [2476] in [525]; my translation, italics
in original.

Beside, Bohr’s early objections were still fresh to Pauli:

I am now fain to apply Bohr’s warning, mentioned earlier, that in the case of weak interactions
(as they are called nowadays) one must “be prepared for surprises”, to the violation of 𝐶- and
𝑃-symmetries separately. While his special idea, which he abandoned later, of a violation of the
energy law in these interactions would have concerned the continuous group of translations in
space and time (contained in the inhomogeneous Lorentz group); our actual surprise, however,
is with reference to the lowering of symmetry in the discrete groups of reflections in the case
of weak interactions.
Pauli (1957/8) in [155], p.212.

These remarks help to situate Pauli’s bold conjecture into a better perspective. It is not by chance that
the square root conjecture appears in Pauli’s writings when two episodes were challenging the foundations
of theoretical physics. Few, if any, could be able to express this situation better than Wheeler. In 1963,
during the discussion session after Heisenberg’s contribution to the Conference of Commemoration of the
Fiftieth Anniversary of Niels Bohr’s First Papers on Atomic Constitutions, Wheeler described the “very
large numbers of nucleons” and its role on the stability of the sun as the problem that “poses issues that I
at any rate don’t have the faintest idea how we are going to approach” (see also [62, 549]). After a brief
digression on the theme, Wheeler concludes:

Therefore I would suppose that we don’t have really to go to the realm of unbelievable energies,
or unbelievable extensions in space and issues of cosmology: really on the very modest scale
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of a star we are at the border line of quite a new issue in physics, where we shall have to be
prepared for quite new concepts. I wonder whether you have any comments on this border line
area between elementary particle physics and gravitation physics.
Wheeler (1963) [49, Series B-1, pp.629-630].

Heisenberg was assertive:

No real opinion of my own. I remember, I should say with pleasure, the idea that gravitation
could possibly be connected with the weak interactions in a similar way as on the other hand
weak interactions may be connected with the electromagnetic ones, so that the square of the
electromagnetic coupling constant could roughly be the weak coupling constant and the square
of the weak coupling constant would be the gravitational coupling constant. I remember that
there have been some papers in the early years; have you, Dirac, not written about these
problems once? Ah, it was Gamow and Teller. Yes, well, but I am not very familiar with these
ideas, and I find it simply too early in the present state to think about these problems; but some
day these problems will certainly come up again.
Heisenberg in [49], Series B-1, p.630.

One shall notice that Pauli’s argument appears inverted in Heisenberg’s reply. Nonetheless, evidence for
such a glimpse (suggested by Heisenberg or someone else from the audience, among which Casimir, Dirac,
Kronig, Pais, Rabi, and Weisskopf directly intervened in the discussion) on the Gamow-Teller part in the
square root conjecture is still lacking. Yet, it is not totally unfeasible that Gamow may have taken part on
this topic. Curiously, the square root of Newton’s constant appears, in Gamow’s paper co-authored with
Ivanenko and Landau [194], as proportional to the ratio between the charge and the mass of the electron (in
CGS units) for purely dimensional reasons. Although few information is given by Okun’s review [375] on
the availability of the GIL-paper outside the Russian community, there is evidence25 of Gamow’s exchanges
with Bohr and Dirac as early as 1929.

The growing acceptance of perturbative renormalizability as a razor for new field theories only became
consensual in the 1970s [70]. The quotations above suggest that Pauli had a remarkably different perspective
than widespread on the structure and development of physical theories: that deducibility, rather than
renormalizability, was a desirable property of new models, regardless its phenomenological or fundamental
aspect. In Pauli’s view, any description of a particular field would be nothing but phenomenological,
meaning not only partial or provisional, as any physical theory is, but also incapable of deducing its
coupling constant − and that precisely is the reason why unification echoed without barriers.

However, what characterized every program of unification was the role of gravity in the orchestration
of matter. While Einstein [142, 144], Weyl [543, 545, 546], Fock [174, 175], Schrödinger [469], Bargmann
[24] and O. Klein [270–273, 276] suggested many attempts towards a compatible structure between the

25Niels Bohr Archive, BSC-DIR-291126t
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electric charge and the gravitational field, Dirac [120] and Heisenberg [231] aimed at a fundamental picture
of elementary particles without gravity. Bohr envisaged, in a more radical way, matter as quantum actions
of the gravitational field, and resisted (until 1936) to the existence of the neutrino by claiming the violation
of energy conservation. But Pauli, quite distinctively and in the opposite direction of Einstein’s [142],
pointed at gravity as an emergent phenomenon of matter fields as early as 1934, three decades before
Sakharov [440]. Alternative theories ‘beyond Einstein’ so as to include high energy physics only started
to draw attention in the middle 1980s, cf. Will [556, pp.105-106]. This brief background might be helpful
in order to bring Pauli’s conjecture to current researches26 at the frontiers of gravity. We start in the next
section with the still phenomenological context restricted to gravity and weak interactions.

2.3 Fermi’s coupling in effective scenarios

Weakening the deducibility’s degree in Theoretical Physics − Planck and Fermi scales − gravitational
four-fermions.

Breve intermezzo. The way how Effective Field Theories27 (EFTs) are currently described in the literature,
the way how EFTs were conceived by Heisenberg, Schwinger, and Weinberg, and the way how field theories
were viewed28 by the founders of GTR and QFT are significantly different. For let us illustrate this assertion
with some quotations.

The philosophy of effective field theories valid up to a certain energy scale Λ seems so obvious
by now that it is almost difficult to imagine that at one time many eminent physicists demanded
much more of quantum field theory: that it be fundamental up to arbitrarily high energy scales.
Indeed, we now regard all quantum field theories as effective field theor[ies].
A. Zee [568], pp.456-7.

Perhaps the claimed historical contrast between QFTs and EFTs, insofar as it refers to energy scale validity,
is somewhat artificial. Here is a brief excerpt from a discussion between two of those eminent physicists,
as mentioned by Zee:

26One example is the possibility of reproducing gravity, at the classical [80, 116] and quantum [33, 34, 57, 66, 348] levels,
as the double copy of non-Abelian gauge fields.

27Initially, the present section was thought as a technical appraisal of effective methods applied to gravitational four-fermions,
which are expected to play an important role in a maturate level of the problem posed in Chapter 4. It happened that this stage
is yet to be developed. Hence the present section will contain a reduced version of its original proposal, dealing mainly with a
qualitative analysis of the physical arguments that motivate the next two Chapters.

28Even at the classical level, one may recall the contrast between Einstein’s and Weyl’s interpretations of GTR [313] and its
coupling to Maxwell electrodynamics [144, 545–547], which become unequivocally incompatible once Dirac’s theory is taken
into account [310], as well as the divergent viewpoints of Einstein [142], Dirac (followed by Heisenberg [232]), Klein [273,
274, 277, 279], Fock [176–178], Ivanenko [245–247], Feynman [167], Wheeler [548–550], Deser [110, 111], Thirring [495],
Sakharov [440], Zeldovich [571, 572, 576, 577], and Treder [508–511, 524] on the role of gravity in particle physics. Once
more, theoretical physics was anything but paradigmatic.
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Dirac: (...) It always seems to me that the S-matrix does not apply to the whole of physics but
just to high energy physics; it has its limitation somewhere for lower energy physics. I would
like to have your view of that.

Heisenberg: Well, I could not agree more. I have never really liked the idea that one should
explain everything by means of the S-matrix; but one had to emphasize this point perhaps to
some extent for a time in order to gain some freedom from the old Hamiltonian scheme. But
certainly the S-matrix does not contain everything.

Discussion after Heisenberg’s talk in the Commemoration of the Fiftieth Anniversary of Niels Bohr’s
First Papers on Atomic Constitution, held in Copenhagen on July 8-15, 1963.
Reprinted in [49], Series B-1, p.623.

If the sections 2.1 and 2.2 above were successful in to communicate its main idea, it should be clear
by now that Dirac and Heisenberg were not alone on this topic. It is mostly a prevailing view of our times
that QFT and GTR are solid, fundamental theories, and that EFTs are a step further. Such a picture may be
taken, for instance, from Weinberg:

The essential point in using effective field theory is you’re not allowed to make any assumption
of simplicity about the Lagrangian. Certainly you’re not allowed to assume renormalizability.
Such assumptions might be appropriate if you were dealing with a fundamental theory, but not
for an effective field theory, where you must include all possible terms that are consistent with
the symmetry. The thing that makes this procedure useful is that although the more complicated
terms are not excluded because they’re non-renormalizable, their effect is suppressed by factors
of the ratio of the energy to some fundamental energy scale of the theory. Of course, as you
go to higher and higher energies, you have more and more of these suppressed terms that you
have to worry about.
S. Weinberg [539], p. 9.

The statement above contains all the key elements under discussion in the present chapter. First, the
possibility of to interfere in the structure of the theory by claiming simplicity, which usually is said to be
enough to allow ad hoc modifications. Second, the role of renormalizability in the classification of field
theories. At this point, it might be useful to recall that, in the perturbation approach, a quantum field theory
is composed of an action (dynamics), a vacuum, and a regulator, according to which the Lagrangian is
said to be [68, 536]

• non-renormalizable, if 𝑘𝐷,𝑛 > 0;

• superrenormalizable, if 𝑘𝐷,𝑛 < 0;

• renormalizable, if 𝑘𝐷,𝑛 = 0,
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where the superficial degree of divergence of a graph Γ reads

deg𝐷 (Γ) = 𝑘𝐷,𝑛 𝐿 +
2(𝑛 − 𝐸)
𝑛 − 2

, 𝑘𝐷,𝑛 ≡
𝐷 (𝑛 − 2) − 2𝑛

𝑛 − 2
, (2.26)

for 𝐸 external legs, 𝐿 loops, 𝐷 spacetime dimensions and 𝑛 valency. For a 𝐷-dimensional scalar QED,
say, the vertex coupling constant 𝑔𝑛 is related to the renormalizability condition by

[𝑔𝑛] = −
𝑛 − 2

2
𝑘𝐷,𝑛 , (2.27)

which satisfies the Dyson condition [𝑔 𝑗 ] ⩾ 0 if 𝑛 ⩽ 2𝐷/(𝐷 − 2). In the quotation above, Weinberg
is refering to non-renormalizable theories in the Dyson power-counting sense. However, the status of
renormalizability as a criteria to select physical theories is not the same anymore as it was in the 1960s,
when the Salam-Glashow-Weinberg model was under construction.29 The turning point seems to be its
irrelevance in to treat the ultraviolet divergences [536, I, p.499], which led to the re-evaluation of Yang-
Mills theory and Einstein gravity by Veltman and t’Hooft, among many others; see, for instance, [522]; we
also refer to Cao and Schweber [70] for an analysis of the status of renormalizability from the late 1940s
until 1996. More recent accounts are provided by Nambu [354], Pittau [416], and Weinberg [537, 538].

Planck and Fermi scales. It seems that Gleb Wataghin’s excerpt quoted in the previous section is the only
explicit record of Pauli’s conjecture reported in the literature, beside Mario Novello’s recollections [362,
367] of his private conversations, in the early seventies, with Josef-Maria Jauch and Ernst Stückelberg,
both connected to Pauli at the ETH Zürich (the first as student in the 1933-1938 period, the second as
Privatdozent as of late 1933, cf. Wanders in [217]; see also Enz [154]).

According to Novello, the argument as reconstructed by Jauch and Stückelberg relies upon the physical
and dimensional features of the relation between the Planck and Fermi scales:

i. the Fermi length 𝑙Fermi is like the square root of the Planck length 𝑙Planck,

𝑙Fermi ≈
√︁
𝑙Planck ≈ 10−16cm. (2.28)

ii. Fermi’s𝐺F and Newton’s𝐺N constants share the highest degree of universality30 among the coupling
constants of physics;

iii. in natural units (𝑐 = ℏ = 1), 𝐺F and 𝐺N have dimension of length squared,

[𝐺F] = [𝐺N] = L2. (2.29)

While properties (i.) and (ii.) are markedly physical, property (iii.) is directly implicated by the
dynamical variables of Einstein’s and Fermi’s Lagrangians. For Pauli [396], the gravitational constant,

29See, for instance, Salam [443]. Moreover, it is interesting to notice that Heisenberg was alone on this topic in the 1950’s,
as commented in the Section 2.1.

30To date, only gluons do not couple weakly.
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as well as the energy-momentum tensor, are admittedly the ‘phenomenological constituents of the GTR’
(rather than fundamental, as sometimes stated). Curiously, T. D. Lee [311] asserts that 𝐺F was inspired
by Newton’s constant. What is far from trivial, according to the square root conjecture, is the reason why,
among all field theories, the only ones carrying 𝐺F and 𝐺N allows one to define length scales such that the
first is like the square root of the second, and how it explains the positive (attractive) character of gravitating
masses.

Although the Planck scale has an eminent position in quantum approaches to gravity, its relation to
Fermi scale scarcely play any role in the deductive structure of new models. The Fermi length 𝑙𝐹 ≡

√︁
𝐺F/ℏ𝑐

was introduced by Ivanenko and Sokolow [248] in 1936 as a typical radius of heavy particles (protons
and neutrons). Its ad hoc status is slightly different, though, from Planck scale; for it contains the three
constants − 𝑐, ℏ, and 𝐺F − present in Fermi’s theory, while no consistently testable theory relating 𝑐, ℏ,
and 𝐺N is yet known.

More recently, the relation between Newton’s and Fermi’s constant has been revived [367, 377–379].
In particular, let us consider the Fermi scale defined by

𝑙𝐹 :=
(︃
𝐺F

ℏ𝑐

)︃1/2
, 𝑚𝐹 =

(︃
ℏ3

𝑐𝐺F

)︃1/2
, 𝑡𝐹 =

(︃
𝐺F

ℏ𝑐3

)︃1/2
, 𝜃𝐹 =

(︄
ℏ3𝑐3

𝐺F𝑘
2
𝐵

)︄1/2

. (2.30)

Then, one shall note that the ratio 𝑠Fermi/𝑠Planck generates an adimensional characteristic value given by

𝑙𝐹

𝑙𝑃
=
𝑚𝑃

𝑚𝐹

=
𝑡𝐹

𝑡𝑃
=
𝜃𝑃

𝜃𝐹
=
𝑐

ℏ

(︃
𝐺F

𝐺N

)︃1/2
=:

√︁
𝜉 ≃

√︁
1.738 · 1033 . (2.31)

Then, following the suggestion made by Prof. R. Onofrio [377], the renormalization of 𝐺N by reabsorbing
𝜉 into 𝐺̃𝑁 , so that

𝐺̃𝑁 :=
√

2 𝜉 𝐺N = 2.458 · 1033𝐺N (2.32)

would imply that, at subnuclear distances, 𝑙𝑃 ≈eff 𝑙𝐹 . Qualitatively, it makes explicit the phenomenological
aspect of gravity (in Pauli’s sense) as described by GTR. Among the possibilities to make further advances
on this argument, there is one of special interest, where the physical spacetime is kept a 4-dimensional,
Lorentzian manifold as in GTR, while the internal group of symmetries is enlarged.

Gravitational spin connections. As stressed in the Introduction, a renewed interest in the 1950s on the
construction of Dirac’s theory in curved spacetime was brought forward by Klein [273, 276], and Laurent
[305], were a more general Dirac adjoint preserving unitarity was reviewed in the light of Bargmann’s
seminal paper [24] of 1932. It is interesting to note that Klein’s 5-dimensional relativistic formalism
seems to have paved the way for another type of unifying scenarios, where the physical spacetime is kept
4-dimensional and the internal space is extended via generalized spin connections (GSC) [93, 161, 210,
211, 323, 324, 362–364, 367, 371, 401, 402, 507].

This possibility is mainly related to the well known arbitrariness of the Riemannian compatibility
constraint imposed to the Dirac basis of the Clifford bundle. A similar situation occurs from the point of
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view of soldering forms (globally defined frame fields) in classical unified models (of Einstein-Cartan-
and GraviGUT-type) with enlarged internal spaces, cf. Krasnov and Percacci [291]. What distinguish the
GSC approaches from the models reviewed in [291] is the absence, in the GSC approaches, of frame fields
(whether locally, or globally defined) in the construction of the Dirac operator. This aspect draw some
attention to the internal consistency of the GSC approaches, once fermions can not be described in curved
spacetime without tetrads. We return to this point in the Section 4.1.

Consistency aside, the GSC formulations contain an interesting line of thought, which explore the
possibility of introducing new degrees of freedom into Dirac’s theory via spin connection. Recently, a
suggestion made by Donoghue [131] also consider the same path, but from a different perspective. The
argument presented by Donoghue relies upon the arbitrary choice of imposing the metric compatibility
as an additional constraint to the spin connection. His motivation is stressed by the fact that the spin
connection, seen as non-Abelian gauge fields, give negative 𝛽 functions,

𝛽(𝑔) = −22
3

𝑔3

16𝜋2 (2.33)

For a recent discussion of Donoghue’s proposal, we refer to Alexander and Manton [8]. The relevant point
to be highlighted is that the metricity compatibility does not preclude the spin connection from having
independent degrees of freedom. Notwithstanding, that is not the only possibility to introduce internal
degrees of freedom in a theory of fermions in curved spacetime. This point also is continued in Chapter 4.

Comment on the Born-Infeld running scale. From the works of Sauter [448], Halpern [220], Euler
and Heisenberg [156, 233], and Schwinger [474] among others [473], the departure between Maxwell
electrodynamics and non-linear quantum effects, predicted by pure QED, is characterized by the critical
electric field E𝑐𝑟𝑖𝑡 , given by

E𝑐𝑟𝑖𝑡

|︁|︁|︁|︁
QED

=
𝑚2
𝑒𝑐

3

𝑒ℏ
. (2.34)

By noting that [E𝑐𝑟𝑖𝑡] = L−1M1/2T1/2, one can infer that the Born-Infeld parameter 𝑏𝑐𝑟𝑖𝑡 reads

𝑏QED ≡ 𝑏𝑐𝑟𝑖𝑡
|︁|︁|︁|︁
QED

=
E𝑐𝑟𝑖𝑡

𝑐

|︁|︁|︁|︁
QED

= B𝑐𝑟𝑖𝑡

|︁|︁|︁|︁
QED

=
𝑚2
𝑒𝑐

2

𝑒ℏ
. (2.35)

If we consider the possibility31 of to construct an electromagnetic scale in terms of ℏ, 𝑐, 𝑒 and 𝑏, then we
are tempted to state a Born-Infeld running scale 𝑠𝐵𝐼 , namely

𝑙𝐵𝐼 :=
(︃
ℏ3𝑐4

𝑏𝑒5

)︃1/2
, 𝑚𝐵𝐼 :=

(︃
𝑏𝑒5

ℏ𝑐6

)︃1/2
, 𝑡𝐵𝐼 :=

(︃
ℏ3𝑐2

𝑏𝑒5

)︃1/2
, 𝜃𝐵𝐼 :=

(︄
𝑏𝑒5

ℏ𝑐2𝑘2
𝐵

)︄1/2

. (2.36)

At the critical value 𝑏QED of the electromagnetic field predicted by QED (eq. 2.35), the Born-Infeld
scale corresponds to

lim
𝑏→𝑏QED

𝑙𝐵𝐼 =
ℏ2𝑐

𝑚𝑒𝑒
2 , lim

𝑏→𝑏QED
𝑚𝐵𝐼 =

𝑚𝑒𝑒
2

ℏ𝑐2 , lim
𝑏→𝑏QED

𝑡𝐵𝐼 =
ℏ2

𝑚𝑒𝑒
2 , lim

𝑏→𝑏QED
𝜃𝐵𝐼 =

𝑚𝑒𝑒
2

ℏ𝑘𝐵
. (2.37)

31This idea was suggested by Prof. M. Novello in private communication.
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It also follows that 𝑠𝐵𝐼 reaches the Planck scale 𝑠𝑃,

lim
𝑏→𝑏𝑚𝑎𝑥

𝑙𝐵𝐼 = 𝑙𝑃 , lim
𝑏→𝑏𝑚𝑎𝑥

𝑚𝐵𝐼 = 𝑚𝑃 , lim
𝑏→𝑏𝑚𝑎𝑥

𝑡𝐵𝐼 = 𝑡𝑃 , lim
𝑏→𝑏𝑚𝑎𝑥

𝜃𝐵𝐼 = 𝜃𝑃 , (2.38)

at the critical (maximal) value 𝑏𝑚𝑎𝑥 determined by

𝑏𝑚𝑎𝑥 :=
(︃
ℏ𝑐
𝑒2

)︃2
𝑐5

𝑒𝐺N
≈ 2.14 409 · 10105 GeV m−4kg−1/2s5/2. (2.39)

We shall also note that the ratios 𝑠𝑃/𝑠𝐵𝐼 , and 𝑠𝐹/𝑠𝐵𝐼 produce, respectively, the adimensional running
parameters given by

𝑙𝑃

𝑙𝐵𝐼
=
𝑚𝐵𝐼

𝑚𝑃

=
𝑡𝑃

𝑡𝐵𝐼
=
𝜃𝐵𝐼

𝜃𝑃
=

(︃
𝑏𝑒5𝐺N

ℏ2𝑐7

)︃1/2
, (2.40)

𝑙𝐹

𝑙𝐵𝐼
=
𝑚𝐵𝐼

𝑚𝐹

=
𝑡𝐹

𝑡𝐵𝐼
=
𝜃𝐵𝐼

𝜃𝐹
=

(︃
𝑏𝑒5𝐺F

ℏ4𝑐5

)︃1/2
. (2.41)

One may claim that the electromagnetic field reaches the Planck and Fermi scales, respectively, as 𝑏 → 𝑏𝑃

and 𝑏 → 𝑏𝐹 , for

𝑏𝑃 := lim
𝑙𝐵𝐼→𝑙𝑃

𝑏 =
ℏ2𝑐7

𝑒5𝐺N
, (2.42)

𝑏𝐹 := lim
𝑙𝐵𝐼→𝑙𝐹

𝑏 =
ℏ4𝑐5

𝑒5𝐺F
. (2.43)

The strongest magnetic fields detected in Astrophysics comes from neutron stars; we refer to [338,
437].

2.4 Outlook

Historically, the statement of energy scale problem associated to each interaction shapes, and some-
times even predate, the own physical theory, and allows one to rethink the way how theories are fabricated
since the 1970s. While the generation of field theories in the 1915-1939 period were mainly bold, con-
stitutive hypotheses with increasing degree of deducibility, the period post-1970 admittedly portraits an
increasing adhesion in the effective approaches to model-building aimed at fitting the empirical data, even
if they are openly ad hoc.

If that is the case, we do not see EFTs as a departure from QFTs: How could quantum field theories be
unequivocally classified as effective, or phenomenological, and non-effective, or non-phenomenological?
Born-Infeld (1934), Euler-Heisenberg (1935-1936), Heisenberg’s unified field theory (1947-1959) are all
typically nonrenormalizable theories, proposed as early as the foundational papers of QED. The novelty,
perhaps, is in to admit that perturbative renormalizability is not enough to eliminate theories from our
bundle of frameworks.
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However, the crucial question seems to be this: What is expected from the new theories in physics
after a decisive test like parity violation? While the non inclusion of the empirical evidence would be
a nonsense, any test of the future theory can not rely upon its ability of to describe parity violation.
Corroboration can not exclusively follow from the reproducibility of a previous refutation. Any further
development post-1957 must be able to present new logical consequences, including parity violation, from
its constitutive and auxiliary hypotheses. For a new bold conjecture, rather than a mathematical reset, is
necessary, even if its results are more likely to require a long term research program. Oriented by the Pauli
conjecture, the next chapters are small steps in this open direction.
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3. Grasping an effective approach to gravity

Any physical theory, any physical notion, is, as a matter of fact, an approximation.
Each great progress of physical science is related not only to the creation of new notions,

but also to the critical revision of old ones.
V. A. Fock in [160], Paper 36-1.

Current researches connecting cosmology and neutrino physics have been confronting over the last
five decades the Salam-Glashow-Weinberg model limitations to explain the massive [39, 42, 331] and
sterile [58] neutrinos, its Dirac or Majorana nature [40], and how its parity violation could be indicating a
deeper connection with external symmetries of spacetime [9, 71, 97, 198, 205, 263, 357, 376–379, 522].

In cosmology, the lackness of matter and energy content in the universe within the inflationary model
combined to recent Planck data seems to indicate a complete exhaustion of the present theoretical scheme,
as well as the necessity of a new departure, or yet new physics [59, 61, 114]. Meanwhile, alternative
perspectives [20, 71, 117, 309, 355, 365, 370, 386, 411, 412, 515, 517, 521, 542] do not discard the
achievements of the standard model, but keep open the path in searching for a new synthesis.

We intend to address the second road by starting with a brute force exercise: the implementation1 of
non-linear spinor fields inducing an effective spacetime [367–369]. In this effective approach, also called
spinor theory of gravity2 (STG), the following statements are assumed as the orientation for this program:

I. The construction of the STG relies upon Pauli’s square root conjecture that there is a deeper relation
between gravity and weak interactions (Sec. 2.2). There are at least three common aspects pointing
to that direction: their high level of universality, the same dimensionality of their coupling constants
(in the natural unit system), and their manifest external symmetries (parity violation, for instance).

II. The mathematical framework of STG is a Clifford algebra 𝐶𝑙 (𝑉4, 𝜂) associated to a 4-dimensional
Minkowski space (𝑉4, 𝜂), with an extention of the spin connection by a scalar field 𝐻. In effect, this
prevents us from introducing the antisymmetric part of the Riemannian connection, as suggested by
the Einstein-Cartan theory. As a key outcome, the four-fermion coupling to gravity (in the sense of
GR) does not induces torsion.

III. The self-interaction of the gravitational field is implemented by a Heisenberg spinor in (𝑉4, 𝜂) (Sec.
3.1). That is, gravity is locally described by a Fermi’s contact interaction.

1The results of this chapter were developed in collaboration with M. Novello, and E. Bittencourt.
2Although ‘spinor approach to gravity’ would be a better name, once the proposal’s testability is still lacking.
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IV. In the lines of Sakharov’s conjecture, the physical spacetime (𝑀, 𝑔) emerges as an effective process
induced by weak (𝑉−𝐴)-currents (Sec. 3.2). By construction, gravity is in the large scale an effective
weak interaction.

We argument that gravity as an effective manifestation of internal degrees of freedom of the spacetime
structure is closer to Einstein’s ideas than regarding it to a metric representation. Indeed, Einstein’s
apriorism relies, not upon the (pseudo) Riemannian structure of (𝑀, 𝑔) as usually is asserted, but instead
on the belief that the gravitational field is as intrinsic to the spacetime structure as the curvature is intrinsic
to a (pseudo) Riemannian manifold. Hence, unification and geometrization are two distinct programs
[313]. Einstein followed the first, while Weyl pursued their identification. If that is the case, then geometry
might be sufficient, albeit not necessary, to describe gravity.

That allow us to infer the possibility of introducing a metric structure in 𝑀 satisfying the metricity
condition, without imposing a dynamics over 𝑔. Einstein equations, in that case, are tautologically satisfied
in compatibility with the Bianchi identities. The evolution of 𝑔 comes from the hypothesis that 𝑔 inherits
its dynamics from non-linear spinor fields. That is the content of what we call by “effective” here.

Let us point out that, in the GTR, Einstein’s equivalence principle (EEP) is assumed to be valid in the
(external) physical spacetime. From the point of view of STG, one is led to consider as a key feature of
the theory that the universal coupling of matter with the non-linear spinor fields satisfies the EEP in the
effective spacetime, while internally, matter is intrinsically carrying gravitational content. This seems to
be another point of contact between Heisenberg’s program and Einstein’s gravitational physics [142] (Sec.
3.3).

3.1 The action

The spin connection. Let𝐶𝑙 (𝑉4 , 𝜂) be a Clifford algebra associated to a 4-dimensional Minkowski space
(𝑉4 , 𝜂) with signature + − −− , and ideal given by

𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇 = 2 𝜂𝜇𝜈 (𝑥) I. (3.1)

Since 𝜂 is a bilinear in arbitrary coordinates, we require that it satisfies a (pseudo-)Riemannian structure,
so that

∇𝜌 𝜂𝜇𝜈 = 𝜕𝜌𝜂𝜇𝜈 − Γ𝜎𝜌𝜇 𝜂𝜎𝜈 − Γ𝜎𝜌𝜈 𝜂𝜇𝜎 = 0, (3.2)

where Γ𝜎𝜌𝜈 = Γ𝜎𝜈𝜌 is the Levi-Civita connection. The Dirac basis defining the ideal (3.1) is made
compatible with (3.2) under the further constraint given by the covariant derivative3

∇𝜇 𝛾𝜈 = 𝜕𝜇 𝛾𝜈 − Γ𝜎𝜌𝜇 𝛾𝜎 − Γ𝜇 𝛾𝜈 + 𝛾𝜈 Γ𝜇 = 0, (3.3)

3This expression corresponds to the Eq. (36) in Fock (1929) [174], Eq. (8) in Schrödinger (1932) [469], and Eq. (18) in
Bargmann (1932) [24], and Eq. (2) in Brill and Wheeler (1957) [62]. A discussion is presented in Chapter 4.
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where, for any vector field 𝐻𝜇 ∈ 𝔛(𝑉4), the spin connection Γ𝜇 = Γ𝐹𝐼𝜇 + 𝐻𝜇 is linear in 𝛾𝜇 (𝑥) ∈ 𝐶𝑙 (𝑉4 , 𝜂).
Note that the Fock-Ivanenko connection is a recurrence relation. Contracting (3.3) with 𝛾𝜈 on the left and
on the right, separately, and taking the difference, one gets

𝛾𝜈𝜕𝜇𝛾𝜈 − 𝜕𝜇𝛾𝜈𝛾𝜈 − Γ𝜎𝜌𝜇
(︁
𝛾𝜈𝛾𝜎 − 𝛾𝜎𝛾𝜈

)︁
+ 8Γ𝐹𝐼𝜇 − 2𝛾𝜈Γ𝐹𝐼𝜇 𝛾𝜈 = 0. (3.4)

In particular, the Fock-Ivanenko connection satisfies4

Γ𝐹𝐼𝜇 := −1
8

[︁
𝛾𝜅 𝜕𝜇 𝛾𝜅 − 𝜕𝜇𝛾𝜅 𝛾𝜅 − Γ𝜆𝜇𝜅 (𝛾𝜅𝛾𝜆 − 𝛾𝜆𝛾𝜅)

]︁
. (3.5)

Setting (3.5) is equivalent to fixing an orthonormal frame bundle for 𝑉4, where Γ𝐹𝐼𝜇 = 𝜔𝜇 is the spin
connection [265, 526]. Moreover, let 𝐻 (𝑥) be a real Klein-Gordon field, such that

𝐻𝜇 (𝑥) :=
1
4
𝛾𝜇 𝛾

𝜅 𝜕𝜅𝐻 (𝑥). (3.6)

One may note that (3.3) is linear in 𝛾𝜇, since

[𝐻𝜇 , 𝛾𝜈] =
1
2
(𝐻,𝜇𝛾𝜈 − 𝜂𝜇𝜈 𝛾𝜅𝐻,𝜅). (3.7)

To ensure that the 𝐻 (𝑥) does not carry any dependence on the spinor fields, its dynamics is constrained by

S𝑜 [𝐻] =
∫
𝑉4

√−𝜂
[︁
L𝑜 + 𝑏𝜇𝜈 (∇𝜇 𝛾𝜈 + 2𝜂𝜇𝜈𝛾𝜅 𝜕𝜅𝐻 − 2𝛾𝜈 𝜕𝜇𝐻)

]︁
𝑑4𝑥, (3.8)

where the Lagrange multipliers 𝑏𝜇𝜈 ∈ 𝐶𝑙 (𝑉4 , 𝜂) are functions of the elements of the Clifford algebra. In
this way, the variation of S𝑜 [𝐻] with respect to 𝐻 reduces to the massless Klein-Gordon equations,

𝛿𝐻 S𝑜 [𝐻] = 0 : □𝐻 (𝑥) = 0 , 𝑏𝜇𝜈 = 𝛾𝜇𝛾𝜈 . (3.9)

In consequence, the action of the Lorentz covariant derivative over the spinor fields {Ψ,Ψ} is given by5

∇𝜇Ψ = 𝜕𝜇Ψ − Γ𝜇Ψ , (3.10)

∇𝜇Ψ = 𝜕𝜇Ψ + Ψ Γ𝜇 , (3.11)

where Ψ := Ψ†𝛾𝑜 is the ordinary Dirac adjoint.

We shall see that the ad hoc introduction of 𝐻 is meant to save the stability of the static and spherically
symmetric solutions of STG. In the context of QED, the Heisenberg equation allows one to interpret Ψ
and Ψ as bounded states, self-interacting via a scalar field [35]. In the present formulation, the scalar field
plays no other role than adjusting the stability of the static sphere configurations (Sec. 3.4).

4Eq. (10-6.29) in Anderson [15].
5This convention follows Brill and Wheeler [62].
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The Fierz identities. Let Γ ∈ 𝐶𝑙 (𝑉4, 𝜂) be the set of 16 independent elements of the Clifford algebra
associated to the Minkowski space. Then Γ satisfies the Fierz(-Pauli-Kofink) identities6,

(Ψ Γ𝛾𝜎 Ψ) 𝛾𝜎 Ψ = (Ψ ΓΨ) Ψ − (Ψ Γ𝛾5 Ψ) 𝛾5 Ψ , ∀Γ ∈ 𝐶𝑙 (𝑉4, 𝜂). (3.12)

Denoting by

𝐴 := ΨΨ, 𝐵 := 𝑖Ψ𝛾5Ψ, 𝐽𝜇 := Ψ𝛾𝜇Ψ, 𝐼𝜇 := Ψ𝛾𝜇𝛾5Ψ (3.13)

the scalar, pseudoscalar, vector and axial currents, respectively, it holds the following relations:

𝐽𝜇 𝛾
𝜇 Ψ = (𝐴 + 𝑖𝐵𝛾5) Ψ (3.14)

𝐽𝜇 𝛾
𝜇𝛾5Ψ = −(𝐴 + 𝑖𝐵𝛾5)𝛾5Ψ (3.15)

𝐼𝜇𝛾
𝜇 Ψ = (𝐴 + 𝑖𝐵𝛾5)𝛾5Ψ (3.16)

𝐼𝜇𝛾
𝜇𝛾5 Ψ = −(𝐴 + 𝑖𝐵𝛾5) Ψ . (3.17)

In terms of the projector operators 𝑃±,

𝑃± :=
1
2
(I ± 𝛾5), (3.18)

one may define the chiral states {𝜒, 𝜒}, such that

𝜒 := 𝑃+Ψ, 𝜒 := (𝑃+Ψ) = Ψ 𝑃− . (3.19)

Since 𝑃2
± = 𝑃± and 𝛾5𝑃± = ±𝑃±, the relations between the projectors 𝑃± and the 16 independent elements

Γ of the Clifford algebra are summarized by7

Γ =
{︁
I , 𝛾5 , 𝛾𝜇𝛾𝜈

}︁
: 𝑃∓Γ𝑃± = 0 , (3.20)

Γ =
{︁
𝛾𝜇 , 𝛾𝜇 𝛾5

}︁
: 𝑃∓Γ𝑃± = ±𝑃∓𝛾𝜇𝑃± . (3.21)

Hence, the Fierz identities for the chiral states reduces to

(𝜒 Γ𝛾𝜎 𝜒) 𝛾𝜎 𝜒 = 0, Γ =
{︁
I , 𝛾5 , 𝛾𝜇𝛾𝜈

}︁
(3.22)

(𝜒 Γ𝛾𝜎 𝜒) 𝛾𝜎 𝜒 = (𝜒 Γ 𝜒) 𝜒 − (𝜒 Γ𝛾5 𝜒) 𝛾5 𝜒 , Γ =
{︁
𝛾𝜇 , 𝛾𝜇 𝛾5

}︁
. (3.23)

In summary, only vector and axial currents of chiral states survives. This is a curious property indeed,
once it reduces the arbitrariness of which kind of spinors can condensate into Einstein-Bose states. In
other words, a four-fermion interaction can not be responsible for inducing the mass of particles without
breaking parity.

6Cf. Fierz [169], Fierz and Pauli [170], and Kofink [283–285]; see also the Chapter II.8 in Castellani, D’Auria and Fré [77].
7See also Feynman and Gell-Mann [168].
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The Heisenberg fields. By construction, {Ψ,Ψ} are Dirac spinors with a Fermi’s contact interaction,
constrained by the Action

S[Ψ,Ψ] = 𝑖

2

∫
𝑉4

√−𝜂
(︂
Ψ /∇Ψ − /∇ΨΨ + 𝑠 𝐽𝜇𝐽𝜇

)︂
𝑑4𝑥 . (3.24)

The coupling parameter 𝑠 ∈ R has dimension of length squared. The dynamics for Ψ is

𝛿
Ψ
S[Ψ,Ψ] = 0 : 𝛾𝜇 (𝜕𝜇 − Γ𝐹𝐼𝜇 − 𝐻𝜇)Ψ − 2𝑠(𝐴 + 𝑖𝐵𝛾5)Ψ = 0. (3.25)

We shall note that the Heisenberg fields [137, 193, 231, 234, 517] correspond to the particular case when
∇𝜇 → 𝜕𝜇. Moreover, the Heisenberg dynamics reduces to Dirac equation for Ψ = 𝛾5 Ψ, cf. [243].

3.2 The effective spacetime

Einstein’s apriorism in the formulation of the GTR relies, not upon the pseudo-Riemannian structure
(𝑀, 𝑔) itself, but instead upon the belief that the gravitational field is as intrinsic to the spacetime structure
as the Riemannian curvature is to (𝑀, 𝑔). That is the root for requiring general covariance in GTR: once
gravity is, by hypothesis, intrinsic to the structure of spacetime, the theoretical system describing gravity
should not be dependent on the coordinate system. Physical reality, according to Einstein, cannot depend
on the nets choose to catch it.

That Einstein did not see the GTR as a geometrization of gravity is well documented in the literature,
cf. Lehmkuhl [313]; see also Kiefer [265, p. 351], and Darrigol [96, §9.6]. The standard interpretation
present in any textbook on the subject is due to Hermann Weyl [543, 545–547], and his successor John A.
Wheeler [548–550]. The metric was seen by Einstein as a secondary element of the theory, while the affine
connection is what characterize the physical content of GTR. One of the few to enlighten this distinction
was Schrödinger:

As early as 1918, H. Weyl drew attention to the fact that in Einstein’s relativistic theory of
gravitation of 1915, gravitation was based not directly on the metric 𝑔𝜇𝜈 but on the affine
connection

Γ𝛼𝜇𝜈 =

{︂
𝛼
𝜇 𝜈

}︂
(...).

Schrödinger [470], p.147.

Einstein’s Equivalence Principle (EEP) between inertial and gravitational effects is directly dependent upon
the Christoffel symbols, which define a family of geodesics characterized by its arc length 𝑠,

𝑑2𝑥𝜌

𝑑𝑠2 + Γ
𝜌
𝜇𝜈

𝑑𝑥𝜇

𝑑𝑠

𝑑𝑥𝜈

𝑑𝑠
= 0. (3.26)

The metric plays no direct role on parallel displacements.
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Trautman [505] defined a “weak equivalence principle”, according to which the reproducibility of
measurements on a given physical system is assured by the same affinity preserving the covariance of the
system, if the back-reaction of measurements on the source of the gravitational field is neglectable. In
the lines of Anderson [15, 16], one may state that EEP introduces a selection, and very restrictive indeed,
rule to the coupling of gravity with matter in GR. The fact that the Levi-Civita connection is unique
and compatible with the metric has no other physical implication than preserving lengths under parallel
transport, the key property lost in Weyl’s geometry [4].

One may also be led to notice that Schrödinger’s comment is coherent with how Einstein’s severe
self-criticism predominantly reflects on modifications of GTR via the affine connection, as is the case of
his collaborations with Élie Cartan, Eddington, Mayer, Schrödinger, Straus, and Bruria Kaufman, cf. [25,
96, 209, 291, 471, 501]. The exception is the bitensor theory, developed with V. Bargmann [149]. There
is more: Einstein also argued that gravity should play a key role not only in the stability of matter [142],
but also in the creation of the masses of particles [146, p.675]. That is precisely what we mean by saying
that gravity, according to Einstein, is intrinsic to the spacetime structure8. According to Einstein, GTR is
nothing else than a provisional step towards a relativistic theory of gravity.

In these lines, Pauli [222] and Sakharov [440] seems to have understood Einstein’s physics in deep
when he proposed gravity as an emergent phenomenon of matter fields. That was the seed to think gravity
as an emergent, analogue or yet effective, process [13, 22, 23, 46, 81, 130, 523, 576].

In the STG, we call effective spacetime a 4-dimensional, oriented manifold (𝑀, 𝑔eff) equipped with
an effective metric 𝑔, as defined by

𝑔eff
𝜇𝜈 = 𝜂𝜇𝜈 (𝑥) − 𝜅ℎ𝜇𝜈 (Ψ,Ψ), (3.27)

where the modifications ℎ𝜇𝜈 (Ψ,Ψ) of the Minkowski background are constructed in terms of the 𝑉 − 𝐴
currents9

ℎ𝜇𝜈 (Ψ,Ψ) = 𝑙𝜇 𝑙𝜈, 𝑙𝜇 :=
(︂𝑔𝑤
𝐽

)︂1/4
(𝐽𝜇 − 𝐼𝜇 ) , 𝐽 ≡ 𝜂𝜇𝜈𝐽𝜇𝐽𝜈 . (3.29)

We also require that 𝑔eff satisfies a pesudo-Riemannian structure,

∇𝜌 𝑔eff
𝜇𝜈 = 0. (3.30)

As a consequence of the Fierz identities, the vector current 𝐽𝜇 is timelike, the axial current 𝐼𝜇 is
spacelike, and the 𝑙𝜇 are null. In addition, it holds that

𝜂𝜇𝜈𝐽
𝜇𝐽𝜈 = −𝜂𝜇𝜈 𝐼𝜇 𝐼𝜈 = −𝐴2 − 𝐵2 , (3.31)

8Dewar [113] argues that diffeomorsphisms should be understood as internal, more than external, automorphisms in the
context of GTR.

9We shall note that in Heisenberg’s QED [49, Series B-1, p.663], the projection operator for a Dirac spin 1 state is
proportional to (︃

𝑘𝑙

2𝜋

)︃2 (︃
𝜂𝜇𝜈 −

𝐽𝜇 𝐽𝜈

𝐽

)︃
𝑞1 (𝜆) , 𝐽 ≡ 𝜂𝜇𝜈𝐽𝜇𝐽𝜈 . (3.28)

A further elucidation of this parallel with the effective metric is needed.
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and consequently,

𝜂𝜇𝜈ℎ𝜇𝜈 (Ψ,Ψ) = 0 , ℎ𝜇𝜅 𝜂
𝜅𝜆 ℎ𝜆𝜈 = 0 , det 𝑔eff

𝜇𝜈 (𝑥) = det 𝜂𝜇𝜈 (𝑥). (3.32)

That is another relevant property related to the spinor representation: the existence of one spinor field
does not affect the total volume of the physical spacetime (compare, for instance, with Nambu [353, p.
402]). These properties do not hold for contact interactions of two distinct spinor fields.

3.3 Universal coupling with matter

One of the fundamental problems present in Einstein’s formulation of GTR is how to interpret the
energy-momentum tensor [141, 251, 302]. In The meaning of Relativity, Einstein asserts:

We have seen, indeed, that in a more complete analysis the energy tensor can be regarded
only as a provisional means of representing matter. In reality, matter consists of electrically
charged particles, and is to be regarded itself as a part, in fact, the principal part, of the
electromagnetic field. It is only the circumstance that we have no sufficient knowledge of
the electromagnetic field of concentrated charges that compels us, provisionally, to leave
undetermined, in presenting the theory, the true form of this tensor.
Einstein [148], p.84-85.

As in GR, the action of the free matter S𝑚 is stated by

S𝑚 =

∫ √−𝑔 L𝑚 𝑑
4𝑥 , (3.33)

with energy-momentum distribution defined by

𝛿 (√−𝑔 L𝑚) :=
1
2
√−𝑔 𝑇𝜇𝜈 𝛿𝑔𝜇𝜈 . (3.34)

However, the metric in STG is not a dynamical field, since it is nothing but a representation the action of
the Heisenberg field Ψ upon the Minkowski space. Recalling the notation in [367],

𝛿
Ψ
𝑔𝜇𝜈 = 2𝜅 𝑙𝜇 𝛿

Ψ
𝑙𝜈 ≡ 2𝜅 𝑄𝜇𝜈Ψ, (3.35)

with

𝑄𝜇𝜈 ≡
(︂ 𝑔𝑤
𝐽

)︂1/4
𝑙𝜇 𝛾𝜈 (I − 𝛾5) −

1
2𝐽

ℎ𝜇𝜈 (𝐴 + 𝑖𝐵𝛾5). (3.36)

Thus, the physical content of the variational relation (3.34) for 𝑇𝜇𝜈 is given by

𝛿
Ψ
L𝑚 = 𝜅 𝑇𝜇𝜈 𝑄

𝜇𝜈Ψ. (3.37)

Note that the energy tensor is written without distinction between the Minkowski background and the
effective spacetime. This is due to the fact that the Heisenberg field do not affect the effective metric,
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𝑔𝜇𝜈 𝑙
𝜈 = 𝜂𝜇𝜈 𝑙

𝜈. In other words, matter couples to𝑄𝜇𝜈 as if it were in the background spacetime. Otherwise,
instead of an exact expression for the inverse of 𝑔, we would have an infinite series, as it is the case of field
theoretic formulation of gravity10.

Hence, the universal coupling of matter S𝑚 with the effective metric induced by the Heisenberg spinor
Ψ implies the non-minimal coupling of matter with the Heisenberg field,

𝑖 /∇Ψ(𝑥) = −𝜅 𝑇𝜇𝜈𝑄𝜇𝜈Ψ(𝑥) . (3.38)

3.4 The exact solutions of STG

In this section, we start by considering the two observed solutions11 of GTR: the Schwarzschild metric
[472] and the Friedman universe [187]. We shall see that, differently from Einstein’s gravity, the STG is not
constrained to the Birkhoff statement, which allows us to explore two distinct situations: with and without
a Heisenberg potential. Thereafter, we indicate how gravitational waves can be defined in STG following
the Kundt’s criteria [295]. Finally, we start the discussion about the weak field regime of the STG.

Static and spherically symmetric solution I. In the spherical coordinate system, the Minkowski line
element

𝑑𝑠2 = 𝑑𝑡2 − 𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 sin2 𝜃𝑑𝜑2 (3.39)

is associated to the following non trivial Christoffel symbols:

Γ1
22 = −𝑟 , Γ1

33 = −𝑟 sin2 𝜃 , Γ2
21 = Γ3

31 =
1
𝑟
, Γ2

33 = − sin 𝜃 cos 𝜃 , Γ3
32 = cot𝜃 , (3.40)

and the Lorentz volume of 𝜂𝜇𝜈 reduces to √−𝜂 = 𝑟2 sin 𝜃 . Thus, the 𝛾’s reproduces the metric elements as
follows:

𝛾𝑜 = ˜︁𝛾𝑜 , 𝛾1 = ˜︁𝛾1 , 𝛾2 = 𝑟 ˜︁𝛾2 , 𝛾3 = 𝑟 sin 𝜃 ˜︁𝛾3 , (3.41)

where the constant basis ˜︁𝛾𝜇 corresponds to the Dirac representation of 𝐶𝑙 (𝑉4, 𝜂),

˜︁𝛾𝑜 =

(︄
I2 0
0 −I2

)︄
, ˜︁𝛾 𝑗 =

(︄
0 𝜎𝑗

−𝜎𝑗 0

)︄
, ˜︁𝛾5 =

(︄
0 I2

I2 0

)︄
. (3.42)

The inverse components of (3.41) are defined by

𝛾𝜇 := 𝜂𝜇𝜈𝛾𝜈 , 𝜂𝜇𝜈𝛾
𝜇𝛾𝜈 = 4. (3.43)

Explicitly, we have

𝛾𝑜 = ˜︁𝛾𝑜 , 𝛾1 = −˜︁𝛾1 , 𝛾2 = −1
𝑟
˜︁𝛾2 , 𝛾3 = − 1

𝑟 sin 𝜃
˜︁𝛾3.

10See, for instance Feynman in [167], and Prinz [423].
11See also [63, 89].
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The components of the Fock-Ivanenko connection (3.5) are given by

Γ𝐹𝐼2 = −1
2
˜︁𝛾1 ˜︁𝛾2 , Γ𝐹𝐼3 = −1

2
(︁
sin 𝜃˜︁𝛾1 + cos 𝜃˜︁𝛾2

)︁˜︁𝛾3. (3.44)

In addition, the choice𝐻 = ln det 𝛾3 = ln
√
𝑟 sin 𝜃 is a solution of (3.9). In these coordinates, the Heisenberg

field satisfies the equations of motion given by[︃(︃
−𝜕𝑟 −

1
𝑟
+ 4𝜀
𝑟

)︃˜︁𝛾1 +
(︃
−1
𝑟
𝜕𝜃 −

cot𝜃
2𝑟
+ 2𝜀cot𝜃

𝑟

)︃˜︁𝛾2

]︃
Ψ(𝑟, 𝜃) = 0. (3.45)

Setting

Ψ = 𝑓 (𝑟) 𝐵(𝜃) Ψ𝑜 , (3.46)

we obtain that [︃˜︁𝛾1

(︃
𝑓 ′

𝑓
+ 1

2𝑟

)︃
+ ˜︁𝛾2

1
𝑟𝐵

𝑑𝐵

𝑑𝜃

]︃
Ψ 𝑜 = 0 . (3.47)

Hence the Heisenberg field Ψ only depends on the radial part,

Ψ(𝑟) =
1
√
𝑟
Ψ 𝑜 , Ψ 𝑜 :=

(︄
𝜁

𝜂

)︄
. (3.48)

We are looking for a solution such that

ℎ22 = ℎ33 = 0 . (3.49)

From the spatial components of 𝐽𝜇 and 𝐼𝜇,

𝐽𝑖 − 𝐼𝑖 =
𝑎

𝑟
(𝜁† − 𝜂†) 𝜎𝑖 (𝜂 − 𝜁) , (3.50)

we infer that a sufficient condition to guarantee (3.49) is by setting

(𝜁† − 𝜂†) 𝜎2 (𝜁 − 𝜂) = 0 , (3.51)

(𝜁† − 𝜂†) 𝜎3 (𝜁 − 𝜂) = 0 . (3.52)

Furthermore, the components 𝐽𝑜 and 𝐽1 are, respectively,

𝐽𝑜 =
1
𝑟
(𝜁†𝜁 + 𝜂†𝜂) (3.53)

𝐽1 =
1
𝑟
(𝜁†𝜎1𝜂 + 𝜂†𝜎1𝜁) , (3.54)

and the normalization factor is

𝐽1/4 := (𝜂𝜇𝜈𝐽𝜇𝐽𝜈)1/4 = (𝐽𝑜𝐽𝑜 + 𝐽1𝐽
1)1/4 =

1
√
𝑟

[︁
(𝜁†𝜁 + 𝜂†𝜂)2 − (𝜁†𝜎1𝜂 + 𝜂†𝜎1𝜁)2

]︁1/4
. (3.55)
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It follows that the components 𝑙𝑜 and 𝑙1 are given by

𝑙𝑜 :=
(︂𝑔𝑤
𝐽

)︂1/4
(𝐽𝑜 − 𝐼𝑜) = 𝑔

1/4
𝑤

1
√
𝑟

(𝜁† − 𝜂†) (𝜁 − 𝜂)[︁
(𝜁†𝜁 + 𝜂†𝜂)2 − (𝜁†𝜎1𝜂 + 𝜂†𝜎1𝜁)2

]︁1/4 , (3.56)

𝑙1 :=
(︂𝑔𝑤
𝐽

)︂1/4
(𝐽1 − 𝐼1) = 𝑔

1/4
𝑤

1
√
𝑟

(𝜁† − 𝜂†) 𝜎1 (𝜂 − 𝜁)[︁
(𝜁†𝜁 + 𝜂†𝜂)2 − (𝜁†𝜎1𝜂 + 𝜂†𝜎1𝜁)2

]︁1/4 . (3.57)

Collecting the results, the non-vanishing components of ℎ𝜇𝜈 (Ψ,Ψ) are

ℎ𝑜𝑜 =
𝑔

1/2
𝑤

𝑟

[︁
(𝜁† − 𝜂†) (𝜁 − 𝜂)

]︁2[︁
(𝜁†𝜁 + 𝜂†𝜂)2 − (𝜁†𝜎1𝜂 + 𝜂†𝜎1𝜁)2

]︁1/2 ≡
𝛼 𝑔

1/2
𝑤

𝑟
, (3.58)

ℎ𝑜1 =
𝑔

1/2
𝑤

𝑟

(𝜁† − 𝜂†) (𝜁 − 𝜂).(𝜁† − 𝜂†) 𝜎1 (𝜂 − 𝜁)[︁
(𝜁†𝜁 + 𝜂†𝜂)2 − (𝜁†𝜎1𝜂 + 𝜂†𝜎1𝜁)2

]︁1/2 ≡ 𝛽 𝑔
1/2
𝑤

𝑟
, (3.59)

ℎ11 =
𝑔

1/2
𝑤

𝑟

[︁
(𝜁† − 𝜂†) 𝜎1 (𝜂 − 𝜁)

]︁2[︁
(𝜁†𝜁 + 𝜂†𝜂)2 − (𝜁†𝜎1𝜂 + 𝜂†𝜎1𝜁)2

]︁1/2 ≡
𝛾 𝑔

1/2
𝑤

𝑟
, (3.60)

for 𝛼, 𝛽, and 𝛾 constants. Consequently, the effective line element reads

𝑑𝑠2
𝑒 𝑓 𝑓 =

(︄
1 − 𝛼 𝑔

1/2
𝑤

𝑟

)︄
𝑑𝑡2 −

(︄
1 + 𝛾 𝑔

1/2
𝑤

𝑟

)︄
𝑑𝑟2 − 2𝛽 𝑔1/2

𝑤

𝑟
𝑑𝑡𝑑𝑟 − 𝑟2 𝑑Ω. (3.61)

In order to eliminate the cross term, we set 𝛽 = 𝛼, and make the coordinate transformation

𝑑𝑡 = 𝑑𝑇 + 𝛼𝑔
1/2
𝑤 /𝑟

1 − 𝛼𝑔1/2
𝑤 /𝑟

𝑑𝑟 . (3.62)

The line element (3.61) reduces to

𝑑𝑠2
𝑒 𝑓 𝑓 =

(︄
1 − 𝛼 𝑔

1/2
𝑤

𝑟

)︄
𝑑𝑇2 −

(︄
1 + 𝛾 𝑔

1/2
𝑤

𝑟
− (𝛼 𝑔

1/2
𝑤 /𝑟)2

1 − 𝛼 𝑔1/2
𝑤 /𝑟

)︄
𝑑𝑟2 − 𝑟2 𝑑Ω. (3.63)

If 𝛾 = 𝛼, the relations (3.56) and (3.57) for 𝑙𝑜 and 𝑙1 are compatible with the Schwarzschild solution for
𝑟𝐻 ≡ 𝛼 𝑔

1/2
𝑤 ,

𝑑𝑠2
𝑒 𝑓 𝑓 =

(︂
1 − 𝑟𝐻

𝑟

)︂
𝑑𝑇2 − 1

1 − 𝑟𝐻 /𝑟
𝑑𝑟2 − 𝑟2 𝑑Ω . (3.64)

Static and spherically symmetric solution II. Let us consider the case in which the Heisenberg field
satisfies the dynamics given by

𝑖 /∇Ψ − 2𝑠 (𝐴 + 𝑖 𝐵 𝛾5 ) Ψ = 0 . (3.65)

From the solution I without self-interaction, we know that Ψ carries only radial dependence,

Ψ(𝑟) = 𝑓 (𝑟) Ψ 𝑜 , Ψ 𝑜 :=

(︄
𝜁

𝜂

)︄
. (3.66)
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Looking at the constant sector of the effective metric,

𝐽
(𝑜)
𝜇 − 𝐼 (𝑜)𝜇 = Ψ

𝑜
𝛾𝜇 (1 − 𝛾5) Ψ 𝑜 , (3.67)

we have that

𝐽
(𝑜)
𝑜 − 𝐼 (𝑜)𝑜 = (𝜁† − 𝜂†) (𝜁 − 𝜂 ), (3.68)

𝐽
(𝑜)
𝑘
− 𝐼 (𝑜)

𝑘
= −(𝜁† − 𝜂†) 𝜎𝑘 (𝜁 − 𝜂 ) . (3.69)

Here we need to introduce the criterion that gives the compatibility of ℎ𝜇𝜈 with the spherical symmetry.
For it is sufficient to assume 𝜁 and 𝜂 as eigenstates of the Pauli matrix 𝜎1,

𝜎1 𝜁 = 𝜀 𝜁 , 𝜎1 𝜂 = 𝜀 𝜂 (𝜀2 = 1) . (3.70)

Then

(𝜁† − 𝜂†) 𝜎2 (𝜁 − 𝜂 ) = 0 , (3.71)

(𝜁† − 𝜂†) 𝜎3 (𝜁 − 𝜂 ) = 0 . (3.72)

By stating that 𝜁 and 𝜂 are eigenstates of 𝜎1, we reduce its components to the bond relations

𝜁2 = 𝜀 𝜁1 , 𝜂2 = 𝜀 𝜂1 , (3.73)

for 𝜁 and 𝜂 written as

𝜁 ≡
(︄
𝜁1

𝜁2

)︄
, 𝜂 ≡

(︄
𝜂1

𝜂2

)︄
. (3.74)

Hence, the expressions (3.68) and (3.69) reduces to

𝐽
(𝑜)
𝑜 − 𝐼 (𝑜)𝑜 = 2 (𝜁†1 − 𝜂

†
1) (𝜁1 − 𝜂1 ) , (3.75)

𝐽
(𝑜)

1 − 𝐼 (𝑜)1 = −2𝜀 (𝜁†1 − 𝜂
†
1) (𝜁1 − 𝜂1 ) . (3.76)

In particular, we shall note that the scalar 𝐴 and the pseudo-scalar 𝐵 do not depend on 𝜀:

𝐴 := ΨΨ = 2 𝑓 ∗ 𝑓 ( 𝜁†1 𝜁1 − 𝜂†1 𝜂1) ≡ 2 𝑓 ∗ 𝑓 𝑀, (3.77)

𝐵 := 𝑖Ψ 𝛾5 Ψ = 2𝑖 𝑓 ∗ 𝑓 ( 𝜁†1 𝜂1 − 𝜂†1 𝜁1) ≡ 2𝑖 𝑓 ∗ 𝑓 𝑁. (3.78)

Collecting the terms, the Heisenberg equation (3.65) returns

−𝑖𝜀
(︃
𝑓 ′ + 𝑓

2𝑟

)︃ (︄
𝜂

−𝜁

)︄
− 2𝑠 𝑓 𝑓 ∗

[︄
𝑀

(︄
𝜁

𝜂

)︄
− 𝑁

(︄
𝜂

𝜁

)︄]︄
= 0 . (3.79)

Setting 𝜀 = +1, and

𝛼 = 𝜁1 = 𝑚 + 𝑖 𝑛 , 𝛽 = 𝜂1 = 𝑝 + 𝑖 𝑞 ,
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the system yields

−𝑖
(︃
𝑓 ′ + 𝑓

2𝑟

)︃
𝛽 − 4𝑠 𝑓 𝑓 ∗ 𝑓

(︁
𝑀 𝛼 − 𝑁 𝛽

)︁
= 0 , (3.80)

𝑖

(︃
𝑓 ′ + 𝑓

2𝑟

)︃
𝛼 − 4𝑠 𝑓 𝑓 ∗ 𝑓

(︁
𝑀 𝛽 − 𝑁 𝛼

)︁
= 0 , (3.81)

which is of Bernoulli’s type,

𝑓 ′ + 𝑓

2𝑟
− 𝜆 𝑓 3 = 0 . (3.82)

Multiplying by −2/ 𝑓 3 and isolating 𝑓 on the left side,

− 2
𝑓 3
𝑑𝑓

𝑑𝑟
− 1
𝑟 𝑓 2 = −2𝜆 .

Defining 𝑢(𝑟) ≡ 1/ 𝑓 2, the equation above becomes

𝑑𝑢

𝑑𝑟
− 𝑢

𝑟
= −2𝜆 .

Taking the multiplicative factor 𝜇(𝑟) = 𝑒
∫
− 1

𝑟
𝑑𝑟 = 1/𝑟, and applying the reverse Leibniz rule for products,

𝑑

𝑑𝑟

(︂𝑢
𝑟

)︂
= −2𝜆

𝑟
. (3.83)

By the anti-derivative, we have

𝑢(𝑟)
𝑟

= 𝑎𝑜 − 2𝜆 log(𝑟) ,

that is,

𝑓 (𝑟) = ± 1√︁
𝑟 (𝑎𝑜 − 2𝜆 log 𝑟)

. (3.84)

Therefore, the Heisenberg spinor is a solution for

Ψ(𝑟) =
1√︁

𝑟 (𝑎𝑜 − 2𝜆 log 𝑟)
Ψ 𝑜 . (3.85)

Recalling the definition (3.67), the contribution to ℎ𝜇𝜈 is

ℎ𝜇𝜈 = 𝑔
1/2
𝑤

(︁
𝐽
(𝑜)
𝜇 − 𝐼 (𝑜)𝜇

)︁ (︁
𝐽
(𝑜)
𝜈 − 𝐼 (𝑜)𝜈

)︁[︁
𝜂𝜇𝜈𝐽

(𝑜)
𝜇 𝐽

(𝑜)
𝜈

]︁1/2 𝑓 2(𝑟). (3.86)

From the equations (3.75) – (3.76) and defining 𝐹 (𝑟) ≡ 1/ 𝑓 2(𝑟) , it follows that the effective geometry
has the form

𝑑𝑠2 =

(︃
1 − 𝜉

𝐹 (𝑟)

)︃
𝑑𝑡2 −

(︃
1 + 𝜉

𝐹 (𝑟)

)︃
𝑑𝑟2 + 2𝜉

𝐹 (𝑟) 𝑑𝑡𝑑𝑟 − 𝑟
2 𝑑𝜃2 − 𝑟2 sin2 𝜃𝑑𝜙2 , (3.87)
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where

𝜉 ≡ 2 𝜅 𝑔1/2
𝑤 (𝛼 − 𝛽∗) (𝛼 − 𝛽 )[︁

(2𝛼𝛽 ) 2 − (𝛼2 + 𝛽∗ 𝛽 ) 2
]︁1/2 (3.88)

Under a change of coordinates, say

𝑑𝑡 = 𝑑𝑇 − 𝜉/𝐹 (𝑟)
1 − 1/𝐹 (𝑟) 𝑑𝑟 , (3.89)

we obtain the effective line element,

𝑑𝑠2
𝑒 𝑓 𝑓 =

(︃
1 − 𝜉

𝐹

)︃
𝑑𝑇2 −

(︃
1 − 𝜉

𝐹

)︃−1
𝑑𝑟2 − 𝑟2 𝑑Ω . (3.90)

In the limit 𝜆 −→ 0, we must recover the Schwarzschild geometry of solution I, which imposes 𝑎𝑜 ≡ 1/𝑟𝐻 .
We also note that the general solution of (3.82) with 𝜆 = 𝑎 + 𝑖𝑏 admits the expansion

𝐹 (𝑟 , 𝜆) ≡ 1
𝑓 2 = 𝑟

(︃
1
𝑟𝐻
− 2𝜆 log 𝑟

)︃
= 𝑟

[︄ (︃
1
𝑟𝐻

)︃2
+ 4 (𝑎2 − 𝑏2) log2 𝑟 − 4

𝑎

𝑟𝐻
log 𝑟

]︄1/2

.

In particular, for 𝜆 ∈ R ,

𝐹 = 𝑟

(︃
1
𝑟𝐻
− 2𝑎 log 𝑟

)︃
. (3.91)

Let us set 𝜉 = 1. The horizon occurs for values at 𝑟 ≡ 𝑅𝐻 . Considering the real case, that is 𝜆 = 𝑎, we have

log 𝑅𝐻 =
1

2𝑎

(︃
1
𝑟𝐻
− 1
𝑅𝐻

)︃
. (3.92)

The solution is given in terms of the Lambert function𝑊 (𝑧),

𝑅𝐻 = − 1
2𝑎

1
𝑊 (𝑧) , (3.93)

with

𝑧 = − 1
2𝑎
𝑒−1/2𝑎𝑟𝐻 . (3.94)

The Lambert function can be written as the infinite series

𝑊 (𝑧) =

∞∑︂
𝑛=1

(−𝑛) 𝑛−1

𝑛!
𝑧𝑛 . (3.95)

At first order,𝑊 (𝑧) ≈ 𝑧, and (3.93) becomes

𝑅𝐻 ≈ 𝑒−1/2𝑎𝑟𝐻 ≈ 1 + 1
2𝑎 𝑟𝐻

. (3.96)

That is,

𝑅𝐻 − 𝑟𝐻 = 1 + 1
2𝑎 𝑟𝐻

− 𝑟𝐻 =
1

2𝑎𝑟𝐻

(︂
1 + 2𝑎𝑟𝐻 − 2𝑎𝑟2

𝐻

)︂
. (3.97)

For

0 < 𝑟𝐻 <
1
2
+

√︃
1 + 2

𝑎
, 𝑅𝐻 > 𝑟𝐻 , (3.98)

𝑟𝐻 >
1
2
+

√︃
1 + 2

𝑎
, 𝑅𝐻 < 𝑟𝐻 . (3.99)
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Weak field regime. Let us consider the motion of a body 𝑥𝛼 (𝑠) in the metric (3.90). Its corresponding
velocity (𝑡, 𝑟, 𝜃, 𝜑̇) is provided by

𝑑

𝑑𝑠
(𝑔𝜅𝜆 𝑥𝜅) −

1
2
𝑔𝜇𝜈,𝜆 𝑥

𝜇 𝑥𝜈 = 0. (3.100)

The equations for 𝑥2 = 𝜃 and 𝑥3 = 𝜑 implies that the angle 𝜃 is a constant of motion, say 𝜃 = 𝜋/2. The
remaining variables 𝑡 and 𝜑 satisfies, respectively, the following Euler-Lagrange equations [4]

𝜑̇ =
ℎ

𝑟2 𝑡

(︃
1 − 1

𝑆

)︃
= 𝑘. (3.101)

for arbitrary constants ℎ and 𝑘 . Let us define the variable 𝑢 = 1/𝑟, and instead of searching for the evolution
𝑑𝑢/𝑑𝑠 it is convenient to look for the equation of 𝑢 as a function of the angle coordinate 𝜑. Using the
auxiliary condition

𝑣𝜇 𝑣𝜈 𝑔𝜇𝜈 = 1 , (3.102)

we obtain

(𝑢′)2 + (1 − 1
𝑆
)

(︃
𝑢2 + 1

ℎ2

)︃
=
𝑙2

ℎ2 . (3.103)

Moreover, the line element of STG for a non-circular orbit is

𝑢′′ + (1 − 1
𝑆
) 𝑢 + 1

2ℎ2
1
𝑆2

𝑑𝑆

𝑑𝑢
(1 + ℎ2 𝑢2) = 0. (3.104)

If such geometry is observable, one should expect to reproduce the Newtonian potential in the weak field
regime of STG, when 𝜆→ 0, so that it holds the correspondence

1
2𝑀∗

=
1

2𝑀
− 2𝜆 𝑙𝑜𝑔(𝑟/𝑟0) , (3.105)

where 𝑀∗ is the Schwarzschild mass. In other words, the value of the Schwarzschild mass that interpret
the solution of Spinor Theory of Gravity in terms of General Relativity depends on the distance to the body
that generates the field. In that sense, one may assume that

𝑀∗ ≈ 𝑀

1 − 4𝑀𝜆(𝑟/𝑟0 − 1) , (3.106)

and the effective gravitational potential has the form [369]

ΦSTG(𝑟) = −
𝑔𝑁 𝑀

𝑟

[︂
1 − 4𝑔𝑁 𝑀𝜆 ln

(︂
𝑟
𝑟0

)︂]︂ . (3.107)

The key property in (3.107) is the logaritmic term depending on 𝑟. If these assumptions hold true, it might
be of interest to examine how the galaxy rotation curves can eventually be obtained through the virial
theorem, say

𝑉2
STG = 𝑟

𝑑ΦSTG

𝑑𝑟
. (3.108)

A preliminary discussion in comparison with the Navarro, Frenk and White (NFW) profile is started in
[369].
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Friedman universe with stiff matter. Let us consider the background Minkowski space in flat coordi-
nates,

𝑑𝑠2 = 𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2. (3.109)

The auxiliary field 𝐻 must satisfy:

• □𝐻 (𝑥) = 0;

• 𝜕𝜇˜︁𝛾𝜈 = [𝐻𝜇 ,˜︁𝛾𝜈] , where 4𝐻𝜇 = 𝜎 ˜︁𝛾𝜇 ˜︁𝛾𝜆𝜕𝜆𝐻.

Recalling the identity (3.7), we see that 𝐻 (𝑡) = 𝑚𝑡 is a solution of the system. In particular,

0 = 𝜕𝜇˜︁𝛾𝜈 = [𝐻𝜇 ,˜︁𝛾𝜈] = 1
2
(𝜕𝜇𝐻 ˜︁𝛾𝜈 − 𝜂𝜇𝜈 ˜︁𝛾𝜅𝜕𝜅𝐻) (3.110)

is identically fulfilled by

𝜕𝑜 (𝑚𝑡) ˜︁𝛾𝑜 = 𝜂𝑜𝑜 ˜︁𝛾𝑜 𝜕𝑜 (𝑚𝑡). (3.111)

In consequence, the dynamics for Ψ is

(˜︁𝛾𝜇 𝜕𝜇 − 𝜆˜︁𝛾𝑜) Ψ = 0 , 𝜆 ≡ 𝜎 𝑚. (3.112)

Let us consider the solution given by

Ψ(𝑡) = 𝑒𝜆𝑡 Ψ 𝑜 , Ψ 𝑜 =

(︄
𝜙

𝜂

)︄
. (3.113)

The arbitrariness on Ψ0 allow us to set (𝜙† 𝜎𝑗 − 𝜂† 𝜎𝑗 ) (𝜂 − 𝜙) to have the same value for 𝑗 = (1, 2, 3), say

𝑙𝑜 = 𝑙 , 𝑙1 = 𝑙2 = 𝑙3 = 𝑙/
√

3 = 𝑏𝑒𝜆𝑡 . (3.114)

Hence, the effective line element has the form

𝑑𝑠2
eff = (1 − 𝑙2) 𝑑𝑡2 − (1 + 𝑙

2

3
) (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) − 2

√
3
𝑙2 𝑑𝑡 (𝑑𝑥 + 𝑑𝑦 + 𝑑𝑧)

− 2
3
𝑙2 (𝑑𝑥 𝑑𝑦 + 𝑑𝑥 𝑑𝑧 + 𝑑𝑦 𝑑𝑧).

(3.115)

By a coordinate transformation from (𝑡, 𝑥, 𝑦, 𝑧) to (𝑇, 𝑢, 𝑣, 𝑞), such that we set

𝑑𝑡 = 𝑆𝑑𝑇 + 𝑑𝑢 + 𝑑𝑣 + 𝑑𝑞 , 𝑑𝑥 = 𝑑𝑦 = 𝑑𝑧 = 𝐹𝑑𝑇 , (3.116)

we obtain

𝑑𝑠2
eff′ = (1 − 𝑙

2)
[︃
−𝑆

2

𝑙4
𝑑𝑇2 + 𝑑𝑢2 + 𝑑𝑣2 + 𝑑𝑞2 + 2(𝑑𝑢𝑑𝑣 + 𝑑𝑢𝑑𝑞 + 𝑑𝑣𝑑𝑞)

]︃
(3.117)
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A second change of coordinate system is required, now from (𝑇, 𝑢, 𝑣, 𝑞) to (𝑇, 𝑋,𝑌, 𝑍):

𝑑𝑋 = 𝛽(𝑝1𝑑𝑢 + 𝑝2𝑑𝑣 + 𝑝3𝑑𝑞) , (3.118)

𝑑𝑌 = 𝛽(𝑝2𝑑𝑢 + 𝑝3𝑑𝑣 + 𝑝1𝑑𝑞) , (3.119)

𝑑𝑍 = 𝛽(𝑝3𝑑𝑢 + 𝑝1𝑑𝑣 + 𝑝2𝑑𝑞) , (3.120)

where the constant coefficients 𝑝 𝑗 are constrained by

3∑︂
𝑗=1

𝑝 𝑗 =

√
3
𝛽
,

3∑︂
𝑗=1

𝑝2
𝑗 =

1
𝛽2 . (3.121)

Then (3.117) reads

𝑑𝑠2
eff′′ = (1 − 𝑙

2)
[︃
−𝑆

2

𝑙4
𝑑𝑇2 + 𝑑𝑋2 + 𝑑𝑌2 + 𝑑𝑍2

]︃
. (3.122)

Setting 𝑆2 = 𝑙4, and

(𝑒2𝜆𝑇 − 1) 𝑑𝑇2 =: 𝑑𝜏2 , (3.123)

we obtain a Friedman-type universe in Gaussian global time 𝜏 := (𝑎(𝑇) − arctan 𝑎(𝑇)),

𝑑𝑠2
eff′′′ = 𝑑𝜏

2 − 𝑎2(𝜏) (𝑑𝑋2 + 𝑑𝑌2 + 𝑑𝑍2 ) . (3.124)

Effective gravitational waves. Following Einstein’s path [141], we seek for a solution of the STG that is
Ricci-flat [368],

𝑅eff
𝜇𝜈 (𝑥) = 0. (3.125)

It is interesting to note that the Fock-Ivanenko connection (3.5) satisfies identically Einstein’s vacuum
equations [529]. So in order to deal with a definition of effective gravitational waves induced by Ψ, we can
start with the simplest possible situation, that is when the background is flat (3.109) and the only remaining
contribution coming from the spin connection is given by 𝐻𝜇, cf. (3.7). Moreover, the standard definition
in GTR requires that the perturbations of the background are transverse and traceless in the harmonic
coordinate system [178, 534],

□𝑔 ℎ
𝑇𝑇
𝜇𝜈 (𝑥) = 0 , Γ𝜎𝜇𝜈𝑔

𝜇𝜈 = 0. (3.126)

In the STG, the effective metric is naturally transverse and traceless,

∇𝜇 ℎ𝜇𝜈 (Ψ,Ψ) = 0 , 𝑔
𝜇𝜈

eff ℎ𝜇𝜈 (Ψ,Ψ) = 0 , (3.127)

for weak currents of the form

𝑙𝜇 = exp𝐻 𝑚𝜇 , 𝜂𝜇𝜈 𝑚𝜇𝑚𝜈 = 0, (3.128)
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with 𝐻𝜇 orthogonal to 𝑙𝜇, say

𝐻 (𝑥) = exp
(︁
𝑚𝜇 𝑥

𝜇
)︁
. (3.129)

Note that ∇𝜇 𝑙𝜈 = 𝜕𝜇 𝑙𝜈 = 𝐻𝜇 𝑙𝜈 . Hence, the Levi-Civita connection in the effective spacetime fulfills the
harmonic gauge (3.126), where

Γ𝜎𝜇𝜈 = −
𝜅

2
𝑔𝜎𝜌

(︁
𝜕𝜇 (𝑙𝜈 𝑙𝜌) + 𝜕𝜈 (𝑙𝜇 𝑙𝜌) − 𝜕𝜌 (𝑙𝜇 𝑙𝜈)

)︁
. (3.130)

The main outcome of the construction above is the parallel that STG exhibit, under certain restrictions,
with Kundt’s definition of gravitational waves [295, 566], according to which the criteria for the existence
of gravitational waves is an isotropic vector field, 𝜅𝜇 say, that satisfies

∇[𝜇𝜅𝜈] = 0 , ∇(𝜇𝜅𝜈) ∇
𝜇𝜅𝜈 = 0 ∇𝜇𝜅𝜇 = 0. (3.131)

Therefore, STG fulfills Kundt’s criteria for 𝜅𝜇 = 𝐻𝜇.

3.5 Further perspectives

The current structure in STG. Let us consider the Gordon decomposition of Heisenberg equation
without matter (3.25). Comparing with Dirac’s theory, a non-linear spinor field implies a replacement of
the Compton’s wave length by

𝜆𝑒 =
ℎ

𝑚𝑒𝑐
−→ 𝜆𝑔 ≡

ℎ/𝑐
𝑠 |𝐽 | , 𝐽 ≡ 𝐽𝜇 𝐽𝜇, (3.132)

where 𝑠 is the coupling parameter of Heisenberg’s potential, with dimension of length squared (in natural
units). In the framework of STG, there is room to consider particle production as induced by gravitational
processes. In the present formulation, the symmetries of a (not yet defined) vacuum state for STG is hardly
achieved without the scalar field 𝐻 introduced in the Sec.3.1. A physical interpretation of the role played
by 𝐻 within STG is still lacking.

The vacuum state in STG. One of the crucial questions related to any relativistic field theory is how
to characterize its fundamental state. The vacuum state of GTR is identified with the reduction of the
energy-momentum tensor to a scalar, Λ say,

𝑇𝜇𝜈 = Λ𝑔𝜇𝜈 . (3.133)

The role of a positive cosmological constant in the vacuum state of the relativistic theory of the electron
was examined by Dirac in [126]. In the case of STG, the field equations (3.38) reduce to

𝑖 /∇Ψ = −𝜅Λ𝑄Ψ , (3.134)

where 𝑄 is given by

𝑄 = 𝑔𝜇𝜈𝑄
𝜇𝜈 =

(︂ 𝑔𝑤
𝐽

)︂1/4
(𝑙 · 𝛾) (I − 𝛾5). (3.135)
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By contradiction, requiring chiral states would imply that, for a fixed 𝑔𝑤, 𝑄 → 0 only if 𝑙 · 𝛾 → 0; but then
𝐽 = 𝐴2 + 𝐵2 → 0, and hence 𝑄 →∞. This situation seems to suggest that the Fermi coupling should have
the character of a running parameter, rather than a fixed constant [413]. These properties remains open for
further developments.

The generalized spin connection. Some previous versions12 of the STG suggest the introduction of the
weak currents as an extension of the Fock-Ivanenko connection, say (Eq. (15) in [363])

Γ𝜇 = −𝑖(𝑎𝐽𝜇 + 𝑏𝐼𝜇) (I + 𝛾5). (3.136)

On the one hand, it allows one to deduce Heisenberg’s equation (3.25) in a very natural way. It also gives
a curious interpretation to the Fierz identities (3.14-3.17): while the spin connection carries a weak 𝑉 − 𝐴
interaction, the Action principle (3.24) results to be bosonic, or Heisenberg-type. From that perspective,
the spin connection and the dynamics of the spinor field differ by a contraction with the Clifford basis.
Notwithstanding, this approach is not internally consistent, and requires a modification of the relying
Clifford algebra, as we shall discuss in the next chapter.

12Cf. Novello [362, 363], Novello and Maria Borba [53, 364], Formiga [180], and Fernandes [166]; see also the works on
spin connection by Novello and Bittencourt [43–45].
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4. In search of Clifford algebra automorphims

The growth of the use of transformation theory, as applied first to relativity and later to quantum theory, is the
essence of the new method in theoretical physics. Further progress lies in the direction of making our equations

invariant under wider and wider transformations.
Dirac in [128], Preface to the First edition.

Therefore it would be most beautiful, if one were to succeed in expanding the group once more, analogous to the
step which led from special relativity to general relativity.

Einstein in [145], p.91.

Élie Cartan seems to have been the first to realize the key role of affine connections in GTR. In a series
of four communications during 1922, Cartan [73] discussed the arbitrariness of affinities allowed by the
metricity condition

∇𝑔 = 0. (4.1)

The fact that (4.1) does not determine univocally the set of affine connections on an oriented, 4-dimensional
manifold (𝑀, 𝑔) is perhaps the most relevant property that underlies Einstein’s attempts at a unified field
theory [208, 209], with a few exceptions being the Einstein-Schrödinger [471, 501] and the Einstein-
Bargmann [149] theories.

Similarly, Valentine Bargmann [24] and Schrödinger [469] were among the first to recognize, inde-
pendently, the possibility of extending Dirac’s theory to a more general law of transformations preserving
unitarity1. For Bargmann and Schrödinger posed the problem of how to obtain a generalized Dirac adjoint
that brings the relativistic quantum description into GTR. Both addressed this problem by exploring the
arbitrariness entailed by the covariant derivative of the Dirac basis, which is the defining relation of the
Fock coefficients,

𝜕𝜇𝛾𝜈 − Γ𝜎𝜇𝜈𝛾𝜎 = [Γ𝜇, 𝛾𝜈], {𝛾𝜇, 𝛾𝜈} = 2𝑔𝜇𝜈 . (4.2)

Many authors consider this as an open path for generalized spin connections, were the Fock coefficients
span the independent subspaces of the associated Clifford algebra. It is not automatic, though, that these
approaches are internally consistent with the fiber bundle generated by the Dirac basis. Roughly speaking,
modified spin connections may not preserve, for instance, the ordinary Dirac basis as a Lorentz 4-vector
even if we restrict the analysis to a Minkowski spacetime2.

The present chapter is an attempt at formulating this problem and it could be addressed in terms of
Clifford algebra automorphisms induced by the spin connection.

1According to Enz [154], Pauli asked to Bargmann to revise the Einstein-Mayer theory.
2This remark was pointed to me by Prof. S. Cacciatori on December 23 2022.
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4.1 Situating the problem

Let (𝑀, 𝑔) be a Lorentz manifold, with signature + − −−, and Γ𝜎𝜌𝜇 ∈ Γ(𝑀, 𝐿𝑀) its Levi-Civita
connection. The general situation under discussion relies upon the relation between the following elements:

• The ideal of a Clifford algebra 𝐶𝑙 associated to the 4-dimensional spacetime (𝑀, 𝑔),

{𝛾𝜇, 𝛾𝜈} = 2𝑔𝜇𝜈 . (I)

• The parallel transport of the Lorentz basis,

∇𝜇𝑣 𝑎
𝜈 ≡ 𝜗 𝑎

𝜇𝜈 . (II)

• The metric compatibility condition of the physical spacetime (𝑀, 𝑔),

∇𝜌𝑔𝜇𝜈 = 𝜕𝜌𝑔𝜇𝜈 − Γ𝜎𝜌𝜇𝑔𝜎𝜈 − Γ𝜎𝜌𝜈𝑔𝜇𝜎 = 0. (III)

• The equivalence condition of (𝑀 = R1,3, 𝜂),

∇𝜌𝜂𝑎𝑏 = 0. (IV)

The Clifford algebra associated to (𝑀 = R1,3, 𝜂) will be denoted by 𝐶𝑙1,3, cf. [436, p. 5.1].

The different choices between assumptions (I-IV) is what determines the formulations of general
relativity and its variations. To give some familiarity with the present notation, let us collect some of these
approaches:

∗ Case 1. Fock coefficients: the covariant derivative is constructed as acting directly on the Clifford
mapping 𝛾𝜇; the expression for (II),

𝜗𝜇𝜈 ≡ ∇𝜇𝛾𝜈 = 𝜕𝜇𝛾𝜈 − Γ𝜎𝜇𝜈𝛾𝜎 − Γ𝜇𝛾𝜈 + 𝛾𝜈Γ𝜇 = 0, Γ𝜇 ∈ Ω1(𝐶𝑙 (𝐸) , 𝐿𝑖𝑒(𝐺) ⊂ End(𝐶𝑙)) (4.3)

with𝐶𝑙 (𝐸) := PFock×𝜌𝐶𝑙,𝐺 ⊂ Aut(𝐶𝑙), and 𝜌 : 𝐺𝐿 (4,C) → Aut(𝐶𝑙), follows from combining (I)
and (III). In particular, if Γ𝜇 is identified to the spin connection 𝜔 of Case 2 below, then PFock = 𝑂+

and 𝜌 : 𝑆𝑂 (1, 3) → Aut(𝐶𝑙). We retake this point below.

∗ Case 2. Vierbein formulation: this is the canonical formulation of fermions in general relativity, cf.
Wald [526] (see also the interesting report by Krasnov and Percacci [291], and [290]).

𝜗 𝑎
𝜇𝜈 := 𝜕𝜇𝑒 𝑎

𝜈 − Γ𝜎𝜇𝜈𝑒 𝑎
𝜎 + 𝜔 𝑎

𝜇 𝑏𝑒
𝑏
𝜈 = 0, 𝜔 ∈ Ω1(P, 𝐿𝑖𝑒(𝑆𝑂 (1, 3))) (4.4)
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∗ Case 3. Einstein-Cartan theory: the antisymmetric contribution to the Levi-Civita connection is
introduced,

˜︁𝜗𝑎 := ˜︁∇𝜇𝑒 𝑎
𝜈 𝑑𝑥

𝜇 ∧ 𝑑𝑥𝜈 = d𝑒𝑎 + 𝜔𝑎𝑏 ∧ 𝑒
𝑏 − 𝑇𝑎 = 0, 𝑇𝑎 ∈ Ω2(𝑀,T𝑀) (4.5)

with 2𝑇𝑎 := Γ𝜎[𝜇𝜈] 𝑒
𝑎

𝜎 𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈 and 𝑒 𝑎
𝜇 ∈ Γ(𝑀,T∗𝑀 ⊗ 𝐿𝑀). We refer to Tecchiolli [493] for an

account on the structure of ECT; also, [436, p. 2.1].

∗ Case 4. Spin connection as a Yang-Mills field: lifting the metricity constraint (III) on the spin
connection allows one to approach it as a non-Abelian3 gauge field 𝐴 𝑎

𝜇 𝑏
[8, 131],

𝜗 𝑎
𝜇𝜈 𝑒

𝑎
𝜈 := 𝜕𝜇𝑒 𝑎

𝜈 − Γ𝜎𝜇𝜈𝑒 𝑎
𝜎 + 𝐴 𝑎

𝜇 𝑏𝑒
𝑏
𝜈 . (4.6)

∗ Case 5. Clifford algebra automorphisms: the relativistic invariance properties are ascribed to the
action of a subgroup of the group of automorphisms of the Clifford algebra [224],

𝝑 𝑎
𝜇𝜈 :=

⨁︂
𝐴

[︂
𝜕𝜇𝒆

𝑎
𝜈 − Γ𝜎𝜇𝜈 𝒆 𝑎

𝜎 + 𝝎
(𝐴) 𝑎

𝜇 𝑏
𝒆 𝑏
𝜈

]︂
, 𝝎(𝐴) ∈ Ω1(𝑷, 𝐿𝑖𝑒(𝐺) ⊂ Aut(𝐶𝑙)). (4.7)

Consistency between 𝝎(𝐴) 𝑎
𝜇 𝑏

and 𝒆 𝑎
𝜎 implies that the ‘vierbeins’ in (4.7) also must be gradings of

the Dirac basis. This type of Lorentz basis seems to be new in the literature.

The problem entailed by Fock connection. The formulation of STG in Chapter 3 is based on the
covariant derivative of the Dirac basis itself, without introducing frame fields. Historically, it corresponds
to the first attempt at a description of Dirac’s theory in general relativity, introduced by Fock4 in 1929 [174,
175], and reviewed, for instance, by Schrödinger [469], Bargmann [24], Wataghin [529], Klein [270, 276,
277], and Gulmanelli [213]. To date, a fiber bundle approach to the Fock connection seems to be lacking in
the literature5. This case contains the elements for the formulation of our main problem under discussion
in this Chapter.

Following Gulmanelli [213], let us start by noting that Eq. (I) is invariant under a nonsingular matrix
𝑆 transformation,

𝛾′𝜇 = 𝑆
−1𝛾𝜇𝑆. (4.8)

Under infinitesimal transformations

𝑆 = 1 + 𝜀Λ , 𝛾′𝜇 = 𝛾𝜇 + 𝜀𝜂𝜇, (4.9)
3For an account of the Yang-Mills connection, see [436, p. 6.2].
4Also known in the literature as the Fock-Ivanenko connection [179], or Fock-Ivanenko coefficients. This formulation

also appears in the subsequent works by Rumer [438, 439], Brill and Wheeler [62], Green [210, 211], Fletcher [172], Kimura
[266], Nakamura and Toyoda [351], Rodichev [434], Peres [407, 408], Loos [323], Pagels [384], Ogievetskiĭ and Toyoda [374],
Anderson [15], Loos and Treat [324, 507], Novello [360–363, 367, 371], Fairchild Jr. [161], Chilsholm and Farwell [85, 86],
Weldon [541], and Crawford [93, 94], to mention a few. For a historical overview of the earlier works until Brill and Wheeler
[62], see [261, 451].

5So far, only a few comments are made by Kay [261], as indicated below.
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the covariant derivative of the Dirac basis

𝜗𝜇𝜈 ≡ ∇𝜇𝛾𝜈 (4.10)

satisfying Eqs (I) and (III) gives

(∇𝜌𝛾′𝜇)𝛾′𝜈 + 𝛾′𝜇 (∇𝜌𝛾′𝜈)+(𝜇↔ 𝜈) −→ (∇𝜌𝛾𝜇)𝛾𝜈 + 𝛾𝜇 (∇𝜌𝛾𝜈) + (𝜇↔ 𝜈)
+ 𝜀[(∇𝜌𝛾𝜇)𝜂𝜈 + (∇𝜌𝜂𝜇)𝛾𝜈 + 𝛾𝜇 (∇𝜌𝜂𝜈) + 𝜂𝜇 (∇𝜌𝛾𝜈) + (𝜇↔ 𝜈)]
+𝑂 (𝜀2).

(4.11)

(𝜕𝜌𝛾′𝜇)𝛾′𝜈 + 𝛾′𝜇 (𝜕𝜌𝛾′𝜈)+(𝜇↔ 𝜈) −→ (𝜕𝜌𝛾𝜇)𝛾𝜈 + 𝛾𝜇 (𝜕𝜌𝛾𝜈) + (𝜇↔ 𝜈)
+ 𝜀[(𝜕𝜌𝛾𝜇)𝜂𝜈 + (𝜕𝜌𝜂𝜇)𝛾𝜈 + 𝛾𝜇 (𝜕𝜌𝜂𝜈) + 𝜂𝜇 (𝜕𝜌𝛾𝜈) + (𝜇↔ 𝜈)] +𝑂 (𝜀2).

(4.12)

Γ𝜎𝜌𝜇 [𝛾′𝜎𝛾′𝜈 + (𝜈 ↔ 𝜎)] −→ Γ𝜎𝜌𝜇 [𝛾𝜎𝛾𝜈 + 𝜀(𝛾𝜎𝜂𝜈 + 𝜂𝜎𝛾𝜈) + (𝜎 ↔ 𝜈)] +𝑂 (𝜀2). (4.13)

Γ𝜎𝜌𝜈 [𝛾′𝜇𝛾′𝜎 + (𝜇↔ 𝜎)] −→ Γ𝜎𝜌𝜈 [𝛾𝜇𝛾𝜎 + 𝜀(𝛾𝜇𝜂𝜎 + 𝜂𝜇𝛾𝜎) + (𝜇↔ 𝜎)] +𝑂 (𝜀2). (4.14)

From (4.8) and (4.9), it holds 𝜂𝜇 = 𝛾𝜇Λ − Λ𝛾𝜇, and the first order contribution in 𝜀 of expressions (4.11)
and (4.12) generate 16 terms each, 4 canceling pairs of (covariant and partial, resp.) derivatives of Λ, and
4 pairs of (covariant and partial, resp.) derivatives of the Dirac matrices, which gives

𝜀 ∼ [(∇𝜌𝛾𝜇)𝛾𝜈 + 𝛾𝜇 (∇𝜌𝛾𝜈) + (𝜇↔ 𝜈)]Λ − Λ[(∇𝜌𝛾𝜇)𝛾𝜈 + 𝛾𝜇 (∇𝜌𝛾𝜈) + (𝜇↔ 𝜈)] . (4.15)

𝜀 ∼ [(𝜕𝜌𝛾𝜇)𝛾𝜈 + 𝛾𝜇 (𝜕𝜌𝛾𝜈) + (𝜇↔ 𝜈)]Λ − Λ[(𝜕𝜌𝛾𝜇)𝛾𝜈 + 𝛾𝜇 (𝜕𝜌𝛾𝜈) + (𝜇↔ 𝜈)] . (4.16)

The terms containing the Levi-Civita connection generate 8 terms each, giving zero contribution as
expected,

𝜀 ∼ Γ𝜎𝜌𝜇 ({𝛾𝜎, 𝛾𝜈}Λ − Λ{𝛾𝜎, 𝛾𝜈}) = 2Γ𝜎𝜌𝜇 (𝑔𝜎𝜈Λ − Λ𝑔𝜎𝜈) = 0. (4.17)

It results that Λ is totally independent from Γ𝜎𝜌𝜇 ,

[∇𝜌𝛾𝜇𝛾𝜈 + 𝛾𝜇∇𝜌𝛾𝜈 + (𝜇↔ 𝜈)]Λ − Λ[∇𝜌𝛾𝜇𝛾𝜈 + 𝛾𝜇∇𝜌𝛾𝜈 + (𝜇↔ 𝜈)]
= [𝜕𝜌𝛾𝜇𝛾𝜈 + 𝛾𝜇𝜕𝜌𝛾𝜈 + (𝜇↔ 𝜈)]Λ − Λ[𝜕𝜌𝛾𝜇𝛾𝜈 + 𝛾𝜇𝜕𝜌𝛾𝜈 + (𝜇↔ 𝜈)],

(4.18)

and there are 4 Λ’s, denoted henceforth by Γ𝜇, that satisfy (4.18), namely (Fock, 1929)

𝜕𝜌𝛾𝜇 − Γ𝜎𝜌𝜇𝛾𝜎 = Γ𝜌𝛾𝜇 − 𝛾𝜇Γ𝜌 . (Fock-1)

Combining (4.18) and (Fock-1), it follows that

(Γ𝜌𝛾𝜇 − 𝛾𝜇Γ𝜌)𝛾𝜈 + 𝛾𝜇 (Γ𝜌𝛾𝜈 − 𝛾𝜈Γ𝜌) + (𝜇↔ 𝜈) = Γ𝜌{𝛾𝜇, 𝛾𝜈} − {𝛾𝜇, 𝛾𝜈}Γ𝜌
Eq.(I)
= 0. (Fock-2)
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Moreover, (Fock-1) with (4.8) implies that Γ𝜇 transforms as (also, Eqs. (19-20) in [24])

𝜕𝜇𝛾𝜈 − Γ𝜎𝜇𝜈𝛾𝜎 = −𝑆(𝜕𝜇𝑆−1)𝛾𝜈 − 𝛾𝜈 (𝜕𝜇𝑆)𝑆−1 + 𝑆Γ𝜇𝑆−1𝛾𝜈 − 𝛾𝜈𝑆Γ𝜇𝑆−1 = Γ𝜌𝛾𝜇 − 𝛾𝜇Γ𝜌, (4.19)

that is,

Γ′𝜇 = 𝑆Γ𝜇 𝑆
−1 − 𝑆−1𝜕𝜇𝑆, 𝑆𝑆−1 = 1. (Fock-3)

At this point, some remarks are in order. First, Eq. (Fock-3) follows from infinitesimal Lorentz transfor-
mations (4.8) of the 𝛾’s. One shall recall that non-Abelian gauge fields are identified as a connection of the
spin bundle due to the Lorentz invariance of the Dirac operator,

Ψ −→ Ψ̃ = 𝑆Ψ , (4.20)

∇𝜇Ψ −→ ∇̃𝜇Ψ̃ = 𝑆(∇𝜇Ψ) . (4.21)

If the field strength is non-Abelian, 𝑆−1𝐹𝜇𝜈𝑆 ≠ 𝐹𝜇𝜈 . In the case of Fock connection, the internal curvature6
associated to (Fock-1), given by

[∇𝜇,∇𝜈] = R𝜇𝜈 = 𝜕𝜇Γ𝜈 − 𝜕𝜈Γ𝜇 − [Γ𝜇, Γ𝜈], (4.22)

acquires a non-Abelian character from the anticommutative properties of the Clifford algebra. If so, then
Clifford bundles are responsible for introducing non-Abelian7 gauge fields in Theoretical Physics.

Secondly, Eq. (Fock-1) is consistent with, albeit not fixed by, the metric compatibility condition (III).
Three consequences follow from these two aspects:

A. If Γ𝜇 in (Fock-1) is seen as a connection on the Clifford bundle, with fibers generated by the
Dirac basis8 associated at each spacetime point9, then the arbitrariness of Γ𝜇 in (Fock-2) might
be interpreted as the possibility of introducing new degrees of freedom, allowed by the group of
automorphisms Aut(𝐸) of the Clifford bundle.

B. Such arbitrariness seems prima facie to allow an undefined extension of the Fock coefficients in
terms of the Clifford basis itself, which is consistent with (Fock-2), and therefore with (I) and (III),

6Cf. Wataghin [529], Eqs. (I) and (Fock-1) implies Einstein’s vacuum equations.
7It is interesting to note that, according to Prof. Straumann [486], Pauli tried to extend the Kaluza-Klein to a 6-dimensional

structure 𝑀 × 𝑆2, where the metric contains the spacetime metric 𝑔, the metric on the 2-sphere, and three Killing fields 𝐴𝑎
𝜇

(although not recognized by the author as such). Also, Prof. Straumann explains that Pauli “determines the transformation
behavior of 𝐴𝑎

𝜇 under the group [(𝑥, 𝑦) −→ 𝑥, 𝑅(𝑥) · 𝑦] and finds in matrix notation what he [Pauli] calls the ‘generalization of
the gauge group’” (Eq. (5) in [486]):

𝐴𝜇 −→ 𝑅−1𝐴𝜇𝑅 + 𝑅−1𝜕𝜇𝑅.

I would like to remark that, as it is shown above, the Fock connection (which is present in Gulmanelli’s seminar notes [213],
based on his correspondence with Pauli) transforms as a Yang-Mills field solely from infinitesimal Lorentz transformations of
the 𝛾’s.

8This nomenclature here stands for gamma matrices satisfying the ideal (I), without any relation to Dirac’s theory.
9This fiber bundle interpretation of (Fock-1) is also suggested by Kay [261].
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but not with (Fock-1). For it is sufficient and necessary to take the trace of both sides of (Fock-1)
once a generalization of this type is introduced10, say˜︁Γ𝜇 = ⨁︂

𝐴

˜︁Γ(𝐴)𝜇 , (4.23)

for 𝐴 independent components of 𝐶𝑙. It follows that

Tr[𝜕𝜌𝛾𝜇 − Γ𝜎𝜌𝜇𝛾𝜎] ≠
⨁︂
𝐴

Tr[˜︁Γ(𝐴)𝜌 𝛾𝜇 − 𝛾𝜇˜︁Γ(𝐴)𝜌 ], (4.24)

unless an extension of the Dirac basis is carried on. While (Fock-2) allows an even higher arbitrariness
for the Fock coefficients, (Fock-1) together with (I) reduce the possibilities of (4.23) to some particular
cases. We will continue this discussion in the following Section (4.2).

C. If a new synthesis from (A.) and (B.) above is indeed consistent, then a spanning of ˜︁Γ𝜇, as in (4.23),
would mean that the double cover of the spin structure (which is required for a consistent definition
of the Dirac operator in curved spacetime) appears here as the twisting of the Clifford bundle. If so,
the question then is how to make twisted Clifford bundles compatible with the double coverings of
the spin structure.

The third point is, despite (Fock-1) being consistent with (I) and (III), an explicit expression for Γ𝜇
requires the introduction of (local or global) frame fields.

4.2 Extended Clifford bases: a preliminary discussion

General overview. Let us, provisionally, call “extended Clifford bases” the quantities {𝜸𝜇}3𝜇=𝑜 as stated
by

𝜸𝜇 (𝑥) :=
4⨁︂
𝐴=0

𝒆(𝐴)𝜇 =

4⨁︂
𝐴=0

𝒆(𝐴)
𝜇̂
𝜉
(𝐴) 𝜇̂

𝜇 , (4.25)

where the elements of
{︂
𝜉
(𝐴) 𝜇̂

𝜇

}︂4

𝐴=0
are, in general, arbitrary non-holonomic multi-vielbeins11 in 𝐺𝐿 (R, 4),{︂

𝒆(𝐴)
𝜇̂

}︂4

𝐴=0
is a set of linear frames, constructed with the local frames{︂

𝒆(𝑜)
𝜇̂
= 𝑒 𝜇̂ I : 𝑒 𝜇̂ 𝑒𝜈̂ = 𝜂𝜇̂𝜈̂ I

}︂
𝑝
∈ (𝑉̂4, 𝜂) , (4.26)

and the 16 independent components of a Clifford algebra𝐶𝑙 (𝑉̂4, 𝜂) associated to a 4-dimensional Minkowski
space (𝑉̂4, 𝜂), denoted by12 {︂

𝒆(𝐴)
𝜇̂

}︂4

𝐴=0
=

{︂
𝑒 𝜇̂I , 𝛾𝜇̂ , 𝑖𝑒 𝜇̂𝛾5̂

, 𝑖𝛾𝜇̂𝛾5̂
, 𝛾𝜇̂𝛾𝜅

}︂
. (4.27)

10The first to suggest this route was Green [210, 211]. This is the main motivation for the subsequent works mentioned in
the note 4 above.

11Introduced by Einstein in a series of three letters in 1929, cf. [512].
12We shall denote by Greek letters the indices running from 0 to 3. Letters with hat are denoting Lorentz indices, while

Greek letters without hat refers to the (external) spacetime. Moreover, we assume that all metrics are equipped with Lorentzian
structure of signature + − −− .
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The 𝛾
5̂

matrix is defined by

𝛾
5̂

:=
𝑖

4!
√︁
−𝜂
𝜀 𝜇̂𝜈̂ 𝜌̂𝜎̂𝛾𝜇̂𝛾𝜈̂𝛾𝜌̂𝛾𝜎̂ = 𝑖𝛾0̂𝛾1̂𝛾2̂𝛾3̂ , (4.28)

and 𝜀 𝜇̂𝜈̂ 𝜌̂𝜎̂ is the Levi-Civita tensor in (𝑉̂4, 𝜂). The question to be discussed is under which conditions, if
any, the objects {𝜸𝜇 (𝑥)}4𝜇=𝑜 can be bounded by an inner product of the form

{𝜸𝜇, 𝜸𝜈} =
4⨁︂

𝐴,𝐵=0

{︂
𝒆(𝐴)𝜇, 𝒆

(𝐵)
𝜈

}︂
?
= 2

4⨁︂
𝐴,𝐵=0

𝑔

(︂
𝒆(𝐴)𝜇, 𝒆

(𝐵)
𝜈

)︂
. (4.29)

Roughly speaking, is it possible to generate an ideal of the tensor algebra from the direct sum of 𝑘 (≤ 5)
quadratic spaces (𝑉 (𝐴) , 𝑔(𝐴))4

𝐴=0, where the basis of every vector space 𝑉 (𝐴) corresponds, respectively,
to the spanning set (4.27) of independent elements of a Clifford algebra 𝐶𝑙 := 𝐶𝑙 (𝑉̂4, 𝜂) associated to a
4-dimensional Minkowski space?

To elucidate the problem, let us consider our provisional definition (4.25) in a slightly simplified
notation, say

𝒆(𝑜)𝜇 = 𝑒
(𝑜)

𝜇 I ,

𝒆(1)𝜇 = 𝑒
(1) 𝜇̂
𝜇 𝛾𝜇̂ ,

𝒆(2)𝜇 = 𝑒
(2)
𝜇 𝑖𝛾5̂

,

𝒆(3)𝜇 = 𝑒
(3) 𝜇̂
𝜇 𝑖𝛾𝜇̂𝛾5̂

,

𝒆(4)𝜇 = 𝑒
(4) 𝜇̂𝜈̂
𝜇 𝛾𝜇̂𝛾𝜈̂ .

After some arrangements, one gets that

1
2
{𝜸𝜇, 𝜸𝜈} =

[︁
𝑒
(𝑜)

𝜇 𝑒
(𝑜)
𝜈 + 𝑒(1) 𝜇̂𝜇 𝑒

(1) 𝜈̂
𝜈 𝜂𝜇̂𝜈̂ − 𝑒

(2)
𝜇 𝑒
(2)
𝜈 + 𝑒(3) 𝜇̂𝜇 𝑒

(3) 𝜈̂
𝜈 𝜂𝜇̂𝜈̂

− 2𝑒(4) 𝜇̂𝜈̂𝜇 𝑒
(4) 𝜅𝜆̂
𝜈 𝜂

𝜇̂𝜈̂𝜅𝜆̂

]︁
· I

⊕
[︁
𝑒
(𝑜)

𝜇𝑒
(1) 𝜆̂
𝜈 + 𝑒(1) 𝜆̂𝜇 𝑒

(𝑜)
𝜈 + (𝑒(3) 𝜅𝜇 𝑒(4) 𝜇̂𝜈̂𝜈 + 𝑒(4) 𝜇̂𝜈̂𝜇 𝑒

(3) 𝜅
𝜈 )𝜀 𝜆̂

𝜇̂𝜈̂𝜅

]︁
𝛾
𝜆̂

⊕
[︁
𝑒
(𝑜)

𝜇 𝑒
(2)
𝜈 + 𝑒(2)𝜇 𝑒(𝑜)𝜈 + 2𝑒(4) 𝜇̂𝜈̂𝜇 𝑒

(4) 𝜅𝜆̂
𝜈 𝜀

𝜇̂𝜈̂𝜅𝜆̂

]︁
𝑖𝛾

5̂

⊕
[︁
𝑒
(𝑜)

𝜇𝑒
(3) 𝜆̂
𝜈 + 𝑒(3) 𝜆̂𝜇 𝑒

(𝑜)
𝜈 − 2(𝑒(1) 𝜅𝜇 𝑒(4) 𝜇̂𝜈̂𝜈 + 𝑒(4) 𝜇̂𝜈̂𝜇 𝑒

(1) 𝜅
𝜈 )𝜀 𝜆̂

𝜇̂𝜈̂𝜅

]︁
𝑖𝛾
𝜆̂
𝛾

5̂

⊕
[︁
𝑒
(𝑜)

𝜇 𝑒
(4) 𝜅𝜆̂
𝜈 + 𝑒(4) 𝜅𝜆̂𝜇 𝑒

(𝑜)
𝜈 −

1
2
(𝑒(1) 𝜇̂𝜇 𝑒

(3) 𝜈̂
𝜈 − 𝑒(3) 𝜇̂𝜇 𝑒

(1) 𝜈̂
𝜈

+ 𝑒(2)𝜇 𝑒(4) 𝜇̂𝜈̂𝑏
+ 𝑒(4) 𝜇̂𝜈̂𝜇 𝑒

(2)
𝜈)𝜀 𝜅𝜆̂

𝜇̂𝜈̂

]︁
2𝑖𝜎

𝜅𝜆̂
.

(4.30)

The expression above contains the Levi-Civita tensor 𝜀
𝜇̂𝜈̂𝜅𝜆̂

in (𝑉̂4, 𝜂), and the antisymmetric tensor

𝜂
𝜇̂𝜈̂𝜅𝜆̂
≡ 𝜂𝜇̂𝜅𝜂𝜈̂𝜆̂ − 𝜂𝜇̂𝜆̂𝜂𝜈̂𝜅 . (4.31)
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The first interesting outcome of (4.30) is the fact that, apart from
{︂
𝒆(4)𝜇

}︂3

𝜇=0
, the diagonal elements of

(4.25) return the sum of the internal product associated to every basis
{︂
𝒆( 𝑗)

𝜇̂

}︂3

𝑗∈𝐴=0
multiplied by the

identity. In particular, one may infer that the reduction of (4.25) to

{𝜸𝜇, 𝜸𝜈} =
3⨁︂
𝐴=0

{︂
𝒆(𝐴)𝜇, 𝒆

(𝐴)
𝜈

}︂
= 2

3⨁︂
𝐴=0

𝑔

(︂
𝒆(𝐴)𝜇, 𝒆

(𝐴)
𝜈

)︂
𝑝∈𝑉̂4

(4.32)

generates an ideal bounded by a bilinear form multiplied by the identity. In addition, the expression (4.30)
seems to have, at first glance, a sort of coupling between the vector space associated to the identity I and
the, say, axial space defined by 𝛾

5̂
, due to the

{︂
𝒆(4)𝜇

}︂
objects. Another pattern occurs between the 𝛾

𝜇̂
− and

the 𝑖𝛾
𝜇̂
𝛾

5̂
−spaces. This suggests us to identify three distinct sectors in (4.29), namely

• the scalar-pseudoscalar sector, spanned by
{︂
𝒆(0)𝜇

}︂
and

{︂
𝑒
(2)
𝜇

}︂
;

• the vector-axial sector, spanned by
{︂
𝒆(1)𝜇

}︂
and

{︂
𝑒
(3)
𝜇

}︂
;

• and the bivector sector, generated by
{︂
𝒆(4)𝜇

}︂
.

Our main focus will be on the scalar-pseudoscalar and vector-axial couplings. From the beginning,
we shall note two particular situations: when

• 𝐴 = 𝐵 = 0, which corresponds to an orthonormal frame bundle 𝐸 (𝑜) := 𝑂+(𝑀 (𝑜)) of 𝑀 with
structure group 𝑆𝑂 (1, 3);

• 𝐴 = 𝐵 = 1, which gives a Clifford bundle 𝐸 (1) := 𝐶𝑙 (𝐸 (𝑜)) of 𝐸 (𝑜) .

Let us briefly address these two subcases.

Subcase 𝐴 = 𝐵 = 0. Setting back our previous notation, let 𝑉 (𝑜) = 𝑀 be a 4-dimensional manifold with
a set of 4-frames {𝑒(𝑜)

𝜇̂
}𝑝 on 𝑀 . Let us denote by {𝜉 (𝑜) 𝜇̂𝜇 } ∈ 𝐺𝐿 (4,R) the set of vierbeins locally defined

at a point 𝑝 ∈ 𝑀 , with right action on 𝐿 (𝑀),

𝑅𝜉 (𝑜) : 𝐿 (𝑀) × 𝐺𝐿 (4,R) , 𝑅𝜉 ◦ 𝑒(𝑜) 𝜇̂ = 𝑒
(𝑜)

𝜇̂
𝜉
(𝑜) 𝜇̂
𝜇 . (4.33)

The orbit space of 𝑅𝜉 is 𝑀 , and the canonical projection 𝜋 : 𝐿 (𝑀) −→ 𝑀 assigns to each (𝑒(𝑜)
𝜇̂
)𝑝 at

𝑝 ∈ 𝑀 . If (𝑈, 𝜙)𝑝 is a local chart of 𝑀 at 𝑝, then every basis vector 𝑒(𝑜)𝜇 ∈ 𝜋−1(𝑈) can be represented by

𝑒
(𝑜)

𝜇 = 𝑒
(𝑜)

𝜇̂
𝜉
(𝑜) 𝜇̂
𝜇 , 𝜉

(𝑜) 𝜇̂
𝜇 =

(︄
𝜕𝑥 𝜇̂

𝜕𝑥𝜇

)︄
𝑝

. (4.34)
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The mapping

𝜒 : 𝜋−1(𝑈) −→ 𝑈 × 𝐺𝐿 (4,R) , 𝜒(𝑒(𝑜)𝜇) := (𝜋(𝑒(𝑜)
𝜇̂
), 𝜉 (𝑜)) (4.35)

is a projection such that pr𝑈 ◦ 𝜒 = 𝜋. If we equipp 𝐿 (𝑀) with a differential structure, by assuming that
(4.35) are diffeomorphisms, the 5-tuple (𝐿 (𝑀), 𝐺𝐿(4,R), 𝑀, 𝑅𝜉 (𝑜) , 𝜋) is a principal fibre bundle P(𝑜) with
local trivializations (4.35). Let 𝐸 (𝑜) → 𝑀 be a R-vector bundle of rank 4, with set of bases 𝐿 (𝑜)𝑝 in the
fibre 𝐸 (𝑜)𝑝 . Then, the frame bundle

𝐿 (𝐸 (𝑜)) :=
⋃︂
𝑝∈𝑀

𝐿
(𝑜)
𝑝 (4.36)

carries the structure of P(𝑜) over 𝑀 with𝐺-structure of𝐺𝐿 (4,R). Finally, let 𝐸 (𝑜) be endowed with a fibre
metric 𝑔(𝑜) , given by

𝑔
(𝑜)
𝜇𝜈 := 𝑔(𝑜) (𝑒(𝑜)𝜇 , 𝑒(𝑜)𝜈)𝑝 = 𝜂𝜇̂𝜈̂𝜉

(𝑜) 𝜇̂
𝜇 𝜉
(𝑜) 𝜇̂
𝜇 , 𝜂

(𝑜)
𝜇̂𝜈̂

= 𝑒
(𝑜)

𝜇̂
𝑒
(𝑜)
𝜈̂
. (4.37)

Once we have (𝐸 (𝑜) , 𝑔(𝑜)), the set of bases 𝐿 (𝑜)𝑝 can be made 𝑔(𝑜)-orthonormal at the fibre 𝐸 (𝑜)𝑝 ,

𝑂 (𝐸 (𝑜)) :=
⋃︂
𝑝∈𝑀

𝑂
(𝑜)
𝑝 . (4.38)

Requesting that 𝑀 is oriented, and identifying 𝐸 (𝑜) with the tangent bundle (T𝑀, 𝑀, 𝜋) of 𝑀 , one may
restrict the orthonormal frame bundle to the subset 𝑂+(𝑀) ⊂ 𝑂 (𝑀) of ordered orthonormal frames with
group structure 𝑆𝑂 (1, 3) ⊂ 𝑂 (1, 3).

Subcase 𝐴 = 𝐵 = 1. In general lines,

(𝑉 (1) , 𝑔(1)) = (𝑀 , 𝑔) , (𝑉̂ (1) , 𝜂(1)) ≅ 𝐶𝑙 (𝑉̂4 , 𝜂) , (4.39)

such that

{𝒆(1)𝜇 , 𝒆(1)𝜈} = 2𝑔(𝒆(1)𝜇 , 𝒆(1)𝜈)𝑝 =: 2𝑔(1)𝜇𝜈 , 𝑝 ∈ 𝑉̂ (1) . (4.40)

In particular, if

𝒆(1)𝜇 = 𝜉
𝜇̂

𝜇 𝛾𝜇̂ , 𝛾𝜇̂ ∈ 𝐶𝑙 (𝑉̂4 , 𝜂) , (4.41)

with holonomic vierbeins {𝜉 𝜇̂
𝜇 = 𝛿

𝜇̂
𝜇 }𝑝∈𝑉̂4

, then𝑉 (1) is isomorphic to the usual Clifford algebra associated
to a 4-dimensional Minkowski space,

𝑉 (1) ≅ 𝐶𝑙 (1) = 𝐶𝑙 (𝑉̂4 , 𝜂). (4.42)



59

Complexification of
{︂
𝒆(1)𝜇

}︂
. Let us consider the pre-defining relation (4.25) restricted to the case in

which 𝐴 = 1, 3. Explicitly,

𝜸𝜇 (𝑥) :=
1
2

⨁︂
𝐴=1,3

𝒆(𝐴)𝜇 =
1
2

⨁︂
𝐴=1,3

𝒆(𝐴)
𝜇̂
𝜉
(𝐴) 𝜇̂

𝜇 . (4.43)

In particular, for
{︂
𝜉
(𝐴) 𝜇̂

𝜇

}︂
holonomic, one has

{𝜸𝜇, 𝜸𝜈} =
1
4

⨁︂
𝐴,𝐵=1,3

{︂
𝒆(𝐴)𝜇, 𝒆

(𝐵)
𝜈

}︂
=

1
4

⨁︂
𝐴,𝐵=1,3

{︂
𝑒
(𝐴)

𝜇̂
, 𝑒
(𝐵)

𝜈̂

}︂
𝜉
(𝐴) 𝜇̂

𝜇 𝜉
(𝐵) 𝜈̂

𝜈 (4.44)

=

(︂
𝜉
(1) 𝜇̂
𝜇 𝜉
(1) 𝜈̂
𝜈 + 𝜉 (3) 𝜇̂𝜇 𝜉 (3) 𝜈̂𝜈

)︂
𝜂𝜇̂𝜈̂ = 2 𝑔𝜇𝜈 . (4.45)

We recall that ⨁︂
𝐴,𝐵=1,3

{︂
𝑒
(𝐴)

𝜇̂
, 𝑒
(𝐵)

𝜈̂

}︂
= 4 𝜂𝜇̂𝜈̂ , (4.46)

where

𝑒
(1)
𝜇̂
= 𝛾𝜇̂ , 𝑒

(3)
𝜇̂
= 𝑖𝛾𝜇̂𝛾5̂

. (4.47)

A line element in (𝑀, 𝑔) implies that

𝑑𝑠2 = 𝑔𝜇𝜈 𝑑𝑥
𝜇 𝑑𝑥𝜈 =

1
8

⨁︂
𝐴,𝐵=1,3

{︂
𝑒
(𝐴)

𝜇 , 𝑒
(𝐵)

𝜈

}︂
𝑑𝑥𝜇 𝑑𝑥𝜈

=
1
8

⨁︂
𝐴,𝐵=1,3

{︂
𝑒
(𝐴)

𝜇̂
, 𝑒
(𝐵)

𝜈̂

}︂
𝜉
(𝐴) 𝜇̂

𝜇 𝜉
(𝐵) 𝜇̂

𝜇 𝑑𝑥𝜇 𝑑𝑥𝜈

=
1
2

⨁︂
𝐴,𝐵=1,3

𝜉 (𝐴) 𝜇̂𝜉 (𝐵) 𝜈̂ 𝜂𝜇̂𝜈̂ , (4.48)

where we have set the dual multi-bases

𝜉 (𝐴) 𝜇̂ ≡ 𝑑𝑥𝜇𝜉 (𝐴) 𝜇̂𝜇 . (4.49)

Given the fact that our candidates to the frame
{︂
𝑒
(𝐴)

𝜇̂

}︂
𝐴=1,3

are not Lorentz covariant 4-vectors, but rather

elements of a subspace of 𝐶𝑙 (𝑉̂4, 𝜂), one has to deal with the spin bundle of 𝐶𝑙 (𝑀, 𝑔) associated to the
oriented Riemannian manifold (𝑀, 𝑔) in order to seek a proper definition for what we (provisionally) are
calling “extended Dirac bases”. This problem is yet to be confronted. For now, we discuss a more suitable
combination of the vector-axial vierbeins. Much of this notation is inspired in the seminal work by Petrov
[414], from which the Newman-Penrose formalism was developed, cf. [406, 485, 526]. A motivation of
this formalism is presented in the App.C.

We construct the set of complex graded vierbeins 𝑍 :=
{︂
𝜻 𝜇̂
𝜇 , 𝜻

𝜇̂

𝜇

}︂
in the subspace of 𝐶𝑙 (𝑉̂4, 𝜂)

spanned by
{︂
I , 𝛾

5̂

}︂
, as the direct sum of the vector-axial vierbeins

{︂
𝜉
(1) 𝜇̂
𝜇 , 𝜉

(3) 𝜇̂
𝜇

}︂
, that is,

𝜻 𝜇̂
𝜇 :=

1
√

2

(︂
𝜉
(1) 𝜇̂
𝜇 − 𝑖𝛾5̂

𝜉
(3) 𝜇̂
𝜇

)︂
, 𝜻

𝜇̂

𝜇 :=
1
√

2

(︂
𝜉
(1) 𝜇̂
𝜇 + 𝑖𝛾5̂

𝜉
(3) 𝜇̂
𝜇

)︂
. (4.50)
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It follows that (4.43) can be rewritten as

𝜸𝜇 = 𝛾𝜇̂𝜻
𝜇̂
𝜇 ∈ 𝐶𝑙1,3 ×𝜌 𝐺𝐿 (4,R), (4.51)

such that {︁
𝜸𝜇 , 𝜸𝜈

}︁
=

{︂
𝛾𝜇̂𝜻

𝜇̂
𝜇 , 𝛾𝜈̂𝜻

𝜈̂
𝜈

}︂
=

{︂
𝛾𝜇̂ , 𝛾𝜈̂

}︂
𝜻 𝜇̂
𝜇 𝜻

𝜈̂

𝜈 = 2𝜂𝜇̂𝜈̂𝜻
𝜇̂
𝜇 𝜻

𝜈̂

𝜈 = 2𝑔𝜇𝜈 . (4.52)

Hence the covariant metric and its inverse are given by

𝑔𝜇𝜈 = 𝜂𝜇̂𝜈̂ 𝜻
𝜇̂
𝜇 𝜻

𝜈̂

𝜈 , 𝑔𝜇𝜈 𝜻
𝜇̂
𝜇 𝜻

𝜈̂

𝜈 = 𝜂𝜇̂𝜈̂ , 𝑔𝜇𝜈 = 𝜂 𝜇̂𝜈̂ 𝜻 𝜇
𝜇̂
𝜻
𝜈

𝜈̂ , (4.53)

where the inverse of 𝑍 is defined as

𝜻 𝜇
𝜇̂

:=
1
√

2

(︂
𝜉
(1)𝜇

𝜇̂
− 𝑖𝛾

5̂
𝜉
(3)𝜇

𝜇̂

)︂
, 𝜻

𝜇

𝜇̂ :=
1
√

2

(︂
𝜉
(1)𝜇

𝜇̂
+ 𝑖𝛾

5̂
𝜉
(3)𝜇

𝜇̂

)︂
. (4.54)

The consistency of 𝑍 with 𝐶𝑙 (𝑀, 𝑔) can be tested by the following relations:

𝜻
𝜈

𝜆̂ 𝜻
𝜅
𝜈 =

1
2

(︂
𝜉
(1)𝜈

𝜆̂
+ 𝑖𝜉 (3)𝜈

𝜆̂
𝛾

5̂

)︂ (︂
𝜉
(1) 𝜅
𝜈 − 𝑖𝜉 (3) 𝜅𝜈 𝛾

5̂

)︂
=

1
2

(︂
𝜉
(1)𝜈

𝜆̂
𝜉
(1) 𝜅
𝜈 + 𝜉 (3)𝜈

𝜆̂
𝜉
(3) 𝜅
𝜈

)︂
=

1
2

(︂
𝛿 𝜅

𝜆̂
+ 𝛿 𝜅

𝜆̂

)︂
= 𝛿 𝜅

𝜆̂
I.

(4.55)

𝑔𝜇𝜅 𝑔𝜅𝜈 = 𝜻 𝜇
𝜇̂
𝜻
𝜅

𝜅 𝜻
𝜅
𝜅 𝜻

𝜈̂

𝜈 𝜂𝜅𝜈̂ 𝜂
𝜇̂𝜅 = 𝜻 𝜇

𝜇̂
𝛿𝜅𝜅 𝜻

𝜈̂

𝜈 𝛿
𝜇̂

𝜈̂
= 4𝜻 𝜇

𝜇̂
𝜻
𝜇̂

𝜈 = 4𝛿𝜇𝜈 I. (4.56)

𝑔𝜌𝜇𝜻 𝜇̂
𝜇 𝜂𝜇̂𝜅 = 𝜻 𝜌

𝜌̂
𝜻
𝜇

𝜎̂𝜻
𝜇̂
𝜇 𝜂𝜇̂𝜅 𝜂

𝜌̂𝜎̂ = 𝜻 𝜌
𝜌̂
𝛿

𝜇̂

𝜎̂
𝜂𝜇̂𝜅 𝜂

𝜌̂𝜎̂ = 𝜻 𝜌
𝜌̂
𝜂𝜎̂𝜅 𝜂

𝜌̂𝜎̂ = 𝜻 𝜌
𝜌̂
𝛿
𝜌̂

𝜅
= 𝜻 𝜌

𝜅
. (4.57)

Of special relevance is the subset of parity relations:

𝜻 𝜅
𝜇 𝜻 𝜈𝜅 = −𝑖𝛾5̂

𝛿 𝜈
𝜇 , (4.58)

𝜻
𝜅

𝜇 𝜻
𝜈

𝜅 = +𝑖𝛾5̂
𝛿 𝜈
𝜇 , (4.59)

𝜻 𝜇̂
𝜇 𝜻 𝜈̂

𝜈 = −𝑖𝛾
5̂
𝛿
𝜇̂
𝜇 𝛿 𝜈̂

𝜈 , (4.60)

𝜻
𝜇̂

𝜇 𝜻
𝜈̂

𝜈 = +𝑖𝛾
5̂
𝛿
𝜇̂
𝜇 𝛿 𝜈̂

𝜈 . (4.61)

Moreover, the complex vierbeins allows one to define the candidates to contravariant extended Dirac
bases

{︁
𝜸𝜇 (𝑥)

}︁3
𝜇=0, for

𝜸𝜇 := 𝑔𝜇𝜈𝜸𝜈 = 𝑔
𝜇𝜈 𝜻 𝜅

𝜈 𝛾𝜅 = 𝜻 𝜇
𝜇̂
𝜻
𝜈

𝜈̂ 𝜻
𝜅
𝜈 𝛾𝜅𝜂

𝜇̂𝜈̂ = 𝜻 𝜇
𝜇̂
𝛾𝜅 𝜂

𝜇̂𝜅 = 𝜻 𝜇
𝜇̂
𝛾 𝜇̂ . (4.62)

A key element of any Clifford algebra is the matrix of chirality 𝜸5 ∈ 𝐶𝑙. In the holonomic case, it reduces
to 𝛾

5̂
∈ 𝐶𝑙,

𝜸5 = 𝛾5̂. (4.63)
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By direct inspection,

𝜸5 = − 𝑖
4!
𝜀𝜇𝜈𝜅𝜆 𝜸

𝜇 𝜸𝜈 𝜸𝜅 𝜸𝜆 =
𝑖

4!
𝜀𝜇𝜈𝜅𝜆 𝜻

𝜇

𝜇̂
𝜻
𝜈

𝜈̂ 𝜻
𝜅
𝜅 𝜻

𝜆

𝜆̂ 𝛾
𝜇̂ 𝛾 𝜈̂ 𝛾𝜅 𝛾𝜆̂

= − 𝑖
4!
𝜀𝜇𝜈𝜅𝜆

(︃
1
√

2

)︃4 (︂
𝜉
(1)𝜇

𝜇̂
⊖ 𝑖𝜉 (3)𝜇

𝜇̂
𝛾

5̂

)︂ (︂
𝜉
(1)𝜈

𝜈̂
⊕ 𝑖𝜉 (3)𝜈

𝜈̂
𝛾

5̂

)︂ (︂
𝜉
(1)𝜅

𝜅
⊖ 𝑖𝜉 (3)𝜅

𝜅
𝛾

5̂

)︂ (︂
𝜉
(1)𝜆

𝜆̂
⊕ 𝑖𝜉 (3)𝜆

𝜆̂
𝛾

5̂

)︂
· 𝛾 𝜇̂ 𝛾 𝜈̂ 𝛾𝜅 𝛾𝜆̂

= − 𝑖
4!
𝜀𝜇𝜈𝜅𝜆

1
4

(︂
𝜉
(1)𝜇

𝜇̂
𝜉
(1)𝜈

𝜈̂
+ 𝜉 (3)𝜇

𝜇̂
𝜉
(3)𝜈

𝜈̂

)︂ (︂
𝜉
(1)𝜅

𝜅
𝜉
(1)𝜆

𝜆̂
+ 𝜉 (3)𝜅

𝜅
𝜉
(3)𝜆

𝜆̂

)︂
𝛾 𝜇̂ 𝛾 𝜈̂ 𝛾𝜅 𝛾𝜆̂

= − 𝑖
4!
𝜀𝜇𝜈𝜅𝜆𝛿

𝜇

𝜇̂
𝛿𝜈𝜈̂ 𝛿

𝜅
𝜅 𝛿

𝜆

𝜆̂
𝛾 𝜇̂ 𝛾 𝜈̂ 𝛾𝜅 𝛾𝜆̂

= − 𝑖
4!
𝜀 𝜇̂𝜈̂𝜅𝜆̂ 𝛾

𝜇̂ 𝛾 𝜈̂ 𝛾𝜅 𝛾𝜆̂ = 𝛾5̂.

Thus, 𝜸5 preserves the following properties:

{𝜸5 , 𝜸𝜇} = 𝜻 𝜇
𝜇̂
{𝛾5̂ , 𝛾 𝜇̂} = 0 , (𝜸5)2 = I , [𝜸𝜇𝜸𝜈 , 𝜸5 ] = [𝛾

𝜇̂𝛾 𝜈̂ , 𝛾
5̂
] = 0. (4.64)

With that, the projection operators 𝑃± ∈ 𝐶𝑙 may act indistinctly in 𝐶𝑙 as well,

𝑃± :=
1
2
(1 ± 𝜸5) = 𝑃̂±. (4.65)

with 𝑃 2
+ = 𝑃+, 𝑃 2

− = 𝑃− , and 𝑃+ 𝑃− = 0.

Extended Dirac adjoint. An enlarged Dirac adjoint is one of the main motivations for developing this
formalism. The adjoint Ψ ≡ Ψ∗𝛾𝑜 of a Dirac field is the conjugate that preserves Lorentz covariance.
For it requires a Dirac operator and its respective spin structure, whose complexification also is usually
required [350, 436]. For that reason, we proceed with a qualitative discussion of the Dirac field while these
structures are still to be developed.

In the present formulation, the grading of the Clifford algebra is expected to induce a consistent
grading of both, the connection 𝝎𝐴 and the bases set

{︂
𝜻 𝜇̂
𝜇 , 𝜻

𝜇̂

𝜇

}︂
, while the base manifold (𝑀, 𝑔) remains

a 4-dimensional Lorentzian structure, as in general relativity.

For let us start with the elements (I-IV) of the previous section. The graded spin connections are
expected to satisfy local Lorentz invariance (IV), hence

∇𝜌𝜂𝑎𝑏 = 0 =⇒
⨁︂
𝐴=1,3

[︂
𝝎(𝐴)

𝜌𝑎𝑏
+ 𝝎(𝐴)

𝜌𝑏𝑎

]︂
= 0, 𝝎(𝐴) ∈ Ω1(𝑷, 𝐿𝑖𝑒(𝐺) ⊂ Aut(𝐶𝑙)). (4.66)

From the metric compatibility (III), it must hold

∇𝜌𝑔𝜇𝜈 = 0 =⇒ 𝜂𝑎𝑏 (𝝑
𝑎

𝜌𝜇 𝜻 𝑏
𝜈 + 𝜻

𝑎

𝜇 𝝑 𝑏
𝜌𝜈 ) = 0. (4.67)

For now, we set the particular choice for (II) given by

𝝑
𝑎

𝜌𝜇 ≡ ∇𝜌𝜻
𝑎

𝜇 =
⨁︂
𝐴

[︂
𝜕𝜇𝜻

𝑎

𝜈 − Γ𝜎𝜇𝜈 𝜻
𝑎

𝜎 + 𝝎
(𝐴) 𝑎

𝜇 𝑏
𝜻
𝑏

𝜈

]︂
= 0 , (4.68)
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𝝑 𝑎
𝜌𝜇 ≡ ∇𝜌𝜻

𝑎
𝜇 =

⨁︂
𝐴

[︂
𝜕𝜇𝜻

𝑎
𝜇 − Γ𝜎𝜇𝜈 𝜻 𝑎

𝜎 + 𝝎
(𝐴) 𝑎

𝜇 𝑏
𝜻 𝑏
𝜈

]︂
= 0. (4.69)

The ideal of the Clifford algebra (I) is fulfilled by

{𝜸𝜇 , 𝜸𝜈} = 2𝑔𝜇𝜈 , 𝑔𝜇𝜈 = 𝜂𝑎𝑏𝜻
𝑎

𝜇 𝜻 𝑏
𝜈 . (4.70)

Let us consider the Dirac fields, 𝚿 ∈ 𝚪(𝑀, 𝑩) and ˜︁𝚿 ∈ 𝚪(𝑀, ˜︁𝑩), as sections of the vector bundles,
𝑩 = 𝑷×𝜌𝑉 and ˜︁𝑩 = 𝑷×𝜌˜︁𝑉 , associated to the principal𝐺-bundle (𝑷, 𝐺, 𝑀, , 𝜋). The relativistic invariance
is expected to hold for

𝚿′(𝑥′) = 𝑺(𝝎)𝚿 ˜︁𝚿′(𝑥′) = ˜︂𝑺(𝝎)𝚿 = ˜︁𝚿𝑺−1 (4.71)

𝑺−1(𝝎)𝜸𝜇𝑺(𝝎) = Λ
𝜇
𝜈𝜸

𝜈 (4.72)

Note that (4.72) implies the relation

𝝎𝜅𝜆 [𝝁,𝛀𝜅𝜆] = −2𝑖𝝎𝜇
𝜈𝛾

𝜈 , 𝑺(𝝎) = exp
(︃
𝑖

2
𝝎𝜅𝜆𝛀𝜅𝜆

)︃
. (4.73)

Since the commutator in the left hand side of (4.73) is proportional to 𝜸, we set 𝛀𝜅𝜆 := 𝜂[𝜸𝜇, 𝜸𝜈]. Eq.
(4.73) implies 4𝑖𝜉 = 1, that is, the generators of the group structure are given by

𝛀𝜅𝜆 :=
1
4𝑖
[𝜸𝜇, 𝜸𝜈] . (4.74)

The dynamics is expected to follow from the (bare) action, written as a purely imaginary scalar,

S[𝚿, ˜︁𝚿] = ∫
𝑀

√−𝑔
(︂
𝚿𝜸𝜇∇𝜇𝚿 −˜︁∇𝜇𝚿𝜸𝜇𝚿

)︂
𝑑4𝑥. (4.75)

The bitensor sector. Despite being beyond the scope of the present work, it is worth mentioning that the
6-dimensional real vector space 𝑋6 associated to

{︂
𝒆(4)𝜇

}︂
𝑝

at a point 𝑝 ∈ 𝑉̂4 seems to be naturally inducing

a metric for 𝑉 (4) := 𝑋6, with dim𝑉 (4) = 𝑛(𝑛 − 1)/2 = 6, where 𝑛 = dim 𝑉̂4 = 4.

To illustrate that possibility, let us open
{︂
𝒆(4)𝜇

}︂
𝑝

in a more objective notation. To avoid any confusion,
a translation, for this particular case, of the Greek indices into Latin letters when refering to 𝑋6, say
𝑎, 𝑏 = 1, ..., 6 , is in order. Let 𝑭 be a skew-symmetric bitensor at 𝑝 ∈ 𝑉 (4) , satisfying the transformation
relations

𝐹𝜇𝜈 ↦−→ 𝐹𝜇
′𝜈′ = 𝐴

𝜇′
𝜇𝐴

𝜈′
𝜈𝐹

𝜇𝜈 = 2𝐴𝜇
′

[𝜇𝐴
𝜈′

𝜈]𝐹
𝜇𝜈 (𝜇, 𝜈 = 0, ..., 3). (4.76)

In the lines of Petrov’s method [219, 414], one may map each skew-symmetric pair of indices 𝜇𝜈 into a
collective index 𝑎. Then (4.76) reads

𝐹𝑎 ↦−→ 𝐹𝑎
′
= 𝐴𝑎

′
𝑎𝐹

𝑎 (𝑎 = 1, ..., 6), (4.77)
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and, at a point 𝑝 ∈ 𝑉 (4) , the correspondence13

𝐴𝑎
′
𝑎 = 2𝐴𝜇

′

[𝜇𝐴
𝜈′

𝜈] = 𝐴
[𝜇′
[𝜇𝐴

𝜈′]
𝜈] (4.78)

defines a centro-affine space 𝐸6 if the set of bivectors in 𝑉 (4) induces a Klein geometry14 in 𝑋6, for which

𝐹𝑎
′
= 𝐴𝑎

′
𝑎𝐹

𝑎, 𝐹𝑎 = 𝐴𝑎𝑎′𝐹
𝑎′ ,

|︁|︁|︁𝐴𝑎′𝑎 |︁|︁|︁ ≠ 0, 𝐴𝑎𝑏′𝐴
𝑏′
𝑐 = 𝛿

𝑎
𝑐 . (4.79)

Returning to our claim. For 𝐴 = 4 in (4.27), we set

𝒆(4)𝑎 = 𝜉
𝜇̂𝜅
𝑎 𝒆 𝜇̂𝜅 , 𝒆 𝜇̂𝜅 = 𝛾𝜇̂ 𝛾𝜅 = 2𝑖𝑆 𝜇̂𝜅 ∈ 𝐶𝑙

𝑜 (𝑉̂4, 𝜂). (4.80)

Recall that the subalgebra generated by
{︂
𝒆(4)𝜇

}︂
𝑝

is the even algebra 𝐶𝑙0.

{𝒆(4)𝑎 , 𝒆(4)𝑏} = 24 𝜉
𝜇̂𝜈̂
𝑎 𝜉 𝜅𝜆̂

𝑏 (𝜂
𝜇̂𝜈̂𝜅𝜆̂
− 𝑖𝜀

𝜇̂𝜈̂𝜅𝜆̂
𝛾

5̂
). (4.81)

In particular, if we restrict the affine connections to15

𝜉
𝜇̂[𝜈̂
𝑎 𝜉

𝜅𝜆̂]
𝑏

𝜀
𝜇̂𝜈̂𝜅𝜆̂

= 0 . (4.82)

If that is the case, the expression 4.83 is meant to be read as a mapping from a Clifford algebra associated
to a 4-dimensional Minkowski space into a 6-dimensional bivector space 𝑅6, with metric

𝑔
(4)
𝑎𝑏

= 𝑔(𝒆(4)𝑎 , 𝒆(4)𝑏)𝑝 = 𝜂𝜇̂𝜈̂𝜅𝜆̂ , (𝜇, 𝜈 = 1, ..., 6) . (4.83)

4.3 Outline of the ongoing research

Summary. The present chapter findings may be outlined in two categories [224].

A Any modifications are introduced in Eq. (Fock-1); then

(A-1) Without fermion coupling, the Fock connection Γ𝜇 is a non-Abelian gauge field naturally
induced by the Clifford bundle;

(A-2) With fermion coupling,

(A-2a) Γ𝜇 may be identified with the spin connection 𝜔𝜇 (as described in Case 2, Eq.(4.4));

(A-2b) Γ𝜇 may not correspond to the spin connection 𝜔𝜇;

Two further possibilities follow from (A-2a):

(A-2a’) Γ𝜇 ∼ 𝜔𝜇 is further constrained by the metric compatibility (III);
13Note that this map is isomorphic relative to addition, subtraction, and multiplication, but not contracted multiplication.
14A homogeneous space 𝑋6 with a transitive action on 𝑋6 by a Lie group.
15That would be a natural condition for bivectors satisfying the Bianchi identities of first type, for instance.
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(A-2a”) Γ𝜇 ∼ 𝜔𝜇 is not further constrained by the metric compatibility (III), and retains its non-Abelian
character (here, Donoughe’s proposal [8, 131] appears as a particular subcase).

B Modifications are introduced in Eq. (Fock-1); then

(B-1) the Fock connection Γ𝜇 allows a grading involution the Clifford bundle, whose internal
consistency with the 𝐶𝑙-mappings require a grade involution of the 𝛾’s as well (as approached in
Section 4.2),

{𝜸𝜇, 𝜸𝜈} = 2𝑔𝜇𝜈14 , 𝜸𝜇 =
⨁︂
𝐴

𝜸(𝐴)𝜇 . (4.84)

(B-2) the 𝐶𝑙-mappings are 𝑁 × 𝑁 matrices satisfying the ideal16

{𝛾𝜇, 𝛾𝜈} = 2𝑔𝜇𝜈1𝑁 , (4.85)

associated to the physical spacetime (𝑀, 𝑔). Then the Clifford bundle is set by 𝐶𝑙 (𝐸) = PFock ×𝜌
𝐶𝑙, which contains all the reducible representations 𝜌 : 𝐺𝐿 (4,C) → Aut(𝐶𝑙) of the group of
automorphisms of 𝐶𝑙. (This alternative is in line with the works by Prof. Pavšič [401, 402], and
Prof. Shirokov [479].)

On the compatibility with Riemannian connections. Recall that, for an oriented Riemannian vector
bundle 𝐸 → 𝑀 of rank 𝑛, the parity automorphism of Clifford algebras over 𝑀 induces a vertical bundle
automorphism of 𝐶𝑙 (𝐸) := 𝑂+(𝐸) ×𝜌 𝐶𝑙, so that [436]

𝐶𝑙 (𝐸) = 𝐶𝑙0(𝐸) ⊕ 𝐶𝑙1(𝐸) . (4.86)

A similar grading induced by (4.7) is expected in a further development of situation (B-1). To date, the main
difficulty is the construction of the quaternionic frame bundle as a direct sum of the complexified tetrad
bundles, which is required in order to obtain a complex spin structure for (𝑀, 𝑔). This may also encourage
an investigation of a possible relying structure that unifies the twisting of the subspaces of 𝐶𝑙 (𝐸). Since
sheaves take values on vector spaces17, it is not totally unfeasible to look at them as possible candidates for
a further improvement of the Clifford bundle grade involutions.

On the physical interpretation of Aut(𝐶𝑙). The properties of the complex tetrads in the limiting case
of holonomic coordinates preserves the Dirac operator and the vector-axial currents, while it modifies the
other spinor bilinears of the theory. A discussion of these properties is in progress. In particular, we
intend to review the role of the axial current in QED, and its link with weak interactions [6, 352]. The
new Dirac adjoint is expected to provide some clue on the class of neutrinos that does not interact with the
SGW-model of electroweak interactions, also called sterile neutrinos, cf. [58].

16This possibility was suggested by Prof. S. Cacciatori, on October 18 2023.
17I am thankful to Josh Wrigley, Prof. Simone Noja, and Prof. Olivia Caramello for conversations on this path, at the

DomoSchool 2022.
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On second class constraints. One of the key features of introducing the extended spin connection is
to be able to describe fermions in curved spacetime without introducing torsion. The Einstein-Cartan
theory introduces 24 momentum variables in addition to the 16 variables of GTR in the ADM theory;
while the later does not entail second class constraints, the ECT does, cf. [291]. Future analysis of the
Clifford algebra automorphisms should consider whether or not only first class constraints are entailed by
the theory, and under which conditions second class constraints could be absorbed by Aut(𝐶𝑙), in case they
also appear.

Fermion doubling problem. The definition of chiral fermions in lattice formulations of QFTs is made
consistent by doubling the spectrum of fermionic excitations, whose right sector appears as a mirror of the
left one [27]. In loop quantum gravity, the fermion doubling is responsible for canceling the chiral anomaly.
Further analysis of the enlarged spin connection via Clifford algebra automorphisms might give a new clue,
at the quantum level [317], on the problem of the fermion coupling to gravity, and its discrete description
hence. For it may prevent the doubling of fermionic spectrum once the extended Dirac basis carries, in a
certain sense, the ‘doubling’ (grading property of 𝐶𝑙) of the Clifford algebra itself. Qualitatively, one may
use this formalism to carry the entire grading of the subspaces spanned by 1, 𝛾5 until the point where the
vacuum expectation value select the left and right sectors, with their respective structure groups; see also
[291, 357].
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5. Open directions

It appears as if general relativity contained within itself
the seeds of its own conceptual destruction ...

P. G. Bergmann [30], p.514.

Criticism is perhaps the attitude that most characterises the growth of scientific knowledge. So
it happened in 1905, when Einstein eliminated the contradiction between Newtonian mechanics and
Maxwell’s theory with the formulation of the STR; and in 1915, when Einstein once again removed the
incompatibility between the STR and Newtonian gravity with a new synthesis, the GTR. Then in 1928,
when Dirac connected the STR and Quantum Mechanics; and in 1953-54, when Pauli [486], Shaw [477],
and Yang and Mills [564] independently fixed the connection of non-Abelian gauge field theories. Since
then throughout the last seven decades, a paramount effort has been made in order to tackle the problem of
compatibility between the GTR and QFT.

Although a deeper dig is required in order to understand the reasons why it took nearly three decades
to accept the fall of parity (1928-1958), there is no prejudice in to state that every time a strong belief
replaces scepticism in science, a long period of irrationalism is followed.

Nowadays, it seems almost unthinkable that an alternative direction is still possible without changing
the most unshaken concepts since the advent of the leading theories, that is to say, without disclaiming
gravity as a metric (spin 2) field; without exploring higher dimensional spacetimes (Nordström, Kaluza,
Klein), or changing the natural topological properties of a Riemannian manifold (in terms of Weyl geometry,
de Sitter or Anti-de Siter spacetimes, torsion, or even noncommutative geometry); without giving up of a
field-theoretical description of reality (twistors, strings). And yet, it appears that there is still room to seek
for a new synthesis in the interior of the current conceptual framework (where gravity is an effective spin
2 field, the spacetime is a standard oriented, 4-dimensional Lorentzian manifold, and all anticommutative
properties are naturally entailed by Dirac’s theory of fermions).

Unlike the attempts adduced above, the quest for a more general Lorentz invariance, for possible
violations of EEP, as well as the search for physics beyond Planck scale, belong, among other problems,
to the most ordinary dynamics of how scientific knowledge evolve. The distinction between structural
modifications of our best theories in physics and its intrinsic limitations is a key element to formulate
our research program. That is the relevance of having a clear and objective distinction between auxiliary,
ad hoc, and constitutive hypotheses. To our view, what makes the problem of a characteristic length
scale intrinsic to any theoretical model in physics is the need to demarcate its limits of testability. Our
scope always is to increase the degree of testability of the theory by increasing its degree of universality.
Excessive generalization, though, might be as inconsequent as remaining at the phenomenological level.
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Clifford algebra automorphisms. Gauge symmetry remains as the foremost direction of research in
physics. In the framework of GTR, the Lorentz invariance is assumed to be locally valid at every inertial
frame of reference. Our point at issue is that a more realistic description of gravity would imply, not
necessarily the breakdown of the Lorentz symmetry of local physics [90, 227], but instead a deviation
to inertiality due to a spin connection induced by parity automorphisms that locally preserves Lorentz
invariance. From the point of view of the logical structure of the theory, it implies an enlargement of
internal structure group. Clifford algebra automorsphisms comes in as a source to an extended spin
connection in curved spacetime. If so, then the resulting framework is expected to embrace the electroweak
scenario and the class of neutrinos [58] that, from the viewpoint of SGW-model, only couple to gravity.

Gravity and weak interactions. What describes gravity according to Einstein is infered by measuring
the “gravitational intensity” from the acceleration that a classical body may suffer:

If (...) the acceleration is to be independent of the nature and the condition of the body and
always the same for a given gravitational field, then the ratio of the gravitational to the inertial
mass must likewise be the same for all bodies. By a suitable choice of units we can thus make
this ratio equal to unity. We then have the following law: The gravitational mass of a body is
equal to its inertial mass.
A. Einstein [147], p.67.

We choose this excerpt among all precisely because of the expression “ratio equal to unit”. We retain this
as the most universal aspect of EEP1.

As aforementioned, the GTR was taken by Einstein just as a provisional step towards a relativistic
theory of gravity. According to him, a satisfactory explanation of the inertial properties of matter was still
lacking [476]. So far as we know, Einstein never identified the gravitational field with the metric or any
other element of the theory [145, 146, 313]. That is, even in the original conception of GTR, geometry
might be one path, but not the only one, to describe gravitational physics. A different viewpoint leading to
the same conclusion is presented by Anderson [17]. Recently, an EFT perspective of the minimal coupling
prescription within GTR has been under discussion [251].

Hence, we interpret the GTR as an effective theory, and the equivalence principle as a ‘first order
aproximation’ of the universal coupling of matter with gravity, or yet a selection rule for interactions that
preserves the local physics as described by the STR. What prevents us from moving to a ‘second order
aproximation’ of the EEP? Universality seems to be the answer. That is one of the reasons to retake Pauli’s
conjecture into consideration, even though weak interactions are not universal in the same sense as gravity
is.

1See also the discussion by Treder [510, 511].
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Classical spacetime. To Sakharov, it should be possible to describe gravity by measuring the quantum
fluctuations of the vacuum as a result of the variation of the curvature of space [440],

𝐺𝑁 =
𝑘′𝑐3𝑙2

ℏ
, 𝑙 =

ℏ
𝑝𝑜
. (5.1)

Zel’dovich extended Sakharov’s idea to electrodynamics and weak interactions [572]; see also [576, §2.5].
Independently, Oskar Klein [276, 278–280] proposed a similar interpretation of the role of vacuum in the
GTR.

There is a yet unexplained channel of interaction in the neutrino’s realm [58] that allows one to propose
another “ratio equal to unity”: the ratio between the Planck’s and Fermi’s scales,

𝑙𝑃

𝑙𝐹
=
𝑚𝐹

𝑚𝑃

=
𝑡𝑃

𝑡𝐹
=
𝜃𝐹

𝜃𝑃
=
ℏ
𝑐

(︃
𝐺𝑁

𝐺𝐹

)︃1/2
=:

√︁
𝜉 ≃

√︁
1.738 · 1033 . (2.31)

Besides, the coupling parameters 𝐺𝑁 and 𝐺𝐹 (and only them, among the four known interactions) have
the dimension of length squared,

[𝐺̊𝑁 ] = [𝐺̊𝐹] = 𝐿2 (= [𝑏̊𝐵𝐼]−1). (5.2)

The fact that both Einstein’s and Fermi’s theories are perturbatively non-renormalizable leads us to pursue
not only an effective approach, but also a common framework for gravity and weak interactions. Besides, as
pointed by Pauli [528], the Planck scale is like the square root of the Fermi scale in natural units, indicating
a subcase of the hierarchy problem.

If we interpret the introduction of a second order correction to the equivalence principle as a violation
of the universality of free fall, which is just one particular realization of EEP, then we should expect that
the fundamental coupling constants vary with time. Both, parity and the equivalence principle, violations
are expected to be observed in equal footprint [514, 515].

Spin connection. Once parity automorphisms induces, in our approach, an extension of the spin connec-
tion, one might consider its physical interpretation as a generalization of the equivalence principle, rather
than its violation. Crawford [93] discussed a somewhat similar idea, but its local automorphisms refers to
the drehbeins (“spin legs”) preserving the spinor metric. In our case, the extended Dirac basis corresponds
to graded complex vierbeins carrying the chiral element of the Clifford algebra, while the gravitational
spin connection induces local Clifford automorphisms with respect to the (external) metric of spacetime.

Cosmological vacuum state. Connection aside, the Weyl tensor is perhaps the most intriguing element
within GTR. It completely characterizes a Ricci flat manifold, carrying all the symmetries of the Riemann
curvature tensor and having all of its traces zero. Given that the equations of massless fields are conformally
invariant, it is said that the Weyl tensor𝐶

𝛼𝛽𝜇𝜈
, also called the conformal tensor, contains the non-Newtonian

effects described by GTR [87]. Equivalently,𝐶
𝛼𝛽𝜇𝜈

contains the gravitational physics that is not determined
locally by matter (in the classical sense of GTR) [225].
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These properties are interpreted by some authors as indicating a direct analogy with the electromagnetic
field in vacuum, where the Bianchi identities of type II are reduced to

∇[𝜌𝐶𝛼𝛽]𝜇𝜈 = 0. (5.3)

The double projection of the Weyl tensor onto timelike inertial observers, and of its dual onto null directions,
are referred in the literature, respectively, as the “electric” and “magnetic” components of the Weyl tensor
[225, 258].

It is also curious to note that the symmetries of 𝐶
𝛼𝛽𝜇𝜈

allows one to define a connection for the
vacuum state of GTR, as showed by C. Lanczos [301]. It becomes tempting to describe the deviation of
the magnetic gravitational monopoles to inertiality in terms of the Lanczos potential. In [366], we propose
the simple expression

𝑎𝜇 = 𝐿𝜇𝜌𝜎 𝑣
𝜌 𝑣𝜎 , 𝑔𝜇𝜈𝑣

𝜇𝑣𝜈 = 1, (5.4)

and indicate how it gives a direct interpretation in the Schwarzschild solution.

The difficulty of to confront this formulation with observations remains open, mainly due to the
absence of a parameter that characterizes the scale of energy at which the acceleration of the gravitational
monopoles is expected to occur. In this sense, we see the expression aforesaid as a first order approximation
of a more realistic scenario. Moreover, it would be interesting to examine the relation between the Lanczos
tensor and the spin connection induced by parity automorphisms. For it would lead to a revision of the
analogy between GTR and Maxwell’s electrodynamics, were weak interactions are now responsible for
inducing the repulsive properties ascribed to the independent components of 𝐶

𝛼𝛽𝜇𝜈
.
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C. On Petrov’s classification of Einstein spaces

A. Einstein spaces. The general study of Riemann spaces 𝑉𝑛 in 𝑛 dimensions can be characterized by
the algebraic structure of the Riemann curvature tensor:

𝑅𝛼𝛽𝛾𝛿 = −𝑅𝛽𝛼𝛾𝛿 = −𝑅𝛼𝛽𝛿𝛾 , 𝑅𝛼[𝛽𝛾𝛿] = 0. (Bianchi I)
𝑅𝛼𝛽𝛾𝛿,𝜂 = −𝑅𝛽𝛼𝛾𝛿,𝜂 = −𝑅𝛼𝛽𝛿𝛾,𝜂 , 𝑅𝛼𝛽[𝛾𝛿,𝜂] = 0. (Bianchi II)

Contracting (Bianchi II) twice, we have

(𝛼, 𝜂) : 𝑅𝛼𝛽𝛾𝛿,𝛼 + 𝑅
𝛼
𝛽𝛿𝛼,𝛾 + 𝑅

𝛼
𝛽𝛼𝛾,𝛿 = 0 −→ 𝑅𝛼𝛽𝛾𝛿,𝛼 − 𝑅𝛽𝛿,𝛾 + 𝑅𝛽𝛾,𝛿 = 0 (C.1)

(𝛽, 𝛿) : 𝑅
𝛼𝛽

𝛾𝛽,𝛼
− 𝑅𝛽

𝛽,𝛾
+ 𝑅𝛽

𝛾,𝛽
= 0 −→ (𝑅𝛼𝛾 −

1
2
𝑅 𝛿𝛼𝛾),𝛼 = 0. (C.2)

In particular, a Riemann space 𝑉𝑛 restricted to the field equations

𝑅𝜇𝜈 = 𝜅𝑔𝜇𝜈 =⇒ 𝜅 =
1
4
𝑅, 𝑅𝜇𝜈 =

1
4
𝑅𝑔𝜇𝜈 , (C.3)

is called an Einstein space. Note that C.3 is compatible with (Bianchi I, II) only if 𝜅 = 𝑐𝑜𝑛𝑠𝑡.

B. Bivector spaces. Let 𝑉𝑛 be a 𝑛 − dim spacetime and 𝑝 ∈ 𝑉𝑛, cf. [414, §15].

• Any tensor with even covariant and contravariant valencies at a point 𝑝 ∈ 𝑉𝑛, whose indices are
subdivided into skew-symmetric pairs, is a bitensor.

• The simplest bitensor is a 2nd-order skew-symmetric tensor 𝐹 at 𝑝, with components 𝐹
𝛼𝛽
(= −𝐹𝛽𝛼),

called a bivector at 𝑝.

• The set 𝐵(𝑝) of all bivectors at 𝑝 is a 𝑁 − dim real vector space (𝑁 = 𝑛(𝑛 − 1)/2).

• The dual of 𝐹 is defined by ∗𝐹𝛼𝛽 = 1
2𝜂𝛼𝛽𝛾𝛿𝐹

𝛾𝛿 .

• Transformation of 𝐹 ∈ 𝑉𝑛 :

𝐹𝛼𝛽 −→ 𝐹𝛼
′𝛽′ = 𝐴𝛼

′
𝛼𝐴

𝛽′

𝛽
𝐹𝛼𝛽 = 2𝐴𝛼

′

[𝛼𝐴
𝛽′

𝛽]𝐹
𝛼𝛽 (𝛼, 𝛽 = 0, ..., 𝑛)

𝐹𝑎 −→ 𝐹𝑎
′
= 𝐴𝑎

′
𝑎𝐹

𝑎 (𝑎 = 1, ..., 𝑁)

∴ 𝐴𝑎
′
𝑎 = 2𝐴𝛼

′

[𝛼𝐴
𝛽′

𝛽] = 𝐴
[𝛼′
[𝛼𝐴

𝛽′]
𝛽] (centro-affine transformation) (C.4)

• (C.4) defines an affine manifold 𝐸𝑁 only if a Klein geometry (a homogeneous space with a transitive
action by a Lie group) satifies the group relations

𝜂𝑎
′
= 𝐴𝑎

′
𝑎𝜂
𝑎, 𝜂𝑎 = 𝐴𝑎𝑎′𝜂

𝑎′ ,

|︁|︁|︁𝐴𝑎′𝑎 |︁|︁|︁ ≠ 0, 𝐴𝑎𝑏′𝐴
𝑏′
𝑐 = 𝛿

𝑎
𝑐 . (C.5)
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• Thus every local bivector in 𝑉𝑛 can be mapped on a centro-affine 𝐸𝑁 called bivector space.

• It is now possible to metrize the bivector space 𝐸𝑁 :

𝑔𝑎𝑏 ∈ 𝐸𝑁 −→ 𝑔𝛼𝛽𝜇𝜈 := 𝑔𝛼𝜇𝑔𝛽𝜈 − 𝑔𝛼𝜈𝑔𝛽𝜇 , 𝑔𝜇𝜈 ∈ 𝑉𝑛. (C.6)

or, in an equivalent way,

𝑔𝑎𝑏 = 𝐵
𝛼𝛽
𝑎 𝐵

𝜇𝜈

𝑏
𝑔𝛼𝛽𝜇𝜈 . (C.7)

After introducing the tensor 𝑔𝑎𝑏 into the bivector affine space, 𝐸𝑁 becomes a metric space 𝑅𝑁 .

• The symmetric tensor 𝑅𝑎𝑏 ∈ 𝑅𝑁 becomes the image of the Riemann curvature 𝑅
𝛼𝛽𝜇𝜈

∈ 𝑉𝑛,

𝑅𝑎𝑏 ∈ 𝑅𝑁 −→ 𝑅𝛼𝛽𝜇𝜈 = −𝑅𝛽𝛼𝜇𝜈 = −𝑅𝛼𝛽𝜈𝜇 = 𝑅𝜇𝜈𝛼𝛽, 𝑅𝛼[𝛽𝜇𝜈] = 0, 𝑅𝛼𝛽𝜇𝜈 ∈ 𝑉𝑛. (C.8)

• Introducing a non-holonomic orthonormal system of coordinates at a point 𝑝 ∈ 𝑉4:

𝑔𝛼𝛽

|︁|︁|︁|︁
𝑝

= 𝜉 𝛼̂
𝛼 𝜉

𝛽

𝛽
𝑒𝛼̂𝑒𝛽 = 𝑒𝛼𝑒𝛽, 𝑔𝛼𝛽

|︁|︁|︁|︁
𝑝

=

⎧⎪⎪⎨⎪⎪⎩
±1 (𝛼 = 𝛼)
0 (𝛼 ≠ 𝛽)

(C.9)

From (C.6), one may write

𝑉4 : 𝑔𝛼𝛽𝛾𝛿 := 𝑔𝛼𝜇𝑔𝛽𝜈 − 𝑔𝛼𝜈𝑔𝛽𝜇
=

(︂
𝜉 𝛼̂
𝛼 𝜉

𝜇̂
𝜇 𝑒𝛼̂𝑒 𝜇̂

)︂ (︂
𝜉
𝛽

𝛽
𝜉 𝜈̂
𝜈 𝑒𝛽𝑒𝜈̂

)︂
−

(︂
𝜉 𝛼̂
𝛼 𝜉 𝜈̂

𝜈 𝑒𝛼̂𝑒𝜈̂

)︂ (︂
𝜉
𝛽

𝛽
𝜉

𝜇̂
𝜇 𝑒𝛽𝑒 𝜇̂

)︂
=

24

22 𝜉
[𝛼̂

[𝛼 𝜉
𝛽]

𝛽] 𝜉
[𝛾̂

[𝛾 𝜉
𝛿]

𝛿] 𝑒 [𝛼̂𝑒𝛽]𝑒 [𝛾̂𝑒𝛿] ≡ 𝜉
𝛼̂𝛽

𝛼𝛽
𝜉
𝛾̂𝛿

𝛾𝛿
𝑒𝛼̂𝛽𝛾̂𝛿 ≡ 𝑒𝛼𝛽𝛾𝛿 . (C.10)

𝑅6 : 𝑔𝑎𝑏 = 𝐵
𝛼𝛽
𝑎 𝐵

𝛾𝛿

𝑏
𝑔𝛼𝛽𝛾𝛿 = 𝜉

𝑎̂
𝑎 𝜉

𝑏̂
𝑏 𝑒𝑎̂𝑒𝑏̂ ≡ 𝑒𝑎𝑒𝑏 . (C.11)

Thus for Einstein spaces the Riemann tensor in this non-holonomic coordinate system reduces to

𝑉4 : 𝑅𝛼𝛽𝛾𝛿 = 𝜅 𝑔𝛼𝛽𝛾𝛿 =⇒
⎧⎪⎪⎨⎪⎪⎩
(𝐼 .) 𝑅

𝛼𝛽𝛾𝛿
𝑒𝛼𝑒𝛾 = 𝜅𝑒𝛽𝑒𝛿 (𝛽 = 𝛿),

(𝐼 𝐼 .) 𝑅
𝛼𝛽𝛾𝛿

𝑒𝛼𝑒𝛾 = 0 (𝛽 ≠ 𝛿).
(C.12)

C. Segrè characteristics. According to Petrov’s prescription [414, §16],

∗ The curvature 𝑅𝑎𝑏 in 𝑅𝑁 can be associated with the 𝜆−matrix as (𝑅𝑎𝑏 − 𝜆𝑔𝑎𝑏).

∗ We can classify the 𝑉𝑛 (valid ∀𝑛) by reducing this 𝜆−matrix to the canonical Jordan form.

∗ The type of space is determined by the Segrè characteristic of the 𝜆−matrix.
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Summary of Jordan canonical forms, cf.[219, §2.6]:

− A linear map 𝑔 : 𝑉 −→ 𝑉 is termed nihilpotent of index 𝑝 if

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
𝑔 ◦ · · · ◦ 𝑔⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞

𝑝 times

= 0 ∈ 𝑉,

𝑔 ◦ · · · ◦ 𝑔⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
𝑝−1 times

≠ 0 ∈ 𝑉.

− Let 𝜆1, ..., 𝜆𝑟 ∈ C be the distinct eigenvalues of a diagonalisable map 𝑓 with algebraic multiplicity
𝑚1, ..., 𝑚𝑟 (

∑︁
𝑗 𝑚 𝑗 = 𝑛). Then one may write

𝑉 = 𝑉1 ⊕ · · · ⊕ 𝑉𝑟 ,

where, for each 𝑗 , 𝑉 𝑗 is the 𝜆 𝑗 -eigenspace of 𝑓 and is an invariant subspace of 𝑓 of dim 𝑚 𝑗 . The
restriction of 𝑓 to 𝑉 𝑗 is a linear map 𝑉 𝑗 −→ 𝑉 𝑗 of the form 𝜆 𝑗 I 𝑗 .

− Jordan prescription: 𝑉 𝑗 is not necessarily the 𝜆 𝑗 -eigenspace of 𝑓 . The restriction of 𝑓 to 𝑉 𝑗 is of the
form

𝜆 𝑗 I 𝑗 + 𝑁 𝑗 ,

where 𝑁 𝑗 : 𝑉 𝑗 −→ 𝑉 𝑗 is the nihilpotent map.

− One may choose a basis for 𝑓 in 𝑉 𝑗 such that the matrix A representing 𝑓 is of the form

𝐴 =

⎛⎜⎜⎜⎜⎜⎝
𝐴1

𝐴2
. . .

𝐴𝑟

⎞⎟⎟⎟⎟⎟⎠
, 𝐴 𝑗 =

⎛⎜⎜⎜⎜⎜⎝
𝐵 𝑗1

𝐵 𝑗2
. . .

𝐵 𝑗 𝑘 ( 𝑗)

⎞⎟⎟⎟⎟⎟⎠𝑚 𝑗×𝑚 𝑗

(C.13)

where

– 𝐴 𝑗 is an 𝑚 𝑗 × 𝑚 𝑗 matrix with 𝜆 𝑗 in every diagonal position and some arrangement of {0, 1} in
the superdiagonal;

– 𝐵 𝑗 𝑙 are 𝑝 𝑗 𝑙 × 𝑝 𝑗 𝑙 basic Jordan blocks (diagonal entries ≡ 𝜆 𝑗 , superdiagonal entries ≡ 1, and
𝑝𝑖1 ≥ · · · ≥ 𝑝𝑖𝑘 (𝑖) . .

− To each L.T. 𝑓 there is associated the eigenvalues 𝜆1, · · · , 𝜆𝑟 , its respective algebraic multiplicities,
and for each 𝑗 (1 ≤ 𝑗 ≤ 𝑟) the numbers 𝑝 𝑗 𝑘 (𝑝𝑖1 ≥ · · · ≥ 𝑝𝑖𝑘 (𝑖)) with 𝑚 𝑗 = 𝑝 𝑗1 + · · · + 𝑝 𝑗 𝑘 ( 𝑗) .
These quantities and their ordering uniquely determine the Jordan canonical form of the matrix 𝐴
representing 𝑓 .
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− The general Jordan structure of 𝑓 can be uniquely characterized by the symbol{︁
(𝑝11, · · · , 𝑝1𝑘 (1)) (𝑝21, · · · , 𝑝2𝑘 (2)) · · · (𝑝𝑟1, · · · , 𝑝𝑟𝑘 (𝑟))

}︁
(C.14)

called the Segrè type (Segrè characteristic or Segrè symbol) of 𝑓 .

− In particular, if 𝑓 is diagonalisable over C with eigenvalues 𝜆1, · · · , 𝜆𝑟 of respective algebraic
multiplicity 𝑚1, · · · , 𝑚𝑟 , then

∗ 𝐴 𝑗 is an 𝑚 𝑗 × 𝑚 𝑗 diagonal matrix with 𝜆 𝑗 in every diagonal position;

∗ each 𝐵 𝑗 𝑘 ( 𝑗) is a 1 × 1 matrix with entry 𝜆 𝑗 and 𝑘 ( 𝑗) = 𝑚 𝑗 =⇒ 𝑝 𝑗 𝑘 = 1;

∗ thus the Segrè type is {(1 · · · 1) · · · (1 · · · 1)}.

− In general, any Jordan form 𝐴 can be written as

𝐴 = 𝐷 + 𝑁, (C.15)

where

– 𝐷: 𝑛 × 𝑛 diagonal matrix whose entries are the eigenvalues 𝜆1, · · · , 𝜆𝑟 ;
– 𝑁: nihilpotent matrix, with some arrangement of zeros and ones on the superdiagonal and

zeros elsewhere.

Then 𝑓 : 𝑉 −→ 𝑉 is nihilpotent iff all its eigenvalues are zero.

− Geometrical interpretation of the Jordan theory.

∗ In 𝐷 𝑗 : 𝑉 𝑗 −→ 𝑉 𝑗 every non-zero element of 𝑉 𝑗 can be an eigenvector of 𝑓 ;

∗ In 𝐴 𝑗 : 𝑉 𝑗 −→ 𝑉 𝑗 there is only one independent eigenvector associated with each 𝐵 𝑗 𝑙 block
within each 𝐴 𝑗 .

Definition: The geometric multiplicity of 𝜆 𝑗 is the dimension of the 𝜆 𝑗 -eigenspace.

Remark: The algebraic multiplicity is equal to the geometric multiplicity iff 𝑁 𝑗 ≡ 0 and 𝐴 𝑗 = 𝐷 𝑗 .

− Every Jordan form 𝐴 satisfies its own characteristic polynomial

(−1)𝑛 (𝑥 − 𝜆1)𝑚1 (𝑥 − 𝜆2)𝑚2 · · · (𝑥 − 𝜆𝑟)𝑚𝑟 . (C.16)

− There exists a polynomial of least degree 𝑚 (1 ≤ 𝑚 ≤ 𝑛) which is satisfied by 𝐴 (and is unique if it
is monic), called the minimal polynomial:

(𝑥 − 𝜆1)𝑝11 (𝑥 − 𝜆2)𝑝21 · · · (𝑥 − 𝜆𝑟)𝑝𝑟1 . (C.17)

− The polynomials (𝑥 −𝜆 𝑗 )𝑝 𝑗𝑙 are the elementary divisors of 𝑓 . An elementary divisor associated with
𝜆 𝑗 and with 𝑝 𝑗 𝑙 = 1 is called simple. Otherwise it is called non-simple of order 𝑝 𝑗 𝑙 .

− An eigenvalue 𝜆 is called non-degenerate (respectivelly, degenerate) is the 𝜆-eigenspace has dimen-
sion 1 (resp., > 1).
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D. Petrov’s theorems. We follow Petrov’s prescription [414, §19]:

10 −→ 1 23 −→ 4

20 −→ 2 31 −→ 5

30 −→ 3 12 −→ 6

(︁
𝑔𝛼𝛽

)︁
𝑝
=

⎛⎜⎜⎜⎜⎜⎝
1
−1
−1
−1

⎞⎟⎟⎟⎟⎟⎠
−→ (𝑔𝑎𝑏) =

(︄
−I3

I3

)︄
.

Theorem 1: The matrix (𝑅𝑎𝑏) for the orthonormal tetrad in doubly symmetric.

Proof: From the relations

(I.) 𝑅
𝛼𝛽𝛾𝛿

𝑒𝛼𝑒𝛾 = 𝜅𝑒𝛽𝑒𝛿 (𝛽 = 𝛿) =⇒ 𝑅𝑜𝛽𝑜𝛿 − 𝑅1𝛽1𝛿 − 𝑅2𝛽2𝛿 − 𝑅3𝛽3𝛿 = 𝜅𝑒𝛽𝑒𝛿 , it follows that

𝑅
𝛼𝛽𝛾𝛿

∈ 𝑉4 𝑅𝑎𝑏 ∈ 𝑅6

𝛽 = 𝛿 = 0 : 𝑅0000 − 𝑅1010 − 𝑅2020 − 𝑅3030 = 𝜅 𝑒0𝑒0 = +𝜅 𝑅11 + 𝑅22 + 𝑅33 = −𝜅 (I.0)
𝛽 = 𝛿 = 1 : 𝑅0101 − 𝑅1111 − 𝑅2121 − 𝑅3131 = 𝜅 𝑒1𝑒1 = −𝜅 𝑅11 − 𝑅66 − 𝑅55 = −𝜅 (I.1)
𝛽 = 𝛿 = 2 : 𝑅0202 − 𝑅1212 − 𝑅2222 − 𝑅3232 = 𝜅 𝑒2𝑒2 = −𝜅 𝑅22 − 𝑅66 − 𝑅44 = −𝜅 (I.2)
𝛽 = 𝛿 = 3 : 𝑅0303 − 𝑅1313 − 𝑅2323 − 𝑅3333 = 𝜅 𝑒3𝑒3 = −𝜅 𝑅33 − 𝑅55 − 𝑅44 = −𝜅 (I.3)

Solving the system: (I.1)= (I.2) =⇒ 𝑅11−𝑅55 = 𝑅22−𝑅44 ←→ 𝑅11 +𝑅44 = 𝑅22 +𝑅55 = 0
whose compatibility with (I.0) and (I.3) implies 𝑅33 + 𝑅66 = 0.

(II.) 𝑅𝛼𝛽𝛾𝛿𝑒𝛼𝑒𝛾 = 0 (𝛽 ≠ 𝛿) =⇒ 𝑅0𝛽0𝛿 − 𝑅1𝛽1𝛿 − 𝑅2𝛽2𝛿 − 𝑅3𝛽3𝛿 = 0 :

𝑅
𝛼𝛽𝛾𝛿

∈ 𝑉4 𝑅𝑎𝑏 ∈ 𝑅6

𝛽 = 0, 𝛿 = 1 : 𝑅0001 − 𝑅1011 − 𝑅2021 − 𝑅3031 = 0 −𝑅26 + 𝑅35 = 0
𝛽 = 0, 𝛿 = 2 : 𝑅0002 − 𝑅1012 − 𝑅2022 − 𝑅3032 = 0 𝑅16 − (−𝑅34) = 0
𝛽 = 0, 𝛿 = 3 : 𝑅0003 − 𝑅1013 − 𝑅2023 − 𝑅3033 = 0 −𝑅15 − 𝑅24 = 0
𝛽 = 1, 𝛿 = 2 : 𝑅0102 − 𝑅1112 − 𝑅2122 − 𝑅3132 = 0 𝑅12 − (−𝑅54) = 0
𝛽 = 1, 𝛿 = 3 : 𝑅0103 − 𝑅1013 − 𝑅2123 − 𝑅3133 = 0 𝑅13 − (−𝑅64) = 0
𝛽 = 2, 𝛿 = 3 : 𝑅0203 − 𝑅1213 − 𝑅2223 − 𝑅3233 = 0 𝑅23 − (−𝑅65) = 0.
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(III.) 𝑅𝛼[𝛽𝛾𝛿] = 0 (Bianchi I) ⇐⇒ 𝑅
𝛼𝛽𝛾𝛿
+ 𝑅𝛼𝛾𝛿𝛽 + 𝑅𝛼𝛾𝛽𝛿 = 0 :

𝑅
𝛼𝛽𝛾𝛿

∈ 𝑉4 𝑅𝑎𝑏 ∈ 𝑅6

𝛼 = 0, 𝛽 = 1, 𝛾 = 2, 𝛿 = 3 : 𝑅0123 + 𝑅0231 + 𝑅0312 = 0 −𝑅14 − 𝑅25 − 𝑅36 = 0.

□

Theorem 2: There are only three types of spaces defined by gravitational fields in Einstein spaces
(𝑅𝜇𝜈 = 𝑘𝑔𝜇𝜈) with signature (+ − −−).

Proof: By elementary transformations, we have

(𝑅𝑎𝑏 − 𝜆𝑔𝑎𝑏) =

(︄
𝑀 + 𝜆I3 𝑁

𝑁 −𝑀 − 𝜆I3

)︄
𝑐𝑜𝑙1+𝑖𝑐𝑜𝑙2−→

(︄
𝑀 + 𝑖𝑁 + 𝜆I3 𝑁

−𝑖(𝑀 + 𝑖𝑁 + 𝜆I3) −𝑀 − 𝜆I3

)︄
−𝑟𝑜𝑤2−𝑖𝑟𝑜𝑤1−→

(︄
𝑀 + 𝑖𝑁 + 𝜆I3 𝑁

0 𝑀 − 𝑖𝑁 + 𝜆I3

)︄
𝑐𝑜𝑙2+𝑖/2𝑐𝑜𝑙1
−→

(︄
𝑀 + 𝑖𝑁 + 𝜆I3 𝑖

2 (𝑀 − 𝑖𝑁 + 𝜆I3)
0 𝑀 − 𝑖𝑁 + 𝜆I3

)︄
𝑟𝑜𝑤1−𝑖/2𝑟𝑜𝑤2
−→

(︄
𝑀 + 𝑖𝑁 + 𝜆I3 0

0 𝑀 − 𝑖𝑁 + 𝜆I3

)︄
≡

(︄
𝑄(𝜆) 0

0 𝑄(𝜆)

)︄
.

Hence the possible Segrè characteristics of the 3 × 3 matrices 𝑄(𝜆), 𝑄(𝜆) are

𝐼 :
[︂
1 1 1 , 1 1 1

]︂
, 𝐼 𝐼 :

[︂
2 1 , 2 1

]︂
, 𝐼 𝐼 𝐼 : [3 , 3] .

□

Theorem 3: There is a real and uniquely defined orthonormal tetrad in all three possible types of 𝑇𝑖
spaces, relative to which the orthogonal components of the curvature tensor are stated by canonical forms
of the matrix

(𝑅𝑎𝑏) =
(︄
𝑀 𝑁

𝑁 −𝑀

)︄
,

namely

𝑇1 space : 𝑀 =
⎛⎜⎜⎝
𝛼1

𝛼2

𝛼3

⎞⎟⎟⎠, 𝑁 =
⎛⎜⎜⎝
𝛽1

𝛽2

𝛽3

⎞⎟⎟⎠,
3∑︂
𝑠=1

𝛼𝑠 = −𝜅,
3∑︂
𝑠=1

𝛽𝑠 = 0.
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𝑇2 space : 𝑀 =
⎛⎜⎜⎝
𝛼1

𝛼2 + 1
𝛼2 − 1

⎞⎟⎟⎠, 𝑁 =
⎛⎜⎜⎝
𝛽1

𝛽2 1
1 𝛽2

⎞⎟⎟⎠, 𝛼1 + 2𝛼2 = −𝜅, 𝛽1 + 2𝛽2 = 0.

𝑇3 space : 𝑀 =
⎛⎜⎜⎝
− 𝜅3 1
1 − 𝜅3

− 𝜅3

⎞⎟⎟⎠, 𝑁 =
⎛⎜⎜⎝
0

0 −1
−1 0

⎞⎟⎟⎠.
Elements of the proof: Let us consider the case of 𝑇1 space with Segrè type

[︂
1 1 1 , 1 1 1

]︂
:

o Segrè type is simple =⇒ 𝑅𝑎𝑏 ∈ 𝐸6 has 6 non-isotropic mutually orthogonal eigen-directions,
which determine at a given point 𝑝 ∈ 𝑇1 simple bivectors with a specific structure.

o The real orthonormal tetrad basis at a point 𝑝 ∈ 𝑇1 is denoted by 𝜉 𝛼̂
𝛼 (𝛼, 𝛼̂ = 0, ..., 3) and the

simple bivectors by 𝜉 𝛼̂𝛽
𝛼𝛽
≡ 𝜉 𝛼̂
[𝛼 𝜉

𝛽

𝛽] . These bivectors define six independent real mutually orthogonal
sechbeins 𝜉 𝑏

𝑎 (𝑎, 𝑏 = 1, ...6)

o The eigen-directions𝑊𝑏 of 𝑅𝑎𝑏, (𝑅𝑎𝑏 − 𝜆𝑔𝑎𝑏)𝑊𝑏 = 0, are of the form

𝑊𝑎 = 𝜎(𝜉𝑎1 ± 𝑖𝜉
𝑎
4 ) + 𝜇(𝜉

𝑎
2 ± 𝑖𝜉

𝑎
5 ) + 𝜈(𝜉

𝑎
3 ± 𝑖𝜉

𝑎
6 ) (𝑎, 𝑏 = 1, ..., 6).

o The double symmetry of (𝑅𝑎𝑏) reduce the set of six equations to the following three:

(𝑅𝑎𝑏 − 𝜆𝑔𝑎𝑏)𝑊𝑏 =

(︄
𝑚𝑖 𝑗 + 𝜆𝛿𝑖 𝑗 𝑛𝑖, 𝑗+3

𝑛𝑖+3, 𝑗 −𝑚𝑖+3, 𝑗+3 − 𝜆𝛿𝑖+3, 𝑗+3

)︄ (︄
𝑊 𝑗

𝑊 𝑗+3

)︄
= 0

=⇒ (𝑚𝑖 𝑗 + 𝜆𝛿𝑖 𝑗 )𝑊 𝑗 + 𝑛𝑖, 𝑗+3𝑊 𝑗+3 = 0

(𝑚𝑖 𝑗 + 𝜆𝛿𝑖 𝑗 )
[︁
𝜎𝜉𝑎1 + 𝜇𝜉

𝑎
2 + 𝜈𝜉

𝑎
3
]︁
± 𝑖 𝑛𝑖, 𝑗+3

[︂
𝜎𝜉

𝑗+3
4 + 𝜇𝜉 𝑗+35 + 𝜈𝜉 𝑗+36

]︂
= 0

𝜎(𝑚𝑖1 ± 𝑖𝑛𝑖1 + 𝜆𝛿𝑖1) + 𝜇(𝑚𝑖2 ± 𝑖𝑛𝑖2 + 𝜆𝛿𝑖2) + 𝜈(𝑚𝑖3 ± 𝑖𝑛𝑖3 + 𝜆𝛿𝑖3) = 0.

𝜎, 𝜇, 𝜈 are non-zero solutions iff 𝜆 is a characteristic root of 𝑄(𝜆) = 0 or 𝑄(𝜆) = 0.

o To𝑊𝑎 ∈ 𝑅6 there corresponds at a given point 𝑝 ∈ 𝑇1 a non-singular bivector𝑊𝛼𝛽, namely

𝑊𝛼𝛽 = 𝜎(𝜉𝛼𝛽10 ± 𝑖𝜉
𝛼𝛽

23 ) + 𝜇(𝜉
𝛼𝛽

20 ± 𝑖𝜉
𝛼𝛽

31 ) + 𝜈(𝜉
𝛼𝛽

30 ± 𝑖𝜉
𝛼𝛽

12 ) (𝛼, 𝛽 = 0, ..., 3).

o Any orthogonal transformation converts 𝑊𝛼𝛽 into a bivector of same structure, and replaces
𝜎, 𝜇, 𝜈 −→ 𝜎̇, 𝜇̇, 𝜈̇, the norm of𝑊𝛼𝛽 remaining invariant: 𝜎2 + 𝜇2 + 𝜈2 = 𝜎̇2 + 𝜇̇2 + 𝜈̇2.

o If 𝜆 𝑗 ( 𝑗 = 1, 2, 3) are the roots of |𝑅𝑎𝑏 − 𝜆𝑔𝑎𝑏 | = 0, corresponding to the eigenvectors𝑊𝑎
( 𝑗) , then the

roots 𝜆 𝑗+3 must correspond the complex conjugate eigenvectors𝑊𝑎

( 𝑗) . Namely,

𝑊
𝛼𝛽

(1) = 𝑉
𝛼𝛽

(1) + 𝑖𝑉̇
𝛼𝛽

(1) =⇒ 𝑊
𝛼𝛽

(4) = 𝑉
𝛼𝛽

(4) − 𝑖𝑉̇
𝛼𝛽

(4) .
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o Setting 𝜎 = 𝑎 (1) + 𝑖𝑏 (1) , 𝜇 = 𝑎 (2) + 𝑖𝑏 (2) , 𝜈 = 𝑎 (3) + 𝑖𝑏 (3) , 𝑎 ( 𝑗) , 𝑏 ( 𝑗) ∈ R, we find that

𝑊𝛼𝛽 = 𝜎𝜉
𝛼𝛽

10 + 𝜇𝜉
𝛼𝛽

20 + 𝜈𝜉
𝛼𝛽

30 ± 𝑖
(︂
𝜎𝜉

𝛼𝛽

23 + 𝜇𝜉
𝛼𝛽

31 + 𝜈𝜉
𝛼𝛽

12

)︂
= (𝑎 (1) + 𝑖𝑏 (1))𝜉𝛼𝛽10 + (𝑎 (2) + 𝑖𝑏 (2))𝜉

𝛼𝛽

20 + (𝑎 (3) + 𝑖𝑏 (3))𝜉
𝛼𝛽

30

± 𝑖
[︂
(𝑎 (1) + 𝑖𝑏 (1))𝜉𝛼𝛽23 + (𝑎 (2) + 𝑖𝑏 (2))𝜉

𝛼𝛽

31 + (𝑎 (3) + 𝑖𝑏 (3))𝜉
𝛼𝛽

12

]︂
= 𝑎 (1)𝜉

𝛼𝛽

10 + 𝑎 (2)𝜉
𝛼𝛽

20 + 𝑎 (3)𝜉
𝛼𝛽

30 ∓ 𝑏 (1)𝜉
𝛼𝛽

23 ∓ 𝑏 (2)𝜉
𝛼𝛽

31 ∓ 𝑏 (3)𝜉
𝛼𝛽

12

+ 𝑖
[︂
𝑏 (1)𝜉

𝛼𝛽

10 + 𝑏 (2)𝜉
𝛼𝛽

20 + 𝑏 (3)𝜉
𝛼𝛽

30 ± 𝑎 (1)𝜉
𝛼𝛽

23 ± 𝑎 (2)𝜉
𝛼𝛽

31 ± 𝑎 (3)𝜉
𝛼𝛽

12

]︂
o Hence𝑊𝛼𝛽 = 𝑉

𝛼𝛽

(1) + 𝑖𝑉̇
𝛼𝛽

(1) , with

𝑉
𝛼𝛽

(1) = 𝑎 (1)𝜉
𝛼𝛽

10 + 𝑎 (2)𝜉
𝛼𝛽

20 + 𝑎 (3)𝜉
𝛼𝛽

30 − 𝑏 (1)𝜉
𝛼𝛽

23 − 𝑏 (2)𝜉
𝛼𝛽

31 − 𝑏 (3)𝜉
𝛼𝛽

12

𝑉̇
𝛼𝛽

(1) = 𝑏 (1)𝜉
𝛼𝛽

10 + 𝑏 (2)𝜉
𝛼𝛽

20 + 𝑏 (3)𝜉
𝛼𝛽

30 + 𝑎 (1)𝜉
𝛼𝛽

23 + 𝑎 (2)𝜉
𝛼𝛽

31 + 𝑎 (3)𝜉
𝛼𝛽

12

o 𝑊𝑎 ∈ 𝑅6 is non-isotropic : 𝑔𝑎𝑏𝑊𝑎
(1)𝑊

𝑎
(1) = 1, and

𝑔𝑎𝑏𝑊
𝑎
(1)𝑊

𝑎
(1) = −𝑊

1
(1)𝑊

1
(1) −𝑊

2
(1)𝑊

2
(1) −𝑊

3
(1)𝑊

3
(1) +𝑊

4
(1)𝑊

4
(1) +𝑊

5
(1)𝑊

5
(1) +𝑊

6
(1)𝑊

6
(1)

= −(𝑎 (1) + 𝑖𝑏 (1))2 − (𝑎 (2) + 𝑖𝑏 (2))2 − (𝑎 (3) + 𝑖𝑏 (3))2

+ (−𝑏 (1) + 𝑖𝑎 (1))2 + (−𝑏 (2) + 𝑖𝑎 (2))2 + (−𝑏 (3) + 𝑖𝑎 (3))2

= −
[︂
𝑎2
(1) + (𝑖𝑏 (1))

2 + 𝑎2
(2) + (𝑖𝑏 (2))

2 + 𝑎2
(3) + (𝑖𝑏 (3))

2 + 2𝑖(𝑎 (1)𝑏 (1) + 𝑎 (2)𝑏 (2) + 𝑎 (3)𝑏 (3))
]︂

+
[︂
(𝑏2
(1) + (𝑖𝑎 (1))

2 + 𝑏2
(2) + (𝑖𝑎 (2))

2 + 𝑏2
(3) + (𝑖𝑎 (3))

2 − 2𝑖(𝑎 (1)𝑏 (1) + 𝑎 (2)𝑏 (2) + 𝑎 (3)𝑏 (3))
]︂

= 2
[︂
−𝑎2
(1) − 𝑎

2
(2) − 𝑎

2
(3) + 𝑏

2
(1) + 𝑏

2
(2) + 𝑏

2
(3)

]︂
− 4𝑖

[︁
𝑎 (1)𝑏 (1) + 𝑎 (2)𝑏 (2) + 𝑎 (3)𝑏 (3)

]︁
= 1.

∴
3∑︂
𝑗=1
(𝑏2

𝑗 − 𝑎2
𝑗 ) > 0

3∑︂
𝑗=1
𝑎 𝑗𝑏 𝑗 = 0. (C.18)

Definition: Let 𝑃,𝑄 be two general non-simple bivectors which lie in flat clusters 𝜀𝑝, 𝜀𝑞, with
dimensions 𝑝 ≤ 𝑞 ≤ 4, when 𝑛 = 4.

∗ If 𝜀𝑝, 𝜀𝑞 have 𝑘 common directions, thedegree of parallelism of 𝑃,𝑄 is 𝑘/𝑝.

∗ If 𝜀𝑝 contains 𝑙 independent directions orthogonal to 𝜀𝑞, the respective bivectors are said to have a
degree of orthogonality 𝑙/𝑝.

Lemma 1. 𝑉𝛼𝛽(1) and 𝑉̇𝛼𝛽(1) are simple, i.e. lie in 2-dim flat clusters.
(It is sufficient to check that𝑉10

(1)𝑉
23
(1) +𝑉

20
(1)𝑉

31
(1) +𝑉

30
(1)𝑉

12
(1) = 0., which is satisfied due to the condition C.18.)
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Lemma 2. 𝑉𝛼𝛽(1) and 𝑉̇𝛼𝛽(1) are 0/2-parallel.
(By contradiction: if 𝑉𝛼𝛽(1) and 𝑉̇𝛼𝛽(1) are 1/2-parallel,𝑊𝛼𝛽

(1) can not be a simple; if they are 2/2-parallel, their
components would be proportional and thus reducible to zero. )

Lemma 3. 𝑉𝛼𝛽(1) and 𝑉̇𝛼𝛽(1) are 2/2-orthogonal.
(It is necessary and sufficient that 𝑔𝛽𝛾𝑉

𝛼𝛽

(1)𝑉̇
𝛾𝛿

(1) = 0. Compare the following expressions:

𝑔𝑎𝑏𝑊
𝑎𝑊𝑏 =

⎧⎪⎪⎨⎪⎪⎩
𝑔𝑎𝑏 (𝑉𝑎 + 𝑖𝑉̇𝑎) (𝑉 𝑏 + 𝑖𝑉̇ 𝑏) = 𝑔𝑎𝑏 (𝑉𝑎𝑉 𝑏 − 𝑉̇𝑎𝑉̇ 𝑏 + 2𝑖𝑉𝑎𝑉̇ 𝑏) = 1

2
∑︁3
𝑗=1(𝑏2

𝑗
− 𝑎2

𝑗
) − 4𝑖

∑︁3
𝑗=1 𝑎 𝑗𝑏 𝑗 = 1

∴ 𝑔𝑎𝑏𝑉
𝑎𝑉̇ 𝑏 = 0.)

(C.19)

Lemma 4. The vector 𝑉𝑎(1) ∈ 𝑅6 associated to the simple bivector 𝑉𝛼𝛽(1) at a point 𝑝 ∈ 𝑇1 satisfies the
following properties:

i. 𝑔𝑎𝑏𝑉𝑎
(1)𝑉

𝑏
(1) =

∑︁3
𝑗=1(𝑏2

𝑗
− 𝑎2

𝑗
) > 0;

ii. 𝑔𝑎𝑏𝑉𝑎
(1)𝑉̇

𝑏
(1) =

∑︁3
𝑗=1 𝑎 𝑗𝑏 𝑗 = 0;

iii. 𝑔𝑎𝑏𝑉̇𝑎
(1)𝑉̇

𝑏
(1) = −

∑︁3
𝑗=1(𝑏2

𝑗
− 𝑎2

𝑗
) < 0.

o From property 𝑖., two real orthogonal and non-isotropic vectors 𝜁𝛼 and 𝜂𝛼 can always be selected in
the plane of 𝑉𝛼𝛽(1) such that its norm is

|︁|︁|︁𝑉𝛼𝛽(1) |︁|︁|︁ = 2𝜁𝜌𝜁 𝜌 𝜂𝜎𝜂𝜎. Then the two vectors have norms of the
same sign.

o Similarly, from property 𝑖𝑖𝑖. one can determine two orthogonal real and non-isotropic vectors in the
plane of 𝑉𝛼𝛽(1) , with norms of opposite sign.

o In this non-holonomic reference system, one may choose the orthonormal tetrad
{︁
𝜉 𝛼̂
𝛼

}︁
to within a

rotation in the 𝜉 𝛼̂𝛽

23 -plane and a Lorentz rotation in the 𝜉 𝛼̂𝛽

10 -plane

𝑊
𝛼𝛽

(1) = 𝜉
𝛼𝛽

10 + 𝑖𝜉
𝛼𝛽

23 , 𝑊
𝛼𝛽

(4) = 𝜉
𝛼𝛽

10 − 𝑖𝜉
𝛼𝛽

23

Since 𝑊𝛼𝛽

(1) , ...,𝑊
𝛼𝛽

(6) are mutually orthogonal at a point 𝑝 ∈ 𝑇1, and taking the complex conjugacy
property of the characteristic form, one find

𝑊
𝛼𝛽

(1) = 𝜉
𝛼𝛽

10 + 𝑖𝜉
𝛼𝛽

23 , 𝑊
𝛼𝛽

(2) = 𝜉
𝛼𝛽

20 + 𝑖𝜉
𝛼𝛽

31 , 𝑊
𝛼𝛽

(3) = 𝜉
𝛼𝛽

30 + 𝑖𝜉
𝛼𝛽

12 ,

𝑊
𝛼𝛽

(4) = 𝑊
𝛼𝛽

(1) , 𝑊
𝛼𝛽

(5) = 𝑊
𝛼𝛽

(2) , 𝑊
𝛼𝛽

(6) = 𝑊
𝛼𝛽

(3) .

□

Returning to the Petrov’s notation for the real and imaginary parts of the bases of the elementary
divisors,

𝛼 𝑗 ≡ 𝑎 ( 𝑗) , 𝛽 𝑗 ≡ 𝑏 ( 𝑗) , ( 𝑗 = 1, 2, 3)
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and collecting the results above, one have the following classification of Einstein spaces 𝑇𝑗 :

𝑇1 Space: I −→ D −→ O

𝛼1 ≠ 𝛼2 ≠ 𝛼3 𝛼1, 𝛼2 = 𝛼3 𝛼1 = 𝛼2 = 𝛼3 = −𝜅/3
𝛽1 ≠ 𝛽2 ≠ 𝛽3 𝛽1, 𝛽2 = 𝛽3 𝛽1 = 𝛽2 = 𝛽3 = 0

𝑇2 Space: II −→ N

𝛼1 ≠ 𝛼2 𝛼1 = 𝛼2 = −𝜅/3
𝛽1 ≠ 𝛽2 𝛽1 = 𝛽2 = 0

𝑇3 Space: III

𝛼 = −𝜅/3

E. Weyl tensor.

• The Riemann tensor 𝑅
𝛼𝛽𝜇𝜈

∈ 𝑉4 can be decomposed in its irreducible parts as follows:

𝑅𝛼𝛽𝜇𝜈 = 𝐶𝛼𝛽𝜇𝜈 + 𝑀𝛼𝛽𝜇𝜈 −
1
6
𝑅𝑔𝛼𝛽𝜇𝜈 , (C.20)

where 𝐶
𝛼𝛽𝜇𝜈

is the Weyl tensor, and 2𝑀
𝛼𝛽𝜇𝜈

:= 𝑅𝛼𝜇 𝑔𝛽𝜈 + 𝑅𝛽𝜈 𝑔𝛼𝜇 − 𝑅𝛼𝜈𝑔𝛽𝜇 − 𝑅𝛽𝜇𝑔𝛼𝜈 .
In particular, if 𝑅𝜇𝜈 = 0, then 𝑅

𝛼𝛽𝜇𝜈
= 𝐶

𝛼𝛽𝜇𝜈
.

• Debever (1959): the Riemann space 𝑉4 admits the canonical form of (𝐶𝑎𝑏) ∈ 𝑅6 with respect to at
least one and not more than four isotropic full vectors 𝑙𝛼(𝑁) ≠ 0, 𝑁 = 1, 2, 3, 4 (Debever vectors).

Petrov type Independent eigen-directions Debever-Sachs symbol Equations for Debever vectors

I all distinct {1 1 1 1} 𝑙 [𝜆𝐶𝛼]𝛽𝛾 [ 𝛿 𝑙𝜂 ] 𝑙
𝛽𝑙𝛾 = 0

D 𝑙𝛼(1) = 𝑙
𝛼
(2) , 𝑙

𝛼
(3) = 𝑙

𝛼
(4) {2 2} 𝐶

𝛼𝛽𝛾 [ 𝛿 𝑙𝜂 ] 𝑙
𝛽𝑙𝛾 = 0

II 𝑙𝛼(1) = 𝑙
𝛼
(2) ≠ 𝑙

𝛼
(3) ≠ 𝑙

𝛼
(4) {2 1 1} 𝐶

𝛼𝛽𝛾 [ 𝛿 𝑙𝜂 ] 𝑙
𝛽𝑙𝛾 = 0

III 𝑙𝛼(1) = 𝑙
𝛼
(2) = 𝑙

𝛼
(3) ≠ 𝑙

𝛼
(4) {3 1} 𝐶

𝛼𝛽𝛾 [ 𝛿 𝑙𝜂 ] 𝑙
𝛽 = 0

N all identical {4} 𝐶𝛼𝛽𝛾𝛿 𝑙
𝛼 = 0

• To every Petrov type is assigned a gravitational field, according to the prescription:

a. the Debever vectors 𝑙𝛼(𝑁) satisfies the respective equation of the series above;

b. each Debever vector satisfies only one Petrov type.
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