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1. Introduction

A complex symplectic structure on a complex manifold X is a holomorphic 2 form 
σ which is closed and non-degenerate. Hence the complex dimension of X is even, say 
2n, and the canonical bundle of X is trivialized by σn. By the celebrated Newlander-
Nirenberg theorem, one can equivalently think of X as a pair (M, J) where M is a 
smooth manifold and J is an integrable almost complex structure, that is, an endo-
morphism of TM with J2 = −Id and NJ = 0, where NJ is the Nijenhuis tensor. In 
this language, a complex symplectic structure is a (2, 0)-form σ ∈ Ω2,0(M, J) which is 
closed and non-degenerate. This turns out to be equivalent to a symmetry condition on 
ω = σ+ σ̄, namely ω(JX, Y ) = ω(X, JY ), for all vector fields X, Y , see Lemma 2.1. This 
compatibility condition between ω and J is antithetical to the one defining a Kähler 
metric. Similarly to the real symplectic situation, complex symplectic structures exist 
on the holomorphic cotangent bundle of any complex manifold, and on coadjoint or-
bits of complex Lie groups [8]; such examples, however, are not compact. Hyperkähler 
geometry is a source of examples of complex symplectic manifolds: if (g, I1, I2, I3) is a 
hyperkähler structure on a smooth manifold M , with symplectic forms ωj = g(·, Ij ·), 
j = 1, 2, 3, then σ = ω2 + iω3 is a complex symplectic structure on (M, I1). In fact, by a 
result of Beauville [6], a compact complex manifold of Kähler type admits a hyperkähler 
structure if and only if it admits a complex symplectic structure. Hyperkähler mani-
folds are important both from the Riemannian and the complex point of view, see for 
instance [19,26,27,34]; however compact examples of these manifolds do not abound. In 
[20,21], Guan constructed compact complex symplectic non (hyper)kählerian manifolds. 
His constructions use nilmanifolds, compact quotients of a connected, simply connected 
nilpotent Lie group by a lattice, in a crucial way. Natural complex symplectic struc-
tures also exist on Hitchin’s hypersymplectic manifolds, which are the closest relatives 
of hyperkähler manifolds in the context of neutral signature, see [13,25].

An open question in real symplectic geometry concerns the existence of symplectic 
structures on compact manifolds; therefore, being able to construct examples is essential. 
Also, a great deal of research over the last years has addressed the question of the 
existence of compact symplectic manifolds with no Kähler metrics - see for instance 
[3,10,14,36]. Two natural questions arise at this point:

• How to construct compact complex symplectic manifolds?
• In case one is constructed, how to exclude that it carries a - say - hyperkähler metric?

In [4] the first three authors addressed both questions studying the existence of com-
plex symplectic structures on (non toral) nilmanifolds, which are known to admit no 
(hyper)Kähler structure, see [7,23]. The structures considered there are left-invariant, 
hence defined at the Lie algebra level. In particular, complex symplectic oxidation is 
introduced in order to provide a method to construct (4n + 4)-dimensional complex 
symplectic Lie algebras (not necessarily nilpotent) starting from a 4n-dimensional one. 
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The construction is based on the existence of a 2-dimensional central J-invariant ideal. 
In this paper, which is a kind of follow-up to [4], we tackle again both questions and de-
scribe two new constructions of complex symplectic structures on solvable Lie algebras. 
The leitmotiv behind the title is that the kind of Lie algebras we consider have “large” 
Abelian ideals: of codimension one in the first case, and of half-dimension in the second 
one. These structures induce left-invariant complex symplectic structures on the corre-
sponding connected, simply connected solvable Lie groups and on their solvmanifolds. 
We thus provide systematic ways of constructing examples of compact complex symplec-
tic (solv)manifolds, and show that they abound. As we recalled, no nilmanifolds (except 
tori) admit Kähler metrics, and solvmanifolds with Kähler metrics are completely under-
stood, see [24]. Thus we can exclude that our examples admit Kähler, hence hyperkähler, 
metrics. We also study solvable Lie algebras with Abelian complex symplectic structures, 
those whose complex structure is Abelian. This also fits in the title, since an Abelian 
complex structure on a Lie algebra g is given by an Abelian subalgebra g(1,0) ⊂ g ⊗C.

Here is an overview of the content and of the main results in this paper:

• In Section 2 we recall some preliminaries and fix the notation.
• In Section 3 we obtain all almost Abelian Lie algebras with a complex symplectic 

structure, see Theorem 3.10. To attain this result, we first recall that the integra-
bility of an almost complex structure J on an almost Abelian Lie algebra g can be 
characterized by the (matrix) structure of f := adX |u, being u the codimension one 
Abelian ideal of g and X ∈ g \ u. We then provide a result in similar terms to char-
acterize when a non-degenerate two-form ω on g is closed. Note that, at this point of 
the paper (Section 3.1), the complex and the symplectic structures are non-related. 
Hence, the next step is to make them interact (Section 3.2). We show that the two 
previous descriptions for f can be combined when we impose that (J, ω) is a complex 
symplectic structure. We make use of these results to show that, in general, an almost 
Abelian Lie algebra can admit two non-isomorphic complex symplectic structures, 
see Example 3.13.

• Section 4 contains the classification of almost Abelian Lie algebras admitting complex 
symplectic structures, characterized in terms of the Jordan blocks of f , see Theo-
rem 4.5. More precisely, we first observe that any complex symplectic almost abelian 
Lie algebra is given by (R4n−1

�f R, J0, ω0), where f is determined by Theorem 3.10
and (J0, ω0) takes a canonical form. Then, the equivalence classes of f that pre-
serve the canonical complex symplectic structure are studied. This allows to provide 
the set of matrices for f that give rise to non-equivalent complex symplectic almost 
Abelian Lie algebras (Proposition 4.4), from where one finally derives the theorem. 
In Corollary 4.6 we obtain conditions under which an almost Abelian Lie algebra ad-
mits a unique complex symplectic structure. In 4.1 we also construct almost Abelian 
solvmanifolds with a unique left-invariant complex symplectic structure, and which 
carry no Kähler metric.
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• In Section 5 we describe the cotangent extension, which starts with a Lie algebra g
endowed with a complex structure J and gives back a complex symplectic structure 
on h = g∗ ⊕ g, endowed with a Lie algebra structure such that g∗ ⊂ h is a complex, 
Abelian, Lagrangian ideal. By Theorem 5.7, this construction completely character-
izes such complex symplectic Lie algebras. A geometric version of this result yields 
complex symplectic manifolds endowed with a Lagrangian fibration, see 5.2.

• Section 6 deals with complex symplectic structures on solvable Lie algebras with 
non-trivial center under the assumption that the complex structure is Abelian. In 
Proposition 6.3 we obtain conditions under which the reduction-oxidation procedure 
of [4] produces such Lie algebras. Using this conditions in Theorem 6.4 we prove that 
nilpotent Lie algebras with Abelian complex symplectic structures can be obtained 
by iterated oxidations of the trivial Lie algebra. Moreover, we show that, for nilpotent 
Lie algebras with Abelian complex symplectic structures, all the possible nilpotency 
steps are admissible. More precisely, in Proposition 6.5 we show that for a fixed 
n ∈ N, then there exists a 4n-dimensional nilpotent complex symplectic Lie algebra 
of step length m, for any m ∈ {1, . . . , 2n}.

Acknowledgements. The first author is partially supported by GNSAGA and by 
grants PID2020-118452GB-I00 and PID2021-126124NB-I00 (MCIN/AEI/10.13039/
501100011033). The third author is partially supported by grant PID2020-115652GB-
I00, funded by MCIN/AEI/10.13039/501100011033. The fourth author has financially 
been supported by the Programme “FIL-Quota Incentivante” of University of Parma and 
co-sponsored by Fondazione Cariparma and by GNSAGA of INdAM. We are indebted 
to the referee for her/his comments, which helped us improving the presentation of the 
paper.

2. Preliminaries

In this section we present the basic concepts that will be used in the paper, and fix the 
notation. Let M be a 2m-dimensional differentiable manifold, and let X(M) denote the 
space of smooth vector fields on M . A complex structure J on M is an endomorphism 
J : X(M) → X(M) satisfying J2 = −Id and NJ(X, Y ) = 0 for every X, Y ∈ X(M), 
where NJ is the Nijenhuis tensor

NJ (X,Y ) := [X,Y ] + J [JX, Y ] + J [X, JY ] − [JX, JY ].

The pair (M, J) is then a complex manifold of complex dimension m, as a consequence of 
the celebrated Newlander-Nirenberg theorem. J can be equivalently defined on Ω1(M), 
the space of smooth 1-forms on M , by taking

(J∗α)(X) = α(JX), (1)
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for every α ∈ Ω1(M) and X ∈ X(M). Extending J∗ by C-linearity to Ω1
C(M) = Ω1(M) ⊗

C, one obtains a decomposition

Ω1
C(M) = Ω1,0(M,J) ⊕ Ω0,1(M,J),

where

Ω1,0(M,J) =
{
α ∈ Ω1

C(M) | J∗α = i α
}
,

Ω0,1(M,J) = {α ∈ Ω1
C(M) | J∗α = −i α} = Ω1,0(M,J).

As a consequence, the space of complex smooth k-forms splits as

Ωk
C(M) =

⊕
p+q=k

Ωp,q(M,J),

where Ωp,q(M, J) denotes the space of (p, q)-forms on (M, J).
A complex symplectic, or holomorphic symplectic, structure on M is a pair (J, ωC)

given by a complex structure J on M and a non-degenerate ωC ∈ Ω2,0(M, J) satisfying 
dωC = 0. Note that the existence of such a (J, ωC) forces the complex dimension of M
to be even, namely, m = 2n. Moreover, the (2, 0)-form ωC can be replaced by a (real) 
symplectic form satisfying some additional condition, as shown in [4, Lemma 3.2]:

Lemma 2.1. Let M be a differentiable manifold. The set of all complex symplectic 
structures (J, ωC) on M is bijective to the set of all pairs (J, ω) consisting of a com-
plex structure J and a symplectic 2-form ω such that J is symmetric with respect 
to ω, i.e. ω(JX, Y ) = ω(X, JY ) for all X, Y ∈ X(M). The bijection is given by 
(J, ωC) �→ (J, �(ωC)) with inverse (J, ω) �→ (J, ω − iω(J ·, ·)).

In this paper we consider the case in which M is a solvmanifold, namely, a quotient 
M = Γ\G of a real, connected, simply connected solvable Lie group G by a lattice Γ
(i.e. a discrete and cocompact subgroup). Nilmanifolds are special solvmanifolds, those 
for which G is nilpotent. When G is nilpotent, the existence of lattice Γ ⊂ G is equivalent 
to the Lie algebra g of G having a rational structure, that is, a rational subalgebra gQ ⊂ g

such that g = gQ ⊗ R [29]. There is however no sufficient condition for the existence of 
lattices in solvable Lie groups: their construction is art. Almost Abelian solvable Lie 
groups form a little but important exception to this difficulty, see [9] and Subsection 4.1
below.

Next, recall that a Lie algebra can also be described using d : g∗ → Λ2g∗, the dual 
map to the Lie bracket, defined by (dα)(X, Y ) = −α([X, Y ]). The Jacobi identity on g is 
then equivalent to d2 = 0, where d is extended to Λ∗g∗ as a graded derivation. Suppose 
{e1, . . . , en} is a basis of g, and that [ei, ej ] =

∑
ckijek. If {e1, . . . , en} is the dual basis, 

then dek = − 
∑

ckije
i∧ej . We shall use the so-called Salamon’s notation for denoting Lie 

algebras. For instance, g = (03, 12, 15, −16) means that the 6-dimensional Lie algebra 
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g has a basis {e1, . . . , e6} with dual basis {e1, . . . , e6} such that dei = 0, i = 1, 2, 3, 
de4 = e12 := e1 ∧ e2, de5 = e15 and de6 = −e16.

A complex structure on a solvmanifold M = Γ\G is invariant if it comes from a 
left-invariant complex structure on G, that is, from a complex structure on g = Lie(G); 
this is just an endomorphism J : g → g with J2 = −Id and NJ = 0, and is equivalently 
described by a subspace g∗(1,0) ⊂ g∗ ⊗ C, precisely as it happens on smooth manifolds. 
There are distinguished classes of complex structures on Lie algebras.

Definition 2.2. Let g be a real Lie algebra endowed with an almost complex structure J .

• J is Abelian if [X, Y ] = [JX, JY ] for all X, Y ∈ g; equivalently, J is Abelian if 
d(g∗(1,0)) ⊂ g∗(1,1) if and only if g(1,0) ⊂ g ⊗C is an Abelian subalgebra;

• J is parallelizable if J [X, Y ] = [JX, Y ] for all X, Y ∈ g; equivalently, J is paral-
lelizable if d(g∗(1,0)) ⊂ g∗(2,0). In this case, G has the structure of a complex Lie 
group.

Notice that in both cases J is automatically integrable.

In this paper we shall work with (solvable) Lie algebras, and then obtain geometric 
examples by constructing lattices in the corresponding Lie groups.

Definition 2.3. Let g be a real Lie algebra. A complex symplectic structure on g consists 
of an integrable almost complex structure J and a symplectic form ω such that J is 
symmetric with respect to ω. Thus NJ = 0, ω is non-degenerate, dω = 0, and ω(JX, Y ) =
ω(X, JY ) for every X, Y ∈ g. Then, (g, J, ω) is called a complex symplectic Lie algebra.

Taking into account the notions of equivalence between real Lie algebras, complex 
structures and symplectic structures, it is natural to introduce the following:

Definition 2.4. Two complex symplectic Lie algebras (g, J, ω) and (g′, J ′, ω′) are said 
to be equivalent if there exists an isomorphism of Lie algebras φ : g → g′ satisfying 
φ ◦ J = J ′ ◦ φ and φ∗ω′ = ω.

3. Complex symplectic structures on almost Abelian Lie algebras

In this section we construct complex symplectic structures on real almost Abelian Lie 
algebras. We start by recalling some generalities and proving some results concerning the 
existence of complex structures and symplectic structures on this type of Lie algebras. 
Then, we focus on the complex symplectic case.

Definition 3.1. A (solvable) real Lie algebra g is almost Abelian if it has a codimension 
one Abelian ideal. A Lie group G is almost Abelian if its Lie algebra is.
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Recall the following result in [2]:

Proposition 3.2. Let h be an almost Abelian Lie algebra over the field F ∈ {R, C}. If h
has more than one codimension one Abelian ideals, then h ∼= HF ⊕ Fk for some k ∈ N0, 
where HF is the Heisenberg algebra

HF =
{(0 0 0

t 0 p
q 0 0

) ∣∣∣∣∣ (p, t, q) ∈ F3

}
.

Note that the Lie algebras in the result above are nilpotent. Indeed, there are two 
well-known complex nilmanifolds whose associated Lie algebras fit into the previous 
statement.

If we take F = R, then HR is usually denoted by h3. rh3 := h3 ⊕R is the Lie algebra 
underlying the Kodaira-Thurston nilmanifold, which was the first example of a compact 
manifold with both symplectic and complex structures but no Kähler metric [35]. It 
has been shown in [5] that there is only one complex symplectic structure on rh3 up to 
equivalence.

HC is the complex Lie algebra underlying the Iwasawa manifold. For dimension 
reasons, it does not admit a complex symplectic structure; however h := HC ⊕ C is 
determined by the complex structure equations

dω1 = dω2 = 0 , dω3 = ω12 , dω4 = 0 . (2)

It is easy to see that any closed non-degenerate complex 2-form ωC on h is given by

ωC = a12ω
12 + a13ω

13 + a14ω
14 + a23ω

23 + a24ω
24,

with aij ∈ C and a13a24 − a14a23 �= 0. Moreover, one can define a new (complex) basis 
for h as follows

τ1 = 1
(a13a24 − a14a23)1/3

(a13ω
1 + a23ω

2),

τ2 = 1
(a13a24 − a14a23)1/3

(a14ω
1 + a24ω

2),

τ3 = (a13a24 − a14a23)
1/3 ω3,

τ4 = (a13a24 − a14a23)
1/3 ω4 − a12

(a13a24 − a14a23)2/3
(a13ω

1 + a23ω
2).

A direct calculation shows that the complex structure equations for h in terms of the 
new basis {τk}4

k=1 still follow (2), but now

ωC = τ13 + τ24.

Consequently, there is just one complex symplectic structure on h up to equivalence.
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Remark 3.3. In the notation used in [37], the real 6-dimensional Lie algebra underly-
ing HC is h5 = (0, 0, 0, 0, 13 − 24, 14 + 23), which is not almost Abelian. According to 
[11], there are more complex structures on h5, but none of them is parallelizable (see 
Definition 2.2).

In the next sections, we will only focus on real almost Abelian Lie algebras. In partic-
ular, we will address the existence and the uniqueness of complex symplectic structures 
on real almost Abelian Lie algebras whose codimension one Abelian ideal is unique.

3.1. Complex structures and symplectic structures on almost Abelian Lie algebras

In this subsection, we characterise the existence of two different geometric structures 
on real almost Abelian Lie algebras: complex structures and symplectic structures. Notice 
that, in this part of the paper, the two structures are treated independently. Moreover, 
here we do not need to require the Abelian ideal to be unique. These results will then be 
put together in Subsection 3.2 to give a characterisation of complex symplectic structures 
on almost Abelian Lie algebras.

The case of complex structures on almost Abelian Lie algebras has been treated 
individually several times in the literature. We refer to [28], which seems to be the first 
characterization of complex structures on almost Abelian Lie algebras.

Theorem 3.4. Let g be a 2n-dimensional almost Abelian Lie algebra with codimension one 
Abelian ideal u and let J be an almost complex structure on g. Choose X ∈ g \u such that 
JX ∈ u and set uJ := u ∩Ju and f := adX |u ∈ End(u). Then J is integrable if and only 
if there are f0 ∈ gl(uJ , J) := {h ∈ End(uJ) | [h, J ] = 0} ∼= gl(n − 1, C), v ∈ uJ

∼= R2n−2

and a ∈ R such that

f =
(
f0 v
0 a

)

with respect to the splitting u = uJ ⊕ span(JX).

Next, we investigate the existence of symplectic structures on almost Abelian Lie 
algebras. For this, we first need the following observations.

Remark 3.5. Let g be an almost Abelian Lie algebra of dimension 2n with codimension 
one Abelian ideal u. Let ω be a non-degenerate 2-form on g and denote by u⊥ω the 
symplectic orthogonal of u,

u⊥ω := {Y ∈ g | ω(Y,U) = 0, ∀U ∈ u} .

Since dim u + dim u⊥ω = dim g, u⊥ω is one-dimensional, hence isotropic. Therefore, u =(
u⊥ω
)⊥ω is coisotropic and thus u⊥ω ⊂ u. By [30, Lemma 2.2], u/u⊥ω has a symplectic 
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structure induced by ω. Thus, any complement u′ of u⊥ω in u inherits a symplectic 
structure ω′, via the isomorphism u/u⊥ω ∼= u′. We can therefore write

g = u′ ⊕ (u′)⊥ω and (u′)⊥ω = u⊥ω ⊕ span(X) , (3)

for some 0 �= X ∈ g \ u. Note also that ω(X, Y ) �= 0 for every 0 �= Y ∈ u⊥ω , as ω is 
non-degenerate.

The remark allows us to state the following result:

Theorem 3.6. Let g be a 2n-dimensional almost Abelian Lie algebra with codimension 
one Abelian ideal u and let ω be a non-degenerate two-form on g. Consider some com-
plement u′ of u⊥ω in u and set ω′ := ω|u′ ∈ Λ2u′. Moreover, choose X ∈ g \ u

and denote f := adX |u. Then ω is a symplectic form on g if and only if there exist 
f ′ ∈ sp(u′, ω′) := {h ∈ End(u′) | h.ω′ = 0} ∼= sp(2n − 2, R), α ∈ Hom(u′, u⊥ω ) ∼= R2n−2

and a′ ∈ R such that

f =
(
f ′ 0
α a′

)

with respect to the splitting u = u′ ⊕ u⊥ω .

Proof. First of all, note that we need to check when

0 = dω(Z1, Z2, Z3) = −
∑
cycl

ω
(
[Zi, Zi+1], Zi+2

)

holds for any Z1, Z2, Z3 ∈ g. This is trivially fulfilled if Z1, Z2, Z3 ∈ u. So we only need 
to check dω(X, Y, Z) = 0 and dω(X, Z1, Z2) = 0 for all Y ∈ u⊥ω and all Z, Z1, Z2 ∈ u′. 
We first have

dω(X,Y, Z) = −ω(f(Y ), Z) − ω(Y, f(Z)) = −ω(f(Y ), Z)

due to Y ∈ u⊥ω and f(Z) ∈ u. Hence, dω(X, Y, Z) = 0 for all Y ∈ u⊥ω and Z ∈ u′

is equivalent to f(Y ) ∈ u⊥ω for all Y ∈ u⊥ω , i.e. to f(Y ) = a′Y for some a′ ∈ R. 
Finally, write f |u′ = f ′ + α for f ′ ∈ End(u′) and α ∈ Hom(u′, u⊥ω ). Note that we have 
ω(α(u′), u′) = 0 and so

dω(X,Z1, Z2) = −ω(f(Z1), Z2) − ω(Z1, f(Z2)) = −ω′(f ′(Z1), Z2) − ω′(Z1, f
′(Z2))

= (f ′.ω′)(Z1, Z2)

for all Z1, Z2 ∈ u′. Hence dω(X, Z1, Z2) = 0 for all Z1, Z2 ∈ u′ if and only if f ′ ∈
sp(u′, ω′). �
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3.2. Almost Abelian Lie algebras admitting a complex symplectic structure

We combine now Theorem 3.4 and Theorem 3.6 in order to identify almost Abelian Lie 
algebras admitting complex symplectic structures. In particular, note that if an almost 
Abelian Lie algebra g has both a complex structure J and a symplectic structure ω, 
then the previous theorems provide two different splittings for g, namely, g = uJ ⊕
span(JX) ⊕ span(X) and g = u′⊕ u⊥ω ⊕ span(X), being X an element of g which is not 
in its codimension one Abelian ideal u. We here show that these two splittings can be 
combined to find a finer one, as long as the pair (J, ω) gives rise to a complex symplectic 
structure.

Let g be a 4n-dimensional almost Abelian Lie algebra with codimension one Abelian 
ideal u. Let (J, ω) be a Sp(2n, C)-structure on g, i.e. ω is a non-degenerate two-form 
on g and J is an almost complex structure on g which is symmetric with respect to ω. 
Consider again the subspaces uJ := u ∩ Ju and u⊥ω of u.

Claim 3.7. u⊥ω ⊂ uJ .

If not, there exists 0 �= Y ∈ u⊥ω such that JY /∈ u, and g = u ⊕ span(JY ). Since 
Y ∈ u⊥ω and ω(Y, JY ) = 0 due to the symmetry of J , this would imply that ω is 
degenerate. As a consequence, one also has Ju⊥ω ⊂ uJ .

�
Next, choose a complement u′ of u⊥ω in u containing Ju⊥ω and set u′J := u′ ∩Ju′. By 

(3), we have (u′)⊥ω = u⊥ω ⊕ span(X) for some X ∈ g \ u.

Claim 3.8. JX ∈ u′.

Pick Y such that span(Y ) = u⊥ω , so that (u′)⊥ω = span(X, Y ). We need to show that 
ω(JX, X) = 0 = ω(JX, Y ). The first equality holds since J is symmetric. For the second 
one, ω(JX, Y ) = ω(X, JY ) = 0, since X ∈ (u′)⊥ω and JY ∈ Ju⊥ω ⊂ u′ by assumption.

�
Let us note that so

u′ = Ju⊥ω ⊕ u′J ⊕ span(JX) .

Recall that u′ ⊂ g is a symplectic subspace, with symplectic form ω′ induced by ω.

Claim 3.9. ω′(u′J , Ju⊥ω ⊕ span(JX)
)

= 0.

If W ∈ Ju⊥ω ⊕ span(JX), there exist Y ∈ u⊥ω and λ ∈ R such that W = JY +λJX. 
Thus, for any Z ∈ u′J , we have
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ω′(Z,W ) = ω′(Z, JY ) + λω′(Z, JX) = ω′(JZ, Y ) + λω′(JZ,X) = 0

since JZ ∈ u′J ⊂ u′ ⊂ u, while Y ∈ u⊥ω and X ∈ (u′)⊥ω by assumption.

�
As a consequence, the restriction ω′

J of ω′ to u′J is non-degenerate as well. Now we 
have

u = u⊥ω ⊕ u′ = u⊥ω ⊕ Ju⊥ω ⊕ u′J︸ ︷︷ ︸
uJ

⊕ span(JX) .

This allows us to state the following result:

Theorem 3.10. Let g be a 4n-dimensional almost Abelian Lie algebra with a codimension 
one Abelian ideal u, and let (J, ω) be an Sp(2n, C)-structure on g. Consider some com-
plement u′ of u⊥ω in u which contains Ju⊥ω and set u′J := u′ ∩ Ju′. Take also X ∈ g \ u
such that X ∈ (u′)⊥ω and

u = u′J ⊕ u⊥ω ⊕ Ju⊥ω ⊕ span(JX) .

If we choose Y ∈ u⊥ω \ {0} with ω(JY, JX) = 1, then

(g, J, ω) = (u′J , J |u′
J
, ω′

J) ⊕ (V, J |V , ωV ) (4)

as complex symplectic vector spaces for

V := u⊥ω ⊕ Ju⊥ω ⊕ span(JX,X) = span(Y, JY, JX,X),

ωV := J∗α ∧ J∗β − α ∧ β.

and α, −J∗α, β, −J∗β ∈ g∗ spanning the annihilator (u′J)0 ∼= V ∗ of u′J in g and being 
the dual basis of (Y, JY, X, JX). Moreover, (J, ω) is a complex symplectic structure on 
g if and only if there exist a, b, c ∈ R, u ∈ u′J and f ′

J ∈ sp(u′J , ω′
J , J) such that

f =

⎛
⎜⎝

f ′
J 0 0 u

ω(Ju, ·) a 0 b
ω(u, ·) 0 a c

0 0 0 −a

⎞
⎟⎠

with respect to the splitting u = u′J⊕u⊥ω⊕Ju⊥ω⊕span(JX) and to the basis {Y, JY, JX}
of u⊥ω ⊕ Ju⊥ω ⊕ span(JX).

Proof. Choose 0 �= Y ∈ u⊥ω such that ω(JY, JX) = 1. We first show that (4) holds. Let 
us start observing that ω(Y, X) = −ω(JY, JX) = −1. As JY ∈ u′ and X ∈ (u′)⊥ω by 
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assumption, we also have ω(Y, JX) = ω(JY, X) = 0. By Claim 3.9 one has ω′(u′J , Ju⊥ω⊕
span(JX)

)
= 0, and the symmetry of J , together with the J-invariance of u′J , yields

ω
(
u′J , u

⊥ω ⊕ span(X)
)

= 0 .

If we set

V := u⊥ω ⊕ Ju⊥ω ⊕ span(JX,X) = span(Y, JY, JX,X),

and denote by α, β ∈ g∗ the elements in the annihilator of u′J satisfying α(Y ) = 1 = β(X), 
α(JY ) = α(JX) = α(X) = 0 and β(Y ) = β(JY ) = β(JX) = 0. We have

(g, J, ω) = (u′J , J |u′
J
, ωJ) ⊕ (V, J |V , ωV )

as complex symplectic vector spaces for

ωV := J∗α ∧ J∗β − α ∧ β.

For the second part of the statement, we set as usual f := adX |u. Then Theorem 3.6
implies the existence of some a ∈ R with f(Y ) = aY and Theorem 3.4 gives f(JY ) =
Jf(Y ) = aJY . This shows how to define f on u⊥ω = span(Y ) and Ju⊥ω = span(JY ). 
Thus, it remains to describe f on the elements of u′J and on JX. For this, write f |u′ =
f ′ + γ with f ′ ∈ gl(u′) and γ ∈ Hom(u′, u⊥ω ) ∼= (u′)∗. Note that by Theorem 3.6, 
we have f ′ ∈ sp(u′, ω′). Also, by Theorem 3.4 f(u′J) ⊂ f(uJ ) ⊂ uJ , so that f ′(u′J ) ⊂
u′J ⊕ span(JY ). Consequently, there exist δ ∈ (u′J)∗ and f ′

J ∈ gl(u′J ) with

f ′(Z) = δ(Z)JY + f ′
J(Z)

for Z ∈ u′J . Besides, define b, c ∈ R and u ∈ u′J by

f ′(JX) = bJY + cJX + u.

Then f ′ ∈ sp(u′, ω′) gives

0 = (f ′.ω′)(JY, JX) = −ω′(f ′(JY ), JX) − ω′(JY, f ′(JX)) = −a− c,

i.e. c = −a. Moreover, for Z ∈ u′J , we get

0 = (f ′.ω′)(Z, JX) = −δ(Z) − ω(Z, u),

which is equivalent to δ = ω(u, ·). Hence, for any Z ∈ u′J , we have

f(Z) = f ′(Z) + γ(Z)Y = f ′
J(Z) + δ(Z)JY + γ(Z)Y
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and f(JZ) = Jf(Z) by Theorem 3.4, which implies γ(Z) = δ(JZ) = ω(u, JZ) =
ω(Ju, Z). Moreover, Theorem 3.4 and Theorem 3.6 together yield f ′

J ∈ sp(u′J , ω′
J , J) ∼=

sp(2n − 2, C). This gives the desired result. �
Remark 3.11. Note that the first part of the previous theorem is related to the complex 
symplectic reduction of a complex symplectic vector space by a coisotropic, J-invariant 
subspace. Indeed, we just proved that

u′J = uJ/(u⊥ω + Ju⊥ω )

inherits a complex symplectic structure. V is any complement of u′J in g, and it also 
inherits a complex symplectic structure.

Remark 3.12. In dimension 4, Theorem 3.10 says that R3
�f R admits a complex sym-

plectic structure if and only if there are a, b, c ∈ R such that

f =
(
a 0 b
0 a c
0 0 −a

)

with respect to some basis of R3. This agrees with the results of [5, Theorem 3.1], saying 
that the four-dimensional almost Abelian Lie algebras admitting a complex symplectic 
structure are r4,−1,−1, rh3 and R4. More precisely, we have:

• if a �= 0, then R3
�f R is isomorphic to r4,−1,−1;

• if a = 0 but (b, c) �= (0, 0), then R3
�f R is isomorphic to rh3;

• if a = b = c = 0, then R3
�f R is isomorphic to R4.

It is interesting to note that by [5], a four-dimensional real almost Abelian Lie algebra 
has at most one complex symplectic structure, up to equivalence. We show that this is 
not true in general.

Example 3.13. We consider (gi, J0, ω0) with

J0 = −e1 ⊗ e2 + e2 ⊗ e1 − e3 ⊗ e4 + e4 ⊗ e3 + e5 ⊗ e6 − e6 ⊗ e5 − e7 ⊗ e8 + e8 ⊗ e7

ω0 = e14 + e23 − e58 + e67

and gi := R7
�fi R, i = 1, 2, where f1 and f2 are as in Theorem 3.10 with a1 = a2 = 0, 

c1 = c2 = 0 and

u1 = 0 ,

u2 = e4 ,

b1 = 1 ,

b2 = 0 ,

(f ′
J)1 =

( 0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

)
,

(f ′ ) = 0 .
J 2
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By Theorem 3.10, (gi, J0, ω0) is an almost Abelian complex symplectic Lie algebra for 
i = 1, 2. Note that if [·, ·]i denotes the Lie bracket of gi, the only non-zero Lie brackets 
of the standard basis {e1, . . . , e8} are given by

[e8, e3]1 = e1 ,

[e8, e1]2 = −e6 ,

[e8, e4]1 = e2 ,

[e8, e2]2 = −e5 ,

[e8, e7]1 = e5 ,

[e8, e7]2 = e4 .

The Jordan normal forms of f1 and f2 are the same, hence g1 and g2 are isomor-
phic as Lie algebras. We claim that (g1, J0, ω0) and (g2, J0, ω0) are not isomorphic as 
complex symplectic Lie algebras. Assume on the contrary that such an isomorphism 
F : (g1, J0, ω0) → (g2, J0, ω0) exists. By Proposition 3.2, u = span(e1, . . . , e7) is the 
unique Abelian ideal in gi for i = 1, 2, and F has to preserve it. Hence, F also preserves 
u⊥ω0 = span(e5). Thus,

F
(
[e8, e7]1

)
= F (e5) = λe5

for some λ ∈ R \ {0}. Next, write

F (e7) = ae7 + v

for a ∈ R and v ∈ span(e1, . . . , e6). Then

F (e8) = −F (J0e7) = −J0F (e7) = −J0ae7 − J0v = ae8 − J0v

since F commutes with J0. As F (u) ⊆ u and u ⊕ span(e8) = gi, i = 1, 2, and F has to 
be surjective, we must have a �= 0. But so

λe5 = F
(
[e8, e7]1

)
= [F (e8), F (e7)]2 = [ae8 − J0v, ae7 + v]2 = a2[e8, e7]2 + a[e8, v]2

= a2e4 + a[e8, v]2,

which is a contradiction since a �= 0 and [e8, v]2 ∈ span(e5, e6) for v ∈ span(e1, . . . , e6). 
Thus, (g1, J0, ω0) and (g2, J0, ω0) are not isomorphic as complex symplectic Lie algebras 
and g := g1 admits two non-equivalent complex symplectic structures.

Note that g is a nilpotent Lie algebra with rational structure constants with respect 
to the chosen basis. Hence, the associated simply connected Lie group G admits a lattice 
and so the compact almost Abelian nilmanifold M := Γ\G admits two invariant complex 
symplectic structures which are not equivalent by diffeomorphisms of M induced by Lie 
group automorphisms of G.

4. Classification of complex symplectic almost Abelian Lie algebras

In this section we classify the almost Abelian Lie algebras g = R4n−1
�f R admitting 

a complex symplectic structure (J, ω) in terms of the Jordan normal forms of f . We 
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then use this classification to provide conditions on the uniqueness of complex symplec-
tic structures, up to equivalence, on almost Abelian Lie algebras - see Corollary 4.6. 
Moreover, we give explicit examples of compact almost Abelian solvmanifolds admitting 
complex symplectic structures in every possible dimension.

First, let us note that in Theorem 3.10 one can always find a basis for the Abelian 
subspace u′J where the complex symplectic structure (J |u′

J
, ω′

J) takes the canonical form. 
As a consequence, applying again the theorem if necessary, one may assume that for any 
complex symplectic almost Abelian Lie algebra (g, J, ω) there exists a basis {ek}4n

k=1 for 
g where (g, J, ω) = (R4n−1

�f R, J0, ω0) for

f =

⎛
⎜⎝

A 0 0 u
ω0(J0u, ·) a 0 b
ω0(u, ·) 0 a c

0 0 0 −a

⎞
⎟⎠ (5)

with A ∈ sp(2n − 2, C) ⊂ R(4n−4)×(4n−4), a, b, c ∈ R and u ∈ R4n−4 together with

J0 =
2(n−1)∑
k=1

(
−e2k−1 ⊗ e2k + e2k ⊗ e2k−1

)
+ e4n−3 ⊗ e4n−2 − e4n−2 ⊗ e4n−3

− e4n−1 ⊗ e4n + e4n ⊗ e4n−1,

ω0 =
n−1∑
l=1

(
e4l−3 ∧ e4l + e4l−2 ∧ e4l−1)− e4n−3 ∧ e4n + e4n−2 ∧ e4n−1.

(6)

Note that the elements e4n−3, e4n−2, e4n−1, e4n on the basis play the role of 
(Y, J0Y, J0X, X). Indeed, for simplicity we will make use of the latter notation for 
them. From now on, we will assume that the complex symplectic structure (J, ω) on 
g = R4n−1

�f R takes the canonical form (6). We want to provide the list of those 
f that give rise to non-equivalent complex symplectic almost Abelian Lie algebras 
(R4n−1

�f R, J0, ω0). To do so, we study the equivalence classes of complex symplectic 
almost Abelian Lie algebras.

Lemma 4.1. Assume that the almost Abelian Lie algebra g = R4n−1
�f R is not Abelian 

and also not isomorphic to h3 ⊕ R4n−3 as a Lie algebra. Then any complex symplectic 
almost Abelian Lie algebra (g̃, J̃ , ω̃) = (R4n−1

�f̃ R, J0, ω0) isomorphic to (g, J, ω) =
(R4n−1

�f R, J0, ω0) is given by

f̃ =

⎛
⎜⎝

Ã 0 0 ũ
ω0(J0ũ, ·) a

λ 0 b̃
ω0(ũ, ·) 0 a

λ c̃
0 0 0 − a

λ

⎞
⎟⎠

with
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Ã = 1
λ

ΔAΔ−1,

ũ = 1
λ2

(
Δu− a JũX − λÃ (JũX)

)
,

b̃ = 1
λ3

(
b + 2λ aμ2 − ω(ũX , Δu + λ2ũ)

)
,

c̃ = 1
λ3

(
c− 2λ aμ1 + ω(JũX , Δu + λ2ũ)

)
,

where λ ∈ R∗, μ1, μ2 ∈ R, ũX ∈ ũ′J , and Δ: u′J0
→ ũ′J0

is an isomorphism of 4(n − 1)-
dimensional Abelian Lie algebras such that

Δ J0|u′
J0

− J0|ũ′
J0

Δ = 0 and Δ∗ ω0|ũ′
J0

= ω0|u′
J0

.

Moreover, any isomorphism between (R4n−1
�f R, J0, ω0) and (R4n−1

�f̃ R, J0, ω0) pre-
serving (J0, ω0) has the following form

K̃ =

⎛
⎜⎜⎜⎜⎜⎝

Δ 0 0 JũX ũX

− 1
λ ω(ũX ,Δ · ) 1

λ 0 −μ2 μ1
1
λ ω(JũX ,Δ · ) 0 1

λ μ1 μ2
0 0 0 λ 0
0 0 0 0 λ

⎞
⎟⎟⎟⎟⎟⎠ .

Proof. Let (g, J, ω) = (R4n−1
�f R, J0, ω0) be a complex symplectic almost Abelian Lie 

algebra given by (5) and (6) in terms of a basis {ek}4n
k=1. We consider another complex 

symplectic almost Abelian Lie algebra (g̃, J̃ , ω̃) for which, by the same argument as 
above, there is a basis {vk}4n

k=1 for g̃ where (g̃, J̃ , ω̃) = (R4n−1
�f̃ R, J0, ω0) for

f̃ =

⎛
⎜⎝

Ã 0 0 ũ
ω0(J0ũ, ·) ã 0 b̃
ω0(ũ, ·) 0 ã c̃

0 0 0 −ã

⎞
⎟⎠ (7)

with Ã ∈ sp(2n − 2, C) ⊂ R(4n−4)×(4n−4), ã, ̃b, ̃c ∈ R, ũ ∈ R4n−4, and (J0, ω0) as 
in (6) but written in terms of the v’s. Note that we will use {Ỹ , J0Ỹ , J0X̃, X̃} instead 
of {v4n−3, v4n−2, v4n−1, v4n} and similarly for the corresponding elements of the basis 
{ek}4n

k=1.

For simplicity, let us denote (J, ω) the expression of (J0, ω0) given in (6), both in terms 
of e’s and v’s.

Suppose g, ̃g are real almost Abelian Lie algebras with unique codimension one Abelian 
ideals u and ũ, respectively; by Proposition 3.2, they are not isomorphic to h3 ⊕R4n−3. 
Then, any isomorphism φ : g → g̃ satisfies φ u = ũ. Consequently, any isomorphism from 
g = u′J⊕u⊥ω⊕Ju⊥ω⊕span(JX) ⊕span(X) to g̃ = ũ′J⊕ũ⊥ω⊕J ũ⊥ω⊕span(JX̃) ⊕span(X̃)
is given, in terms of the bases {ek}4n

k=1 and {vk}4n
k=1 above, by
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K̃ =

⎛
⎜⎜⎜⎜⎜⎝

Δ ũY ũJY ũJX ũX

δ1 r1 s1 t1 μ1
δ2 r2 s2 t2 μ2
δ3 r3 s3 t3 μ3

0 0 0 0 λ

⎞
⎟⎟⎟⎟⎟⎠ , (8)

where λ ∈ R∗, ri, si, ti, μi ∈ R and δi : u′J → R for i = 1, 2, 3, ũX , ̃uY , ̃uJY , ̃uJX ∈
R4n−4, and Δ the matrix associated to a linear map from u′J to ũ′J . By abuse of notation, 
ũX , ̃uY , ̃uJY , ̃uJX will also denote the elements in ũ′J and Δ: u′J → ũ′J . Let us observe 
that the identity φ

(
[X, v]

)
= [φ(X), v] for any v ∈ u yields the equality

K̃ f − λ f̃K̃ = 0. (9)

for K̃ on u. We are interested in those φ that preserve the complex symplectic struc-
ture (ω, J). Consequently, the following conditions prescribed by Definition 2.4 must be 
satisfied:

φ ◦ J = J ◦ φ , (10)

φ∗ω = ω . (11)

Further, since φ is invertible, det K̃ �= 0. Applying (10) to an isomorphism φ given by (8)
and to each element in g, one obtains

ΔJ − JΔ = 0 on u′J

δ2 = −δ1 ◦ J,
δ3 = 0,

ũJY = JũY ,

s1 = −r2,

s2 = r1,

s3 = r3 = μ3 = 0,

ũJX = JũX ,

t1 = −μ2,

t2 = μ1,

t3 = λ.

(12)

Now observe that for any U1, U2 ∈ u′J = span(e1, . . . , e4n−4), (11) gives ω(U1, U2) =
ω(ΔU1, ΔU2), using (12) and the fact that (J, ω) is a complex symplectic structure. As 
a consequence, Δ: u′J → ũ′J is bijective. Indeed, suppose Δ is not injective. Then, there 
exists 0 �= U ∈ u′J such that ΔU = 0. As ω|u′

J
is non-degenerate, there is 0 �= V ∈ u′J

such that 0 �= ω(U, V ) = ω(ΔU, ΔV ) = 0, but this is a contradiction. Therefore, Δ
is injective and thus bijective, since dim u′J = dim ũ′J . Applying now (11) to the other 
possible pairs (A, B) with A, B ∈ {ek}4n

k=1, one has

Δ bijective,

δ1 = − 1
λ
ω(ũX ,Δ · ),

Δ∗ω = ω on u′J ,

r1 = 1
λ
,

ũY = 0,

r2 = 0.
(13)

Finally, the condition (9) for the reduced version of K̃ obtained by considering (12)
and (13) gives the desired result. �
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Hence, to determine the possible real Jordan normal forms of f for an almost Abelian 
Lie algebra R4n−1

�f R, it is surely of importance to know the real Jordan normal forms 
of A ∈ sp(2n − 2, C), considered as a real (4n − 4) × (4n − 4)-matrix. For this purpose, 
we introduce the following notation:

Notation 4.2. Let F ∈ End(RN ) and m ∈ N. We denote by NF (m, a) ∈ N0 the number 
of real Jordan blocks Jm(a) of size m for the eigenvalue a ∈ R in the real Jordan normal 
form of F . If z ∈ C \ R, then NF (m, z) ∈ N0 will stand for the number of real Jordan 
blocks Jm(z) of size 2m for the pair of complex conjugate eigenvalues z = a +ib, z = a −ib, 
where we recall that for Mz :=

(
a −b
b a

)
we have

Jm(z) =

⎛
⎜⎜⎜⎝
Mz I2

. . . . . .
. . . I2

Mz

⎞
⎟⎟⎟⎠ ∈ R2m×2m.

Similarly, for G ∈ End(CN ), m ∈ N and z ∈ C, we denote by NC
G (m, z) the number of 

complex Jordan blocks Jm(z) of size m with z on the diagonal.

The possible real Jordan normal forms of A follow directly from the possible complex 
Jordan normal forms of the complex (2n − 2) × (2n − 2)-matrix A. Set:

D+ =
(

1 0
0 0

)
, D− =

(
0 0
0 −1

)
, D(z) =

(
z 0
0 −z

)
,

where z ∈ C. The following well-known result is of much use:

Proposition 4.3. Let ωC
0 :=

∑m
i=1 e

2i−1 ∧ e2i denote the standard symplectic structure on 
the complex vector space C2m and let

sp(2m,C) :=
{
A ∈ C2m×2m∣∣ωC

0 (Av,w) = −ωC
0 (v,Aw) for all v, w ∈ C2m

}
.

(a) A ∈ C2m×2m is similar to a complex matrix in sp(2m, C) if and only if for any 
z ∈ C \ {0} and any k ∈ N we have NC

A (k, z) = NC
A (k, −z) and NC

A (2l − 1, 0) ≡ 0
(mod 2) for any l ∈ N.

(b) Let A ∈ sp(2m, C). Then (C2m, ωC
0 ) =

∑k
i=1(Vi, ωi) decomposes into a sum of 

symplectic A-invariant and A-irreducible subspaces of C2m with dimVi = 2mi, and 
for each (Vi, ωi), i ∈ {1, . . . , k}, one of the following holds:

(i) there exists some z ∈ C \ {0} and a basis v1, . . . , v2mi
of Vi such that ωi =∑mi

j=1 v
2j−1 ∧ v2j and
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A|Vi
=

⎛
⎜⎜⎜⎝
D(z) D−

D+ . . . . . .
. . . . . . D−

D+ D(z)

⎞
⎟⎟⎟⎠

with respect to the ordered basis (v1, . . . , v2mi
) of Vi,

(ii) mi is odd, namely, mi = 2k−1 for some k ∈ N, and there is a basis v1, . . . , v4k−2
of Vi such that ωi =

∑2k−1
j=1 v2j−1 ∧ v2j and

A|Vi
=

⎛
⎜⎜⎜⎝

0 D−

D+ . . . . . .
. . . . . . D−

D+ 0

⎞
⎟⎟⎟⎠

with respect to the ordered basis (v1, . . . , v4k−2) of Vi,
(iii) there is a basis v1, . . . , v2mi

of Vi such that ωi =
∑mi

j=1 v
2j−1 ∧ v2j and

A|Vi
=

⎛
⎜⎜⎜⎝

0 D−

D+ . . . . . .
. . . 0 D−

D+ N

⎞
⎟⎟⎟⎠ ,

where N :=
( 0 0

1 0

)
, with respect to the ordered basis (v1, . . . , v2mi

) of Vi.
(c) A, B ∈ sp(2m, C) are similar to each other if and only if they are symplectically 

similar, i.e. if there exists some T ∈ Sp(2m, C) with B = TAT−1.

Proof. Part (a) can be found for instance in [31, Theorem 2.7] - see also the references 
mentioned there. Part (b) can be easily deduced from the explicit description of the 
normal forms of the matrix representing ωC|Vi

in [31, Theorem 2.7] by bringing these 
normal forms into the standard form on Vi.

For (c), note that A, B ∈ sp(2m, C) are similar if and only if they have the same com-
plex Jordan normal form and so the decompositions into A-invariant and A-irreducible 
symplectic subspaces in (b) is, up to a permutation, the same for all A and B. Now 
observe that the map sending the standard basis to the concatenation of bases as in part 
(b) (i) − (iii) is an element of Sp(2m, C) and so A and B are symplectically similar. �

Before we prove the classification and uniqueness results, we first show that one may 
further simplify the form of f as in (5). For this, we set

I2,0 := diag(1, 1, 0, 0), I0,2 := diag(0, 0, 1, 1),

D := diag(−1,−1, 1, 1), Ñ =
(

0 0
I 0

)
∈ R4×4,
2
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J̃m(−1) :=

⎛
⎜⎜⎜⎝

D −I0,2 0

I2,0
. . . . . .
. . . D −I0,2

0 I2,0 D

⎞
⎟⎟⎟⎠ ∈ R4m×4m,

J̃2k−1 :=

⎛
⎜⎜⎜⎝

0 −I0,2 0

I2,0
. . . . . .
. . . 0 −I0,2

0 I2,0 0

⎞
⎟⎟⎟⎠ ∈ R(8k−4)×(8k−4),

J̃2k :=

⎛
⎜⎜⎜⎜⎝

0 −I0,2 0

I2,0
. . . . . .
. . . 0 −I0,2

0 I2,0 Ñ

⎞
⎟⎟⎟⎟⎠ ∈ R4k×4k

Proposition 4.4. Let (g, J, ω) be a 4n-dimensional almost Abelian complex symplectic Lie 
algebra. Then (g, J, ω) is isomorphic as a complex symplectic Lie algebra to (R4n−1

�f

R, J0, ω0) with f being one of the following matrices

⎛
⎜⎝
A 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠ ,

⎛
⎜⎝
A 0 0 0
0 0 0 b
0 0 0 c
0 0 0 0

⎞
⎟⎠ ,

⎛
⎜⎜⎜⎝
B 0 0 0 0
0 J̃p(−1) 0 0 e1
0 −eT3 1 0 0
0 eT4 0 1 0
0 0 0 0 −1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝
C 0 0 0 0
0 J̃2r−1 0 0 e1
0 −eT3 0 0 b
0 eT4 0 0 c
0 0 0 0 0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝
D 0 0 0 0
0 J̃2s 0 0 e1
0 −eT3 0 0 b
0 eT4 0 0 c
0 0 0 0 0

⎞
⎟⎟⎟⎠ ,

for some b, c ∈ R and A ∈ sp
(
2n −2, C

)
, B ∈ sp

(
2(n −1 −p), C

)
with p ∈ {1, . . . , n −1}, 

C ∈ sp
(
2(n − 2r), C

)
for some r ∈ {1, . . . , �n

2 �}, D ∈ sp
(
2(n − 1 − s), C

)
for s ∈

{1, . . . , n −1}, seen as real matrices of double size. The elements ek stand for the vectors 
of the canonical basis of RN with N ∈ {4p, 8r − 4, 4s}, depending on the case.

Proof. First consider the case where g is isomorphic to h3 ⊕R4n−3 as a Lie algebra. We 
show that then (g, J, ω) ∼= (R4n−4, J1, ω1) ⊕ (h3 ⊕ R, J2, ω2) as complex symplectic Lie 
algebras, where (J1, ω1) is a complex symplectic structure on R4n−4 and (J2, ω2) is a 
complex symplectic structure on h3 ⊕R.

To prove the aforementioned statement, take some X ∈ g \ u, where u is some codi-
mension one Abelian ideal with JX ∈ u. As g = h3 ⊕R4n−3, we know that f := ad(X)|u
satisfies im(f) ⊆ ker(f) and im(f) is one-dimensional whereas ker(f) is (4n − 2)-
dimensional. Moreover, the vanishing of the Nijenhuis tensor of J yields that ker(f) is 
J-invariant and so ker(f) = uJ . Since u = uJ⊕span(JX), we thus have Y := f(JX) �= 0. 
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Set now V := span(X, JX, Y, JY ). Then V is a J-invariant ideal in g isomorphic to h3⊕R. 
Moreover,

0 = dω(X, JX,U) = −ω(f(JX), U) − ω(JX, f(U)) = −ω(Y,U)

for any U ∈ ker(f). Consequently, the non-degeneracy of ω and g = ker(f) ⊕span(X, JX)
implies that −ω(JY, JX) = ω(Y, X) �= 0 or ω(JY, X) = ω(Y, JX) �= 0. Thus, V is also 
ω-symplectic. We then have

(g, J, ω) ∼= (V ⊥ω, J |V ⊥ω , ω|V ⊥ω ) ⊕ (V, J |V , ω|V )

as complex symplectic vector spaces. To prove the claimed result, we need to show that 
V ⊥ω is an Abelian ideal, but this will come as a consequence of V ⊥ω ⊂ ker(f). To 
prove the latter assumption, let U ∈ V ⊥ω and write U = Ũ + Û for Ũ ∈ ker(f) and 
Û ∈ span(X, JX). As Y, JY ∈ V and we have shown above that ω

(
ker(f), Y

)
= {0}, 

we get

0 = ω(U, Y ) = ω(Û , Y ),

0 = ω(U, JY ) = ω(Ũ , JY ) + ω(Û , JY ) = ω(JŨ , Y ) + ω(Û , JY ) = ω(Û , JY ).

Moreover, ω(Û , X) = ω(Û , JX) = 0, and so the non-degeneracy of ω on V =
span(X, JX, Y, JY ) yields Û = 0, i.e. U = Ũ ∈ ker(f). This gives the desired result.

Now, note that there is obviously only one complex symplectic structure on R4n−4

up to equivalence, and the same is true for h3 ⊕ R by [4, Proposition 5.4]. Thus, also 
h3 ⊕ R4n−3 admits only one complex symplectic structure up to equivalence and it can 
be obtained by the second matrix in the statement with A = 0, b = 1 and c = 0.

Thus, we may now restrict to the case that g has a unique codimension one Abelian 
ideal u. Note that by Theorem 3.10, we may assume that (g, J, ω) = (R4n−1

�f R, J0, ω0)
with f as in (5). Now we try to simplify f while keeping (J0, ω0) fixed. For this, we will 
make use of Lemma 4.1, which gives us the type of changes K̃ that we can apply to 
(R4n−1

�f R, J0, ω0) to get an equivalent complex symplectic almost Abelian Lie algebra 
(R4n−1

�f̃ R, J0, ω0) with possible simpler f̃ .
We first observe that one can assume that either u = 0 or u lies in the generalised 

eigenspace of A with eigenvalue −a but not in the image of A + a I4n−4. To check this 
assumption, let us consider an isomorphism K̃ as in Lemma 4.1 with

Δ = I4n−4, ũX = −Jv, λ = 1, μ1 = μ2 = 0,

where v ∈ R4(n−1) is to be determined. Then, note that the element ũ in the matrix f̃
is given by

ũ = u− (A + a I4n−4)v.
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If −a is not an eigenvalue of A then det(A + a I4n−4) �= 0 and one can choose v =
(A + a I4n−4)−1 u to get ũ = 0.

If −a is an eigenvalue of A one can proceed as follows. Let us note that the 
space R4(n−1) can be decomposed into the sum of (maximal) generalised eigenspaces 
R4(n−1) = ⊕λ∈Spec(A)Vλ(A). Consequently, the vector u ∈ R4(n−1) can be written as 
u = ⊕λ∈Spec(A)uλ, where uλ ∈ Vλ(A) for each λ ∈ Spec(A). Recall that each Vλ(A)
is invariant under A and there is a basis of Vλ(A) such that A|Vλ(A) is block-diagonal 
with Jordan blocks having λ on the diagonal. Therefore, one has that (A +a I4n−4)|Vλ(A)
maps Vλ(A) again into Vλ(A) and, in terms of the previous basis, (A + a I4n−4)|Vλ(A)
is also block-diagonal but with Jordan blocks having λ + a on the diagonal. For every 
λ �= −a, one can then find vλ ∈ Vλ(A) such that (A + a I4n−4)vλ = −uλ. Thus, setting 
v = ⊕λ∈Spec(A)\{−a}vλ, we have that ũ := (A +a I4n−4)v+u is in V−a(A). Moreover, we 
can assume that ũ is not in the image of A +a I4n−4. Indeed, if we suppose that ũ is in the 
image of A +a I4n−4, then there should exist some w such that (A +a I4n−4) w = ũ; apply-
ing a new change of basis as above one gets ˜̃u = ũ−(A +a I4n−4) ̃v = (A +a I4n−4)(w− ṽ)
so taking ṽ = w gives ˜̃u = 0.

Now, if a �= 0 in (5), observe that Lemma 4.1 can be applied with K̃ defined by the 
following choices of the parameters:

Δ = I4n−4, ũX = 0, λ = a, μ1 = c

2a2 , μ2 = − b

2a2 .

Then, the entries of f̃ are given by

Ã = 1
a
A, ũ = 1

a
u, b̃ = c̃ = 0.

In particular, note that aλ becomes equal to 1 and if u = 0 then also ũ = 0. Moreover, 
let us remark that since u lies in the generalised eigenspace of A with eigenvalue −a, 
there exists some k ∈ N such that

0 = (A + a I4n−4)k u = (a Ã + a I4n−4)k aũ = ak+1(Ã + I4n−4)k ũ,

and thus ũ belongs to the generalized eigenspace of Ã with eigenvalue −1. In addition, 
if we had ũ = (Ã + I4n−4) w for some w ∈ R4n−4, then u would be in the image of 
A + a I4n−4, which is a contradiction. As a consequence, one may assume without loss 
of generality that the initial matrix f given by (5) has

(a, b, c) =
{

(1, 0, 0), or
(0, b, c), with b, c ∈ R,

(14)

and u either equal to zero or in the generalised eigenspace of A with eigenvalue −a but 
not in the image of A + a I4n−4, for the previous two values of a. Moreover, observe that 
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these two sets of tuples give rise to non-equivalent complex symplectic almost Abelian 
Lie algebras. We next distinguish two cases depending on the value of u.

If u = 0, then one obtains the first two claimed forms for f directly from the two 
choices (14) above, respectively.

If u �= 0, then this vector lies in the generalised eigenspace of A with eigenvalue −a

and not in the image of A + a I4n−4, where a ∈ {0, 1} in view of (14). Consequently, the 
complex Jordan chain of u generates a complex Jordan block of A of some size m with 
−a on the diagonal. Two possibilities arise.

Suppose that a = 1. Then, one easily deduces from Proposition 4.3 (a) that there is 
another complex Jordan block of the same size m but with 1 on the diagonal. More-
over, by Proposition 4.3 (b) the complex generalised eigenvectors corresponding to these 
two Jordan blocks generate a symplectic A-invariant and A-irreducible space V whose 
complement in C2n−2 is A-invariant symplectic. In fact, it is possible to find a basis 
(w1, . . . , w2m) of V where ω0|V is preserved and A|V is given by Proposition 4.3 (b) (i). 
Thus, considering now all complex matrices as real matrices of double size, we can take 
K̃ from Lemma 4.1 with λ = 1, ũX = 0, μ1 = μ2 = 0 and Δ ∈ Sp(2n − 2, C) to be the 
matrix that brings A into

Ã = ΔAΔ−1 =
(
B 0
0 J̃m(−1)

)
,

where B ∈ sp
(
2(n − 1 −m), C

)
, and also takes u into the first element of {wk}2m

k=1 seen 
as a real basis (recall that u is in the generalised eigenspace of A with eigenvalue −1
but not in the image of A − I4n−4). In particular, note that the real counterpart of the 
complex basis {wk}2m

k=1 precisely coincides with the elements v4n−4m−3, . . . , v4n−4 of the 
basis {vk}4n

k=1 in terms of which the matrix f̃ is written. Hence, this allows to define ũ
and fix the remaining terms in f̃ , namely,

ũ = Δu = v4n−4m−3

ω0(J0ũ, ·) = −ω0(v4(n−m)−2, ·) = −v4(n−m)−1

ω0(ũ, ·) = ω(v4(n−m)−3, ·) = v4(n−m).

This gives the third claimed possible form of f in the assertion.
Suppose now that a = 0 and that the size m of the Jordan block corresponding to u

is odd, namely, m = 2l − 1. As a consequence of Proposition 4.3 (a), there is another 
complex Jordan block of the same size 2l − 1 with 0 on the diagonal. Reasoning in a 
similar way to previous case, one can find a basis (wk)2(2l−1)

k=1 for the space V spanned 
by the generalised eigenvectors corresponding to these two Jordan blocks where ω0|V is 
preserved and A|V is given by Proposition 4.3 (b) (ii). Making again all complex matrices 
to be real matrices of double size and following the same ideas as above, it is possible to 
bring f into the fourth claimed possible form in the assertion.
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The remaining case is a = 0 with an even size m of the corresponding Jordan block, 
namely, m = 2l. A similar argument as in the two cases above, now following Proposi-
tion 4.3 (b) (iii) for the aforementioned Jordan block, gives the fifth form for f in the 
statement. �

Let us recall that a Lie algebra g is said to be unimodular if tr(adX) = 0 for all 
X ∈ g. In our complex symplectic almost Abelian setting, note that this is equivalent to 
tr(f) = 0. As a consequence of Proposition 4.4, one gets the following result:

Theorem 4.5. An almost Abelian Lie algebra g = R4n−1
�fR admits a complex symplectic 

structure if and only if

Nf (m, z) = Nf (m,−z), Nf (m, ib) ≡ 0 (mod 2)

for all z ∈ C \ (R ∪ iR), all b ∈ R and all m ∈ N, and one of the set of conditions in 
(a) (i), (a) (ii) or (b) (i) – (b) (iv) is satisfied. These conditions are as follows:

(a) if g is not unimodular, then for any k, m ∈ N one has

Nf (2k, 0) ≡ 0 (mod 2),

Nf (2k − 1, 0) ≡ 0 (mod 4),

Nf (m, a0) ≡ 0 (mod 2) for some a0 ∈ R \ {0},
Nf (m, a) = Nf (m,−a), Nf (m, a) ≡ 0 (mod 2) for every a ∈ R\{a0, 0,−a0};

moreover, one of the following holds:
(i) Nf (1, a0) = 1 + Nf (−1, a0) and Nf (m, a0) = Nf (m, −a0), for any m ≥ 2; or
(ii) there exists some m0 ∈ N such that Nf (m0, a0) = Nf (m0, −a0) − 1, Nf (m0 +

1, a0) = Nf (m0 + 1, −a0) + 1, and Nf (m, a0) = Nf (m, −a0), for any m ∈
N \ {m0, m0 + 1}.

(b) if g is unimodular, then there exists some k0 ∈ N such that for every k ∈ N \ {k0}
and any m ∈ N one has

Nf (2k, 0) ≡ 0 (mod 2),

Nf (2k − 1, 0) ≡ 0 (mod 4),

Nf (m, a) = Nf (m,−a), Nf (m, a) ≡ 0 (mod 2), for every a ∈ R \ {0};

moreover, one of the following holds:
(i) k0 = 1, Nf (1, 0) ≡ 3 (mod 4) and Nf (2, 0) ≡ 0 (mod 2);
(ii) k0 = 1, Nf (1, 0) ≡ 1 (mod 4) and Nf (2, 0) ≡ 1 (mod 2);
(iii) Nf (2k0 − 1, 0) ≡ 1 (mod 4) and Nf (2k0, 0) ≡ 3 (mod 4);
(iv) k0 ≥ 2, Nf (2k0 − 1, 0) ≡ 1 (mod 4) and Nf (2k0, 0) ≡ 1 (mod 2).
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Proof. We first recall the following well-known facts from Linear Algebra. Let M ∈
CN×N be a complex square matrix and let v be a generalised eigenvector of M with 
complex eigenvalue z ∈ C generating a Jordan chain of length m. Consider now M as 
a real square matrix M ∈ R2N×2N of double size and denote the multiplication by i on 
R2N ∼= CN by J . Then, if z = a ∈ R, both v and iv are linearly independent generalised 
eigenvectors generating two different Jordan chains with eigenvalue a of the same length 
m, and so NM (m, a) ≡ 0 (mod 2). Moreover, if z ∈ C \ R, and we extend now M to 
a complex-linear map on C2N , then v − iJv generates a complex Jordan chain with 
eigenvalue z of length m and v + iJv generates a complex Jordan with eigenvalue z of 
length m. Together, these complex Jordan blocks give rise to a real Jordan block Jm(z)
of even dimension as shown in Notation 4.2.

Suppose now that M ∈ sp(2l, C). By Proposition 4.3 (a) and the observation above, 
when M is considered as a real (4l × 4l)-matrix, one has

NM (2k, 0) ≡ 0 (mod 2) and NM (2k − 1, 0) ≡ 0 (mod 4), for all k ∈ N.

Furthermore, for every z ∈ C \ {0}, we get NM (m, z) = NM (m, −z). In particular,

for z = a ∈ R \ {0} : NM (m, a) = NM (m,−a), NM (m, a) ≡ 0 (mod 2),
for z = ib ∈ iR \ {0} : NM (m, ib) ≡ 0 (mod 2),

where the last assertion follows from the fact that z̄ = −ib = −z and this enables to 
combine Jm(z) and Jm(−z) appropriately.

Note that, given an almost Abelian Lie algebra g = R4n−1
�f R with complex sym-

plectic structure, f may be assumed to be, up to a non-zero scaling, as in Proposition 4.4. 
Hence, Nf (m, z) = NM (m, z) for every m ∈ N and every z ∈ C \R, where M = A, B, C
or D depending on the matrix that represents f . This fact together with the observations 
above concerning M ∈ sp(2l, C) gives the first part of the statement.

We now need to separately study the real eigenvalues for each possible form of f in 
Proposition 4.4, as one has to combine the information coming from the two diagonal 
blocks that conform f .

Let us first suppose that g is non unimodular. This corresponds to the first and third 
possible forms of f in Proposition 4.4. Then, it is clear that for any k ∈ N one has 
Nf (2k, 0) = NM (2k, 0) ≡ 0 (mod 2) and Nf (2k − 1, 0) = NM (2k − 1, 0) ≡ 0 (mod 4), 
where M = A if the first form of f holds and M = B if the third one is considered. 
In addition, Nf (m, c) = NM (m, c) = NM (m, −c) = Nf (m, −c) ≡ 0 (mod 2) for every 
m ∈ N and every c ∈ R \ {−1, 0, 1}. We separately study the eigenvalues ±1 for each 
form of f :
• Assume f is of the first possible form in Proposition 4.4. Then, Nf (1, 1) = NA(1, 1) +2
and Nf (1, −1) = NA(1, −1) + 1. Concerning those blocks of size m ≥ 2, it is straight-
forward to see that Nf (m, 1) = NA(m, 1) = NA(m, −1) = Nf (m, −1) ≡ 0 (mod 2). This 
gives case (a) (i).
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• Let f correspond to the third from in Proposition 4.4. Observe that the matrix J̃p(−1)
has two Jordan blocks of order p for the eigenvalue −1 and two Jordan blocks of the 
same order for 1. In particular, the eigenvectors associated to 1 correspond to the third 
and fourth elements of the basis with respect to which J̃p(−1) is written, and we will 
denote them by u, v. Those for the eigenvalue −1 are the fourth and third last elements 
of the same basis, and we will refer to them as w, t. To count the Jordan blocks of f
one needs to take into account how the entries e1, −eT3 and eT4 of the matrix f interfere 
with the Jordan blocks of J̃p(−1). We first remark that u, v are not eigenvectors of 
f , but they lie in the generalized eigenspaces of the third and second last vectors of 
the basis of f , respectively. This gives two Jordan blocks of size p + 1 with 1 on the 
diagonal. In particular, Nf (p + 1, 1) = NB(p + 1, 1) + 2, Nf (p, 1) = NB(p, 1) − 2 and 
Nf (m, 1) = NB(m, 1) for every m ∈ N \ {p, p + 1}. In contrast, w, t are eigenvectors of 
f but the order of the Jordan block associated to one of them increases its order with 
respect to J̃p(−1), due to the last column of f . Hence, Nf (p +1, −1) = NB(p +1, −1) +1, 
Nf (p, −1) = NB(p, −1) −1 and Nf (m, −1) = NB(m, −1) for m ∈ N\{p, p +1}. It suffices 
to recall that NB(m, 1) = NB(m, −1) ≡ 0 (mod 2) to get part (a) (ii) of the statement, 
simply renaming p.

We next consider the unimodular case, so one may assume that f is of the second, 
fourth or fifth form in Proposition 4.4. We first observe that for any a ∈ R \ {0} one 
has Nf (m, a) = NM (m, a) = NM (m, −a) = Nf (m, −a) ≡ 0 (mod 2), for every m ∈ N, 
where M = A, C or D depending on the three possible forms of f . We need to study in 
detail the Jordan blocks corresponding to the zero eigenvalue, as their order and number 
will depend on the two diagonal blocks of f .
• Let f be given by the second matrix in Proposition 4.4. Note that if b = c = 0, 
then Nf (1, 0) = NA(1, 0) + 3 and Nf (m, 0) = NA(m, 0) for every m ∈ N \ {1}. This 
gives part (b) (i) of the statement. Furthermore, if one has bc = 0 but (b, c) �= (0, 0), 
then Nf (1, 0) = NA(1, 0) + 1 and Nf (2, 0) = NA(2, 0) + 1, from where we get (b) (ii). 
Finally, observe that the case bc �= 0 can be reduced to b̃c̃ = 0 applying a similarity 
transformation.
• Suppose f has the fourth form in Proposition 4.4. Then, one easily sees that one 
may bring f by a similarity transformation into a form with b̃ = c̃ = 0. Note that 
J̃2r−1 gives four Jordan blocks of equal size 2r − 1. To count the Jordan blocks of f
we need to study how the entries e1, −eT3 and eT4 interfere with the blocks of J̃2r−1. 
Observe that the eigenvectors of J̃2r−1 correspond to the third and four elements of 
the basis in which this matrix is written, now denoted by u, v, and the four and third 
last elements of the same basis, named w, t. Observe that u, v are not eigenvectors of 
f , but they lie in the generalized eigenspaces generated by the third and second last 
columns of f , respectively. Thus, f has at least two Jordan blocks associated to the 
eigenvalue 0 of order 2r more than B. Furthermore, v and w are eigenvectors of f , but 
the order of the Jordan block coming from J̃2r−1 is only preserved for t when seen in 
f . The one corresponding to w has now order 2r, due to the last column of the matrix 
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f . Consequently, Nf (2r, 0) = NC(2r, 0) + 3 and Nf (2r − 1, 0) = NC(2r − 1, 0) − 3. This 
gives part (b) (iii) of the theorem for k0 := r.

• Assume now that f is determined by the last matrix in Proposition 4.4. Without 
loss of generality, we can take b = c = 0 as in the previous case. Let us remark that 
the matrix J̃2s has two Jordan blocks of size 2s and the eigenvectors that originate 
these blocks precisely correspond to the third and fourth vectors of the basis where 
J̃2s is given. However, these are not eigenvalues of f due to the entries e1, −eT3 and 
eT4 in the corresponding matrix. By a similar argument as above, one can nonetheless 
check that Nf (2s + 1, 0) = ND(2s + 1, 0) + 1, Nf (2s + 2, 0) = ND(2s + 2, 0) + 1 and 
Nf (2s, 0) = ND(2s, 0) − 2. It suffices to rename s + 1 =: k0 to get (b) (iv). �

Now we are able to prove the following uniqueness result of the complex symplectic 
structure in the non-unimodular case and in certain unimodular cases:

Corollary 4.6. Let g be a 4n-dimensional almost Abelian Lie algebra admitting a complex 
symplectic structure. Suppose g is not unimodular or g is unimodular and g = h ⊕R4k−1

for some (4(n − k) + 1)-dimensional irreducible almost Abelian Lie algebra h and some 
k ∈ {1, . . . , n}. Then the complex symplectic structure on g is unique up to equivalence.

Proof. Let (J1, ω1) and (J2, ω2) be two complex symplectic structures on g. By Propo-
sition 4.4, (g, Ji, ωi) is isomorphic to (R4n−1

�fi R, J0, ω0) for i = 1, 2 with f1, f2 being 
as in Proposition 4.4.

Now if g is not unimodular, then f1 and f2 have to be of the first or the third form 
in Proposition 4.4. However, since the Lie algebras R4n−1

�f1 R and R4n−1
�f2 R are 

isomorphic as Lie algebras, the real Jordan normal forms of f1 and f2 have to be the same 
up to scaling. Hence, by (the proof of) Theorem 4.5, either both f1 and f2 are of the first 
form in Proposition 4.4 or both f1 and f2 are of the second form in Proposition 4.4 for 
the same m ∈ {1, . . . , n − 1} and the matrices in the left upper corner have to be similar 
to each other. But these matrices in the left upper corner are symplectically similar by 
Proposition 4.3 (c) and so the statement follows in the non-unimodular case.

Next, let g be unimodular and g = h ⊕ R4k−1 for some (4(n − k) + 1)-dimensional 
irreducible almost Abelian Lie algebra and some k ∈ {1, . . . , n}. Since h is irreducible, 
the Jordan normal form of (fi)|ũ cannot have any Jordan blocks of size 1 with zero on 
the diagonal, where ũ is an Abelian ideal of codimension one in h and so u = ũ⊕R4k−1. 
Consequently, Nfi(1, 0) = 4k − 1 ≡ 3 (mod 4) and so Theorem 4.5 yields that fi has to 
be as in case (II) (i) in that theorem, i.e. fi is of the second form in Proposition 4.4 with 
b = c = 0. Thus, here again the assertion follows from Proposition 4.3 (c) applied to the 
matrix in sp(2n − 2, C) in the left upper corner of f1 and f2. �
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4.1. Explicit examples of complex symplectic almost Abelian solvmanifolds

We now use the previous results to construct explicit examples of complex symplectic 
structures on suitable almost Abelian solvmanifolds in any dimension. First of all notice 
that, in the notations of Theorem 3.10, an almost Abelian Lie algebra R4n−1

�f R

admitting a complex symplectic structure is unimodular if and only if a = 0. By [9]
an almost Abelian Lie group R4n−1

�Φ R admits a lattice if and only if ∃ t0 �= 0
such that Φ(t0) is similar to an integer matrix. In this case, a lattice is given by Γ =
P−1Z4n−1

� t0Z, where PΦ(t0)P−1 is an integer matrix.
We provide examples of complex symplectic almost Abelian solvmanifolds in any 

dimension. Let g = R4n−1
�f R be a 4n-dimensional unimodular almost Abelian Lie 

algebra with

f =
(
A

0

)

where A ∈ sp(2n − 2, C) ⊆ R4(n−1)×4(n−1) is the diagonal matrix given by

A = diag
(

1
2m,

1
2m,

3
2m,

3
2m, . . . ,

2m− 1
2m ,

2m− 1
2m ,− 1

2m,− 1
2m,− 3

2m,− 3
2m . . . ,

−2m− 1
2m ,−2m− 1

2m

)

with m := n − 1. Then g is as in Theorem 4.5 case (b) (i) and so it admits a complex 
symplectic structure, which is unique by Corollary 4.6. We denote by G = R4n−1

�Φ R

the associated simply connected Lie group, where

Φ(t) =
(
etA

1

)

and

etA = diag
(
e

t
2m , e

t
2m , . . . , e

(2m−1)t
2m , e

(2m−1)t
2m , e−

t
2m , e−

t
2m , . . . , e−

(2m−1)t
2m , e−

(2m−1)t
2m

)
.

Hence, the characteristic polynomial of Φ(t) is

PΦ(t)(x) = (x− 1)3(x− ρ2)2(x− ρ−2)2 . . . (x− ρ4m−2)2(x− ρ−(4m−2))2,

where ρ = e
t

4m . Now we argue as in [1]. We set, for � ∈ N, � > 2, ρ� = exp
(

t�
4m
)
, where

t� := 2m arccosh
(
�
)

�= 0.
2
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Then ρ2
� + ρ−2

� = �. We set ak = ρ2k
� + ρ−2k

� for k ≥ 0. Notice that ak+1 = � ak − ak−1
and so ak ∈ Z, for every k. Therefore,

(x− ρ2k
� )(x− ρ−2k

� ) = x2 − akx + 1

is a polynomial with integer coefficients for every k and so we can write

PΦ(t)(x) = (x− 1) q(x)2,

with

q(x) = x2m+1 + b2mx2m + b2m−1x
2m−1 + . . . + b1x− 1

for certain b1, . . . , b2m ∈ Z. Thus, q is a polynomial with integer coefficients and distinct 
roots and so the corresponding part of Φ(t�) can be conjugated to the companion integer 
matrix

Bq :=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1
0 0 0 0 0 1
0 1 0 0 0 −b1
...

...
. . .

...
...

...
0 0 0 1 0 −b2m−1
0 0 0 0 1 −b2m

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Thus, Φ(t�) is conjugated to the integer block-diagonal matrix

B� := diag(1, Bq, Bq)

As a consequence, G admits a lattice

Γ� = P−1
� Z4n−1

�Φ t�Z

for every � > 2, where P�Φ(t�)P−1
� = B�. In particular, Γ�\G is a 4n-dimensional 

solvmanifold admitting a unique invariant complex symplectic structure. Since g is com-
pletely solvable, Γ�\G admits no Kähler metric, see [24].

Remark 4.7. It can be shown as in [1, Proposition 4.11] that the solvmanifolds Γ�\G, 
with � > 2, are pairwise non homeomorphic.

5. Complex symplectic cotangent extension

We adapt to complex symplectic structures the construction of symplectic structures 
on cotangent extensions proposed in [32]; this will allow us to provide further examples 
of complex symplectic manifolds. A related construction has been studied in [12].
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Let h be a real Lie algebra endowed with a complex structure J . On the vector space 
h∗ ⊕ h, where h∗ = Hom(h, R), we define a skew-symmetric 2-form Ω and an almost 
complex structure J by

Ω
(
(ϕ,X), (ψ, Y )

)
:= ϕ(Y ) − ψ(X) , J(ϕ,X) := (J∗ϕ, JX) , (15)

where J∗ : h∗ → h∗ is given by (1). It is immediate to see that J is symmetric with 
respect to Ω:

Ω
(
J(ϕ,X), (ψ, Y )

)
= Ω

(
(J∗ϕ, JX), (ψ, Y )

)
= (J∗ϕ)(Y ) − ψ(JX)

= ϕ(JY ) − (J∗ψ)(X)

= Ω
(
(ϕ,X), (J∗ψ, JY )

)
= Ω

(
(ϕ,X),J(ψ, Y )

)
.

Moreover, h∗ ⊂ h∗⊕h is a complex subspace, meaning that Jh∗ = h∗, and a Lagrangian 
subspace, meaning that Ω

∣∣
h∗ = 0.

The complex symplectic cotangent extension problem consists in finding a Lie algebra 
structure on h∗ ⊕ h such that

1. 0 → h∗ → h∗ ⊕ h → h → 0 is an exact sequence of Lie algebras, h∗ being endowed 
with the structure of an Abelian Lie algebra;

2. dΩ = 0;
3. NJ = 0.

A complex symplectic Lie algebra (g, J, ω) is a solution of the complex symplectic 
cotangent extension problem if it is isomorphic, as a complex symplectic Lie algebra, to 
a Lie algebra of the form (h∗ ⊕ h, J, Ω).

Under the first condition, the most general skew-symmetric bilinear map [·, ·] : (h∗ ⊕
h) × (h∗ ⊕ h) → h∗ ⊕ h is determined by a linear map ρ : h → End(h∗) and an element 
α ∈ C2(h, h∗) = Λ2h∗ ⊗ h∗. Given such ρ and α, the bilinear map is

[(ϕ,X), (ψ, Y )] :=
(
ρ(X)(ψ) − ρ(Y )(ϕ) + α(X,Y ), [X,Y ]h

)
; (16)

here ϕ, ψ ∈ h∗ and X, Y ∈ h. Where possible, we have shortened the notation (ϕ, 0) to 
ϕ, and so on.

We now prove the following:

Theorem 5.1. Let (h, J) be a Lie algebra endowed with a complex structure. On h∗ ⊕ h

define a 2-form Ω and an almost complex structure J as in (15), and a skew-symmetric 
bilinear map as in (16). Then (h∗ ⊕ h, J, Ω) is a complex symplectic Lie algebra with 
Abelian ideal h∗ ⊂ h∗ ⊕ h if and only if
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1. α ∈ Z2(h, h∗);
2. ρ : h → End(h∗) is a Lie algebra morphism;
3. α(X, Y )(Z) + α(Y, Z)(X) + α(Z, X)(Y ) = 0;
4. α(X, Y ) − α(JX, JY ) = −J∗(α(JX, Y ) + α(X, JY )

)
;

5. ρ(X)(ϕ)(Y ) − ρ(Y )(ϕ)(X) + ϕ
(
[X, Y ]h

)
= 0;

6. ρ(X)(ϕ) − ρ(JX)(J∗ϕ) = −J∗(ρ(X)(J∗ϕ) + ρ(JX)(ϕ)
)
,

for every X, Y, Z ∈ h and every ϕ ∈ h∗.

Proof. First of all, from [32], we have that the bilinear map [·, ·] defined in (16) is a 
Lie bracket on h∗ ⊕ h if and only if ρ is a Lie algebra morphism and α ∈ Z2(h, h∗) is a 
2-cocycle; here the h-module structure of h∗ is given by ρ. These are conditions 1. and 
2. in the statement. Moreover, in [32] it is proved that dΩ = 0 if and only if

α(X,Y )(Z) + α(Y,Z)(X) + α(Z,X)(Y ) = 0, (17)

ρ(X)(ϕ)(Y ) − ρ(Y )(ϕ)(X) + ϕ
(
[X,Y ]h

)
= 0 , (18)

for every X, Y, Z ∈ h and ϕ ∈ h∗. These are conditions 3. and 5. of the theorem; (17)
is known as Bianchi identity. We are left with the integrability of J. In particular, we 
prove that NJ = 0 if and only if

α(X,Y ) − α(JX, JY ) = −J∗(α(JX, Y ) + α(X, JY )
)
, (19)

ρ(X)(ϕ) − ρ(JX)(J∗ϕ) = −J∗(ρ(X)(J∗ϕ) + ρ(JX)(ϕ)
)

(20)

for every X, Y ∈ h and ϕ ∈ h∗, giving conditions 4. and 6. of the theorem. Since we 
require h∗ ⊂ h∗ ⊕ h to be an Abelian ideal, we simply need to check the vanishing of 
NJ(X, Y ) and of NJ(ϕ, X), for all ϕ ∈ h∗ and X, Y ∈ h. For the first case, we have

NJ(X,Y ) = [X,Y ] + J[JX, Y ] + J[X, JY ] − [JX, JY ]

=
(
α(X,Y ), [X,Y ]h

)
+ J
(
α(JX, Y ), [JX, Y ]h

)
+ J
(
α(X, JY ), [X, JY ]h

)
−
(
α(JX, JY ), [JX, JY ]h

)
=
(
α(X,Y ), [X,Y ]h

)
+
(
J∗(α(JX, Y )), J [JX, Y ]h

)
+
(
J∗(α(X, JY )), J [X, JY ]h

)
−
(
α(JX, JY ), [JX, JY ]h

)
= α(X,Y ) + J∗(α(JX, Y )

)
+ J∗(α(X, JY )

)
− α(JX, JY ) .

For the second one, we compute

NJ(ϕ,X) = [ϕ,X] + J[J∗ϕ,X] + J[ϕ, JX] − [J∗ϕ, JX]

= −ρ(X)(ϕ) − J∗(ρ(X)(J∗ϕ)
)
− J∗(ρ(JX)(ϕ)

)
+ ρ(JX)(J∗ϕ)

= −ρ(X)(ϕ) − J∗(ρ(X)(J∗ϕ) + ρ(JX)(ϕ)
)

+ ρ(JX)(J∗ϕ) .
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This concludes the proof. �
Remark 5.2. We make a few observations on the conditions that appear in Theorem 5.1.

(1) Condition 3. is equivalent to α ∈ Λ2h∗⊗h∗ being in the summand V in the irreducible 
GL(h) decomposition

Λ2h∗ ⊗ h∗ = Λ3h∗ ⊕ V

with V = S(2,1)h
∗; we refer to [16, Theorem 6.3] for the notation.

(2) If we choose a basis {e1, . . . , e2n} of h∗ with J∗e2j−1 = e2j for j = 1, . . . , n and write

α =
2n∑
j=1

αj ⊗ ej

for uniquely determined α1, . . . , α2n ∈ Λ2h∗, then it is easy to see that condition 4. 
is equivalent to α2j−1 + iα2j having no (0, 2)-part, which in turn is equivalent to

α2j−1 = σj + Re(ψj), α2j = τj + Im(ψj)

for real (1, 1)-forms σj , τj ∈ [Λ1,1h∗] and complex (2, 0)-forms ψj ∈ Λ2,0h∗ for j =
1, . . . , n.

(3) If ρ = 0, then condition 5. forces h to be nilpotent and h∗ ⊕ h is a particular kind of 
central extension of the Abelian Lie algebra h by the cocycle α.

Notice that a complex symplectic Lie algebra (g, J, ω) of real dimension 4n with an 
Abelian, J-invariant 2n-dimensional ideal h∗ is a solution of the complex symplectic 
cotangent extension problem if and only if conditions 1. − 6. hold.

Example 5.3. The 6-dimensional nilpotent Lie algebra h := h7 = (0, 0, 0, 12, 13, 23) has 
only one complex structure J up to isomorphisms (see [11]), namely

J = −e1 ⊗ e2 + e2 ⊗ e1 + e3 ⊗ e4 − e4 ⊗ e3 − e5 ⊗ e6 + e6 ⊗ e5 .

If we want g = h∗ ⊕ h to be nilpotent, we need the matrices ρ to be nilpotent, hence 
strictly upper triangular with respect to some basis of h∗; in our setting, the natural 
basis to work with is the basis dual to {e1, . . . , e6}. A direct computation shows that the 
most general such ρ satisfying (18) and (20) consists of the following matrices, written 
in the coframe {e1, . . . , e6} of h∗:
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ρ(e1) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 ρ1
13 ρ1

14 ρ1
15 ρ1

16
0 0 ρ1

23 ρ1
24 ρ1

25 ρ1
26

0 0 0 0 ρ1
35 ρ1

36
0 0 0 0 ρ1

45 ρ1
46

0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

ρ(e2) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 ρ1
23 ρ1

24 − 1 ρ1
25 ρ1

26
0 0 −ρ1

13 − 1 −ρ1
14 −ρ1

15 −ρ1
16

0 0 0 0 −ρ1
45 −ρ1

46
0 0 0 0 ρ1

35 ρ1
36

0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

ρ(e3) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 ρ1
35 − 1 ρ1

36
0 0 0 0 −ρ1

45 −ρ1
46 − 1

0 0 0 0 ρ3
35 ρ3

36
0 0 0 0 ρ3

45 ρ3
46

0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

ρ(e4) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 ρ1
45 ρ1

46
0 0 0 0 ρ1

35 ρ1
36

0 0 0 0 ρ3
45 ρ3

46
0 0 0 0 −ρ3

35 −ρ3
36

0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

together with ρ(e5) = ρ(e6) = 0. Imposing that ρ : h → End(h∗) is a Lie algebra mor-
phism yields the linear equations ρ3

35 = ρ3
36 = ρ3

45 = ρ3
46 = 0 and the following four 

quadratic equations:

(ρ1
13 + ρ1

24 − 2) ρ1
45 + (ρ1

23 − ρ1
14) ρ1

35 = 0,

(ρ1
23 − ρ1

14) ρ1
45 − (ρ1

13 + ρ1
24 + 2) ρ1

35 = 0,

(ρ1
13 + ρ1

24 − 2) ρ1
46 + (ρ1

23 − ρ1
14) ρ1

36 = 0,

(ρ1
23 − ρ1

14) ρ1
46 − (ρ1

13 + ρ1
24 + 2) ρ1

36 = 0.

We find four sets of solutions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ1
23 = ρ1

14
ρ1
24 = −2 − ρ1

13
ρ1
45 = 0

ρ1
46 = 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ1
23 = ρ1

14
ρ1
24 = 2 − ρ1

13
ρ1
35 = 0

ρ1
36 = 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ1
35 = 0

ρ1
36 = 0

ρ1
45 = 0

ρ1
46 = 0

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ1
23 = ρ1

14 + 2 sin t

ρ1
24 = −ρ1

13 + 2 cos t
ρ1
45 = cos t+1

sin t ρ1
35

ρ1
46 = cos t+1

sin t ρ1
36

,

for t ∈ (0, 2π), t �= π; the parameters which do not appear are free. Thus we find many 
nilpotent solutions of the cotangent extension problem. In this example we work with 
α = 0; the presence of α does not alter the nilpotency condition, as it simply gives a 
particular kind of central extension.
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Suppose h is a Lie algebra endowed with a complex structure J , and let J be the 
complex structure on the cotangent extension h∗ ⊕ h given in (15); we obtain necessary 
and sufficient conditions for J to be Abelian or parallelizable.

Proposition 5.4. Let h be a Lie algebra endowed with a complex structure J and let J be 
the complex structure given by (15) on h∗ ⊕ h, with Lie algebra structure determined by 
ρ and α as above. Then

• J is Abelian if and only if
� J is Abelian;
� α ∈ [Λ1,1h∗] ⊗ h∗;
� ρ : h → End(h∗) is anti-holomorphic;

• J is parallelizable if and only if
� J is parallelizable;
� J∗(α(X, Y )) = α(JX, Y ), ∀ X, Y ∈ h;
� ρ : h → EndJ∗

(h∗);
� J∗ ◦ ρ(X) = ρ(JX) for all X ∈ h.

An (almost) complex structure Ĵ on End(h∗) is defined by Ĵ(f)(ϕ) := f(J∗ϕ). That 
ρ : h → End(h∗) is anti-holomorphic means then that ρ ◦J = −Ĵ ◦ρ. Also, EndJ∗

(h∗) :=
{f ∈ End(h∗) | f ◦ J∗ = J∗ ◦ f}.

Proof. Let us consider the Abelian case. Computing as in the final part of the proof of 
Theorem 5.1, we see that, for X, Y ∈ h,

[X,Y ] − [JX, JY ] = (α(X,Y ) − α(JX, JY ), [X,Y ]h − [JX, JY ]h) ,

which vanishes if and only if J is Abelian and α(X, Y ) = α(JX, JY ), that is, α ∈
[Λ1,1h∗] ⊗ h∗. For ϕ ∈ h∗ and X ∈ h we have

[ϕ,X] − [J∗ϕ, JX] = −ρ(X)(ϕ) + ρ(JX)(J∗ϕ) ,

which vanishes if and only if ρ(JX)(J∗ϕ) = ρ(X)(ϕ); this is equivalent to Ĵ(ρ(JX))(ϕ) =
ρ(X)(ϕ) for all ϕ ∈ h∗, and to ρ(JX) = −Ĵ(ρ(X)), which in turns means ρ : h → End(h∗)
is anti-holomorphic.

As for the parallelizable case, we compute

J[X,Y ] − [JX, Y ] = (J∗(α(X,Y )) − α(JX, Y ), J [X,Y ]h − [JX, Y ]h) ,

which vanishes if and only if J is parallelizable and J∗(α(X, Y )) = α(JX, Y ), for all 
X, Y ∈ h. On the other hand,

J[ϕ,X] − [J∗ϕ,X] = −J∗(ρ(X)(ϕ)) + ρ(X)(J∗ϕ) ,
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which vanishes if and only if ρ(X) ∈ EndJ∗
(h∗). Finally,

J[X,ϕ] − [JX,ϕ] = J∗(ρ(X)(ϕ)) − ρ(JX)(ϕ) ,

which vanishes if and only if J∗ ◦ ρ(X) = ρ(JX) for all X ∈ h. �
Remark 5.5. Condition (19) above holds under either of the assumptions on α made in 
Proposition 5.4. Similarly, condition (20) holds under each of the assumptions on ρ made 
in Proposition 5.4.

We aim now at characterizing complex symplectic Lie algebras (g, J, ω) which are 
solutions of the cotangent extension problem. A necessary condition for this is that g
admits a Lagrangian (hence Abelian, by [12, Lemma 4.1]) J-invariant ideal. We will show 
that this condition is also sufficient. Suppose (g, J, Ω) is a complex symplectic Lie algebra 
and assume that j ⊂ g is a Lagrangian ideal; then one can invoke [38] to conclude that j
has a Lagrangian complement in g. If, in addition, j is J-invariant, then it is Lagrangian 
with respect to the complex symplectic 2-form ωC. We show that this is the case: one 
can take j to be J-invariant.

Lemma 5.6. Let V be a 4n-dimensional vector space endowed with a symplectic structure 
ω and an almost complex structure J such that J is either symmetric or skew-symmetric 
with respect to ω, i.e. either ω(Ju, v) = ω(u, Jv), or ω(Ju, v) = −ω(u, Jv) ∀ u, v ∈ V . 
Assume L ⊂ V is a Lagrangian, J-invariant subspace. Then there exists a Lagrangian, 
J-invariant subspace L′ such that V = L ⊕ L′.

Proof. We adapt ideas from [22, §2.2]. If g̃ is a scalar product on V , then g(v, w) :=
g̃(v, w) + g̃(Jv, Jw) is a J-invariant scalar product. L⊥, the g-orthogonal of L, is a 
J-invariant subspace of V , of dimension 2n. Any J-invariant 2n-dimensional subspace 
W ⊂ V such that W ∩ L = {0} is the graph of a linear map f : L⊥ → L such that 
f ◦ J = J ◦ f ; we denote by HomJ(L⊥, L) the space of such maps. In other words, by 
writing V = L⊥ ⊕ L, the elements of W are of the form u + f(u), for u ∈ L⊥. We have

ω(u + f(u), v + f(v)) = ω(u, v) + ω(u, f(v)) + ω(f(u), v) , (21)

because ω(f(u), f(v)) = 0, since f(u), f(v) ∈ L. Now to any f ∈ Hom(L⊥, L) we can 
associate a bilinear form bf on L⊥ via the formula

bf (u, v) := ω(f(u), v) . (22)

We have

Hom(L⊥, L) ∼= L⊗ (L⊥)∗ ∼= (L⊥)∗ ⊗ (L⊥)∗ ,
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where the identification between L and (L⊥)∗ in the last step is given by ω. Hence, the 
map Hom(L⊥, L) → Bil(L⊥), f �→ bf , given by (22) is an isomorphism. Now suppose J
is symmetric with respect to ω. Then f ∈ HomJ(L⊥, L) if and only if J is symmetric 
with respect to bf . Indeed, if f ∈ HomJ(L⊥, L), then

bf (Ju, v) = Ω(f(Ju), v) = Ω(Jf(u), v) = Ω(f(u), Jv) = bf (u, Jv) .

On the other hand, if J is symmetric with respect to bf , then, ∀ v ∈ L⊥,

ω(f(Ju), v) = bf (Ju, v) = bf (u, Jv) = ω(f(u), Jv) = ω(Jf(u), v) ,

and f ∈ HomJ(L⊥, L). We obtain an analogous conclusion when J is skew-symmetric 
with respect to ω: f ∈ HomJ (L⊥, L) if and only if J is skew-symmetric with respect to 
bf . Going back to (21), W is Lagrangian if and only if

bf (u, v) − bf (v, u) = −ω(u, v) .

Choosing f ∈ Hom(L⊥, L) with bf = −1
2ω solves this equation; we only have to make 

sure that f commutes with J , that is, f ∈ HomJ(L⊥, L). But if J is symmetric/skew-
symmetric with respect to ω, the same holds for bf , and so by what we showed above, 
we have f ∈ HomJ(L⊥, L). �

We have the following result:

Theorem 5.7. A complex symplectic Lie algebra (g, J, ω) is a solution of the complex 
symplectic cotangent extension problem if and only if it admits a J-invariant Lagrangian 
ideal.

Proof. The necessity has already been discussed. Consider the short exact sequence of 
Lie algebras

0 → j → g → h → 0 , (23)

where h := g/j is the quotient Lie algebra; since j is J-invariant, J induces a complex 
structure on h, which we denote again by J . Since j is Lagrangian, it is Abelian; moreover, 
since ω is non-degenerate, the linear map σ : j → h∗, u �→ ıuω is injective, hence an 
isomorphism by dimension reasons; moreover, it satisfies σ ◦ J = J∗ ◦ σ. Since J is 
symmetric with respect to ω, we can use Lemma 5.6 to produce a Lagrangian, J-invariant 
complement l, so that g = j ⊕ l. The identification τ : l → h commutes with J . We use σ
and τ to endow h∗⊕h with a Lie algebra structure so that σ⊕τ : g = j ⊕l → h∗⊕h is a Lie 
algebra isomorphism which commutes with the respective complex structures. Clearly 
h∗ sits in h∗ ⊕ h as an Abelian ideal. If we endow h∗ ⊕ h with the canonical complex 
symplectic structure (J, Ω), it is easy to see that σ ⊕ τ : (g, J, ω) → (h∗ ⊕ h, J, Ω) is an 
isomorphism of complex symplectic Lie algebras. �
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5.1. Explicit solutions to the cotangent extension problem

In this section we work out some explicit solutions to the complex symplectic cotangent 
extension problem.

5.1.1. The case ρ = 0
In this case, h has to be Abelian as we noticed in Remark 5.2. As a consequence of 

the short exact sequence (23) in the proof of Theorem 5.7, one has

Proposition 5.8. Let (g, J, ω) be a complex symplectic Lie algebra admitting a J-invariant 
Lagrangian ideal j. If j is central, then g/j is Abelian.

Now note that ρ = 0 and h being Abelian imply that conditions 2., 5. and 6. in 
Theorem 5.1 are automatically satisfied and that condition 1. is valid for any α ∈ Λ2h∗⊗
h∗. Hence, α only needs to satisfy conditions 3. and 4. in Theorem 5.1 (or, equivalently, 
conditions (1) and (2) in Remark 5.2) in order to define a solution to the complex 
symplectic cotangent extension problem. Since we are dealing with a central extension 
in this case, g is two-step nilpotent. Notice that not all solutions with g two-step nilpotent 
necessarily have ρ = 0, as one sees, for instance, using the last set of solutions for ρ in 
Example 5.3. Moreover, note that the complex structure J on g is Abelian if and only if 
α ∈ [Λ1,1h∗] ⊗ h∗.

Example 5.9. Let us now give some examples.

(a) The simplest idea is to take α2j−1 = e2j−1 ∧ e2j , α2j = 0 for j = 1, . . . , n. Then J is 
Abelian and g is isomorphic as a Lie algebra to (h3 ⊕R)n.
Note that in the case n = 1, up to isomorphism, the data for α as above is the only 
possible solution of the complex symplectic cotangent extension problem with ρ = 0
and g not being Abelian.

(b) We consider now the case n = 2 and determine first all possible choices of α. For 
this, we set

ω1 := e12, ω2 := e34, ω3 := e13+e24, ω4 := e14−e23, σ1 := e13−e24, σ2 = e14+e23.

Condition (3) from Remark 5.2 is satisfied if and only if

α1 =
4∑

i=1
ai ωi + a5 σ1 + a6 σ2, α2 =

4∑
i=1

bi ωi + a6 σ1 − a5 σ2,

α3 =
4∑

ci ωi + c5 σ1 + c6 σ2, α4 =
4∑

di ωi + c6 σ1 − c5 σ2.

i=1 i=1
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for certain a1, . . . , a6, b1, . . . , b4, c1, . . . , c6, d1, . . . , d4 ∈ R. Then, condition 2. from 
Remark 5.2 is fulfilled if and only if

c1 = b3 + a4, d1 = b4 − a3, a2 = c4 − d3, b2 = c3 + d4.

We discuss some special cases:
(i) Choosing α1 = σ1, α2 = −σ4, α3 = α4 = 0, we get a solution of the complex 

symplectic cotangent extension problem on g = h3(C) ⊕ R2 with non-Abelian 
complex structure.

(ii) Choosing α1 = σ1, α2 = −σ4, α3 = ω2, α4 = 0, we get a solution of the complex 
symplectic cotangent extension problem on g = (37B1) ⊕ R with non-Abelian 
complex structure; here (37B1) is the notation used by Gong in [17].

(iii) Choosing α1 = ω4, α2 = ω3, α3 = 2ω1 and α4 = δω2 for some δ ∈ {0, 1}, we get 
a solution of the complex symplectic cotangent extension problem with Abelian 
complex structure. For δ = 0, the underlying Lie algebra g is again (37B1) ⊕R, 
whereas for δ = 1, the Lie algebra g is an indecomposable eight-dimensional 
two-step nilpotent Lie algebra.

5.1.2. h Abelian with ρ̂ of full rank
Here, ρ̂ is the linear map ρ : h → End(h∗) considered as a map ρ̂ : h ⊗ h → h via the 

relation ϕ(ρ̂(X, Y )) = ρ(X)(ϕ)(Y ) for X, Y ∈ h, ϕ ∈ h∗.

Claim 5.10. ρ̂ has full rank if and only if for any ϕ ∈ h∗ \ {0} there exist some X ∈ h

with ρ(X)(ϕ) �= 0.

Indeed, if ρ̂ has full rank and ϕ ∈ h∗ \ {0} is given, choose some Z ∈ h with ϕ(Z) �= 0. 
Since ϕ has full rank, there exist Xi, Yi ∈ h, i = 1, . . . , N with 

∑N
i=1 ρ̂(Xi, Yi) = Z and 

so

0 �= ϕ(Z) =
N∑
i=1

ϕ(ρ̂(Xi, Yi)) =
N∑
i=1

ρ(Xi)(ϕ)(Yi)

and so ρ(Xi)(ϕ) �= 0 for at least one i ∈ {1, . . . , N}.
Conversely, if ρ̂ does not have full rank, there exists some ϕ ∈ h∗ \ {0} such that 

ϕ(im(ρ̂)) = {0} and so 0 = ϕ(ρ̂(X, Y )) = ρ(X)(ϕ)(Y ) for all X, Y ∈ h. But then 
ρ(X)(ϕ) = 0 for all X ∈ h.

�
Note that since h∗ is an Abelian ideal in g, the claim is equivalent to h∗ ∩ z(g) = {0}. 

We next use this characterization to prove the following

Theorem 5.11. Let h be the Abelian Lie algebra of dimension 2n with standard complex 
structure J and let ρ : h → End(h∗) be linear such that the associated linear map ρ̂ :
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h ⊗ h → h has full rank. Then ρ, together with α = 0, gives a solution to the complex 
symplectic cotangent extension problem if and only if ρ̂ ∈ S2h∗⊗h, ρ̂(ρ̂(·, ·), ·) ∈ S3h∗⊗h

and ρ̂(J ·, ·) = ρ̂(·, J ·). In this case, there exists X ∈ h such that ρ̂(X, ·) = idh and 
ρ̂(JX, ·) = J .

Proof. For α not necessarily equal to zero, we observe the following. First, since h is 
Abelian, condition 5. in Theorem 5.1 is equivalent to ρ̂ being symmetric in its arguments, 
i.e. ρ̂ ∈ S2h∗⊗h. Moreover, the condition that ρ is a representation of h on h∗ is equivalent 
to ρ̂(ρ̂(·, ·), ·) ∈ S3h∗ ⊗ h.

Since im(ρ̂) = h, [15, Proposition 4.3] yields the existence of some X ∈ h with ρ̂(X, ·) =
idh, i.e. ρ(X) = idh∗ . Using again that h is Abelian, condition 1. in Theorem 5.1 implies

ρ(X)(α(Y,Z)) + ρ(Y )(α(X,Z)) + ρ(Z)(α(X,Y )) = 0,

i.e.

α(Y,Z) = ρ(Y )(α(X,Z)) − ρ(Z)(α(X,Y )) = ρ(Y )(ν(Z)) − ρ(Z)(ν(Y )) (24)

for all Y, Z ∈ h, where ν ∈ h∗ ⊗ h∗ = Λ1(h, h∗) is defined by ν(Y ) := α(X, Y ) for Y ∈ h. 
Equation (24) says that α = dρν, i.e. α is dρ-exact, thus the short exact sequence

0 → h∗ → h∗ ⊕ h → h → 0

splits, and g = h∗ � h.
Let us now assume that α = 0. We have to find ρ̂ ∈ S2h∗ ⊗ h such that ρ̂(ρ̂(·, ·), ·) ∈

S3h∗ ⊗ h and condition 6. of Theorem 5.1 holds; expressed in terms of ρ̂, it amounts to

ρ̂(Y,Z) + ρ̂(JY, JZ) + J(ρ̂(Y, JZ) − ρ̂(JY, Z)) = 0

for all Y, Z ∈ h. In particular, taking Z = JY , we obtain

0 = ρ̂(Y, JY ) − ρ̂(JY, Y ) + J(−ρ̂(Y, Y ) − ρ̂(JY, JY )) = −J(ρ̂(Y, Y ) + ρ̂(JY, JY )) ,

i.e. ρ̂(JY, JY ) = −ρ̂(Y, Y ) for all Y ∈ h. By polarizing, we obtain

ρ̂(JY, JZ) = −ρ̂(Y,Z) (25)

for all Y, Z ∈ h.
Conversely, (25) implies condition 6. in Theorem 5.1. In particular, ρ̂(JX, Y ) =

ρ̂(X, JY ) = JY , i.e. ρ̂JX := ρ̂(JX, ·) = J . �
Finally observe that h being Abelian implies [g, g] ⊆ h∗, hence that g is two-step 

solvable. As a consequence, we thus have obtained
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Corollary 5.12. Let (g, J, ω) be a complex symplectic Lie algebra admitting a J-invariant 
Lagrangian ideal j. If j ∩ z(g) = {0} and g/j is Abelian, then g is two-step solvable and 
there exist an Abelian subalgebra a of g such that g = j � a as Lie algebras, as well as 
some X ∈ a with ad(X)|j = idj and ad(JX)|j = J |j.

Next, we give a complete classification in low dimensions:

Theorem 5.13. Let (g, J, ω) be a complex symplectic Lie algebra admitting a J-invariant 
Lagrangian ideal j. Furthermore, assume that j ∩ z(g) = {0} and h := g/j is Abelian. 
Then:

a) If dim(g) = 4, then, up to isomorphism, (J, ω) is the complex symplectic structure 
on r′2 from [5].

b) If dim(g) = 8, then g has a basis {f1, . . . , f8} such that the differentials of the dual 
basis are given by

(04,−15+26−37+48,−16−25−38−47,−17+28−δ(35−46),−18−27−δ(36+45)),

for some δ ∈ {0, 1} and such that

J =
4∑

i=1

(
f2i−1 ⊗ f2i − f2i ⊗ f2i−1

)
, ω = f15 − f26 + f37 − f48 .

Proof. For a), let e1, e2 = Je1 be a basis of h such that ρ̂(e1, ·) = idh. Then 
(e1, e2, e1, −e2) is a basis of g. If we denote this basis by f1, . . . , f4, then, up to skew-
symmetry, Theorem 5.12 shows that the only non-zero Lie brackets are given by

[f1, f3] = f3, [f1, f4] = f4, [f2, f3] = f4, [f2, f4] = −f3,

which shows that g is isomorphic as a Lie algebra to r′2. Moreover, we have

J = f1 ⊗ f2 − f2 ⊗ f1 + f3 ⊗ f4 − f4 ⊗ f3, ω = f13 − f24

and so (J, ω) is the complex symplectic structure on r′2 from [5].
In order to prove b), we choose again e1, e2 := Je1 such that ρ̂(e1, ·) = idh and then 

ρ̂(e2, ·) = J |h. We extend e1, e2 to a basis e1, . . . , e4 such that Je3 = e4. We first show 
that we may do this in such a way that ρ̂(ej , ek) ∈ span(e1, e2) forj, k ∈ {3, 4}. For this, 
we consider

e′3 := e3 + ae1 + be2, e′4 := Je′3

for a, b ∈ R. Then, it suffices to find a, b ∈ R such that ρ̂(e′3, e′3) ∈ span(e1, e2); indeed, 
if this is the case, then ρ̂(e′4, e′4) = −ρ̂(e′3, e′3) and
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ρ̂(e′4, e′3) = ρ̂(e′3, e′4) = ρ̂(e′3, Je′3) = ρ̂(e′3, ρ̂(e2, e
′
3)) = ρ̂(e2, ρ̂(e′3, e′3)) = Jρ̂(e′3, e′3) .

We compute

ρ̂(e′3, e′3) = ρ̂(e3 + ae1 + be2, e3 + ae1 + be2)

= ρ̂(e3, e3) + aρ̂(e3, e1) + bρ̂(e3, e2) + aρ̂(e1, e3 + ae1 + be2)

+ bρ̂(e2, e3 + ae1 + be2)

= ρ̂(e3, e3) + 2aρ̂(e1, e3) + 2bρ̂(e2, e3) + a2ρ̂(e1, e1) + 2abρ̂(e1, e2) + b2ρ̂(e2, e2)

= ρ̂(e3, e3) + 2ae3 + 2be4 + (a2 − b2)e1 + 2abe2

and see that we may choose a, b ∈ R such that ρ̂(e′3, e′3) ∈ span(e1, e2). Thus, we may 
assume that there exist c, d ∈ R with

ρ̂(e3, e3) = ce1 + de2.

By the computations above, we then have

ρ̂(e4, e3) = ρ̂(e3, e4) = Jρ̂(e3, e3) = −de1 + ce2 , ρ̂(e4, e4) = −ρ̂(e3, e3) = −ce1 − de2.

Now we show that either ρ̂(ej , ek) = 0 for all j, k ∈ {3, 4}, or we may change the basis 
in such a way that ρ̂(e3, e3) = e1.

The first case occurs if (c, d) = (0, 0). So let us now assume that (c, d) �= (0, 0). We 
may assume that d �= 0 since for d = 0, we already have ρ̂(e3, e3) = ce1 and so may 
normalise e3 such that ρ̂(e3, e3) = e1. For d �= 0, we take e′3 := e3 + μe4 and compute

ρ̂(e′3, e′3) = ρ̂(e3 + μe4, e3 + μe4) = ce1 + de2 + 2μ(−de1 + ce2) − μ2(ce1 + de2)

= (−cμ2 − 2dμ + c)e1 + (−dμ2 + 2cμ + d)e2.

Since the discriminant of the polynomial −dμ2 + 2cμ + d in μ is 4c2 + 4d2 ≥ 0, we may 
find μ ∈ R such that ρ̂(e′3, e′3) ∈ span(e1) and then may normalise so that ρ̂(e′3, e′3) = e1.

In all cases, there exist a basis {e1, e2, e3, e4} of h and δ ∈ {0, 1} such that e2 = Je1, 
e4 = Je3, ρ̂(e1, ·) = idh, ρ̂(e2, ·) = J |h and

ρ̂(e4, e4) = −ρ̂(e3, e3) = −δe1, ρ̂(e3, e4) = ρ̂(e4, e3) = δe2.

Thus, denoting by {f1, . . . , f8} the basis {e1, . . . , e4, e1, −e2, e3, −e4}, we have

J =
4∑

i=1

(
f2i−1 ⊗ f2i − f2i ⊗ f2i−1

)
, ω = f15 − f26 + f37 − f48

and in Salamon’s notation, the differentials of the elements of the dual basis {f1, . . . , f8}
are
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(04,−15 + 26 − 37 + 48,−16 − 25 − 38 − 47,−17 + 28 − δ(35 − 46),

− 18 − 27 − δ(36 + 45)). �
5.2. Complex symplectic manifolds with Lagrangian fibrations

We show how to use the complex symplectic cotangent extension to produce examples 
of compact complex symplectic manifolds endowed with a Lagrangian fibration. If we 
start with a nilpotent Lie algebra h of dimension 2n endowed with a complex structure 
J , we obtain a complex symplectic structure (J, Ω) on the Lie algebra g = h∗ ⊕ h. If ρ
can be chosen in such a way that g is nilpotent, then one can use Mal’tsev theorem to 
check whether G, the unique connected, simply connected, nilpotent Lie group with Lie 
algebra g, admits a lattice Γ. If this is the case, then N = Γ\G is a compact (nil)manifold 
endowed with an invariant complex symplectic structure. The short exact sequence 0 →
h∗ → g → h → 0 of Lie algebras produces a short exact sequence 1 → R2n → G π→ H → 1
of Lie groups. It is known that then R2n ∩ Γ ⊂ R2n and π(Γ) = (Γ ∩ R2n)\Γ ⊂ H are 
lattices. We obtain therefore a principal T 2n-bundle

T 2n N

B

whose base B := π(Γ)\H is a 2n-dimensional nilmanifold and whose fibers are La-
grangian tori. This can be compared with the structure of a Lagrangian fibration on 
a projective/Kähler irreducible holomorphic symplectic manifold: it is conjectured that 
the base of such a fibration is isomorphic to CPn. The conjecture is true, even under 
the Kähler hypothesis, if the base of the Lagrangian fibration is smooth (see [18]).

Example 5.14. Consider the third set of solutions for ρ in Example 5.3 above, with 
all parameters equal to 0. Consider the basis {f1, . . . , f12} = {e1, . . . , e6, e1, . . . e6} of 
g = h∗ ⊕ h; with respect to the dual basis {f1, . . . , f12} of g∗, the non-zero differential 
are

df4 = f12 , df5 = f13 , df6 = f23 , df7 = f2,10 + f3,11 and df8 = f2,9 + f3,12 ,

and g is 2-step nilpotent. The symplectic form on g is Ω =
∑6

i=1 f
i+6 ∧ f i, and the 

complex structure is J = J∗ ⊕ J . Clearly g has a rational structure constants, hence G
has a lattice Γ. We thus obtain a compact, complex symplectic (nil)manifold N = Γ\G
with a Lagrangian fibration
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T 6 N

B

where B is a nilmanifold associated the Lie algebra h7. A basis for holomorphic 1-forms 
is given by

ω1 = f1 − if2 , ω2 = f3 + if4 , ω3 = f5 − if6 , ω4 = f7 + if8 ,

ω5 = f9 − if10 , ω6 = f11 + if12 ,

with non-zero differentials

dω2 = 1
2ω

11̄ , dω3 = 1
2

(
ω12 + ω12̄

)
and dω4 = 1

2

(
−ω15 + ω1̄5 + ω26 + ω2̄6

)
.

The complex symplectic form is ΩC = −(ω14 + ω25 + ω36). Also,

H2,0(N) = span(ω12, ω13, ω15, ω16, ω56,ΩC) .

6. Abelian complex symplectic structures on solvable Lie algebras with non trivial 
center

In this section we investigate complex symplectic structures on solvable Lie alge-
bras with non-trivial center (this includes for instance nilpotent Lie algebras) under the 
assumption that the complex structure is Abelian. Let g be a Lie algebra admitting 
a complex symplectic structure (J, ω); assume that J is Abelian. Set g1 := [g, g] and 
g1
J := g1 + Jg1. In particular g1

J is a J-invariant Lie subalgebra of g. Recall that since J
is Abelian, g1 is an Abelian ideal in g, so that g is 2-step solvable by [33, Lemma 1].

Proposition 6.1. Let (g, J, ω) be a complex symplectic Lie algebra with J Abelian, and let 
z be its center.

1. (g1)⊥ω and (g1
J)⊥ω are Abelian.

2. (g1
J)⊥ω is J-invariant.

3. z is J-invariant and contained in (g1
J)⊥ω .

4. J [X, Y ] = [X, JY ], ∀ X ∈ (g1
J)⊥ω .

Proof. It suffices to show that (g1)⊥ω is Abelian, since g1
J ⊇ g1 implies (g1

J)⊥ω ⊆ (g1)⊥ω . 
If X, Y ∈ (g1)⊥ω , then

0 = ω([X,Y ], Z) + ω([Y,Z], X) + ω([Z,X], Y ) = ω([X,Y ], Z)
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for every Z ∈ g, since ω is closed; since it is also non-degenerate, [X, Y ] = 0 (notice that 
this holds without any assumption on J). This proves 1.

It is immediate to see that (g1
J)⊥ω is J-invariant, since J is symmetric and g1

J is J
invariant. Indeed, if X ∈ (g1

J)⊥ω then, for every Y ∈ g1
J

ω(JX, Y ) = ω(X, JY ) = 0 .

Hence we have 2.
Notice that z is J-invariant, since J is Abelian; moreover, it is contained in (g1

J)⊥ω . 
Indeed if X ∈ z, then since ω is closed,

ω([Y,Z], X) = 0 ;

furthermore, since J is symmetric,

ω(J [Y,Z], X) = ω([Y,Z], JX) = 0

for every Y, Z ∈ g, and we have proved 3.
Suppose now X ∈ (g1

J)⊥ω ; then, for every Y, Z ∈ g,

ω(J [X,Y ], Z) = ω([X,Y ], JZ) = −ω([JZ,X], Y ) = ω([Z, JX], Y )

= −ω([JX, Y ], Z) − ω([Y,Z], JX) = ω([X, JY ], Z) ,

where we used that ω is closed and J is Abelian. By non-degeneracy, we conclude 
J [X, Y ] = [X, JY ] for every X ∈ (g1

J )⊥ω , and we have 4. �
Corollary 6.2. Let (g, J, ω) be a 2-step nilpotent complex symplectic Lie algebra, and let 
z be its center.

1. g1 is an ω-isotropic ideal.
2. If J is Abelian, g1

J is a J-invariant ω-isotropic ideal.
3. If J is Abelian, then g1

J ⊆ z ⊆ (g1
J)⊥ω

Proof. Since ω is closed, for every X, Y, U, V ∈ g,

ω([X,Y ], [U, V ]) = −ω([Y, [U, V ]], X) − ω([[U, V ], X], Y ) = 0 ,

which gives 1. Assuming J is Abelian,

ω([X,Y ], J [U, V ]) = −ω([Y, J [U, V ]], X) − ω([J [U, V ], X], Y )

= ω([JY, [U, V ]], X) + ω([[U, V ], JX], Y ) = 0 ;

since J is symmetric, using 1.,
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ω(J [X,Y ], J [U, V ]) = −ω([X,Y ], [U, V ]) = 0 ;

thus we proved 2. For 3., the first inclusion follows directly by 2-step nilpotency and J
Abelian, the second inclusion was proved in Proposition 6.1. �

Let (g, J, ω) be a complex symplectic solvable Lie algebra of dimension 4n with J
Abelian and non-trivial center z. By Proposition 6.1, z is J-invariant and, hence, by [4, 
Corollary 4.10], (g, J, ω) is the complex symplectic oxidation of a complex symplectic Lie 
algebra (ḡ, J̄ , ω̄) of dimension 4n − 4.

For this, let us recall from [4], when a (g, J, ω) complex symplectic solvable Lie algebra 
of dimension 4n is the complex symplectic oxidation of a 4n − 4-dimensional (g, J, ω).

First of all, we have

g = V ⊕ ḡ⊕ V ∗

as vector spaces for a two-dimensional real vector space V and the non-zero Lie brackets 
(up to anti-symmetry) are given by

[(v, 0, 0), (w, 0, 0)] = (0, ν(v, w), τ(v, w)),

[(v, 0, 0), (0, X, 0)] = (0, f(v,X), g(v,X)),

[(0, X, 0), (0, Y, 0)] = (0, [X,Y ]ḡ, β(X,Y )),

for v, w ∈ V and X, Y ∈ ḡ, where

• ν : Λ2V → ḡ (⇔ ν ∈ Λ2V ∗ ⊗ ḡ),
• τ : Λ2V → V ∗ (⇔ τ ∈ Λ2V ∗ ⊗ V ∗),
• f : V ⊗ ḡ → ḡ (⇔ f ∈ V ∗ ⊗ ḡ∗ ⊗ ḡ ∼= V ∗ ⊗ End(ḡ)),
• g : V ⊗ ḡ → V ∗ (⇔ g ∈ V ∗ ⊗ ḡ∗ ⊗ V ∗),
• β : Λ2ḡ → V ∗ (⇔ β ∈ Λ2ḡ∗ ⊗ V ∗),

and [·, ·]ḡ is the Lie bracket of ḡ. Moreover, V should admit an almost complex structure 
I such that the complex structure J on g = V ⊕ ḡ⊕ V ∗ is given by J = I + J̄ + I∗ and 
ω on g = V ⊕ ḡ⊕ V ∗ is given by

ω((v,X, α), (w, Y, β)) = α(Y ) − β(X) + ω̄(X,Y )

for v, w ∈ V , X, Y ∈ ḡ, α, β ∈ V ∗. Now there are more conditions on all these tensors 
which ensure that (J, ω) is a complex symplectic structure and which we determined in 
detail in [4]. We will recall them below but first specialise to the case that J is Abelian 
noting that this is the case if and only if

• J̄ is Abelian;



G. Bazzoni et al. / Linear Algebra and its Applications 677 (2023) 254–305 299
• f(Iv, J̄X) = f(v, X), for all v ∈ V , X ∈ ḡ;
• g(Iv, J̄X) = g(v, X), for all v ∈ V , X ∈ ḡ;
• β is of type (1, 1).

Now we try to simplify these relations using also the mentioned conditions from [4] that 
ensure that (J, ω) is a complex symplectic structure. Note that these conditions show 
that already the triple (f, S, τ) is enough to determine all other tensors from above, 
where S is the symmetric part of g ∈ V ∗ ⊗ V ∗ ⊗ ḡ and such a triple (f, S, τ) satisfying 
all necessary conditions to ensure that (J, ω) is a complex symplectic structure is called 
complex symplectic oxidation data on (ḡ, J̄ , ω̄).

For the mentioned simplification, we choose v1 ∈ V \{0}, set v2 := Iv1 and fj := f(vj)
for j = 1, 2. Moreover, we denote by A the anti-symmetric part of g so that g = S + A, 
and set Sjk := S(vj , vk) ∈ ḡ and Ajk := A(vj , vk) ∈ ḡ for j, k = 1, 2.

For j = 1, 2, we also set f J̄
j := fj−J̄◦fj◦J̄

2 and f−J̄
j := fj+J̄◦fj◦J̄

2 , hence decomposing 

fj = f J̄
j + f−J̄

j into its J̄-invariant and J̄-anti-invariant part. We now are able to prove 
the following

Proposition 6.3. A 4n-dimensional complex symplectic Lie algebra (g, J, ω) which is the 
complex symplectic oxidation of a (4n − 4)-dimensional complex symplectic Lie algebra 
(ḡ, J̄ , ω̄) has Abelian J if and only if

• J̄ is Abelian;
• f J̄

2 = −J̄f J̄
1 , f−J̄

2 = J̄f−J̄
1 , f J̄

1 ∈ sp(ḡ, J̄ , ω̄);
• S12 = −S11−S22

2 ◦ J̄ .

Proof. First of all, notice that the above conditions f(Iv, J̄X) = f(v, X) and 
g(Iv, J̄X) = g(v, X) for all v ∈ V , X ∈ ḡ are equivalent to

f2 ◦ J̄ = f1 , (S12 −A12) ◦ J̄ = S11 , S22 ◦ J̄ = S12 + A12 . (26)

Now by [4, Lemma 4.11], f2 − J̄ ◦ f1 ∈ sp(ḡ, J̄ , ω̄). Since f2 = −f1 ◦ J̄ , we have f J̄
1 ∈

sp(ḡ, J̄ , ω̄) and

f J̄
2 = −J̄ ◦ f J̄

1 , f−J̄
2 = J̄ ◦ f−J̄

1 , f J̄
1 , f

J̄
2 ∈ sp(ḡ, J̄ , ω̄) ,

where f J̄
2 = −J̄f J̄

1 ∈ sp(ḡ, J̄ , ω̄) follows from f J̄
1 ∈ sp(ḡ, J̄ , ω̄). Now by [4, Proposition 

4.6], β = −f.ω̄. Since ω̄ is of type (2, 0) + (0, 2), f J̄ .ω̄ is also of type (2, 0) + (0, 2)
while f−J̄ .ω̄ is of type (1, 1). So f J̄ .ω̄ has to vanish, and this holds true, since f J̄

1 , f
J̄
2 ∈

sp(ḡ, J̄ , ω̄). Next, [4, Proposition 4.6] contains a formula for A, which, however, has a 
wrong factor in front. To correct this wrong factor, first note that by [4, Lemma 4.4], we 
have A = 1ν� ω̄. The error lies in [4, Lemma 4.5], which states ν = J̄(Alt(SI))� but the 
2
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proof of that lemma actually gives ν = 2J̄(Alt(SI)). Hence, A = J̄∗(Alt(SI)), which is 
equivalent to A12 = 1

2 (S11 +S22) ◦ J̄ . The last two equations in (26) are then equivalent 
to

S12 = −S11 − S22

2 ◦ J̄ . �
As a consequence we prove the following

Theorem 6.4. Any nilpotent complex symplectic Lie algebra (g, J, ω) with Abelian J may 
be obtained by iterated complex symplectic oxidation from the trivial 0-dimensional com-
plex symplectic Lie algebra.

Proof. As already stated above, every 4n-dimensional complex symplectic Lie algebra 
(g, J, ω) with Abelian J is the complex symplectic oxidation of a (4n − 4)-dimensional 
(ḡ, J̄ , ω̄) and by Proposition 6.3, J̄ is again Abelian and so also (ḡ, J̄ , ω̄) is the complex 
symplectic oxidation of a complex symplectic Lie algebra of dimension 4n − 8. Iterating 
this process we obtain the desired result. �

Finally, we consider the possible step lengths of a 4n-dimensional nilpotent complex 
symplectic Lie algebras (g, J, ω) with Abelian J . For this, we first note that then J is 
also nilpotent. Consequently, the maximal nilpotency step of g is 2n. We show now that 
any nilpotency step is possible. Even more, we prove:

Proposition 6.5. Let n ∈ N be fixed. Then, for any m ∈ {1, . . . , 2n}, there exists a 4n-
dimensional nilpotent complex symplectic Lie algebra (g, J, ω) of step length m. Moreover, 
if m ≥ 2 and (n, m) �= (1, 2) we may find (g, J, ω) as above with g being indecomposable 
and both with J being non-Abelian nilpotent or with J being Abelian.

Remark 6.6. Consider the case (n, m) = (1, 2), i.e. a 4-dimensional nilpotent complex 
symplectic Lie algebra (g, g, J) of step length 2. By [4, Proposition 5.7], any such complex 
symplectic Lie algebra (g, g, J) is isomorphic to (h3⊕R, J0, ω0) with a “standard” complex 
symplectic structure (J0, ω0) on h3 ⊕ R with Abelian J0. Hence, for any 4-dimensional 
nilpotent complex symplectic Lie algebra (g, J, ω) of step length 2, g is decomposable 
and J is Abelian.

Proof of Proposition 6.5. We first assume that m ≥ 3 and treat the cases m = 2l + 1 or 
m = 2l + 2 for some l ∈ {1, . . . , 2n − 1} simultaneously.

In this case, we obtain the desired examples by complex symplectic oxidation of the 
Abelian complex symplectic Lie algebra (R4n−4, J0, ω0) with
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J0 :=
2(n−1)∑
j=1

−e2j−1 ⊗ e2j + e2j ⊗ e2j−1,

ω0 :=
l∑

j=1
(−1)j−1

(
e2j−1 ∧ e2(2l−j+1) + e2j ∧ e2(2l−j+1)−1

)

+
n−1∑

k=l+1

(
e4k−3 ∧ e4k + e4k−2 ∧ e4k−1)

In all cases, we set τ := 0, choose a specific f1 ∈ sp(R4n−4, J0, ω0) and then set 
f2 := −J0f1 ∈ sp(R4n−4, J0, ω0). Moreover, recall that [4, Proposition 4.6] describes 
the necessary conditions for the above tensors on ḡ to give rise to a complex symplectic 
Lie algebra (g, J, ω) in four more dimensions and that conditions 1. 6. and 7. in this 
proposition are satisfied independently of our choice of S since by our choices f1, f2
commute and preserve ω0. Moreover, condition 2. in [4, Proposition 4.6] is given by 
β = −f.ω0 = 0.

Explicitly, we set

f1(e2j−1) := e2j+1, f2(e2j) := e2j+2

for all j = 1, . . . , 2l − 1

f1(e4l−1) := f1(e4l) := 0

and

f1(e4k−3) := e4k−1, f1(e4k−2) := e4k, f1(e4k−1) := f1(e4k) := 0

for all k = l + 1, . . . , n. Then

f2(e2j−1) = e2j+2, f2(e2j) = −e2j+1, f2(e4l−1) = f2(e4l) = 0,

f2(e4k−3) = e4k, f2(e4k−2) = −e4k−1, f2(e4k−1) = f2(e4k−2) = 0

for all j = 1, . . . , 2l − 1 and all k = l + 1, . . . , n.
Now we distinguish the cases m = 2l + 1 and m = 2l + 2:

• m = 2l+ 1: Set S11 := −S22 := e4l−1. By conditions 3. and 4. in [4, Proposition 4.6]
we have

ν(v1, v2) = J0(S11 + S22)� = 0, A12 = 1
2 (S11 + S22) ◦ J0 = 0.

Now condition 5. in [4, Proposition 4.6] equals Alt(S ◦ f) = 0, which is equivalent to

S12 ◦ f1 = S11 ◦ f2 = −e4l−2, S12 ◦ f2 = S22 ◦ f1 = −e4l−3.
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These equations are fulfilled for S12 = −e4l and also for S12 = −e4l + e1. In the first 
case, we also have S12 = −1

2 (S11−S22) ◦J0 whereas in the second case, this equation 
does not hold. Hence, Proposition 6.3 yields that in the first case the corresponding 
complex symplectic oxidation (g, J, ω) has Abelian J , whereas in the second case, J
is not Abelian. In both cases, g is indecomposable and we have

g1 = V ∗ ⊕ span(e4k−1, e4k|k = l + 1, . . . , 2n),

g2 = V ∗ ⊕ span(e4l−1, . . . , e4n),

gr = V ∗ ⊕ span(e2(2l−r+2)−1, . . . , e4n), r = 3, . . . , 2l − 1,

g2l = V ∗ ⊕ span(e3, . . . , e4n), g2l+1 = g.

This shows that g has step length m = 2l + 1 and J is nilpotent in both cases.
• m = 2l+ 2: Here, we set S11 := S22 := e4l−1. Conditions 3. and 4. in [4, Proposition 

4.6] then yield

ν(v1, v2) = J0(S11 + S22)� = 2e1, A12 = 1
2 (S11 + S22) ◦ J0 = e4l.

We now look at condition 5. in [4, Proposition 4.6] and note that

S11 ◦ f2 + ω0(f1(J0(S11 + S22)�), ·) + 3
2(S11 + S22) ◦ J0 ◦ f1

= − e4l−2 + ω0(f1(2e1), ·) + 3e4l−1 ◦ J0 ◦ f1 = −e4l−2 + 2ω0(e3, ·) + 3e4l−2

= − e4l−2 − 2e4l−2 + 3e4l−2 = 0

and

− S22 ◦ f1 + ω0(f2(J0(S11 + S22)�), ·) + 3
2(S11 + S22) ◦ J0 ◦ f2

= − e4l−3 + ω0(f2(2e1)), ·) + 3e4l−1 ◦ J0 ◦ f2 = −e4l−3 + 2ω0(e4, ·) + 3e4l−3

= − e4l−3 − 2e4l−3 + 3e4l−3 = 0.

Hence, condition 5. in [4, Proposition 4.6] is satisfied if and only if

S12 ◦ f1 = S12 ◦ f2 = 0,

i.e. if S12 ∈ span(e1, e2). We consider the cases S12 = 0 or S12 = e1. In the first case, 
we have S12 = −1

2 (S11 − S22) ◦ J0 whereas in the second case, this equation does 
not hold. Thus, again by Proposition 6.3, in the first case the corresponding complex 
symplectic oxidation (g, J, ω) has Abelian J , whereas in the second case, J is not 
Abelian. In both cases, g is indecomposable and we have
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g1 = V ∗ ⊕ span(e4k−1, e4k|k = l + 1, . . . , 2n),

g2 = V ∗ ⊕ span(e4l−1, . . . , e4n),

gr = V ∗ ⊕ span(e2(2l−r+2)−1, . . . , e4n), r = 3, . . . , 2l − 1,

g2l = V ∗ ⊕ span(e3, . . . , e4n),

g2l+1 = V ∗ ⊕R4n−4, g2l+2 = g.

Hence, in both cases, g has step length m = 2l + 2 and J is nilpotent.

Now let us look at the case m = 2 and so n ≥ 2.
We first construct an example with non-Abelian nilpotent J . To do this, take the 

complex symplectic Lie algebra (R4(n−1), J0, ω0) with J0 as above and ω0 as in the case 
l = 0. Also define, f1 as in the case l = 0 but set f2 := 0. Moreover, S11 := −S22 := −e2

and S12 := e1 and τ := 0. One checks, using [4, Proposition 4.6], that this defines complex 
symplectic oxidation data and that β = 0, ν = 0 and A = 0, and so the non-zero Lie 
brackets (up to anti-symmetry) on V ⊕ span(e1, e2, e3, e4) ⊕ V ∗ are given by

[v1, e1] = e3 + v2, [v1, e2] = e4 − v1, [v2, e1] = v1, [v2, e2] = v2.

Hence, g is indecomposable as a Lie algebra with

g1 = V ∗ ⊕ span(e4k−1, e4k|k = 1, . . . , n), g2 = g,

i.e. g has step length 2. Moreover, by Proposition 6.3, the obtained complex symplectic 
Lie algebra (g, J, ω) has non-Abelian J due to S12 = e1 �= −e1 = −1

2 (S11 − S22) ◦ J0.
Next, we construct an example with Abelian J . For this, we take the complex sym-

plectic Lie algebra (h3⊕R4n−7, J0, ω0) with basis e1, . . . , e4n of h3⊕R4n−3 with the only 
non-zero Lie bracket (up to anti-symmetry) given by [e1, e2] = e3. Moreover, we define 
J0 as in the case R4n−4 and ω0 as in the case R4n−4 and l = 0. Next, we set f1 and 
f2 = −J0f1 as in the case R4n−4 and l = 0 noting that f1 and f2 are both derivations 
of h3 ⊕ R4n−7. Moreover, we set τ(v1, v2) := v1, S11 := −S22 := e2 and S12 := e1. 
One checks that this defines complex symplectic oxidation data on (h3 ⊕R4n−7, J0, ω0). 
Since S12 = −1

2(S11 −S22) ◦J0 holds, Proposition 6.3 tells us that the obtained complex 
symplectic Lie algebra (g, J, ω) has Abelian J . Now the only non-zero Lie brackets (up 
to anti-symmetry) on V ⊕ span(e1, e2, e3, e4) ⊕ V ∗ are

[v1, e1] = −[v2, e2] = e3 + v2, [v1, e2] = [v2, e1] = e4 + v1,

[v1, v2] = v1, [e1, e2] = e3.

Hence, g is indecomposable as a Lie algebra and

g1 = V ∗ ⊕ span(e4k−1, e4k|k = 1, . . . , n), g2 = g,

i.e. g is of step length 2. �
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