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Abstract: Cancer stem cells (CSCs) have drawn much attention as important tumour-initiating cells
that may also be crucial for recurrence after chemotherapy. Although the activity of CSCs in various
forms of cancer is complex and yet to be fully elucidated, opportunities for therapies targeting CSCs
exist. CSCs are molecularly distinct from bulk tumour cells, so they can be targeted by exploiting
their signature molecular pathways. Inhibiting stemness has the potential to reduce the risk posed
by CSCs by limiting or eliminating their capacity for tumorigenesis, proliferation, metastasis, and
recurrence. Here, we briefly described the role of CSCs in tumour biology, the mechanisms involved
in CSC therapy resistance, and the role of the gut microbiota in cancer development and treatment,
to then review and discuss the current advances in the discovery of microbiota-derived natural
compounds targeting CSCs. Collectively, our overview suggests that dietary intervention, toward
the production of those identified microbial metabolites capable of suppressing CSC properties, is a
promising approach to support standard chemotherapy.

Keywords: cancer stem cells (CSCs); drug resistance; gut microbiota; microbiota-derived metabolites;
bioactive compounds; natural products

1. Introduction

Nowadays, several highly successful cancer therapies are available, with the majority
of regimens combining surgery, radiotherapy, and medicine, which includes chemother-
apy, targeted therapy [1], and most recently, immunotherapy [2]. The type and stage of
the cancer being treated determine which techniques should be employed. One of the
most important goals in cancer biology is to discover cells and signalling pathways that
are essential for tumour regression, thus developing novel drugs that can abrogate the
growth and metastasis of malignant tumours. Among medications, conventional cancer
chemotherapy remains one of the most widely used approaches. Traditional chemotherapy
is an aggressive form of cytotoxic drug therapy that destroys all rapidly proliferating cells,
whether they are malignant or not. Thus, this method also destroys perfectly healthy cells.
On the contrary, mechanism-based therapies, such as targeted therapy and immunother-
apy, are designed to find and slow the growth of cells that possess a specific cancerous
phenotype. Compared to the scatter-gun approach of chemotherapy, targeted therapy
appears more sniper-like, accurately destroying its target without causing any collateral
harm to otherwise healthy cells. Because targeted therapies only target cancer cells, some
patients report fewer side effects than those with chemotherapy, which in turn presents
many bottlenecks, including a lack of specificity, which has an impact on healthy tissues, as
anticipated, but also rapid drug metabolism and both intrinsic and acquired drug resistance,
all contributing to decreased efficacy [3,4]. In this scenario, understanding the molecular
mechanisms of cancer and tumour cell biology represents an area of investigation that poses
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a unique challenge to clinical oncologists and cancer researchers. Here, after introducing
CSCs and their role in cancer biology, we briefly describe the mechanisms involved in CSC
therapy resistance. Next, we focus our attention on the gut microbiota and its relationship
with cancer development and treatment. The main purpose of our review is to provide a
comprehensive summary of the currently available literature describing microbiota-derived
natural compounds targeting CSCs.

2. Role of Cancer Stem Cells in Tumour Cell Biology

CSCs describe a class of stem-like cells of tumour origin that behave similarly to nor-
mal stem cells in their ability to regulate their cell cycle by switching between a quiescent
and a differentiation state. This includes key stem cell features, such as self-renewal [5] and
the capability to differentiate into parental tumour cells. Moreover, CSCs participate in fun-
damental processes of tumour growth and progression, including cancer cell proliferation,
metastatic spread, and immune evasion. According to the literature, CSCs exist in most
haematological and solid tumours. A cluster of differentiation (CD)133+ CSC population
was revealed in colorectal cancer (CRC) in 2007 [6,7] after CSCs were first identified in 1994
in acute myeloid leukaemia (AML) [8]. Since then, their significance in solid cancer has
been thoroughly researched. To date, the advent of modern flow cytometry and cell sorting
techniques has allowed for the identification of cell populations with CSC features, based
on their expression of specific markers. Indeed, human CSCs were recognised in other solid
tumours, including breast [9], brain [10], prostate [11,12], lung [13], and pancreatic [14,15]
tumours. Notably, in non-obese diabetic/severe combined immunodeficient (NOD/SCID)
mice, as few as 100 CSCs were sufficient to produce tumours [9]. Nowadays, CSCs are iden-
tified and classified according to the markers they express, including cell surface antigens,
stemness-related markers (OCT4, SOX2, and NANOG), or high aldehyde dehydrogenase
(ALDH) activity. To complicate the picture, CSC surface marker expression varies by tissue
type and even by tumour subtype. For example, CD44+CD24−/low and ALDH+ CSCs were
characterised in breast cancer [16,17], along with CD133+CD44+ in colon [18,19], brain [20],
and lung [21] cancer; CD34+CD8− in leukaemia [22]; CD44+ in head and neck tumours [23];
CD90+ in liver cancer [24]; and CD44+/CD24+/ESA+ in pancreatic cancer [25]. CSCs were
at first thought to make up only a small portion of a solid tumour’s overall cell population;
however, according to some estimates, up to 25% of cancer cells may display CSC char-
acteristics [26]. Regarding the genesis of CSCs, a variety of theories have been proposed.
According to one theory, CSCs develop from healthy stem/progenitor cells when they
undergo a specific genetic mutation or environmental change that confers to them the
capacity to cause tumours. In terms of cellular characteristics, phenotype, activity, and
also cell surface markers, certain CSCs exhibit similarities to typical stem/progenitor cells,
thus lending credence to this notion [27]. A second explanation describing the origin of
CSCs contends that they originate from healthy somatic cells that undergo genetic and/or
heterotypic changes to develop stem-like properties and malignant behaviour. Emerging
data showing that CSCs are resistant to standard chemotherapy and radiation treatment
and are very likely to be the cause of cancer recurrence and metastasis have enhanced the
clinical significance of CSCs [5,28,29].

3. Therapy-Resistant Nature of Cancer Stem Cells

Chemoresistance, recurrence, and metastasis remain the primary causes of cancer
mortality, advances in therapeutic development notwithstanding. Numerous investigations
have revealed that a small subgroup of cancer cells, called CSCs, is the cause of the tumour’s
recurrence. Some regulatory signalling pathways, including the Wnt/β-catenin, Sonic
Hedgehog (SHH), and Notch pathways, which are important in the self-renewal process,
are shared by CSCs and regular stem cells [30]. Accumulating evidence has shown that
the expression of markers related to stemness is crucial for tumour maintenance and that
these molecules also mediate cancer therapy resistance. Furthermore, resistant CSCs might
cause metastasis at a distant site, resulting in the formation of a metastatic tumour [31].
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The mechanisms through which CSCs adapt to escape cancer therapy are summarised in
Figure 1 and further discussed below.
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Figure 1. Schematic representation of the different mechanisms applied by CSCs to escape cancer
therapy. A small number of cancer cells, known as cancer stem cells (CSCs), have a significant role
in the failure of cancer treatment. Despite chemotherapy successfully eliminating a significant
amount of the tumour bulk, the main factor for tumour recurrence and metastasis is the existence
of CSCs that are resistant to chemotherapy and can regenerate themselves. CSC-mediated therapy
resistance appears to be attributed to different mechanisms: cell cycle arrest and quiescence (A),
autophagy (B), interactions with the tumour microenvironment (C), drug inactivation (D) and
extrusion (E), alteration of the DNA damage response (F), epithelial-to-mesenchymal transition (G),
and vasculogenic mimicry (H). Moreover, stemness-related therapy resistance could be induced by
cancer treatment itself (I).

3.1. Cell Cycle Arrest and Quiescence

Strong proof of a connection among CSCs, tumour cell plasticity, cell-cycle quies-
cence, and immune suppression in cancer originates from a wide range of publications.
Several studies have shown that CSCs can conceal themselves from the immune system
at the onset, avoiding detection during the immunosurveillance phase. Cell cycle is a
multi-phased, intricate, and tightly regulated process. Cell cycle control requires the
phase-specific transcription of cell cycle genes. Mutations in cell cycle genes can make
healthy cells more inclined to acquire a malignant phenotype [32]. In a very elegant study,
Agudo et al. [33]. demonstrated that fast-cycling cells, such as Lgr5+ stem cells detected in
the stomach, ovaries, and mammary glands, experienced immune clearance. Conversely,
slow-cycling stem cells, such as those in muscle and hair follicles, were resistant to just
EGFP death-inducing (Jedi) T-cell eradication. Furthermore, the ability of latent stem cells
to autonomously downregulate the antigen-presentation pathway via the transactivator
NLRC5 is crucial for immunological escape. Notably, the process is reversible once stem
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cells enter the cell cycle [34]. It has been speculated that cancer cells use the characteristics
of dormant stem cells to evade immune cell identification (Figure 1A). In this regard, it
was recently shown that CSCs have immune-evasive properties when they enter quies-
cence [35]. Accordingly, in xenotransplant investigations, leukaemia CSCs were discovered
to be chemotherapy-resistant and to be in the G0 (resting) phase of the cell cycle [36]. We
can therefore envisage that the immunologically privileged status of CSCs is dependent on
their capacity to adopt a quiescent state. Indeed, CSCs’ pharmacological resistance results
from a mismatch between their relatively slow cell cycle [37] and the rapidly proliferating
cancer cells that multiple chemotherapeutic treatments are designed to target.

3.2. Autophagy

Organelles, protein aggregates, and intracellular pathogens are the types of cellular
cargo that are engulfed by double-membraned vesicles called autophagosomes during
the evolutionarily conserved catabolic process known as autophagy, which results in their
destruction and recycling after fusion with the lysosome [38]. CSCs exhibit autophagy
reliance equal to that in tissue-resident stem cells (Figure 1B). For example, it was demon-
strated that the secretion of interleukin (IL)-6 from CD44+/CD24low/− breast cancer cells
is dependent on autophagy and necessary for CSC maintenance [39]. In addition, au-
tophagy is induced by a wide range of cancer therapies. For example, Imatinib™, a small
molecule tyrosine kinase inhibitor used to treat metastatic gastrointestinal stromal tumour
(GIST), causes the induction of autophagy in GIST cells [40]. According to preclinical
data, stress-induced autophagy helps CSCs survive, while blocking autophagy can help
in overcoming CSC resistance [41]. In the case of Imatinib™-treated GIST cells, tumour
cell apoptosis was induced by inhibiting autophagy, using the lysosomotropic drug chloro-
quine (CQ) [40]. Moreover, in prostate cancer, clomipramine (CMI), CQ, or metformin
treatment enhanced apoptosis and dramatically reduced cell viability by blocking au-
tophagy in enzalutamide-resistant cells, overcoming the resistance to enzalutamide, an
inhibitor of the androgen receptor signalling pathway used for the treatment of metastatic
castration-resistant prostate cancer [42].

3.3. Tumour Microenvironment

As per normal stem cells, CSCs are frequently found in anatomically separate loca-
tions, hidden niches within the tumour microenvironment (TME) that provide a protective
physical and chemical environment from direct contact with drugs and the host immune
system. In tumour niches, intricate interactions between cells and the extracellular ma-
trix (ECM) create a complex environment that determines stem cell resilience and the
preservation of stemness. ECM remodelling also impacts CSC survival (Figure 1C). On
one hand, a physical barrier created by enhanced ECM stiffness can protect CSCs from
chemotherapeutic drugs. On the other hand, ECM degradation by matrix metallopro-
teinases (MMPs) can allow for the release of cytokines and growth factors that enhance
tumour cell invasion, metastasis, and angiogenesis [43]. Moreover, solid tumours are
commonly affected by hypoxia. The capacity of the pre-existing blood vessels to meet the
oxygen requirement is frequently exceeded in cases of uncontrolled cell multiplication [44].
When under hypoxic and therapeutic stress, CSCs use a variety of signalling pathways that
are modulated by hypoxia-inducible factor (HIF) signalling to modulate their stemness.
HIF-induced gene products include epithelial-to-mesenchymal transition (EMT) program-
mers, glycolysis-associated molecules, drug resistance-associated molecules, miRNAs, and
VEGF [45]. Therefore, by maintaining CSCs in their undifferentiated stem cell state, which
enables self-renewal and the accumulation of epigenetic and genetic mutations, hypoxic
environments may promote the formation of malignant clones [46]. In addition, the TME
has been shown to have an acidic extracellular pH, which is a consequence of lactate
accumulation via increased anaerobic glycolysis in hypoxic conditions [47]. In that respect,
it was recently demonstrated that extracellular acidosis may cause cancer cells to develop
stem-like characteristics and aid in the proliferation of the CSC subpopulation [48]. Lastly,



Int. J. Mol. Sci. 2023, 24, 4997 5 of 28

tumour cells, inflammatory cells, cancer-associated fibroblasts, and CSCs are just a few of
the cell types that belong to the specialised microenvironment known as the perivascular
niche, which is found right next to blood vessels. Here, the stemness features of CSCs, such
as their capacity for self-renewal, multipotency, and tumorigenic potential, are maintained
by molecular interactions among various cell types [49].

3.4. Drug Inactivation

CSC chemoresistance has also been linked to intracellular drug inactivation (Figure 1D).
A class of detoxifying enzymes known as ALDHs is frequently upregulated in cancer
cells leading to treatment resistance. ALDHs are overexpressed in cancer cell clusters
with stem-like characteristics, where they contribute to the defence of cancer cells by
converting harmful aldehydes into more soluble and less reactive carboxylic acids [50]. For
example, ALDH is crucial for contrasting the effects of diverse chemotherapeutic agents,
such as cyclophosphamide, irinotecan, temozolomide, paclitaxel, doxorubicin (DOX), and
epirubicin [51–55]. In addition, ALDH has been a widely used marker for CSC identification.
Increased metabolic activity, along with conventional anticancer drugs, leads to aldehyde
generation, which results in DNA double-strand breaks (DSBs) via reactive oxygen species
(ROS) and lipid peroxidation. Thus, the overexpression of ALDH is essential for CSC
survival. Moreover, it can inhibit immunogenic cell death (ICD) and cause the activation
and growth of immunosuppressive regulatory T cells (Tregs), thus influencing immune cell
activity in the TME [50]. Additionally, in NOD/SCID mice, acute myeloid leukemic cells
that possess increased ALDH activity seem to have more capacity for engraftment compared
to their ALDH-negative counterparts [56]. Moreover, the epigenetic inhibition of thymidine
phosphorylase has been observed in CSCs, resulting in the therapeutically inefficient
transformation of active 5-fluorouracil (5-FU) and methotrexate [55,57,58]. Finally, CSCs
use thiol glutathione to inactivate platinum [59].

3.5. Drug Extrusion

One of the primary defence mechanisms for CSCs is the transcription of multifunc-
tional efflux transporters from the ATP-binding cassette (ABC) gene family (Figure 1E) [60].
By using the energy of ATP hydrolysis to adenosine diphosphate (ADP) [61], these trans-
porters actively efflux peptides, inorganic anions, amino acids, polysaccharides, proteins,
vitamins, and metallic ions [62]. Intrinsic CSC-chemoresistance has been associated with
their ability to express proteins of the family of ABC transporters, which results in drug
extrusion and loss of effectiveness. Increased ABC transporter expression, including ABCB1
(P-glycoprotein/MDR1), ABCC1 (MRP1), and ABCG2 (BCRP), is one of the most well-
established strategies for cancer cells to acquire multidrug resistance (MDR) [63]. A plethora
of drugs that modulate MDR-ABC transporters have been developed during the past years,
and some of them have also demonstrated significant efficacy in clinical trials [63]. How-
ever, one must bear in mind that in addition to promoting the growth of tumours, stem
cell-driven tissue repopulation also promotes the growth of adult-specific normal tissues,
such as the bone marrow, digestive tract, and hair follicles; thus, the complete inhibition of
ABC transporters could have severe drawbacks.

3.6. Altered DNA Damage Response (DDR)

A large number of chemotherapy treatments, including platinum-based drugs and
radiation, kill cancer cells by causing DNA damage. Studies have demonstrated that CSCs
are incredibly effective in repairing DNA damage (Figure 1F) [64]. CSCs’ resistance to DNA-
damaging therapies is thought to be caused by this enhanced DNA damage response (DDR).
DDR is an extremely intricate network made up of numerous pathways, each of which
exhibits cross-talk both within the network and with other signalling pathways [65]. When
compared to non-stem tumour cells, CSCs have a higher capability for DNA repair either
through increased DNA repair pathways or through delayed cell-cycle progression [66].
The MRE11–RAD50–NBS1 (MRN) protein complex, a major sensor of DNA double-strand
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breaks, is expressed in both normal and cancerous cells, as well as CSCs. However, the
MRN function is improved in CSCs through interactions with the CSC-related molecules
Notch1, ALDH1A1, CD44, SHH, and BMI1, in contrast to that in non-stem tumour cells [67],
or through CD171, which boosts CSCs’ radioresistance and selectively triggers the DNA
damage checkpoint [68]. The resting activation status of checkpoint kinases could serve as
a crucial defence mechanism for CSCs against genotoxic chemicals when coupled with the
induction of DNA repair. Not unexpectedly, several DDR-inhibitory drugs are currently
undergoing pre-clinical and clinical testing [66]. In addition, stem cells regulate self-renewal
and differentiation via differential configurations of the chromatin structure; thus, it is
expected that histone changes and chromatin remodelling following DNA damage differ
between stem cells and developed cells. In recent years, it has been evident that chromatin’s
epigenetic dysregulation plays a significant role in CSCs development and frequently plays
a crucial part in CSCs’ self-renewal throughout tumour growth [69].

3.7. Epithelial-to-Mesenchymal Transition (EMT)

Several fundamental features of cellular physiology undergo modifications as a result
of the epithelial-to-mesenchymal transition (EMT) program, including alterations to cell
morphology, which are related to changes in the cytoskeletal organisation; the dissolu-
tion of epithelial cell-cell junctions; loss of apical-basal polarity and concomitant gain of
front-rear polarity; acquisition of the ability to breakdown and reorganise the ECM, thus
enhancing motility and allowing cell invasion; and alterations to the expression patterns
of at least 400 different genes [70]. The relationship between the EMT program and the
CSC state raises the possibility that non-CSCs can become CSCs by enacting this program
(Figure 1G) [71,72]. Indeed, EMT has been also linked to chemoresistance [73,74]. Worthy of
note, an EMT-associated gene-expression signature has been strongly linked with treatment
resistance, based on examinations of the relationships between the clinical outcomes of
individuals and the gene-expression profiles of the associated tumour samples [75,76].
Moreover, by activating the EMT program, cancer cells can form metastatic colonies [74,77].
More specifically, according to recent studies, cells undergoing partial EMT may exhibit
hybrid E/M phenotypes, possess more stem cell-like features, and exhibit more resistance
to drugs than cells undergoing complete EMT. Additionally, partial EMT facilitates collec-
tive cell movement as clusters of circulating tumour cells or emboli, enhancing cancer cells’
capacity for metastasis and tumour genesis at the secondary regions [78].

3.8. Vasculogenic Mimicry

There is a unanimous understanding that solid tumours require a sufficient blood sup-
ply to grow. The term vasculogenic mimicry (VM), first coined by Maniotis [79], describes
the ability of aggressive cancer cells to form de novo perfusable, matrix-rich, vasculogenic-
like networks in a way that differs from traditional tumour angiogenesis in that it does
not rely on endothelial cells. These new patterns of tumour microcirculation assist in
perfusing rapidly growing tumours, removing fluid from leaky arteries, and/or integrating
with the body’s endothelial-lined normal vessels [80]. The link between VM and poor
clinical outcomes in patient malignancies suggests that VM confers a survival advantage to
the aggressive tumour cell phenotype [81,82]. Additionally, preclinical pharmacological
studies have shown that VM is connected to anticancer therapy resistance [83]. A signifi-
cant amount of data suggests that CSCs aid in the development of VM (Figure 1H) [84].
The VM phenotype of tumour cells has a molecular signature that includes upregulated
expression of genes related to embryonic progenitors, endothelial cells, vessel formation,
matrix remodelling, and coagulation inhibitors, as well as downregulated expression of
genes primarily related to lineage-specific phenotype markers [80,85].

3.9. Acquisition of Stemness Due to Treatment

It has been shown that chemotherapy and radiation both foster CSC traits in non-
stem cancer cells and might even cause non-stem cancer cells to become CSCs [86,87]
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(Figure 1I); thus, the issue of CSCs not responding to conventional cancer treatments
goes beyond the simple inability of these treatments to eradicate CSCs. The plasticity of
cancer cells enables the transient acquisition of stemness-related traits. After receiving
carboplatin treatment, hepatocellular carcinoma cells developed stem-like characteristics,
including the ability to self-renew and the expression of stemness-related genes (SOX2 and
OCT3/4), which demonstrated the potential for chemotherapy to generate stemness [88].
Moreover, after being exposed to the chemotherapeutic drug 5-FU, human gastric cancer
cell lines demonstrated resistance to 5-FU, as well as characteristics of stemness, such as
tumorigenicity and the ability to self-renew [89].

Despite chemotherapy substantially eliminating a large portion of the tumour volume,
there cannot be a noticeable clinical improvement if CSCs have not been eradicated to
provide long-term disease-free survival. Therefore, CSCs are thought to be a significant
target for the development of new anticancer drugs, being that CSC-focused therapy is a
key driver for any effective anticancer strategy. In addition to synthetic drugs targeting
CSC pathways (reviewed in [30]), dietary components, mostly (poly)phenolic compounds,
have shown the ability to inhibit tumour progression [90] and angiogenesis [91]. Nearly
all of these naturally occurring phytochemicals with chemopreventive activities also have
antioxidant and anti-inflammatory effects. Interestingly, several mechanisms involved in
the anticancer effects of dietary phytochemicals target pathways involved in CSC stemness
maintenance [92]. Of note, human-ingested nutrients can be transformed by the gut
microbiota into useful microbial compounds that closely link diet to cancer [93]. Indeed, the
microbiota-derived metabolome has the potential to encourage or prevent carcinogenesis
in organs distant from the gut. An emerging field in anticancer research examines the
intricate interactions between particular gut microbial metabolites and the advancement or
inhibition of cancer cell proliferation [94].

4. Role of the Gut Microbiota in Cancer

The gut microbiota comprises a multitude of microorganisms, mainly bacteria across
over 500 species, of which the number reaches 1013–1014, similar to the number of cells in
an adult human [95,96]. The majority of them (about 90%) is represented by two bacterial
phyla, the Gram-positive Firmicutes (Bacillus spp., Lactobacillus spp., and Clostridium spp.)
and the Gram-negative Bacteroidetes (Bacteroides spp. and Prevotella spp.) [97,98]. In their
entirety, gut bacteria have several functions, including food fermentation, vitamin produc-
tion, protection against pathogens, and immune response stimulation; thus, the intestinal
microbial balance is highly relevant to human health [99]. It has been established that the
breakdown of the host’s and gut microbiota’s symbiotic relationship can facilitate the onset
of numerous disorders, including autoimmune disease [100,101] and cancer [102]. In this
scenario, the molecular basis of various long-established epidemiological relationships
between certain bacteria and cancer are presently being studied [103]. For instance, the
correlation between Helicobacter pylori and the risk of the development and progression
of gastric cancer, but also the case of Fusobacterium nucleatum, of which the role in the
setting of CRC has been extensively studied [104–110]. Bacterial infections were associ-
ated with cancer stemness in both cases. In the former case, Bessède et al. observed that
following H. pylori infection, gastric epithelial cells overexpressed CD44 and acquired
CSC features, while in the latter case, Cavallucci et al. revealed that F. nucleatum can
contribute to the microbiota-driven colorectal carcinogenesis by directly stimulating col-
orectal CSCs [111,112]. Additionally, Ha and colleagues provide evidence that EMT and
cancer stemness acquisition are induced in oral cancer cells by prolonged infection with
Porphyromonas gingivalis [113].

Moreover, there have been documented indirect effects of the gut microbiota on the
growth of tumours in tissues outside of the gastrointestinal tract [110]. It is fascinating
to note that the gut microbiota, by releasing bacterial products that can enter the blood-
stream, can practically influence all host organs and systems and eventually affect cancer
progression. This expanding knowledge points out that intestinal dysbiosis may cause
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carcinogenesis in localised gastric and intestinal cancers and tumours located in distant
regions of the body [103,110]. For instance, lipopolysaccharide (LPS), a component of the
Gram-negative bacterial cell wall, which is recognised by Toll-like Receptor 4 (TLR4), is
one of the molecules derived from gut bacteria that has been demonstrated to promote
cancer [110]. In a model of chronic injury-induced liver cancer, LPS-induced TLR4 stimula-
tion increased the expression of the hepatomitogen epiregulin in stellate cells, which had a
pro-tumorigenic effect [114]. Additionally, deoxycholic acid (DCA), a metabolite produced
by gut bacteria, has also been linked to an increased risk of developing hepatocellular
carcinoma when its level is increased due to dietary- or hereditary obesity-induced shifts
in the gut microbiota composition [115].

On the other side of the coin, recent studies have observed that the gut microbiota
can also exert immunomodulatory and anti-tumoral effects in cancers. For instance, in a
rat model, the probiotic bacteria Lactobacillus acidophilus have been found to decrease the
occurrence of CRC [116]. Moreover, exopolysaccharides from Lactobacillus spp. were able to
slow down cell division in a time-dependent fashion and trigger apoptosis by upregulating
the expression of Bax and caspase 3 and 9, while downregulating Bcl-2 and survivin, in
a colon cancer cell line (HT-29) [117]. Abdelghani et al. provided a comprehensive list of
anti-cancer compounds derived from microbial metabolism and their anticancer activities,
which range from apoptotic, anti-proliferative, and cytotoxic activity to chemosensitisation
to 5-FU [118].

Along with the investigation of the links between the gut microbiota and cancer, the
microbiota of tumours themselves has received some consideration. Interestingly, more
research into the microbiota revealed that it was also present within tumour tissues that
were previously assumed to be sterile [119]. Furthermore, the local microenvironment and
the tumour immunological context seem to interact with the tumour-associated microbiota,
or microbial communities found in the tumour or inside its body compartment, ultimately
affecting cancer growth and the response to therapy [120]. The intratumoral microbial
community further complicates the cancer–microbiota–immune axis, which significantly
impacts T-cell-mediated killing and anti-tumour immune surveillance [121]. Recently,
Zhou et al. reviewed the hitherto neglected but significant impacts of the small molecules
derived from tumour microbiota metabolism on the TME and their essential roles in cancer
development [122]. Not only that, numerous instances of the microbiota altering drug
metabolism and interfering with immunotherapy have been reported [123–126], and it is
expected that research in this area will continue.

From the perspective of “therapeutic microbiology”, the host’s health status can be
improved through a variety of approaches: (a) by introducing living, beneficial bacteria
(known as probiotics), influencing the microbial composition (probiotics) [127]; (b) provid-
ing non-digestible substances, such oligofructose, oligosaccharides, inulin, raffinose, and
stachyose (known as prebiotics), which are fermented by endogenous colonised probiotics
in the large intestine (colon), promoting the establishment of beneficial microbiota [128];
(c) administering microbial metabolites with low molecular weights (<50, 50–100, and
<100 kDa) that have positive effects on health (postbiotics) [129,130]. A significant number
of published studies that discuss the capability of postbiotics to regulate different cellular
processes and metabolic pathways have been published in the literature and reviewed
elsewhere [130,131]. However, the microbiota remains an untapped avenue for finding
small-molecule drugs for cancer treatment.

5. Microbiota-Derived Metabolites with Activity towards CSCs

Diet and environmental exposures, as well as lifestyle, have a major role in influencing
the human gut microbiota composition and its metabolic activity, which can have an impact
on health [132–134]. CSCs are very dependent on their surroundings for their energy
supply; thus, nutrients play a pivotal role in modulating CSC growth or stemness. Over
the past few decades, numerous studies have attempted to clarify the processes governing
CSCs’ response to diet [135]. The anaerobic microbial population ferments undigested
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dietary components and host products, primarily mucin, to produce a remarkably wide
range of metabolites that reflect both the chemical diversity of the dietary substrates and the
microbiota’s unique metabolism [136]. As outlined above, microbiota metabolites, defined
as intermediate end products of microbial metabolism, are key players in the microbiota–
cancer relationship. These metabolites can be categorised based on two different parameters:
origin (intracellular or extracellular) and function (primary or secondary), respectively.
While secondary metabolites are produced close to the stationary phase of growth and are
not essential for growth, reproduction, or development, primary metabolites are required
for the optimal growth of bacteria. Several studies were conducted to assess the health-
promoting effects of microbial products; in those cases, researchers described them as
‘biogenic’, ‘cell-free supernatant’, ‘abiotic’, ‘metabiotic’, ‘paraprobiotic’, ‘ghost probiotics’,
‘pseudoprobiotic’, ‘supernatant’, etc. [137]. Only in 2013, the term “postbiotics” was created
to describe soluble components secreted by living bacteria or released following bacterial
lysis, including enzymes, peptides, teichoic acids, muropeptides derived from peptido-
glycan, polysaccharides, cell surface proteins, and organic acids [129]. This definition also
gained support from further reports [138,139]. A detailed and exhaustive description of
the range of metabolites produced by gut microbial metabolic activity and their roles in
health and diseases is beyond the scope of this review and can be found elsewhere [140].
Here, we focus exclusively on the documented effects of microbiota-derived metabolites
that specifically target CSCs and their features.

Traditional approaches to identifying novel bioactive natural products include extraction,
fractionation or isolation, chemical characterisation, and, ultimately, an assessment of the
potential beneficial effect through the execution of biological assays [141]. In this connection,
cell-free supernatant (CFS), a solution that contains metabolites produced as a result of micro-
bial growth, represents an invaluable metabolite-rich source. For instance, the antioxidant,
antimicrobial, and anticancer properties of CFS have been demonstrated [142–144]. In 2016,
An and Ha showed that the expression of particular CSC markers, CD44, CD133, CD166,
and ALDH1, can be inhibited by Lactobacillus plantarum (LP) supernatant. Besides that,
combined treatment with LP supernatant and 5-FU: (1) prevented CRCs from surviving and
caused cell death by inducing caspase-3 activity; (2) prompted an antitumor mechanism
by inactivating the Wnt/β-catenin signalling pathway in chemoresistant CRC cells; and
(3) decreased the formation and volume of colonospheres [145]. Later in 2020, the same
authors also demonstrated that in 5-FU-resistant CRC cells (HCT-116/5FUR), Lactobacil-
lus plantarum-derived metabolites (LDMs) boost drug sensitivity and have antimetastatic
effects as well. By reducing the expression of claudin-1 (CLDN-1), co-treatment of HCT-
116/5FUR with LDMs and 5-FU decreased chemoresistance and metastatic activity. Their
findings suggested that targeting 5-FU-resistant cells with LDMs and 5-FU cotreatments
can be effective [146]. Moreover, Maghsood et al. treated human colon cancer stem-like
cells enriched from an E-cadherin shRNA-engineered HT-29 cell line (HT29-ShE) with
size-fractionated Lactobacillus reuteri CFS. Their results showed that crude and >50 kDa
fractions of CFS significantly decreased the expression of COX-2, a crucial factor in the
maintenance and function of CSCs. In addition, they demonstrated that colon cancer
stem-like cell apoptosis and cell proliferation were both suppressed by L. reuteri CFS [147].

Diet plays a major role in cancer aetiology and prevention; thus, a healthy diet can
be a game-changer factor [148–152]. Moreover, food is a significant source of substrates
for the production of microbial metabolites. Amongst the vastness of microbiota-derived
metabolites, some have been identified as potential CSC-targeting molecules (Figure 2).
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etary compounds that have the potential to target CSCs. The gut microbiota plays a role in diges-
tion by metabolising indigestible macronutrients. The host’s metabolic capability is increased by
the large enzymatic repertoire of the microbial population, which integrates the function of mam-
malian enzymes and allows the host to metabolise a variety of food substrates. Numerous bacterial
metabolites are produced by the intestinal microbiota’s metabolic activities toward the available
substrates and may accumulate in the lumen. Microbiota-derived metabolites possess enhanced or
even different bioactivities compared to their parental compounds. Moreover, they can access circu-
lation and potentially diffuse systemically. Specific products of microbial digestion, highlighted in
the zoomed callout, have been found to target CSC features. BAs, biliary acids; IPA, indolepropionic
acid; EA, ellagic acid; Uro, urolithins; atROL, all-trans-retinol; atRA, all-trans retinoic acid; 13cisRA,
13-cis-retinoic acid.

5.1. Butyrate

Non-digestible carbohydrates, including resistant starch, non-starch polysaccharides,
and certain soluble oligosaccharides, reach the large intestine without undergoing any di-
gestion, because of the upper intestine tract lacks certain food-digesting enzymes [153,154].
Short-chain fatty acids (SCFAs) and gases are produced through the anaerobic degradation
of such non-digestible fibres by gut microorganisms. SCFAs are aliphatic carbon-based
acids, with acetate (C2), propionate (C3), and butyrate (C4) being the most abundant [155].
Several studies have found a link between a high-fibre diet and a lower risk of colon
cancer [156–158]; this drove scientists toward the investigation of SCFA’s role in carcinogen-
esis prevention. However, when studying butyrate, researchers faced a contradictory effect:
if butyrate effectively inhibited the proliferation of undifferentiated, highly proliferative
adenocarcinoma cells while promoting differentiation and death, butyrate treatment did not
affect the normal proliferation and regeneration of the injured epithelium in healthy cells,
differentiated cultures, or in vivo experiments [159]. This phenomenon was dubbed “the
butyrate paradox” [160–162]. Later, a possible explanation was suggested by the disclosure
of the butyrate molecular mechanism which comprises the following: (a) activation of the
G protein-coupled receptor 109a (GPR109a)–AKT signalling pathway, which leads to the
remarkable inhibition of glucose metabolism and DNA synthesis in CRC cells, via reducing
the amount of membrane G6PD and GLUT1 [163]; (b) the inhibition of AKT/ERK signalling
in a histone deacetylase (HDAC)-dependent manner [164]. In malignant colonocytes, where
glycolytic metabolism prevails over oxidative phosphorylation, butyrate accumulates and
functions as an HDAC inhibitor, slowing the cell cycle progression through altered gene
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expression [165]. Thus, distinct metabolic pathways for cellular energy in differentiated and
undifferentiated colonocytes are likely to be responsible for ‘the butyrate paradox’ [166].
During the coevolution of the microbiota with its hosts, mammalian crypt architecture has
been developed to protect stem/progenitor cell proliferation from the potentially harmful
effect of microbially derived butyrate; differentiated colonocytes establish a metabolic
barrier that uses butyrate to produce a butyrate gradient [167]. Interestingly, butyrate, but
not propionate or acetate, had a significant inhibitory effect on stem cell proliferation. This
may be the reason why colonocytes, to protect intestinal stem cells, preferentially break
down butyrate over the other SCFAs propionate and acetate, which are also present in high
concentrations in the colon [167]. According to the mentioned theories, Lee et al. found
out that metformin-butyrate (MFB), a new metformin derivative, showed more effective
targeting of the CD44+/high/CD24−/low CSC-like (undifferentiated) population in breast
cancer in vitro and in vivo and the inhibition of mammosphere formation, compared to
that with metformin [168]. Of note, when butyrate and 5-FU were administered together,
the chemotherapeutic effectiveness of 5-FU on CRC cells increased, suggesting a role of bu-
tyrate in sensitising CRC cells to chemotherapy [163]. Moreover, in 3D-cultured organoids
derived from CRC patients, when compared to that with the administration of radiation
alone, butyrate dramatically increased radiation’s ability to cause cell death and improve
therapeutic effects [169].

5.2. Secondary Biliary Acids

Dietary fatty acids may increase the ability of intestinal stem cells and progenitor cells
to self-renew, as well as their capability to initiate tumours [170]. Bile acids are crucial
signalling molecules that aid in the digestion and absorption of dietary lipids by acting as
emulsifiers [171]. Cholic acid and chenodeoxycholic acid, the two primary biliary acids
(BAs), are produced from cholesterol via a series of enzymatic processes that occur mostly
in the liver. After being synthesised, these BAs are conjugated with glycine or taurine and
subsequently secreted and stored in the gallbladder. Less than 5% of the BA pool enters
the colon each day in humans due to an active transport mechanism that predominantly
recycles BAs in the terminal ileum. The gastrointestinal microbiota metabolises BAs that
enter the colon, converting primary BAs into secondary BAs, deoxycholic acid (DOC or
DCA), and lithocholic acid (LCA). Hence, the circulating BA pool comprises approximately
30 to 40% of cholic acid and chenodeoxycholic acid, 20 to 30% of DOC, and less than
5% of LCA (in the conjugated form when it leaves the gallbladder and subsequently de-
conjugated after it enters the colon via the action of bacterial enzymes) [172]. Secondary
BAs are potent signal molecules that regulate a variety of processes (both physiological
and pathological), through the modulation of several signalling pathways. Gut dysbiosis
can alter the homeostatic levels of primary and secondary bile acid pools and produce
distinct pathophysiological bile acid profiles [173]. Moreover, the gut microbiota–bile acid
axis can control immune cells to indirectly promote tumours. Secondary BAs can inhibit
the function of anti-tumour immune cells, such as macrophages, dendritic cells, B cells,
and natural killer (NK) cells, while enhancing the function of Tregs, which are known to
encourage the development of immunosuppressive microenvironments and the growth
of tumours [174]. According to Bayerdorffer et al., there is a positive association between
the colon-derived unconjugated fraction of DCA and colorectal adenoma formation, which
are the precursors of CRC. The finding of this connection provided evidence in favour of
the theory that DCA has a detrimental impact on colon cancer development [175]. Later,
the mechanisms through which secondary BAs control carcinogenesis were described by
Farhana et al. [176]. They discovered that the unconjugated secondary bile acids, notably
DCA and LCA, alter muscarinic acetylcholine receptor M3 (M3R) and Wnt/β-catenin
signalling promoting cancer stemness in colonic epithelial cells. Moreover, according
to another study, secondary BAs can encourage the development of CSCs from both
cancer and non-cancerous cells [174]. Farnesoid X receptor (FXR) is the nuclear receptor
responsible for the negative feedback control of bile acid synthesis in the ileum and liver.
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Besides this role, FXR is also a crucial regulator of the proliferation of intestinal stem
cells. In 2019, Fu et al. demonstrated that DCA and tauro-β-muricholic acid (T-βMCA)
antagonise intestinal FXR, functioning as strong promoters of CSC proliferation able to
induce DNA damage [177]. In their study, the authors also suggest that FXR activation could
potentially impede tumour progression. They used the FXR agonist drug Fexaramine D to
prove their theory, showing that when intestinal FXR is specifically activated, adenomas
and adenocarcinomas in treated mice develop more slowly. A few years earlier, another
research group identified two bacterial strains capable of directly modulating the activation
of intestinal FXR [178]. They demonstrated that Bacteroides dorei and Eubacterium limosum
cell-free supernatants trigger FXR activity and the expression of FXR-dependent genes in
in vitro cell-based reporter assays and diet-induced obese (DIO) mice. Taken together, these
results suggest that those two bacterial strains could have a beneficial role as probiotics,
especially in those cases in which the (high-fat) diet is responsible for an imbalance in the
BA pool that could favour CRC onset. A recent report suggests that in the presence of
metastatic lesions, a healthy diet and/or proper pharmacological intervention aimed at
re-establishing physiological bile acid levels could reduce cancer cell invasion, migration,
and adhesion [173].

5.3. Cadaverine and Indolepropionic Acid

Lysine decarboxylase (LDC), a peculiar microbial enzyme, catalyses the decarboxyla-
tion of lysine to produce the bacterial metabolite cadaverine. Although cadaverine can also
be produced by human cells, it appears that bacterial cadaverine production predominates
over human biosynthesis [179]. Kovács et al. administered cadaverine in breast cancer cell
lines within the standard range for serum (100–800 nM) and found that cadaverine expo-
sure prevented mesenchymal-to-epithelial transition, inhibited invasion, and decreased
mitochondrial oxidation, all hallmarks of stemness. Moreover, smaller and lower-grade
primary tumours, together with reduced metastasis, were generated in Balb/c female mice
transplanted with 4T1 breast cancer cells and treated with cadaverine [179].

L-tryptophan (Trp) is one of the nine essential amino acids for humans, and therefore,
it must be introduced with the diet. Trp and other amino acids are released from dietary
and endogenous luminal protein by bacterial proteases and peptidases. Three rate-limiting
enzymes convert the Trp into kynurenine (Kyn): liver tryptophan-2,3-dioxygenase (TDO)
and peripheral tissue indoleamine 2,3-dioxygenase 1/2 (IDO1/IDO2) [180]. Through the
action of the bacterial enzyme tryptophanase, the intestinal microbiota mostly converts
Trp into indole [181]. For human health, Trp metabolism through the Kyn pathway and
gut microbial metabolism to indolic compounds is essential. For instance, breast cancer
and breast cancer survival are strongly correlated with Trp and indole metabolism. In
this regard, tumour TDO/IDO overexpression is a marker of poor prognosis [182,183].
Indeed, patients with breast cancer benefit from indole derivatives in terms of survival;
of note, the levels of indole derivatives decrease with disease progression [184]. Reduced
activity of the indolic pathway was seen in colon cancer, which also exhibits alterations in
microbial indole synthesis [185]. As per Kovács et al., Sári and colleagues also employed
the Aldefluor Stem Cell kit to measure the impact of treatment with indolepropionic acid
(IPA), a bacterial Trp metabolite, on ALDH activity in 4T1 cells. What they discovered
was a reduction in the percentage of aldehyde dehydrogenase-positive cells together with
induced mesenchymal-to-epithelial transition (MET) in IPA-treated cells [184].

5.4. Ellagic Acid and Urolithins

The health-promoting potential of plant extracts and plant-derived secondary metabolites
is widely recognised [186–188]. Numerous beneficial effects of polyphenols on human health,
such as antioxidant [189–193], anti-inflammatory [194–196], immunomodulatory [197–199],
cardioprotective [200–202], neuroprotective [203–205], anti-carcinogenic [206–208], and pre-
biotic properties [209], have been reported. Thanks to the plethora of chemical structures
they exhibit, natural anticancer compounds may act as cytotoxic agents [210–212], anti-
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mitotic agents [213], angiogenesis inhibitors [214,215], topoisomerase inhibitors [216],
apoptosis inducers [217] and cancer invasion [218], migration [219] and proliferation
inhibitors [220–222]. The identification of plant-derived secondary metabolites that could
target CSCs’ peculiar signalling has received much attention in current anticancer drug
discovery approaches [223–237]. Very recently, a growing understanding of the impact of
secondary polyphenol metabolites derived from gut microbial metabolism in the context
of carcinogenesis has emerged. It is worth noting that the portion of dietary polyphenol
that is absorbed at the small intestine level and enters the blood circulation is estimated at
around 10%. Hence, many ingested polyphenols reach the large intestine, where intestinal
bacteria convert them to phenolic acids [238].

Lactobacillus rhamnosus, an obligatory anaerobic homofermentative lactic acid producer,
has been identified as predominant bacteria in the human gut [239]. The fermentation of
polyphenol-rich dried black chokeberry (Aronia melanocarpa) powder using L. rhamnosus
led Choi et al. to the isolation of a CSC inhibitor of which the structure was established
as 1,2-dihydroxybenzene, also known as catechol [240]. In particular, they found that
catechol inhibits proliferation and mammosphere formation in the human breast cancer cell
lines MCF-7 and MDA-MB-231. Moreover, the percentage of breast cancer cells expressing
CD44high/CD24low, as well as the protein and transcript levels of signal transducer and
activator of transcription 3 (STAT3) and IL-6, are reduced by catechol treatment. Finally,
catechol was found to reduce the expression of self-renewal genes, such as NANOG, SOX2,
and OCT4, in CSCs, hence reducing their stemness and proliferative capacity.

Urolithins are secondary polyphenol metabolites generated via the activity of gut
bacteria on ellagitannins (ET) and ellagic acid-rich foods, such as pomegranates, raspberries,
strawberries, and walnuts [241]. The acid hydrolysis of ellagitannins releases free ellagic
acid [242], which is further processed by gut microbiota that converts ellagic acid into
urolithins [238]. The composition of a person’s gut microbiota affects how ellagitannins and
ellagic acid are metabolised into urolithins; accordingly, individuals can be categorised into
three groups of polyphenol-metabolising phenotypes called metabotypes [243]. Núñez-
Sánchez and colleagues evaluated the effects of mixed ET-derived colonic metabolites on
colon CSC-associated markers [244]. The authors investigated the ability of two separate
mixtures of compounds—ET metabolites, ellagic acid (EA), and the gut microbiota-derived
urolithins (Uro)—that, in proportion and concentration, mimic those detected in vivo in
individuals with metabotype-A or metabotype-B. According to their study, the mixture
resembling the metabotype-A that contains mostly Uro-A (85% Uro-A, 10% Uro-C, 5%
EA) was more successful at suppressing CSCs’ molecular (ALDH activity) and phenotypic
(number and size of colonospheres) traits, whereas the mixture mimicking the metabotype-
B containing less Uro-A but IsoUro-A and Uro-B (30% Uro-A, 50% IsoUro-A, 10% Uro-B,
5% Uro-C, 5% EA) seemed to have some effects on colonosphere size and number, but
not on ALDH activity levels. Uro-A, the predominant metabolite in the metabotype-A
mixture, may be the main factor causing the discrepancies seen between the two mixtures.
Interestingly, González-Sarrías et al. also reported that Uro-A is a substrate of drug efflux
transporter breast cancer resistance protein (ABCG2/BCRP), highlighting the role of Uro-A
in targeting CSCs [245]. In addition, the finding that the anticancer activity of 5-FU can
be enhanced by Uro-A in human colon cancer cells supports the hypothesis that using
phytochemicals in combination with traditional cytotoxic drugs to target CSCs may be a
new cancer treatment approach [246].

5.5. Retinoids

Diet is the primary source of vitamin A since it cannot be synthesised by animal tissue
and has to be introduced with food. Retinoids (including vitamin A, all-trans retinoic acid,
and related signalling molecules) were shown to promote the differentiation of diverse
stem cell types [247]. Retinoic acid (RA), a well-known vitamin A metabolite, regulates
the fate of neighbouring cells. The availability of vitamin A (retinol), the activity of the en-
zymes necessary for RA synthesis (retinol dehydrogenases and aldehyde dehydrogenases),
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and the catabolism of RA by CYP26 enzymes all affect the levels of RA [248]. Retinoid
signalling is frequently impaired early in carcinogenesis, suggesting that a decrease in
retinoid signalling may be essential for tumour growth [249]. Although RA has frequently
been regarded as a cell differentiation inducer, depending on the type of cell, RA might
prevent cell differentiation and induce stemness [248]. Recent discoveries of retinoids as
chemo-preventive and molecular-targeted antitumour agents reveal that RA agents may be
considered efficient therapies for treating human solid tumours [250]. Among retinoids,
all-trans retinoic acid (atRA) was found to be a promising therapeutic compound capable
of targeting CSCs in different cancer settings, such as gastric [251], brain [252], head and
neck [253], and breast [254] cancer. For instance, a significantly improved anti-cancer effect
towards breast cancer was achieved when atRA and DOX were simultaneously delivered,
encapsulated in the same nanoparticle [255]. This combinational drug delivery system
aims to target both non-CSCs and CSCs. With their studies in vitro and in vivo, Sun et al.
demonstrated that the atRA-induced differentiation of CSCs into non-CSCs can decrease
their capacity for self-renewal and enhance their sensitivity to DOX, improving the inhibi-
tion of tumour growth while simultaneously decreasing the incidence of CSCs. Moreover,
in A549GSC and H1650GSC cells, treatment with atRA was shown to dramatically lower
the IC50 values for gefitinib, an ATP-competitive EGFR tyrosine kinase inhibitor used
in non-small cells lung cancer (NSCLC) treatment, and the high expression of ALDH 1
family member A1 (ALDH1A1) and CD44 [256]. Additionally, conventional PKC inhibitor
(Gö6976) and atRA combined treatment reduced tumour growth, metastatic dissemination,
and the frequency of breast CSCs in vivo while impairing the proliferation, self-renewal,
and clonogenicity ability of breast CSCs [257]. Interestingly, both products and substrates
of the RA pathway, 5 µM atRA and 1 µM ROL, respectively, were shown to inhibit ALDH1+

CSC populations in cisplatin-resistant NSCLC cells [258]. Recently, Bonakdar et al. showed
the importance of gut bacteria and their ability to metabolise vitamin A to produce a
variety of retinoids with pharmacological activity [259]. In particular, they compared the
retinoid metabolomes from caecal contents from germ-free (GF), conventional (CV), and
antibiotic-treated mice (CV + Abx) and demonstrated that (1) GF mice had notably reduced
amounts of all-trans-retinol (atROL), atRA, and 13-cis-retinoic acid (13cisRA) compared
with those in CV mice and (2) when compared to that in control mice, CV animals treated
with an antibiotic cocktail displayed a marked decrease in concentrations of all vitamin A
metabolites except for RE. These results indicate that dietary vitamin A can be converted
into ROL and its active metabolites, atRA and 13cisRA, by the gut microbiota. Besides the
above-mentioned anticancer potential of atRA, it is worth noting that 13cisRA, also known
as isotretinoin, is a key treatment for treating high-risk neuroblastoma and for dermatology.
The presence of 13cisRA in the mouse caecum of CV mice but not GF or CV + Abx mice,
as well as its in vitro production by caecal bacteria, indicates that 13cisRA is a particular
retinoid derived exclusively from microorganism metabolism [259].

6. Conclusions

The identification of CSCs as a significant contributor to and driver of cancer develop-
ment mechanisms, such as tumour growth, recurrence, metastasis, and therapy resistance,
constitutes a significant advancement in the study of cancer and offers researchers the
opportunity to develop new CSC-centric approaches for cancer treatment. The failure
of cancer therapy is mostly due to CSC cell-mediated drug resistance. Characterising
the differences between non-neoplastic tissue stem-cell programs and those of neoplastic
tissue stem cells will be critical in developing therapeutic strategies to selectively target
CSCs without negatively affecting non-neoplastic tissue stem cells. The development of
mechanism-based methods for cancer drug discovery, including targeted therapies and
immunotherapies, has been aided by remarkable improvements in our understanding of
the molecular basis of cancer and tumour cell biology. However, there is a pressing need
for the development of therapeutic approaches that are more successful in overcoming CSC
cell-mediated resistance. In this regard, efforts are currently being made to find effective,
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affordable, and safe anticancer medicines of natural origin. There are now several strong
connections among the host’s nutrition, the composition of the gut microbiota, and the
host’s physiology. Particularly, numerous reports have underlined the key role of diet in
cancer prevention [260,261]. For instance, it has been proven that the Mediterranean diet
regimen significantly lowers the risk of several cancers, particularly colorectal and aerodi-
gestive [262–264], gastric [265], pancreatic [266], breast [267–269], nasopharyngeal [270],
lung [271], prostate [272], and bladder cancer [273].

The impact of the human microbiota on both short- and long-term human health has
been amply shown during the last few decades [274–278]. In recent years, growing evidence
has indicated the causal relationship between intestinal microbial dysbiosis and colorectal
cancer aetiology [279]. In this perspective, to reverse established microbial dysbiosis, a
range of approaches has been employed, including probiotics, prebiotics, postbiotics, an-
tibiotics, and faecal microbiota transplantation (FMT) [280]. Currently, the small molecular
weight compounds (postbiotics) released by the microbiota, which provide the host with
many physiological health benefits, are given much attention. The host’s biochemical
versatility is increased by the large metabolic repertoire of the microbial population, which
supports the activity of mammalian enzymes and allows the host to metabolise a variety
of food substrates [281]. This diet–microbial metabolism feedforward loop modulates a
broad spectrum of events. Here, we reviewed the emerging roles of microbiota-derived
metabolites as CSC-targeting anticancer agents. The body of evidence provided suggests
that postbiotics, bioactive substances derived from gut beneficial microbiota, might be
considered novel promising agents to be used in personalised medicine approaches to re-
establish gut eubiosis while also targeting CSCs. This strategy may encompass the steering
of diet–microbiota interactions toward the production of certain metabolites that could
maximise health benefits. Furthermore, the synergistic effect of diverse microbial products
with standard anticancer agents may suggest their further employment to sensitise CSCs in
chemo-/radiotherapy regimens. In this perspective, postbiotics are superior to probiotics
for industrial production because they are easier to use and store, have a longer shelf life,
are stable across a wide pH and temperature range, and do not produce bioamine. However,
before postbiotics can be employed as probiotic substitutes, more investigation is needed
into the production, distribution mechanisms, and safety standards of medicines and func-
tional foods [137]. Moreover, a crucial aspect to take into account from the viewpoint of
postbiotic-based therapeutics is their targeted delivery in vivo. Indeed, it is crucial to en-
sure that a biomolecule given orally, intravenously, or topically can be transferred to its site
of action without being altered via pharmacokinetics or digestive processes. In this regard,
a recent summary of possible methods for the in vivo delivery of postbiotics was provided
by Abbassi et al. [131]. In conclusion, the reviewed literature highlights that the microbiota
is a valuable resource for the discovery of novel small-molecule drugs, and metabolites
originating from the microbiota may find extensive use in the treatment of cancer, thanks to
their ability to target CSCs. In this respect, further study of the pharmacological interaction
between conventional chemotherapeutic drugs and gut microbiota-derived compounds
will undoubtedly be necessary for the development of improved therapeutic approaches to
eliminate CSCs.

7. Data Collection

For the current review, data were gathered from English-language scientific publica-
tions using different combinations of the following keywords: ‘cancer stem cells’, ‘cancer’,
‘stemness’, ‘signalling pathway’, ‘microbial products’, ‘microbiota metabolites’, ‘bacterial
products’, ‘bacterial metabolites’, ‘probiotic ghosts’, ‘postbiotics’ as keywords in search
queries of different databases and electronic search engines. Publications addressing CSC-
associated mechanisms of therapeutic resistance, and articles describing the activity of gut
microbiota bioactive metabolites toward CSC features were selected.
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Abbreviations

13cisRA 13-cis-retinoic acid
5-FU 5-fluorouracil
ABC ATP-binding cassette
ABCG2 ATP binding cassette subfamily G member 2
AKT serine/threonine kinase
ALDH aldehyde dehydrogenase
AML acute myeloid leukaemia
atRA all-trans-retinoic acid
atROL all-trans-retinol
Bax Bcl-2-associated X protein
Bcl B-cell lymphoma 2
BCRP breast cancer resistance protein
BMI1 polycomb complex protein BMI-1
CFS cell-free supernatant
CLDN-1 claudin-1
CMI clomipramine
CQ chloroquine
CSC cancer stem cells
CYP26 cytochrome P450 26A1
DDR DNA damage response
DIO diet-induced obese
DOC or DCA deoxycholic acid
DOX doxorubicin
DSB double-strand breaks
EA ellagic acid
EGFR epidermal growth factor receptor
EMT epithelial-to-mesenchymal transition
ERK extracellular signal-regulated kinase
FMT faecal microbiota transplantation
FXR farnesoid X receptor
GIST gastrointestinal stromal tumour
GLUT1 glucose transporter 1
gp130 glycoprotein 130
GPR109a G protein-coupled receptor 109a
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HDAC histone deacetylase
SHH sonic hedgehog
HIF hypoxia-inducible factor
ICD immunogenic cell death
IDO1 indoleamine 2,3-dioxygenase 1
IDO2 indoleamine 2,3-dioxygenase 2
IPA indolepropionic acid
JAK Janus kinase
LCA lithocholic acid
LDC lysine decarboxylase
Lgr5 leucine-rich repeat-containing G-protein coupled receptor 5
M3R muscarinic acetylcholine receptor M3
MDR multidrug resistance
MET mesenchymal-to-epithelial transition
MFB metformin-butyrate
miRNA micro-RNA
MRN MRE11–RAD50–NBS1 protein complex
NLRC5 NLR family CARD Domain Containing 5
NOD/SCID non-obese diabetic/severe combined immunodeficient
Notch1 neurogenic locus notch homolog protein 1
OCT3 octamer-binding transcription factor 3
OCT4 octamer-binding transcription factor 4
PKC protein kinase C
RA retinoic acid
SCFA short-chain fatty acid
SOX2 (sex determining region Y)-box 2
STAT3 signal transducer and activator of transcription 3
TDO tryptophan 2,3-dioxygenase
TLR4 Toll-like receptor 4
T-βMCA tauro-β-muricholic acid
Uro urolithin
VEGF vascular-endothelial growth factor
VM vasculogenic mimicry
Wnt Wingless/Integrated
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