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Abstract: It is well known that ω-circulant matrices with ω 6= 0 can be simultaneously diagonalized
by a transform matrix, which can be factored as the product of a diagonal matrix, depending on
ω, and of the unitary matrix Fn associated to the Fast Fourier Transform. Hence, all the sets of
ω-circulants form algebras whose computational power, in terms of complexity, is the same as the
classical circulants with ω = 1. However, stability is a delicate issue, since the condition number
of the transform is equal to that of the diagonal part, tending to max{|ω|, |ω|−1}. For ω = 0, the
set of related matrices is still an algebra, which is the algebra of lower triangular matrices, but they
do not admit a common transform since most of them (all except the multiples of the identity) are
non-diagonalizable. In the present work, we review two modern applications, ranging from parallel
computing in preconditioning of PDE approximations to algorithms for subdivision schemes, and we
emphasize the role of such algebra. For the two problems, few numerical tests are conducted and
critically discussed and the related conclusions are drawn.

Keywords: subdivision schemes; interpolation; ill-posed problems; regularization; ω-circulant
matrices

1. Introduction

When dealing with structured matrices of Toeplitz type [1,2] not related to fast trigono-
metric transforms, the problems of computing the solution of large linear system, the matrix
vector product, or the eigenvalues are greatly accelerated by using them as approximation
matrices belonging to algebras associated to trigonometric transforms [3–6]. Among them,
a very classical choice is the algebra of ω-circulant matrices with ω 6= 0 (see the seminal
book [7] and references therein). In this work, after briefly introducing these matrices
and reviewing a few related applications, we focus on new, challenging problems, such
as parallel computing in preconditioning of approximated partial differential equations
(PDEs) and algorithms for subdivision schemes, highlighting the benefits and drawbacks
of employing ω-circulant matrices.

The paper is organized in the following manner. In Section 2 we introduce the basic
notions on circulant and ω-circulant matrices. In Section 3, after recalling a technique
for the parallel computing of the matrix-vector product and matrix inversion concerning
ω-circulant matrices, we present a general procedure (introduced by Bini [8]) to precon-
dition (block) triangular Toeplitz linear systems. Then, we move on to scalar subdivision
schemes, introducing them in Section 4 and presenting the interpolation model as a direct
problem with its associated inverse problem in Section 5. Section 6 is devoted to selected
numerical experiments and the related critical discussion. To conclude, in Section 7 we
draw conclusions and discuss a few open problems, with special attention to the use of
structured matrices in subdivision schemes.
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2. Some Remarks on Circulant and ω-Circulant Matrices

In this introductory section, we lay the groundwork for the main part of this paper
by recalling the basic definitions and properties of both circulant and ω-circulant matrices.
More information can be found in Ref. [7]. We recall that circulant and ω-circulant matrices
have played a major role in the last four decades for the fast solution of structured linear
systems, mainly of Toeplitz type, but also stemming from approximated PDEs. Classical
references are Refs. [2,9–14], where preconditioned Krylov methods, local Fourier analysis,
and its GLT generalizations are treated with attention to the circulant structure and to
the related fast Fourier transform (FFT); see Ref. [15]. More specific references for the
numerical treatment of PDEs via ω-circulant preconditioning or directly by multigrid
solvers or combination of them can be found in Refs. [10,16–18].

Definition 1. Consider α = [α0, α1, . . . , αn−1] with αj ∈ R. A square matrix C ∈ Rn×n is called
circulant and it is denoted with C = circ(α) if we have

(C)s,t = αs−t (mod n) ∀s, t = 0, . . . , n− 1.

An equivalent and compact representation of C is given by

C =
n−1

∑
j=0

Πj
nαj,

where Πn is the permutation matrix

Πn =



0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0


.

Note that for any fixed p, q ∈ N the matrix C =
q

∑
j=−p

Πj
nαj is circulant, since this sum

can always be traced back to the form in the above definition.
Denoting with ·∗ the conjugate transpose, circulant matrices admit the following

spectral decomposition.

Proposition 1. C can be diagonalized as

C = FnLnF∗n ,

where

Ln = diags=0,...,n−1

(
n−1

∑
j=0

exp
(

2πi
sj
n

)
αj

)
is the diagonal matrix containing the eigenvalues of C and

Fn =
1√
n

[
exp

(
−2πi jk

n

)]n−1

j,k=0
, i2 = −1

is the unitary Fourier matrix.

Proof. By a direct computation of the eigenvalues, it is easy to verify that Πn factorizes as

Πn = FnΩnF∗n (1)
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with
Ωn = diags=0,...,n−1

(
exp

(
2πi

s
n

))
. (2)

The thesis follows.

Remark 1. The eigenvalues of C, namely the diagonal elements of Ln, are given by the Fourier
transform of the first column of C. Alternatively, they can be seen as

Λ(C) =

{
f
(

2πs
n

)
, s = 0, . . . , n− 1

}
,

where the function f (θ) :=
n−1

∑
j=0

αj exp(ijθ) is called (spectral) symbol of C.

ω-circulant matrices represent an extension of the notion of circulant matrix (see,
e.g., Refs. [6,19,20] for more details).

Definition 2. Consider α = [α0, α1, . . . , αn−1] with αj ∈ R. A square matrix Cω ∈ Rn×n is
called ω-circulant and it is denoted with Cω = circω(α) if it holds

(Cω)s,t =

{
αs−t (mod n), if s > t,
ωαs−t (mod n), if s ≤ t,

∀s, t = 0, . . . , n− 1.

A compact representation for Cω is given by

Cω =
n−1

∑
j=0

Πj
n,ωαj,

where Πn,ω is the matrix

Πn,ω =



0 0 0 . . . 0 ω
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0


.

Note that setting ω = 1 leads back to Definition 1. An analogous spectral decomposi-
tion can be derived.

Proposition 2. Cω can be diagonalized as

Cω = Fn,ω Ln,ω F−1
n,ω,

where

Ln,ω = diags=0,...,n−1

(
n−1

∑
j=0

ω j/nexp
(

2πi
sj
n

)
αj

)
is the diagonal matrix containing the eigenvalues of Cω and

Fn,ω = Dω Fn, Dω = diags=0,...,n−1

(
ω−

s
n
)

.
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Proof. Let us write ω = ρ exp(iψ)with ρ > 0 and consider n
√

ω = n
√

ρ exp
(

i ψ
n

)
. Applying (1),

the matrix Πn,ω is diagonalized as

Πn,ω = n
√

ωDωΠnD−1
ω = n

√
ωDω FnΩnF∗n D−1

ω

and the thesis follows.

The above factorization is equivalent to

Πn,ω = n
√
|ω|Dω FnΩn,ω F∗n D−1

ω

with

Ωn,ω = diags=0,...,n−1

(
exp

(
2πs + ψ

n
i
))

,

which, compared with (2), gives a deeper understanding of the role of ω. As in the circulant

case, we stress that for any fixed p, q ∈ N the matrix Cω =
q

∑
j=−p

Πj
n,ωαj is ω-circulant.

Remark 2. With ω = ρ exp(iψ), the eigenvalues of Cω can be expressed as

Λ(Cω) =

{
f
(

2πs + ψ

n

)
, s = 0, . . . , n− 1

}
,

where the function f (θ) :=
n−1

∑
j=0

αjρ
j
n exp(ijθ) is called (spectral) symbol of Cω.

To conclude this section, we extend the above definitions and properties to the
block case.

Definition 3. ConsiderA = [A0,A1, . . . ,An−1] withAj ∈ Rd×d. A square matrix Cω ∈ Rd2×d2

is called ω-(d× d)-block circulant and it is denoted with Cω = circω(A) if it holds

(Cω)s,t =

{
As−t (mod n), if s > t,
ωAs−t (mod n), if s ≤ t,

∀s, t = 0, . . . , n− 1.

A compact representation for Cω is given by

Cω =
n−1

∑
j=0

Πj
n,ω ⊗Aj.

For ω = 1, Definition 3 describes the notion of (d× d)-block circulant matrices, while,
as expected, for d = 1 it reduces to Definition 2. As in the case of d = 1, for any fixed

p, q ∈ N the matrix Cω =
q

∑
j=−p

Πj
n,ω ⊗Aj is ω-(d× d)-block circulant.

Proposition 3. Cω can be diagonalized as

Cω = (Dω ⊗ Id)(Fn,1 ⊗ Id)Ln,ω(F∗n,1 ⊗ Id)(D−1
ω ⊗ Id)

= (Fn,ω ⊗ Id)Ln,ω(F−1
n,ω ⊗ Id)

where

Ln,ω = diags=0,...,n−1

(
n−1

∑
j=0

ω j/nexp
(

2πi
sj
n

)
Aj

)
, (3)
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and Id is the identity of size d.

Remark 3. With ω = ρ exp(iψ), the eigenvalues of Cω can be expressed as

Λ(Cω) =

{
λk

(
f
(

2πs + ψ

n

))
; k = 1, . . . , d; s = 0, . . . , n− 1

}
,

where f (θ) :=
n−1

∑
j=0
Ajρ

j
n exp (ijθ) is a d× d-matrix valued function, called (spectral) symbol of

Cω, and λk( f (θ)), k = 1, . . . , d are its eigenvalue functions.

3. Parallel Solution and Preconditioning of Triangular Toeplitz Linear Systems

In this section, we present a parallel model to perform computations involving ω-
circulant matrices and show an application to the preconditioning of triangular Toeplitz
linear systems. The procedure is summarized in the following section and has been
introduced in 1987 by Bini, who in Ref. [8] addressed the problem of inverting a n× n
triangular Toeplitz matrix and proposed a parallel algorithm that exploits the properties of
ω-circulant matrices.

3.1. Parallel Solution of (Block) Triangular Toeplitz Systems

Since a diagonalization of ω-circulant matrices through the Fourier matrix is available,
it can be used to solve a linear system of the form Cωxω = r, with Cω as in Definition 2,
xω, r ∈ Rn and ω 6= 0, in an efficient way. More precisely, supposing that Cω is invertible
and deriving from Proposition 2 the spectral decomposition

C−1
ω = D−1

ω F∗n L−1
n,ω FnDω,

xω can be calculated as the matrix-vector product C−1
ω r via the following algorithm

1. Compute y = FnDωr via the FFT, with sequential cost O(n log(n));
2. Compute z = L−1

n,ωy, with sequential cost O(n);
3. Compute xω = D−1

ω F∗n z via the FFT, with sequential cost O(n log(n)).

This algorithm has a total sequential cost of O(n log(n)), but, since all the steps can be
fully parallelized, it can be lowered to O(log(n)) in a parallel model of computation.

Now, the key idea to compute the solution of a (lower) triangular Toeplitz linear
system Ax = r, with x, r ∈ Rn and

A =


a0
a1 a0
...

. . . . . .
an−1 · · · a1 a0

, a0, a1, . . . , an−1 ∈ C,

consists in completing A to the following ω-circulant

Cω =


a0 ωan−1 · · · ωa1

a1 a0
. . .

...
...

. . . . . . ωan−1
an−1 · · · a1 a0

 = A + ω


0 an−1 · · · a1

0
. . .

...
. . . an−1

0


and observing that

lim
ω→0

C−1
ω = A−1, lim

ω→0
x−1

ω = x, where xω = C−1
ω r.
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Hence, applying the algorithm described above, the solution of interest x can be
approximated by computing xω, in theory up to an arbitrarily small error for ω → 0.
Nevertheless, in practice an arbitrarily small error may not be attainable, since the condition
number of the transform FnDω corresponds to the condition number of Dω, which tends
to max{|ω|, |ω|−1} as n→ ∞ and thus tends to infinity as ω → 0, causing stability issues.
See the next subsection for a discussion in the setting of preconditioning.

The cost of this computation amounts to O(n log(n)) in a sequential implementation
and to O(log(n)) in a parallel implementation. We refer the reader to Ref. [8] for details
and two strategies that allow for the retrieval of the exact solution.

We stress that, although for the sake of clarity the above discussion takes into account
the lower triangular case only, the technique can be easily extended to block triangular and
upper triangular Toeplitz matrices.

3.2. Preconditioning for (Block) Triangular Toeplitz Systems

The algorithm described in the previous subsection can be applied in a very straight-
forward way to the preconditioning of linear systems with (block) triangular Toeplitz
structure, allowing for an extremely efficient computation of the solution. On the other
hand, special attention must be paid to the issue of stability, which strongly relies on the
parameter ω. We consider an example to present the approach, but we emphasize that the
same basic ideas pertain to a variety of situations.

The example we use is taken from Ref. [21]. Here, Liu and Wu seek the numerical
solution of the linear wave equation model

ytt − ∆y = f , in Ω× (0, T),
y = 0, on ∂Ω× (0, T),
y(·, 0) = ψ0, yt(·, 0) = ψ1 in Ω,

(4)

where Ω ⊂ Rd with d > 1 is a bounded and open domain with Lipschitz boundary, ψ0,
ψ1 are the initial conditions and f is a given source term. The equations are discretized
all-at-once in time by means of implicit finite-difference schemes (see Ref. [21] for details).
In the two-dimensional case with Ω a rectangle, the attained matrix shows the following
block lower triangular Toeplitz structure

K =
1
τ2


L
−2Im L

L −2Im L
. . . . . . . . .

L −2Im L

, L = Im −
τ2

2
∆h,

in which
• m is the number of grid nodes in the spatial mesh and h = 1

m+1 is the spatial step size;
• τ is the time mesh step size, obtained as T

n , where n is the number of time steps;
• Im is the identity matrix of size m;
• ∆h is the matrix obtained by discretizing the Laplacian operator ∆ in (4) with the

central finite difference method.

The associated linear system encompasses all the time steps at once and its solution
corresponds to the solution to (4) at each time step simultaneously. In other words, if
yj ∈ Rm denotes the solution to (4) at the j-th time step, the system has the form

Ky = b, y =

y1
...

yn

, b =

b1
...

bn

, bj ∈ Rm, j = 1, . . . , n
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and therefore the vectors yj, j = 1, . . . , n are computed in parallel as the solution to the
all-at-once linear system with the coefficient matrix K.

To solve this linear system, the authors adopt a preconditioned GMRES method and
construct a class of block ω-circulant preconditioners as follows. Defining B1 and B2 as

B1 =


1
0 1
1 0 1

. . . . . . . . .
1 0 1


n×n

, B2 =


0
1 0

1 0
. . . . . .

1 0


n×n

,

as described in Ref. [22], K can be expressed in the form

K =
1
τ2 (B1 ⊗ L− B2 ⊗ 2Im).

Then, given the matrix Πn,ω as in Section 2 and

Ψn,ω =


1 ω 0
0 1 ω
1 0 1

. . . . . . . . .
1 0 1

,

the generalized preconditioner is defined for ω ∈ (0, 1] as

Pω =
1
τ2 (Ψn,ω ⊗ L−Πn,ω ⊗ 2Im).

By exploiting the simultaneous diagonalization of the ω-circulant matrices Πn,ω and Γn,ω
and the properties of the Kronecker product, Pω can be written as

Pω =
1
τ2 (Γ

−1
ω F∗n ⊗ Im)(D1 ⊗ L− 2D2 ⊗ Im)(FnΓω ⊗ Im),

where Fn is the Fourier matrix, Γω = diag
(

1, ω
1
n , . . . , ω

n−1
n

)
, D1 = diag

(√
nFnΓωΨ(1)

n,ω

)
and D2 = diag

(√
nFnΓωΠ(1)

n,ω

)
, with Ψ(1)

n,ω, Π(1)
n,ω being the first column of Ψn,ω and Πn,ω.

Therefore, given a vector r, the proposed algorithm for computing z = P−1
ω r is

the following

1. Compute s1 = (FnΓω ⊗ Im)r via the FFT;

2. Compute s(k)2 = τ2
(

D1(k, k)L− 2D2(k, k)Im

)−1
s(k)1 , k = 1, . . . , n, where s(k)1 , s(k)2

denote the k-th block of dimension m of s1, s2;
3. Compute z = (Γ−1

ω F∗n ⊗ Im)s2 via the FFT;

Which in its essence is identical to the one proposed by Bini, although we must observe
that Ref. [8] is not referenced in the work by Fan and Liu [21].

We conclude this section by discussing the matter of stability when dealing with
ω-circulants. While theoretically the aforementioned algorithm may be applied whenever
ω 6= 0, in practical implementation exceedingly small values of the parameter will cause
stability issues, which should be considered, when stating the global precision of a solution
method. In fact, as we mentioned in the previous section, the condition number of the
transform FnΓω is equal to that of Γω, which tends to max{|ω|, |ω|−1} as n → ∞ and
therefore tends to infinity as ω → 0.

We tested the stability of the procedure described above by fixing a vector x, computing
b = Pωx and retrieving the starting vector as P−1

ω b with the spectral decomposition of
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Pω, using the algorithm described above and in Ref. [21]. We denote the retrieved vector
with x̃.

As a first example, we set m = 28, n = 28, x =
[
sin
(

jπ
nm + 3

)]
j=1,...,nm

and show the

relative errors between x and x̃ as the parameter ω decreases in Table 1. Clearly, as ω
gets closer to zero, the error grows and x̃ ceases to be an accurate approximation of x,
especially in the right part in accordance with the accumulation errors in the solution of a
lower triangular system. In particular the error for very small values of ω becomes even
worse than that obtained when using a direct inherently sequential algorithm working for
triangular systems (ω = 0). Figure 1 shows the plots of the two vectors for ω = 10−16.

Table 1. The relative error between x =
[
sin
(

jπ
nm + 3

)]
j=1,...,nm

and x̃ as ω decreases.

ω ‖x−x̃‖
‖x‖

10−2 1.81× 10−14

10−4 4.93× 10−13

10−6 1.52× 10−11

10−8 1.28× 10−9

10−10 1.15× 10−7

10−12 7.47× 10−6

10−14 4.76× 10−4

10−16 2.20× 10−2

10−18 1.23× 10

Our second example, where x is this time chosen at random, grants similar results,
collected in Table 2. We observe that this matter is not addressed in Ref. [21].

Table 2. The relative error between x randomly chosen and x̃ as ω decreases.

ω ‖x−x̃‖
‖x‖

10−2 4.06× 10−14

10−4 1.84× 10−12

10−6 6.04× 10−11

10−8 5.80× 10−9

10−10 8.41× 10−7

10−12 4.96× 10−5

10−14 6.31× 10−3

10−16 2.18× 10−1

10−18 6.13× 10

Because of these instability issues, the possibility of using preconditioned MINRES
recently emerged, where the preconditioner is taken from the τ algebra whose eigenvector
matrix can be chosen as a real symmetric orthogonal and very stable transform (see Ref. [22]
and the references therein). This type of methods, called all-at-once, have attracted a
remarkable attention in the last 10 years for the potential use in parallel in time methods
for evolution of PDEs; see Refs. [23–26] and their references. Further works on the matter
can be found in Refs. [27,28], also for fractional differential equations.

We now consider the second application of ω-circulants in the context of subdivision
schemes for generating curves and surfaces.
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(a) Comparison between x and x̃

(b) Relative error between x and x̃

Figure 1. x =
[
sin
(

jπ
nm + 3

)]
j=1,...,nm

and x̃ for ω = 10−16.

4. Basic Ideas on Scalar Subdivision Schemes

A subdivision scheme is an iterative method that generates curves and surfaces based
on successive refinements of a polygon or a mesh. The rules that determine said refinements
can be formulated by linear, non-linear, or geometrical operators [29–33]. The case of linear
rules is related to refinable functions in Wavelets Theory [34]. In this setting, the vertices
of the polygon or mesh are the coefficients in a particular basis of the so-called subdivision
curve or subdivision surface. In what follows we focus on the case of the subdivision curve.

Linear uniform subdivision schemes are based on the notion of refinable function, i.e., a
function ϕ(t) satisfying a relation of the form

ϕ(t) = ∑
j∈Z

aj ϕ(2t− j), t ∈ R, aj ∈ R (5)
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and such that, given an initial set of control points P0 = {P0
j ∈ Rm, j = 0, . . . , n− 1} and the

periodisation P0
j = P0

j+n, ∀j ∈ Z, the closed curve

c(t) = ∑
j∈Z

P0
j ϕ(t− j), t ∈ R (6)

can also be written as
c(t) = ∑

j∈Z
Pk

j ϕ
(

2kt− j
)

, t ∈ R

with
Pk+1

i = ∑
j∈Z

ai−2jPk
j , k ∈ N, i = 0, . . . , 2k+1n− 1, (7)

where for the set Pk of new points the periodisation modulo 2kn holds, i.e., Pk
j = Pk

j+2kn,
j ∈ Z.

The relation in (7) is known as the subdivision rule and defines a subdivision scheme,
while the coefficients a = {aj, j ∈ Z} in (5) form the so-called subdivision mask. Then,
a subdivision scheme is an iterative method where a curve is generated by consecutive
refinements of an initial polygon (see Figure 2). Regarding the convergence of this scheme,
it has been proven that the sequence of polygons with vertices in Pk converges uniformly
to a smooth curve c(t), although in practice a few iterations are sufficient to produce a
polygon that appears smooth to the human eye.

(a) P0 (b) P1 (c) P2 (d) P4

Figure 2. Iterations of a non-interpolatory subdivision scheme. (a) Control points P0 (blue balls).
(b) First refinement of the polygon with vertices P1. (c) Second refinement with vertices P2. (d) Fourth
refinement and interpolated points V0 in the limit (red squares).

The sampling of the curve at integer parameters is derived from (5) and reads as

c(s) = ∑
j∈Z

P0
j ϕ(s− j), t ∈ Z, s ∈ Z. (8)

The set of values β0 =
{

β0
j = ϕ(j), j ∈ Z

}
is called first limit stencil and it can be obtained

from a linear system of equations stemming from (5) (see Ref. [35]) or by performing
the spectral analysis of the local subdivision matrix (see Refs. [33,36,37]). In a similar way,
the second limit stencil and higher order stencils βk−1 =

{
βk−1

j = ϕ(k−1)(j), j ∈ Z
}

, k ∈ N,
k ≥ 1 can be determined. Hence, by (6) the k-th derivative of the curve at dyadic parameters
t = Z/2m is

c(k)
( s

2m

)
= ∑

j∈Z
βk

s−jP
m
j . (9)

The mask and the stencils have compact support and therefore in (5) they define a
function that has compact support. Even though we use indexes ranging over Z, we are
dealing with finite masks and stencils and correspondingly we have only a finite number
of non-zero elements.
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Given the control points P0, let us denote with V0 = {V0
j ∈ Rm, j = 0, . . . , n− 1} the

points obtained by evaluating the subdivision curve with (8), i.e., V0
j = c(j), j = 0, . . . , n− 1

(see Figure 2d). This problem is modeled by the linear operator Mn such that

MnP0 =



β0 β−1 β−2 . . . β2 β1

β1 β0 β−1 . . . β3 β2

. . . . . . . . . . . . . . . . . .

β−1 β−2 β−3 . . . β1 β0





P0
0

P0
1
...

P0
n−1


=



V0
0

V0
1
...

V0
n−1


=



c(0)

c(1)
...

c(n− 1)


. (10)

Mn is referred to as the matrix that represents the point interpolation operator for linear
subdivision schemes. Note that the structure of Mn is circulant, according to Definition 1,
and the first row is the vector

βn :=
[
β0, β−1, . . . , β−p, 0, . . . , 0, βq, . . . , β1

]
∈ Rm.

Depending on the symmetry of the stencils, some particular cases may be analysed.

Definition 4. A subdivision scheme is called

• Odd-symmetric if a−j = aj;
• Even-symmetric if a1−j = aj for j ∈ N.

This definition contains particular cases of the primal [38] and dual [39] form of
subdivision schemes, respectively, and the corresponding limit stencils show the same
type of symmetries [33]. As a consequence, the odd-order limit stencil inherits the odd or
even symmetry:

β2d
j =

β2d
−j, for odd-symmetric schemes,

β2d
1−j, for even-symmetric schemes,

d ∈ N. (11)

Then, for the even-order limit stencil we get

β2d+1
j =

−β2d+1
−j for odd-symmetric schemes,

−β2d+1
1−j for even-symmetric schemes,

d ∈ N. (12)

For d ≥ 1 it holds ∑
j∈Z

βd
j = 0 and ∑

j∈Z
β0

j = 1.

Now, let us consider the interpolation of n points V0 with a subdivision curve. It is
natural to think of those points as a sampling of the curve at integer parameters V0

s = c(s),
s = 0, . . . , n − 1, as in (8). By doing so, we get the inverse problem with respect to (10)
(see Ref. [40]).

In this setting, an interpolation problem is said to be singular if the operator Mn is
singular and therefore ill-posed for the selected stencil. In Section 5, we show that in some
cases the singularity depends on the value of n.

To solve a non-singular interpolation problem where Mn has a circulant structure, one
can take advantage of the diagonalization through the Fourier matrix recalled in Section 2.
However, in the singular case more strategy is needed. In the literature, in the context of
curve and surface schemes those cases are treated by a fitting model [41] or by a fairness
functional [42] while introducing more points as degrees of freedom. Another possible
approach consists in the regularization in a Tikhonov sense [40,43]. Moreover, it is possible
to consider a non-singular perturbation of the matrix Mn. This is the strategy that we
explore in Section 5.2, using a computationally convenient ω-circulant matrix.
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The Block-Circulant Case for Hermite Interpolation

Considering the case of interpolating points and associated derivatives up to the
(d− 1)-th order, with tangent interpolation as the first instance, Equation (9) provides some
insight. Let U(d) = [V0

0 , V1
0 , . . . , Vd−1

0 , V0
1 , V1

1 , . . . , Vd−1
1 , . . . , V0

n−1, V1
n−1, . . . , Vd−1

n−1 ]
> be the

data that we wish to interpolate and suppose that there exists a sequence
{

tj, j = 0, . . . , n− 1
}

such that the subdivision curve c(t) interpolates the data U(d), i.e.,

c(k)(tj) = Vk
j , for k = 0, . . . , d− 1, j = 0, . . . , n. (13)

If the curve c(t) is defined by n control points as in (10), we may get a solution to the
point interpolation problem (10) that contradicts the values of higher order derivatives.
Thus, in order to interpolate all the information in U(d) with an equal amount of variables
and equations, we need to use nd control points P0 = {P0

j ∈ Rm, j = 0, . . . , nd− 1} with

the periodisation P0
j = P0

j+nd, j ∈ Z. A natural choice is to set the parameters in (13) as
tj = dj, j = 0, . . . , n− 1. Then, from (9) we get the nd equations

c(k)(dj) = Vk
j = ∑

j∈Z
P0

s βk
dj−s, j = 0, . . . , n− 1, k = 0, . . . , d− 1,

which can be represented in matrix form as

MnP0 =



B0 B−1 B−2 . . . B2 B1

B1 B0 B−1 . . . B3 B2

. . . . . . . . . . . . . . . . . .

B−1 B−2 B−3 . . . B1 B0





P0
0

P0
1
...

P0
nd−1


= U(d), (14)

where the d× d blocks of the matrix Mn ∈ Rnd×nd satisfy Bj = Bj−n for j = 1, . . . , n and

Bj =



β0
dj β0

dj−1 β0
dj−2 . . . β0

d(j−1)+1

β1
dj β1

dj−1 β1
dj−2 . . . β1

d(j−1)+1
. . . . . . . . . . . . . . .

βd−1
dj βd−1

dj−1 βd−1
dj−2 . . . βd−1

d(j−1)+1


. (15)

The structure of the matrix in (14) is the block adaptation of the scalar version (10), i.e.,
it is a block circulant matrix, as described in Definition 3. Indeed, when d = 1, Mn ≡ Mn
and U(1) ≡ V0. Therefore, the Hermite problem represents the block extension of the point
interpolation problem in the matrix sense and we can exploit the corresponding linear
algebra tools to solve both inverse problems.

5. Interpolation Model with Scalar Subdivision Schemes

Given the problem MnP0 = V0 in (10), let us apply the tools available for circulant
matrices to solve it. Indeed, by Remark 1 we deduce that the spectrum of Mn is

Λ(Mn) =
{

b
(

2π j
n

)
, j = 0, . . . , n− 1

}
(16)

and for the stencils with compact support in [−p, q] the symbol can be written as

b(θ) :=
q

∑
k=−p

βkexp(ikθ),
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independent of n. Thus, the singularity of Mn depends on the existence of roots for b(θ) in
the grid 2πN

n ∩ [0, 2π].
For odd-symmetric schemes, βn :=

[
β0, β−1, . . . , β−p, 0, . . . , 0, βp, . . . , β1

]
∈ Rn and thus

b(θ) =
p

∑
k=−p

βkexp(ikθ) = β0 + 2
p

∑
k=1

βk cos(kθ). (17)

Conversely, for even-symmetric schemes βn :=
[
β0, β−1, . . . , β−p+1, 0, . . . , 0, βp, . . . , β1

]
∈

Rn, hence

b(θ) =
p

∑
k=−p+1

βkexp(ikθ) =
p

∑
k=1

βk(exp(i(−k + 1)θ) + exp(ikθ))

= exp
(

iθ
2

) p

∑
k=1

βk

(
exp

(
i
(
−k +

1
2

)
θ

)
+ exp

(
i
(

k− 1
2

)
θ

))

= 2exp
(

iθ
2

) p

∑
k=1

βk cos
(
(2k− 1) θ

2

)
. (18)

Either way, the first limit stencil satisfies b(0) = 1. Note that for odd-symmetric
schemes it holds

b(2π − θ) = β0 + 2
p

∑
k=1

βk cos(k(2π − θ)) = β0 + 2
p

∑
k=1

βk cos(kθ) = b(θ),

while for the even-symmetric schemes

b(2π − θ) = 2exp
(

i(2π − θ)

2

) p

∑
k=0

βk cos
(
(2k− 1) (2π−θ)

2

)
= 2exp

(−iθ
2

) p

∑
k=0

βk cos
(
(2k− 1) θ

2

)
= exp(−iθ)b(θ).

Therefore, the study of the symbol can be restricted to the interval [0, π] instead of [0, 2π].
In particular, for both (17) and (18), b(θ) = 0 implies b(2π − θ) = 0.

From (18), for even-symmetric schemes we find b(π) = 0 independently of n and β.
As π belongs to the grid 2πN

n ∩ [0, 2π] for even values of n, then from (16) we obtain the
following result.

Proposition 4. For any even-symmetric subdivision scheme, if the amount of interpolated points n
is even, then the interpolation matrix Mn is singular.

On the other hand, in the context of odd-symmetric schemes the symbol may also
vanish in the grid 2πN

n ∩ [0, 2π]. As an example, consider the primal family of J-spline
schemes [38] for the particular case that generates C3 subdivision curves

Pk+1
2j = 1

4 Pk
j−1 +

1
2 Pk

j +
1
4 Pk

j+1,

Pk+1
2j+1 = 1

16 Pk
j−1 +

7
16 Pk

j +
7

16 Pk
j+1 +

1
16 Pk

j+2, k ∈ N, j ∈ Z,
(19)

with first limit stencil
β =

1
48
{1, 12, 22, 12, 1}.
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The symbol

b(θ) = 11
24 + 1

2 cos(θ) + 1
24 cos(2θ) = (cos(θ) + 1)

(
cos(θ) + 1

5

)
has a root at θ = π, which belongs to the grid 2πN

n ∩ [0, 2π] when n is an even number.
In the Hermite interpolation scenario, we can find a singular point and tangents

interpolation operator even when the point interpolation operator is not singular. Let us
consider for instance the cubic B-spline scheme, whose first and second limit stencil are
{ 1

6 , 4
6 , 1

6} {− 1
2 , 0, 1

2}, respectively. Then the corresponding matrices are

4
6

1
6 0 . . . 0 1

6
1
6

4
6

1
6 . . . 0 0

...
. . . . . . . . . . . .

...
1
6 0 0 . . . 4

6
1
6


,

which is not singular, and

4
6

1
6

0 1
2

0 0

0 0
. . .

0 0

0 0

0 1
6

0 − 1
2

0 1
6

0 − 1
2

4
6

1
6

0 1
2

. . .
0 0

0 0

0 0

0 0
...

. . . . . . . . .
...

0 0

0 0

0 0

0 0
. . .

0 1
6

0 − 1
2

4
6

1
6

0 1
2


which is singular with kernel of dimension 1.

As a matter of fact, in the specific case of point and tangent interpolation with odd-
symmetric schemes, the following proposition holds.

Proposition 5. Using an odd-symmetric subdivision scheme and setting d = 2, the attained
matrix Mn is singular.

Proof. From (3) and (15), for odd-symmetric schemes we have that the (1, 1)-block of Ln is:

(Ln)1,1 =
d p

2 e
∑
j=0

[
β0
−2j β0

−2j−1
β1
−2j β1

−2j−1

]
+
d p

2 e
∑
j=1

[
β0

2j β0
2j−1

β1
2j β1

2j−1

]

=

[
β0

0 β0
1

β1
0 −β1

1

]
+
d p

2 e
∑
j=1

[
β0

2j β0
2j−1

−β1
2j −β1

2j+1

]
+
d p

2 e
∑
j=1

[
β0

2j β0
2j−1

β1
2j β1

2j−1

]

=

β0
0 + 2

d p
2 e

∑
j=1

β0
2j 2

d p
2 e

∑
j=1

β0
2j−1

0 0

, (20)

where we used the fact that β1
0 = 0 from (12). The block (Ln)1,1 is singular, since it has a

null row, and the matrices Ln and Mn are in turn singular because of (3) .
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5.1. A Solution by Shifting Parameters

Propositions 4 and 5 state that, for even-symmetric and odd-symmetric masks, the
matrices Mn and Mn are singular independently of the mask. In this section, we propose a
different model for interpolating that avoids this inconvenience. What follows is motivated
by Plonka’s work [44] on Hermite interpolation with B-spline parametric curves.

Let us consider the dual subdivision schemes again. In Section 4, by interpolating at
the parameters tj = j, j = 0, . . . , n− 1, we obtained the first limit stencil as

V0
j = c(j) = ∑

s∈Z
ϕ(j− s)P0

s =
q

∑
s=−p

ϕ(s)P0
j−s, with suppϕ = [−p, q].

Here we consider the variant

V0
j = c(j + σ) = ∑

s∈Z
ϕ(j− s + σ)P0

s =
q−1

∑
s=−p

ϕ(s + σ)P0
j−s

with σ ∈ (0, 1). More specifically, given a positive integer ν, we investigate the method for
σ varying in 1

νZ∩ (0, 1). The evaluation of the basic function is done as in [35].
In the case of symmetric masks, as in (11) and (12), the following results hold.

Proposition 6. For an odd-symmetric subdivision scheme with mask a = {a−p, a−p+1, . . . , ap}
where p ∈ N, the stencil obtained with the set ϕ

(
1
2 +Z

)
∩ [−p, p] is even-symmetric.

Analogously, for an even-symmetric subdivision scheme with mask a = {a−p, a−p+1, . . . , ap+1}
where p ∈ N, the stencil obtained with the set ϕ

(
1
2 +Z

)
∩ [−p, p + 1] is odd-symmetric.

Our proposal consists in modifying the interpolation models (10) and (14) to
c(k)
(

1
2 + dj

)
= Vk

j . For point interpolation, the symbol changes from (18) to (17) and
this way we resolve the singularity in Proposition 4. Figure 3 portrays an example of
even-symmetric subdivision scheme where after a 1

2 -shift the new matrix is nonsingular.
However, when the new stencil leads to a trigonometric polynomial with roots in the grid
1
nZ∩ [0, 1] it is not possible to avoid the singularity of the corresponding matrix. In such
situations, one may consider the general approach V0

j = c(j + σ), with σ ∈ (0, 1) or treat
the singularity as discussed in the next subsection.

The use of shifted parameters for interpolation can be employed as a degree of freedom
for the geometry of the interpolation curve (see Figure 4). Nevertheless, the symmetry
provided by the subdivision scheme might be lost.

Initial data
with shifted parameters
LS with integer parameters

Figure 3. Point interpolation with a dual subdivision scheme [39] considering the shifted parameters.
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(a) Interpolation at c(Z) (b) Interpolation at c
({

Z+ 1
5

})
Figure 4. Interpolation with quintic uniform B-spline at different parameter values.

Now let us consider the point and tangent interpolation with the interpolation at the
parameters 1

2 +Z for odd-symmetric schemes. The first block (20) in the factorization of
Mn becomes

(Ln)1,1 =
d q

2 e
∑

j=−d p−1
2 e

 ϕ(2j + 1
2 ) ϕ(2j− 1

2 )

ϕ′(2j + 1
2 ) ϕ′(2j− 1

2 )



=


ϕ( 1

2 ) +
d p−1

2 e
∑
j=1

(ϕ(2j− 1
2 ) + ϕ(2j + 1

2 )) ϕ( 1
2 ) +

d p−1
2 e

∑
j=1

(ϕ(2j− 1
2 ) + ϕ(2j + 1

2 ))

ϕ′( 1
2 ) +

d p−1
2 e

∑
j=1

(ϕ′(2j + 1
2 )− ϕ′(2j− 1

2 )) −ϕ′( 1
2 ) +

d p−1
2 e

∑
j=1

(ϕ′(2j− 1
2 )− ϕ′(2j + 1

2 ))



=

Σ1 Σ1

Σ2 −Σ2

.

with

Σ1 =
d q

2 e
∑

j=−d p−1
2 e

ϕ
(

2j + 1
2

)
and Σ2 =

d q
2 e

∑
j=−d p−1

2 e
ϕ′
(

2j + 1
2

)
.

This block is not singular for all stencils, as was the case when σ = 0 in Proposition 5.
Figure 5b is an example of an odd-symmetric subdivision scheme where after a 1

2 -shift the
new matrix is nonsingular, while Figure 5a shows the least square solution (σ = 0), which
in this case presents artifacts—loops, to be precise.

In the cases of point interpolation with odd-symmetric schemes and point-tangent
interpolation with even-symmetric schemes, we stick with the choice of interpolation at
integer parameters.
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(a) Least square solution (b) Shifted-parameters solution

Figure 5. Interpolating points and tangents directions with a cubic B-spline curve by shifting
the parameters.

5.2. Our Regularizing Strategy

We have already observed that in some cases the matrix obtained by interpolating at
integer parameters is singular and that sometimes the singularity cannot be avoided neither
by a proper shift of the parameters. In those cases, independently of the interpolated points,
the inverse of Mn or Mn is not defined and an alternative solution has to be chosen. The
first idea is using the pseudo-inverse of the matrix, providing a least-square solution [41].
Another approach is considering a regularization, which is an approximation of the ill-posed
problem by a family of neighboring well-posed problems [40]. Among the regularization
methods for solving an ill-posed problem whose discrete form is the linear system Ax = b
we mention the Tikhonov approach, which consists in solving the family of problems

argminx‖Ax− b‖2 + λ‖Lx‖2,

depending on the regularization parameter λ. The latter controls the weight given to the
residual norm and the regularization term. The optimal value for λ can be chosen by
discrepancy principle, generalized cross-validation, or the L-curve method [43]. The operator L,
which can be taken as the identity operator or a differential operator (for instance, the first
or second derivative operator), looks to alter the least square solution to enforce special
features of the regularized approximations [40,43]. As a necessary condition it is required
that Ker(A) ∩ Ker(L) = {0}. This problem is equivalent to solve the normal equations
(A>A + λL>L)x = A>b for each λ.

Since the quality of the obtained solution either by least-squares or Tikhonov regu-
larization is not acceptable in many cases, in the following we study a new regularized
problem depending on a parameter ω in which a (possibly block) ω-circulant matrix
replaces the original circulant coefficient matrix.

First we consider the basic interpolation case where Mn,ω is the ω-circulant counterpart
of Mn with ω = exp(iψ). By Remark 3, the eigenvalues of the new matrix Mn,ω are given
by the standard uniform sampling of the function b(θ + ψ

n ). In this manner, the spectrum
of Mn is shifted. We observe that Mn and Mn,ω are both singular if there exists at least two
roots of b(θ) in the grid 2πN

n ∩ [0, 2π] with distance ψ
n .

If the latter condition is not satisfied, then the initial system MnP0 = V0 is singular,
while its perturbation Mn,ωP0 = V0 has a unique, complex solution, even though the
original problem is defined in the real domain. However, for ψ small enough in modulus,
the imaginary part of the solution becomes negligible and the perturbed system is close to
the original one.
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Secondly, we consider the interpolation of points and associated tangent vectors. The
block (20) in the corresponding ω-(2× 2)-circulant matrix Mn,ω is

(Ln,ω)1,1 =
d p

2 e
∑
j=0

Bj ω j/n +
d p

2 e
∑
j=1

B−j ω(n−j)/n

=

β0
0 β0

1

β1
0 −β1

1

+
d p

2 e
∑
j=1

β0
2j β0

2j−1

β1
2j β1

2j−1

ω j/n +
d p

2 e
∑
j=1

 β0
2j β0

2j+1

−β1
2j −β1

2j+1

ω(n−j)/n

=


β0

0 +
d p

2 e
∑
j=1

β0
2j

(
ω j/n + ω(n−j)/n

)
β0

1

(
1 + ω(n−1)/n

)
+
d p

2 e
∑
j=2

β0
2j−1

(
ω j/n + ω(n−j)/n

)
d p

2 e
∑
j=1

β1
2j

(
ω j/n −ω(n−j)/n

)
β1

1

(
ω1/n − 1

)
+
d p

2 e
∑
j=2

β1
2j−1

(
ω j/n −ω(n−j)/n

)


.

Then, Mn,ω is not necessarily singular, even if Mn is, and we can solve Mn,ωP0 = U(2)

rather than (14). In this case, the structure of the symbol differs from (17) and (18).

Remark 4. For the particular case of cubic B-spline curves, in Ref. [45] the point and tangent
interpolation problem is solved by considering only the case of unitary tangents V1

j , j = 0, . . . , n− 1.
Their proposal consists in a non-linear iterative method and convergence has not been proven.

6. Numerical Tests

In the present section we perform a few numerical tests in order to assess the quality of
the solution obtained by adopting the ω-circulant regularization, in the setting of a singular
interpolation operator. In all the following examples we employ the J-spline family [38].

We denote by P̂0 and P̂0
ω the control point vectors obtained as M†

nU(1) (resp. M†
nU(2)

in the Hermite case) and M†
n,ωU(1) (resp. M†

n,ωU(2) in the Hermite case), respectively. The
pseudo-inverses M†

n,ω and M†
n,ω are given by

(Fn,ω ⊗ Id)L†
n,ω(F−1

n,ω ⊗ Id), with (L†
n,ω)k =

{
1

(Ln,ω)k
, if (Ln,ω)k 6= 0,

0 , if (Ln,ω)k = 0,

with d = 1 for M†
n,ω and d = 2 for M†

n,ω , and where (Ln,ω)k is the k-th diagonal element in
(3). For ω = 1 we immediately get M†

n and M†
n.

We compare the subdivision curves generated from the control point vectors P̂0 and
P̂0

ω ; firstly in terms of interpolation, which is the main goal. With this purpose, consider the
residuals MnP̂0 −U(1), MnP̂0 −U(2), MnP̂0

ω −U(1) and MnP̂0
ω −U(2) which are vectors of

points. Notice that the last two residuals are independent from the systems of equations
Mn,ωP̂0

ω = U(1), Mn,ωP̂0
ω = U(2), but they are related to the interpolation problems (10)

and (14) with the regularized solution.
By reasoning in local terms, we choose the norms∥∥∥MnP̂0

ω −U(1)
∥∥∥,
∥∥∥MnP̂0

ω −U(2)
∥∥∥

with ‖A‖ := supj

∥∥∥(A)j

∥∥∥
2
, Aj the j-row of matrix A and ‖ · ‖2 the vector 2-norm. This way

we measure how far the interpolated information in U(d), d = 1, 2 is from the approxima-
tions in Mn,ωP̂0

ω, and Mn,ωP̂0
ω by the maximum distance.
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On the other hand, reasoning in global terms we consider the relative error with
Frobenius matrix norms ∥∥∥MnP̂0

ω −U(1)
∥∥∥

fro∥∥U(1)
∥∥

fro

,

∥∥∥MnP̂0
ω −U(2)

∥∥∥
fro∥∥U(2)

∥∥
fro

.

In order to evaluate the quality of each curve, proper fairness measures could be
used [46,47], penalizing artifacts such as loops (see Figure 5a).

In each figure, the curve obtained with the least square solution P̂0 is portrayed in
solid green lines, while the one obtained with the regularized solution P̂0

ω is represented by
dashed red lines.

The solution computed with the ω-circulant matrix interpolates the given points even
if a non singular matrix is used. Indeed, in Figure 6, where we set ω = exp(5× 10−3i),
we only see one line because the two solutions P̂0 and P̂0

ω visually match. We get similar
results with values of ω close to exp(5× 10−3i). Hence, the quality of the interpolating
solution is not affected by the perturbation.

Applying a primal scheme with odd-symmetric mask as in (19), with a singular
interpolation operator, the data points are not interpolated by the least square solution (see
Figure 7). The spectrum of Mn is perturbed considering a regularized solution and shifting
the null eigenvalue as shown in Figure 8. As a result, the condition number is improved,
but the approximation is not. In Figure 7 the results are shown for ω = exp(5× 10−2i).
The residual norms are

‖MnP̂0 −U(1)‖ = 0.3, ‖MnP̂0
ω −U(1)‖ = 0.6,∥∥∥MnP̂0 −U(1)

∥∥∥
fro∥∥U(1)

∥∥
fro

= 5.5× 10−2, and

∥∥∥MnP̂0
ω −U(1)

∥∥∥
fro∥∥U(1)

∥∥
fro

= 6.0× 10−2.

Data points
Least square solution
Regularized solution

Figure 6. Point interpolation with a quintic B-spline curve (that belongs to the J-spline family). Green
solid line: least square solution. Red dashed line: regularized solution.

It is worth noticing that the regularized curve is closer to the interpolation points,
although this is not reflected in the norms.
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Data points
Least square solution
Regularized solution

Figure 7. Point interpolation with a J-spline curve (19) with singular interpolation operator (that
belongs to the J-spline family). Green solid line: least square solution. Red dashed line: regular-
ized solution.
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Figure 8. Eigenvalues of Mn and Mn,ω (real part) in Figure 7.

In the block setting for point and tangent interpolation (see Figure 9) the situation is
similar. Even though the spectrum of Mn,ω is perturbed with respect to Mn and does not
contain a null eigenvalue as the latter (see Figure 10), the solution is not improved; refer to
Figure 9 in which ω = exp(5× 10−1i). We observe that the points are interpolated, but the
tangent interpolation is less accurate. In this case the residual norms are

‖MnP̂0 −U(2)‖ = 2.22× 10−15, ‖MnP̂0
ω −U(2)‖ = 1.15× 10−1,∥∥∥MnP̂0 −U(2)

∥∥∥
fro∥∥U(2)

∥∥
fro

= 2.89× 10−16, and

∥∥∥MnP̂0
ω −U(2)

∥∥∥
fro∥∥U(2)

∥∥
fro

= 1.09× 10−2.



Algorithms 2023, 16, 328 21 of 24

Data points
Least square solution
Regularized solution

Figure 9. Point and tangent vectors interpolation with a quintic B-spline curve (that belongs to the
J-spline family). Green solid line: least square solution. Red dashed line: regularized solution.
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Figure 10. Eigenvalues of Mn and Mn,ω (real part) in Figure 9.

However, if we consider a known solution P0, we can generate U(1) = MnP0 from the
columns of Mn and obtain, for a suitable parameter ω, a solution that interpolates the points
as accurately as the least square solution (see Figure 11 in which ω = exp(5× 10−3i)), even
though the spectra of Mn and Mn,ω are different (see Figure 12).

Data points
Least square solution
Regularized solution

Figure 11. Point interpolation with a J-spline curve (19) with a singular interpolation operator for a
known solution. Green solid line: least square solution. Red dashed line: regularized solution.
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Figure 12. Eigenvalues of Mn and Mn,ω (real part) in Figure 11.

7. Conclusions

In the present work we explored two distinct applications of ω-circulant matrices.
After a brief introduction of this matrix algebra and its fundamental properties, we

first described their role in the parallel solution and preconditioning of (block) triangular
linear systems of Toeplitz type. We recalled an efficient classical algorithm, which relies on
the well-known diagonalization of ω-circulants through the FFT, and studied the stability
issue, which needs special attention due to the fact that the condition number of the fast
transform strongly depends on the parameter ω.

Then we analyzed subdivision schemes, for which a few questions remain open.
Indeed, the interpolation of points and tangent vectors with scalar subdivision schemes

as inverse problem may lead to a system of equations with a singular matrix. We proposed
as a first possible solution to change the common approach of interpolating at integer
parameters in dependence of the symmetry of the subdivision mask. With this solution we
avoid the presence of a singular matrix in the model and we still benefit from the Fourier
factorization of a non-singular circulant or block-circulant matrix.

In some cases it is not possible to avoid the singularity while keeping the symmetry
of the stencil. In such situations we considered the solution obtained by the means of
least square solution and related ω-circulant regolarization for the interpolation problem.
More in detail, owing to the singular character of the matrix in the interpolation setting,
difficulties are overcome by perturbing the spectrum, by taking into consideration its
ω-circulant counterpart.

As observed in the numerical experiments, the ω-regularization approach is not
sufficient for solving the problem. When the original is singular, the ω-perturbation is
well conditioned, but the interpolation condition is not represented exactly and the latter
affects the approximation quality. However, the numerical solution stemming from the
ω-circulant linear system interpolates the data points at least in some cases where the
solution is known.

A further open problem is the study of the solution Sol(exp(iψ): in this setting, we
would like to explore the existence of an asymptotic expansion of the form

Sol(exp(iψ)) = Sol + c1ψ + c2ψ2 + c3ψ3 + · · · ,

when a small parameter ψ is considered.
An expansion of the latter type would open the door to simple and cheap extrapolation

procedures for the computation of very precise solutions. Preliminary numerical have been
performed and are encouraging. We are convinced that this research line is worth to be
investigated in future steps.
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