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Abstract: A stroke represents a significant medical condition characterized by the sudden interruption
of blood flow to the brain, leading to cellular damage or death. The impact of stroke on individuals
can vary from mild impairments to severe disability. Treatment for stroke often focuses on gait
rehabilitation. Notably, assessing muscle activation and kinematics patterns using electromyography
(EMG) and stereophotogrammetry, respectively, during walking can provide information regarding
pathological gait conditions. The concurrent measurement of EMG and kinematics can help in
understanding disfunction in the contribution of specific muscles to different phases of gait. To this
aim, complexity metrics (e.g., sample entropy; approximate entropy; spectral entropy) applied to EMG
and kinematics have been demonstrated to be effective in identifying abnormal conditions. Moreover,
the conditional entropy between EMG and kinematics can identify the relationship between gait
data and muscle activation patterns. This study aims to utilize several machine learning classifiers to
distinguish individuals with stroke from healthy controls based on kinematics and EMG complexity
measures. The cubic support vector machine applied to EMG metrics delivered the best classification
results reaching 99.85% of accuracy. This method could assist clinicians in monitoring the recovery of
motor impairments for stroke patients.

Keywords: ischemic stroke; motor dysfunction; EMG; gait analysis; machine learning; complexity
analysis; sample entropy; approximate entropy; spectral entropy; conditional entropy

1. Introduction

A stroke is a remarkable medical condition consisting of the sudden and unexpected
interruption of the blood flow to the brain, leading to cell damage and tissue necrosis in
worse instances [1]. According to the World Stroke Organization (WSO) Global Stroke Fact
Sheet 2022, stroke is the second leading cause of death worldwide and the third-leading
combined cause of death and disability worldwide, with over 12.2 million new strokes
each year [2]. In addition, stroke survivors may develop complications such as paresis
or hemiparesis. These movement impairments can make it challenging to carry out daily
activities which requires balance and walking. As a result, patients may require various
treatments, including robotic rehabilitation, biofeedback training rehabilitation, motor
imagery paradigms, and peripheral electric stimulation. These treatments play a crucial
role in improving or partially restoring locomotor functions [3–6]. Gait analysis can be used
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to assess muscular activity, coordination, and gait patterns in stroke hemiparetic subjects,
to provide them the best personalized rehabilitation.

Gait analysis offers significant insights on anomalies in movement and functional
limitations, usually based on two main types of approaches: quantitative measurements
using instrumented gait analysis (IGA) and observational evaluations using video gait
analysis (VGA) [7]. Instrumented gait analysis utilizes a range of instruments and technolo-
gies to gather accurate and unbiased measurements of movement patterns while walking.
These measurements include factors such as body motion, exerted forces, electrical muscle
activity, foot pressure distribution, and metabolic activation [8,9].

Gait analysis involves the collection of dynamic electromyography (EMG) data to
assess muscle activation patterns while walking. This allows for the examination of muscle
function and coordination [10]. Of note, surface electromyography (sEMG), applied to the
skin over the muscles, has been employed for a long time in gait analysis applications [11],
thanks to its non-invasiveness. Specifically, EMG refers to the process of quantifying
the electrical impulses generated by muscles that are in an active state [12]. In detail,
when a motor neuron stimulates a muscle fiber, the ionic concentration around the lipid
membrane changes. This leads to the creation of a gradient of electrical potential known as a
biopotential. The EMG sensors detect the concurrent presence of these potentials generated
by muscle activation, which represents the combined motor unit action potential. This
approach is often used to examine potential pathological alterations [13,14] or rehabilitative
advantages [15], as well as to assess neuromuscular responses in sports contexts [16,17].
Especially, the implementation of EMG signal analysis techniques seems to play a relevant
role in robotic gait training rehabilitation [18].

Moreover, instrumented gait analysis may use accelerometry and inertial sensor-based
systems to evaluate spatiotemporal gait parameters and lower limbs typical angles, hence
improving the assessment of gait features [19–21].

Among the other technologies able to assess walking patterns in a medical setting,
stereophotogrammetry is a sophisticated imaging method used to precisely evaluate human
movement patterns [22]. Stereophotogrammetry is generally acknowledged as the most
reliable technique for analyzing human movement, offering accurate data for biomechanical
research and clinical gait analysis [23]. This technique utilizes 3D optical camera systems
and skin markers to record and examine movement data, allowing for the measurement of
several kinematic parameters while walking [22].

Stereophotogrammetry may be used to accurately monitor joint movements, muscle
activity, and other important factors during walking, provides a comprehensive analysis of
gait characteristics [24–26].

Gait analysis using both EMG and stereophotogrammetry may therefore provide
comprehensive gait profiles by combining kinematic and muscle activity data, allowing for
an accurate characterization of gait abnormalities [27].

Data analysis plays a crucial role in increasing the potential of gait analysis to dis-
criminate healthy controls (HC) from pathological patients. In this perspective, defining
proper metrics able to identify abnormalities in the gait pattern is fundamental. So far,
complexity metrics have been proved to be highly suitable for identifying abnormal gait
conditions when applied to stereophotogrammetric and EMG data. Among the complexity
measures available, the entropy, in the context of information theory and consequently
in the context of signal analysis, provides insights into the irregularity, unpredictability,
and complexity of a signal. Particularly, by quantifying the entropy of EMG and kinematic
data, it is possible to capture essential characteristics of muscle activation patterns and gait
dynamics in stroke hemiparetic subjects. The ability of complexity metrics to identify stroke
patients could be increased by employing machine learning (ML), a subset of artificial
intelligence (AI) that focuses on the development of algorithms and statistical models for
classification and regression purposes.

The aim of this study is to investigate the capability of ML classifiers applied to
complexity metrics of EMG and kinematic signals to differentiate stroke patients (SP) from
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age-matched healthy controls (HC). Specifically, complexity measures such as approximate
entropy, sample entropy, fuzzy entropy, spectral entropy and conditional entropy, were
employed to analyze both EMG and gait signals. In particular, approximate entropy and
sample entropy were included to assess the regularity or predictability of a signal, reflecting
the stability or complexity of muscular activity or gait patterns. On the other hand, fuzzy
entropy extends the concept of entropy measures by considering uncertainty in fuzzy data,
whereas spectral entropy provides information about its spectral complexity revealing
patterns of muscle activation or movement dynamics across frequency domain. Finally,
conditional entropy measures the amount of complexity of a time-series signal given
the knowledge of another, proving to be a valuable tool to estimate the interdependence
between EMG and kinematic signals.

2. Materials and Methods
2.1. Experimental Procedure and Data Acquisition

The study utilized a publicly available dataset provided by Van Criekinge et al. [28].
This dataset includes biomechanical data from 138 able-bodied individuals (65 males and
73 females) aged 21 to 86 years and 50 stroke survivors (34 males and 16 females) aged
19 to 85 years. The SP group was composed of 39 hemorrhagic and 11 ischemic stroke
patients. Participants walked barefoot at their preferred pace. Criteria for inclusion in
the stroke survivor group included diagnosis of either hemorrhagic or ischemic stroke
confirmed by computerized tomography or magnetic resonance imaging, no prior history
of stroke, stroke occurring within the last five months, and age between 18 and 85 years.
Relevant medical information, including stroke diagnosis, medical history, and stroke onset
details, was obtained from medical records. The dataset includes kinematic and sEMG data.
As the analysis of gate and EMG alone are not sensitive enough to distinguish between
hemorrhagic and ischemic causes, data were treated regardless of the cause of the stroke.
In addition, it should be highlighted that the limited numerosity of the hemorrhagic and
ischemic groups could impair the performance of ML algorithms, resulting in not reliable
classifications if considering the hemorrhagic and ischemic patients separately. Kinematic
signals were recorded using a three-dimensional passive motion capture system consisting
of 8 Vicon T10 cameras (©Vicon Motion System Ltd., Oxford, UK) capturing at 100 frames
per second with a resolution of 1 megapixel (1120 × 896). EMG data were collected using a
synchronized 16-channel telemetric wireless surface system (©Zerowire, Cometa, Barregin,
Italy). For further details about the experimental protocol and data preprocessing are
reported in Van Criekinge et al. [28].

2.2. Data Processing

The database contains preprocessed data acquired at a sample frequency of 1000 Hz,
ready for subsequent analysis. Specifically, for gait data analysis, calcaneus coordinates
were employed, in order to calculate the following parameters: approximate entropy
(ApEn), sample entropy (SampEn), fuzzy entropy (FuzzyEn), spectral entropy (SpEn),
and conditional entropy of gait signal given the knowledge of the EMG data (CondEn).
In terms of EMG signal analysis, data from the gastrocnemius muscle were examined,
and same entropy features were evaluated, with the addition of a multi-scale approach
employed on ApEn, SampEn and FuzzyEn [29], to investigate complexity across different
time-scales. Precisely, starting from an EMG signal with a size of 2000 samples, equivalent
to two subsequent strides, a down-sampling procedure was employed to obtain a new
set of subsampled signals, by letting apart an n number of subsequent samples every
time a sample is taken, where n in 1, . . . , 20, resulting in a 20-signal set, where the first
one is equivalent to the original one, and the twentieth is the most coarse grained data,
corresponding to a size of 100 samples. Notably, entropy metrics were estimated for the
right side of the body in able-bodied subjects and for the paretic side in hemiparetic subjects.

Regarding the determination of the optimal parameters for ApEn, SampEn, FuzzyEn,
and CondEn, there are no specific guidelines available. However, for biological signals,
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certain values are commonly used as they are appropriate for the dynamics of physiological
signals [30]. The recommended approach is to utilize an embedding dimension that spans
from 1 to 3. Crucially, the decision may be influenced by the duration of the signal to be
analyzed. Specifically, the time series should ideally range between 10m and 20m in length.
Thus, when performing a multiscale procedure, it is important to consider the length of the
coarse-grained time series [29,31]. Specifically, the number of samples in the coarse-grained
series should be greater than 10m to 20m, and the new sample frequency should be higher
than the frequencies of the signal’s harmonics [32]. The tolerance factor, denoted as r, is
often expressed as a percentage of the standard deviation of the time series, and typical
options range from 0.1 to 0.25 times the standard deviation [33].

2.3. Entropy Measures

In information theory, Shannon entropy H(X) is a measure of the randomness uncer-
tainty associated with a random variable X of length N ≥ 1 such as X = x1, x2, . . . , xN .
Specifically, entropy quantify the average amount of information (bit) needed to describe
the outcome of X, where H(X) = 0 bits represent the minimum value of information needed
to describe the outcome that arise when the probability distribution is completely deter-
ministic, meaning there is no uncertainty in the variable’s outcome, while H(X) = log2N
bits represent the maximum value of information needed which occurs when all possible
outcomes have the same probability to occur. Mathematically, entropy in defined as

H(X) = −
N

∑
i=1

plog2 p(xi)

where p(xi) are probabilities of occurrence of each possible outcome. Over time, numerous
adaptations of this concept have surfaced to meet evolving demands in real-world use,
notably in fields such as time-series analysis.

2.3.1. Approximate Entropy

ApEn [34] was introduced for the first time to quantify regularity of biological time-
series, without taking into account knowledge about the system that the data come from.
The main idea is that biological time series, which come from more ordered and complex
systems such as biological systems, are often characterized by repetitive templates. ApEn
evaluates the negative natural logarithm of the conditional probability that short templates
of length m points are repeated during the whole time series [34]. Firstly, the vectors from
the time series are organized in the following form, called the pseudo-phase [35]:

y(i) = [x(i), . . . , x(i + m − 1)]

y(j) = [x(j), . . . , x(j + m − 1)]

Approximate entropy can be defined as

ApEn = Φm(r)− Φm+1(r)

where m is the embedding dimension, r the tolerance level and Φ(r)m is the probability that
two subsets from the signal match for m data points:

Φ(r)m =
1

N − m + 1

N−m+1

∑
i=1

lnCm
i (r)

where
Cm

i (r) =
Number o f vector pairs such that d < r

N − m + 1
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where d represents the Euclidean distance between points. Similarly, Φm+1(r) is evaluated
for m + 1 data points. Additionally, ApEn metric was embraced due to its capability in the
analysis of signals characterized by noise or fluctuations such as EMG signals and to its
sensitivity to discern patterns over both short-term and long-term durations [34]. In this
study, ApEn was assessed for r = 20% of the standard deviation of the signal and m = 2, for
both EMG and kinematic signals.

2.3.2. Sample Entropy

SampEn [30] was proposed as an alternative to ApEn aiming to overcome certain
practical issues. Unlike ApEn, SampEn does not consider self-matches between vectors
and exhibits a reduced dependence on record length, making the measure more solid and
precise, particularly when relatively short time-series data, such as EMG and kinematic
signals, are examined [30]. SampEn is defined as

SampEn = ln
Φm(r)

Φm+1(r)

where Φm(r):

Φm(r) =
1

N − m

N−m

∑
i=1

lnCm
i (r)

Comparably, Φm+1(r) is expressed for an embedding dimension of m + 1. SampEn
metric was assessed in this study considering r = 20% of the standard deviation of the
signal and m = 2, for both EMG and kinematic data.

2.3.3. Fuzzy Entropy

FuzzyEn is a complexity measure, used the analysis of fuzzy time series data, incor-
porating concepts from fuzzy logic. By definition, a fuzzy set encompasses elements with
varying membership degrees, as opposed to classical sets where elements possess complete
membership [36,37]. To compute FuzzyEn, a fuzzy membership function is employed to
assigns real values to elements of a fuzzy set within the interval [0, 1], reflecting varying de-
grees of membership. Firstly, the vectors from the time series are organized in the following
form, called the pseudo-phase:

y(i) = [x(i)− x(i), . . . , x(i + m − 1)− x(i)]

y(j) = [x(j)− x(j), . . . , x(j + m − 1)− x(j)]

with x(i) the mean value of y(i), FuzzyEn is defined [15] as

FuzzyEn = ln
Φm

Φm+1

where

Φm =
1

N − m

N−m

∑
i=1

N−m

∑
j=1,j ̸=i

Dm
i,j

N − m − 1

where
Dm

i,j = µ
(

d
(

ym
i , ym

j

))
is the fuzzy membership matrix, and µ(x) is the fuzzy membership function that leads to a
diminished impact of the threshold parameter choice:

µ(x) = e−(
y
r )

n

FuzzyEn was incorporated as a feature due to its consistency, particularly in scenarios
involving noisy signals characterized by low amplitude parameters, such as EMG.
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2.3.4. Spectral Entropy

SpEn measures the uncertainty about an outcome at a certain frequency or in a fre-
quency band, quantifying the spectral complexity of the time-series signal [38,39]. SpEn is
defined [39] as

SpEn = −
N

∑
i=1

piln(pi)

where pi represents the power spectral density distribution obtained from power spectral

density
ˆ
P(ωi), such as

pi =

ˆ
P(ωi)

∑N
i=1

ˆ
P(ωi)

Importantly, given that SpEn yields a vector as its output, statistical descriptors
including mean, standard deviation, skewness, and kurtosis were extracted as features.
Importantly, only for this metric the first four moments of a distribution were extracted.

2.3.5. Conditional Entropy

CondEn extends the concept of entropy to situations in which information about
another variable is available, measuring the amount information needed to describe the
outcome of a random variable Y when another random variable X is known. CondEn
is defined as the expected value E of the entropy of the conditional distribution p(Y|X),
averaged over the conditioning random variable [40]:

CondEn = − ∑
x∈X

∑
y∈Y

p(x, y)log2 p(y|x) = −Elog2 p(Y|X)

where p(x, y) and p(y|x) are respectively the joint probability distribution and the condi-
tional probability distribution. The hypothesis is based on the idea that muscle activity
during walking significantly influences gait patterns, thereby indicating a strong interde-
pendence between EMG and kinematic data. As a result, CondEn emerged as a pivotal
metric to unveil the interdependencies between EMG and kinematic data.

2.4. Statistical Analysis

Several classification models were employed to discern SP from HC, aiming to evaluate
classification efficacy across diverse classifier types. The considered models are coarse tree,
logistic regression, kernel naive Bayes, cubic SVM, fine kNN, bagged trees, and medium
neural network (medium NN). Precisely, the models utilized for the task were trained using
the EMG and kinematic complexity parameters separately, and subsequently combined,
considering the CondEn metric as well. This approach allowed a comparative analysis
of the classification performance attained through the employment of unimodal EMG
and kinematic features versus their combination. Further, given the imbalanced nature
of the two classes, consisting of 138 HC and 50 SP, an iterative approach was employed
to ensure class balance and mitigate potential overfitting effects related to participant
allocation within the fold used to train and test the models. Specifically, the class sizes
were determined based on the smaller class (i.e., 50 samples), with elements from the
larger class randomly selected in an iterative manner across 1000 iterations, enabling the
exploration of all possible sample combinations. Importantly, due to the high feature
dimensionality with respect to the class sizes (i.e., SP and HC), feature selection was
conducted using the minimum-redundancy maximum-relevance method (MRMR) during
the cross-validation framework. Significantly, the MRMR algorithm takes advantage
of the output labels and generates data overfitting without separating samples in the
train and test sets. Therefore, just as the hyperparameter optimization of the various
classifiers, the feature selection framework was repeatedly performed within the nested
cross-validation (nCV). In order to enhance the hyperparameters and guarantee the model’s
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capacity to generalize without overfitting, it is important to have three separate datasets.
Initially, a training set is employed to train the model using different hyperparameter
values. Additionally, a validation set is utilized to determine the optimal hyperparameters
based on performance. Ultimately, a test set is employed to assess the ultimate performance
of the final model. This methodology enables efficient optimization of hyperparameters
and impartial evaluation of the model’s performance on unobserved data. However, if
there is a smaller number of samples available, this data separation could significantly
decrease the size of the training sample, making it challenging for the data-driven model to
be accurately fitted. The nCV is a technique that extends the aforementioned procedure in
order to mitigate the negative effects of sample loss over several sets, preventing biases in
the results and avoiding overfitting of the data [41,42]. Specifically, the data are divided
into folds, and the model is trained in a nested manner on all but one fold of the data.
The inner loop determines the best hyperparameters (specifically, it selects features using
the MRMR approach) for validation purposes. Meanwhile, the outer loop evaluates the
model’s performance throughout multiple iterations for testing. This work employed a
10-fold nCV approach to train, validate, and test several models. In order to determine the
best model hyperparameter and identify the chosen features mentioned in the manuscript,
a majority voting approach was utilized during the cross-validation cycles.

The first model that was trained was the coarse tree model. The minimum leaf size
(MinLeaf) and the maximum number of splits (MaxNumSplits) were considered using 1–39
and 1–77 as ranges for optimization, respectively. The criterion used to choose the best split
at each node was Gini’s diversity index (GDI). The second model was a logistic regression,
where the regularization parameter was taken into consideration for optimization, using
30 learning cycles and Lasso as regularization technique. Furthermore, a kernel naive Bayes
model was tested, examining the bandwidth (h) for the hyperparameter optimization. In
addition, for the cubic SVM, the box constraint (C) and the kernel scale (γ) were optimized,
and for the fine kNN, the number of neighbors (k) was optimized considering the Euclidean
distance and the same weight for all the neighbors.

Moreover, a bagged trees model was a bagging ensemble of decision trees (bagged
trees). This model exploits several decision trees, each trained on a random subset of the
training data. In this study, the number of trees (NumTrees), MinLeaf, and MaxNumSplits
were taken into account. The ranges considered for hyperparameter optimization were
5–100 for NumTrees (with a step of 10), 1–39 for MinLeaf, and 1–77 for MaxNumSplits. A
bagging procedure randomly selected a subset of the training data for each tree, repeating
the process for 30 learning cycles, ensuring sufficient diversity among trees in the ensemble.
Finally, a medium neural network (medium NN) was defined, considering the number of
layers (range: 1–3), the size of the layers (range: 1–300), the regularization parameter (range:
1.27 × 10−7–1.28 × 103) as hyperparameters to be optimized. The activation function was
the rectified linear unit activation function, and the maximum number of iterations was set
to 1000.

Performance evaluation of the classifiers involved sensitivity, specificity and accuracy
metrics, derived from the relative confusion matrix. Moreover, the receiver operating
characteristic (ROC) were computed for each model. Furthermore, the DeLong test was
conducted in order to compare the performance of the model across the three different
features set. The DeLong test is utilized to compare the area under the curve (AUC) values
of two or more ROC curves that are correlated, typically originating from the same group of
individuals [43]. The test takes into account the correlation between the ROC curves, which
is crucial as employing the same dataset for several models or tests results in correlated
ROC curves. In order to conduct the DeLong test, it is imperative to compute the AUC
for each ROC curve and represent them as a U-statistic. This U-statistic is determined by
comparing the predicted scores between different classes. After, it is necessary to calculate
the variability of the AUC and the correlation between the AUCs of two associated ROC
curves. Finally, the difference in AUCs is normalized by the expected standard deviation
to create a Z-test statistic. The p-value is derived from the standard normal distribution.
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Additionally, an independent samples t-test was employed to investigate group differences
(SP vs. HC) between the metrics selected by the MRMR approach. A p-value lower than
0.05 was considered statistically significant. The entire analysis was conducted in MATLAB
R2023b (MathWorks, Inc., Natick, MA, USA).

3. Results

The trained models effectively evaluated the motor impairments linked to stroke,
employing either unimodal kinematic, EMG, and multimodal kinematic + EMG, as shown
in Table 1.

Table 1. Models’ performance assessed through accuracy, precision, recall, and area under the curve
(AUC). The results are reported as mean value ± standard deviation.

Feature Set Model Accuracy (%) Precision (%) Recall (%) AUC

Kinematic

Coarse Tree 86.68 ± 3.11 85.30 ± 3.85 87.87 ± 4.12 0.8812 ± 3.10
Logistic Regression 84.08 ± 2.50 83.08 ± 2.26 84.98 ± 3.88 0.8360 ± 2.54

Kernel Naive
Bayes 90.26 ± 2.46 88.22 ± 3.43 92.10 ± 2.78 0.9090 ± 2.44

Cubic SVM 88.24 ± 2.22 82.07 ± 2.18 93.74 ± 3.66 0.8810 ± 2.21
Fine KNN 82.07 ± 3.13 77.44 ± 3.31 85.53 ± 4.35 0.8247 ± 3.09

Bagged Trees 88.76 ± 2.82 86.88 ± 2.64 90.40 ± 4.06 0.8870 ± 2.82
Medium NN 83.76 ± 2.84 82.81 ± 2.78 84.65 ± 4.52 0.8387 ± 2.85

EMG

Coarse Tree 98.72 ± 1.1 ×
10−16

97.50 ± 2.2 ×
10−16 99.94 ± 0.01 0.9870 ± 1.1 × 10−16

Logistic Regression 99.71 ± 6.8 × 10−3 99.87 ± 7.8 × 10−3 99.56 ± 0.01 0.9869 ± 6.7 × 10−3

Kernel Naive
Bayes 98.54 ± 0.1 99.80 ± 3.5 × 10−3 97.38 ± 0.02 0.9853 ± 0.01

Cubic SVM 99.85 ± 4.9 × 10−3 99.99 ± 0.01 99.71 ± 9.5 × 10−3 0.9992 ± 4.9 × 10−3

Fine KNN 99.62 ± 6.2 × 10−3 99.92 ± 7.1 × 10−3 99.93 ± 0.01 0.9950 ± 6.3 × 10−3

Bagged Trees 98.73 ± 1.8 × 10−3 97.49 ± 2.2 ×
10−16 99.96 ± 3.5 × 10−3 0.9871 ± 1.9 × 10−3

Medium NN 99.71 ± 6.5 × 10−3 99.95 ± 9.9 × 10−3 99.47 ± 9 × 10−3 0.9978 ± 6.5 × 10−3

Kinematic +
EMG

Coarse Tree 97.86 ± 1.1 × 10−2 97.7 ± 1.4 × 10−2 98.01 ± 1.3 × 10−2 0.9775 ± 0.01
Logistic Regression 98.28 ± 0.01 97.52 ± 1.8 × 10−2 99.04 ± 0.01 0.9842 ± 0.01

Kernel Naive
Bayes 98.95 ± 8.9 × 10−2 99.98 ± 0.01 98.01 ± 1.7 × 10−2 0.9890 ± 8.8 × 10−2

Cubic SVM 98.98 ± 0.01 98.59 ± 1.7 × 10−2 99.38 ± 1.3 × 10−2 0.9898 ± 0.01
Fine KNN 98.50 ± 1.2 × 10−2 97.78 ± 2 × 10−2 99.21 ± 1.3 × 10−2 0.9830 ± 1.1 × 10−2

Bagged Trees 97.76 ± 0.01 97.44 ± 1.2 × 10−2 98.07 ± 1.4 × 10−2 0.9745 ± 0.01
Medium NN 98.69 ± 0.01 97.92 ± 1.7 × 10−2 99.45 ± 1.3 × 10−2 0.9827 ± 1.1 × 10−2

Concerning the kinematic models, the optimized MinLeaf and MaxNumSplits for the
coarse tree model were 6 and 2, respectively. For the logistic regression, the regularization
parameter was optimized as 5.636 × 10−6. Concerning the kernel naive Bayes model, h was
0.267, whereas for the cubic SVM, C and γ were 136.55 and 8.705, respectively. The number
of neighbors for the kNN classifier was 7, and for the bagged trees model, NumTrees = 20,
MinLeaf = 2, and MaxNumSplits = 75 were obtained. For the medium NN, the number of
layers was 2, the size of the layers was 25, and the regularization parameter was 6.932 × 10−7.

As far as it concerns the EMG models, MinLeaf = 13 and MaxNumSplits = 14 were
obtained for the coarse tree model. Regarding the logistic regression, the optimized regu-
larization parameter was 3.696 × 10−6, whereas h = 0.070 was found for the kernel naive
Bayes model. Concerning the cubic SVM, C = 996.44 and γ = 24.302 were obtained. For
the kNN, k = 2 was the optimized number of neighbors, and for the bagged trees model,
NumTrees = 70, MinLeaf = 2, and MaxNumSplits = 17 were delivered. For the medium NN,
the number of layers was 2, the size of the layers was 25, and the regularization parameter
was 1.465 × 10−7.
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Regarding the kinematic + EMG models, for the coarse tree model, the MinLeaf was
10 and MaxNumSplits was 4. The regularization parameter of the logistic regression was
5.622 × 10−6. Concerning the kernel naive Bayes model, h was 0.275, and for the cubic SVM, C
was 994.51 and γ was 6.586. The number of neighbors for the kNN classifier was estimated as
k = 6. For the bagged trees model, NumTrees = 60, MinLeaf = 2, and MaxNumSplits = 5. For the
medium NN, the number of layers was 2, the size of the layers was 25, and the regularization
parameter was 2.397 × 10−4.

Figure 1 shows the confusion matrices associated with the most performing model, in
term of accuracy, fed with the unimodal kinematic metrics set (Figure 1A), unimodal EMG
metrics set (Figure 1B), and multimodal kinematic + EMG (Figure 1C).
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Concerning the MRMR procedure, the input features selected when feeding the classi-
fiers with only the kinematic parameters set are X axis ApEn, Z axis ApEn, X axis SampEn,
Y axis SampEn, Z axis SampEn, X axis SpEn mean, X axis SpEn kurtosis (kurt), Y axis SpEn
mean value (mean), X axis FuzzyEn, and Z axis FuzzyEn. Regarding the models fed with
the EMG parameter set, the selected features by MRMR are ApEn, SampEn, SpEn standard
deviation (std), SpEn kurt, SpEn skew, FuzzyEn, multiscale ApEn (n = 2), multiscale ApEn
(n = 15), multiscale FuzzyEn (n = 5). In conclusion, the features selected for the kinematic +
EMG + CondEn are X axis ApEn, X axis SampEn, Z axis SampEn, SpEn std (EMG), CondEn
EMG-X axis gait, CondEn EMG-Y axis gait, CondEn EMG-Z axis, multiscale ApEn (n = 16),
and multiscale FuzzyEn (n = 8). The unpaired t-tests between the metrics selected by the
MRMR procedure between the two groups are reported in Table 2.
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Table 2. Comparison between SP and HC (unpaired t-test) for the selected gait, EMG, and
CondEn features.

Metric t Statistics p Value

ApEn (EMG) −8.679 4.5 × 10−13

ApEn X axis −7.013 7.4 × 10−10

ApEn Y axis −3.118 0.0026
ApEn Z axis −6.733 2.5 × 10−9

SampEn (EMG) −6.112 3.6 × 10−8

SampEn X axis −6.233 2.2 × 10−8

SampEn Y axis −1.578 0.1186
SampEn Z axis −1.621 0.1090

FuzzyEn (EMG) −15.502 1.6 × 10−25

FuzzyEn X axis 7.604 5.5 × 10−11

FuzzyEn Z axis 8.550 8.1 × 10−13

SpEn std (EMG) −7.682 3.8 × 10−11

SpEn kurt (EMG) −0.719 0.4739
SpEn skew (EMG) −3.650 4.7 × 10−4

SpEn X axis mean 2.384 0.0195
SpEn X axis kurt −0.561 0.5759

SpEn Y axis mean −1.112 0.2694
Multiscale ApEn (n = 2) 25.823 5.7 × 10−40

Multiscale ApEn (n = 15) −7.568 6.4 × 10−11

Multiscale ApEn (n = 16) −7.621 5.1 × 10−11

Multiscale FuzzyEn (n = 5) −17.210 2.8 × 10−28

Multiscale FuzzyEn (n = 8) −17.807 3.3 × 10−29

Multiscale FuzzyEn (n = 19) −19.149 3.3 × 10−31

CondEn EMG-X axis 19.802 3.7 × 10−32

CondEn EMG-Y axis 18.154 9.8 × 10−30

CondEn Z axis EMG −10.873 2.7 × 10−17

Additionally, the results of the DeLong test comparing the AUC of the ROC curves of
the different models are reported in Table 3.

Table 3. DeLong test results comparing the performances of the models fed using the different
features set considered (i.e., kinematic, EMG, kinematic + EMG).

Model
Kinematic vs. EMG Kinematic vs.

Kinematic + EMG
EMG vs.

Kinematic + EMG

z p z p z p

Coarse
Tree −2.395 0.008 −2.112 0.0173 0.438 0.3305

Logistic
Regression −2.913 0.0017 −2.842 0.0022 0.139 0.4444

Kernel
Naive
Bayes

−1.967 0.025 −2.096 0.0180 −0.203 0.4194

Cubic SVM −2.752 0.0030 −2.452 0.0070 0.784 0.2164
Fine KNN −3.182 0.0007 −2.878 0.0019 0.707 0.2397
Bagged
Trees −2.342 0.0096 −2.210 0.0135 0.206 0.4182

Medium
NN −3.176 0.0007 −2.766 0.0028 0.944 0.1724

4. Discussion

This study investigates the capability to identify gait disorders related to stroke
through ML approaches applied to complexity measures obtained from kinematic and
EMG signals. The results demonstrated that EMG metrics-based models exhibited a sig-
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nificantly better capability in the classification of post-stroke individuals than kinematic
metrics-based models. Specifically, the best result was obtained by a Cubic SVM fed with
EMG complexity features, reaching an accuracy of 99.85%. Conversely, the models fed
with gait complexity features showed reduced ability, reaching a maximal result of 90.26%
of accuracy, obtained with a kernel naive Bayes model. Moreover, the models fed with
multimodal kinematic and EMG entropy features have shown optimal results, reaching the
maximal accuracy of 98.98% implementing a cubic SVM.

A feature selection was performed using the MRMR algorithm. Almost all the features
selected exhibited a significant difference between the two groups. Specifically, the kurtosis
of the SpEn evaluated on the X direction and the mean value of the SpEn computed on the
Y axis were not statistically different between the two groups, whereas the mean value of
the SpEn computed on the X axis showed differences between SP and HC. Notably, SpEn is
a measure of the complexity or unpredictability of a signal in the frequency domain. It pro-
vides information about how the power of a signal is distributed across different-frequency
components. Higher spectral entropy indicates a more complex or less predictable signal.
Concerning the statistical metrics evaluated on SpEn, the kurtosis describes the shape of
a distribution’s tails in relation to its overall shape (high kurtosis indicates heavy tails,
while low kurtosis indicates light tails), and the mean value is a central tendency descriptor.
Hence, the no significant differences evaluated for these metrics could be related to similari-
ties in the movement patterns in the forward–backward motion and in the vertical direction.
These similarities can result from compensatory mechanisms in SP, where they adapt their
gait to resemble that of healthy individuals, thereby reducing observable differences in the
SpEn’s kurtosis. Moreover, both SP and HC may show similar adjustments in the vertical
direction to maintain balance and stability. These adjustments could lead to similar mean
SpEn values in the vertical direction. Moreover, SampEn evaluated on the Y and Z direc-
tions did not show statistically significant differences between the two groups. Also in this
case, this could be due to compensatory mechanisms developed by SP to maintain the gait
as normal as possible. Moreover, both SP and HC make adjustments to maintain balance
and stability during walking. These adjustments can result in similar patterns of vertical
and lateral heel movements, leading to comparable sample entropy values. Furthermore,
SP may exhibit reduced gait variability due to cautious walking strategies to avoid falls,
thus exhibiting more regular and predictable heel movements, resulting in SampEn values
that do not differ significantly from those of HC. Additionally, it should be highlighted
that the vertical and lateral components of heel movement might be less affected by stroke
compared to other kinematic aspects. In fact, stroke primarily affects motor control and
coordination, which might be more apparent in other directions or aspects of movement
rather than in vertical or lateral movements. In this perspective, it is worth noting that
all the EMG parameters selected by the MRMR exhibited significant differences between
SP and HC. In fact, EMG signals measure the electrical activity produced by skeletal mus-
cles, providing a direct window into muscle activation and neural control. In HC, the
muscle activation is typically regular and coordinate, whereas in SP, muscle activation
patterns could be irregular and unpredictable. However, SP often employ compensatory
muscle activation strategies to overcome their motor impairments. These compensatory
mechanisms involve recruiting additional muscles or using altered activation patterns to
achieve desired movements. Moreover, stroke can disrupt the coordinated activation of
muscle groups, known as muscle synergies, leading to abnormal EMG patterns, and stroke-
induced pathophysiological changes in muscle properties, such as spasticity or altered
muscle tone, can alter the complexity of EMG signals. Importantly, the multiscale approach
revealed statistically significant differences between SP and HC at different temporal scales,
demonstrating the necessity to further analyze the disruption of the muscle activation and
gait patterns in SP using longer temporal series to evaluate more coarse-grained series,
hence investigating more temporal series.

Notably, the CondEn metrics identified by the feature selection procedure exhibit
strong differences between the two groups. This finding highlights the motor control
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disruption in SP. In fact, CondEn measures the uncertainty in one signal (kinematic) given
knowledge of another (EMG), providing insights into the coupling and coordination be-
tween muscle activity and movement. These differences highlight the disrupted neuromus-
cular control in SP, and underscore the impact of stroke on the complex interplay between
muscle activity and movement, making it a valuable metric for distinguishing between the
two groups.

In order to assess statistical differences between the performance reached by the mod-
els fed with the different features set considered (i.e., unimodal kinematic, unimodal EMG,
and multimodal kinematic + EMG), a DeLong test was conducted. As reported in Table 3,
notable statistically significant disparities were detected between models fed with the
kinematic feature set and those fed with the EMG feature set. Similarly, distinctions were
observed between models utilizing the kinematic feature set alone and those incorporating
kinematic + EMG features, demonstrating statistically significant differences. Conversely,
no statistically significant differences were identified between models utilizing the EMG
feature set exclusively and those integrating kinematic + EMG features. Consequently, the
findings indicated that the inclusion of kinematic complexity metrics does not enhance
the discriminatory capacity when combined with EMG entropy features. These findings
are in line with previous studies, which demonstrated higher performance of EMG in
assessing motor dysfunction in stroke patients, also employing complexity metrics [44–47].
Notably, in the literature, great attention is devoted to the employment of kinematic and
EMG signals to evaluate the motor functions, but the number of studies investigating
their combination is scarce. Particularly, most of the studies investigating the combination
of these two techniques focuses on robotic rehabilitation on upper limbs [44–47]. To the
best of our knowledge, this is the first attempt to combine stereophotogrammetry and
EMG using complexity metrics for gait analysis of SP. This method underscores the effi-
cacy of utilizing EMG-based features in the classification of post-stroke motor disorders
through ML methodologies. Additionally, such an approach not only solidifies the classifi-
cation process but also mitigates computational cost, thus further enhancing its practicality
and efficiency.

However, it should be noted that when conducting analyses on the identification of
SP through EMG and kinematics during gait, it is crucial to consider the advantages of a
multimodal strategy, even if one method, such as EMG, demonstrates superior performance.
In fact, the integration of multiple data sources enhances the robustness and reliability of the
diagnostic process. Utilizing diverse information modalities helps mitigate errors that might
arise from relying on a single method. For instance, if EMG data are affected by noise or
artifacts, kinematic data can provide an additional reference point to ensure accuracy. This
redundancy of information from different modalities increases confidence in the obtained
results. Moreover, multimodal data offer a comprehensive understanding of the patient’s
gait. While EMG provides detailed insights into muscle activity, kinematic offers a complete
view of gait biomechanics. Together, they present a holistic picture that is crucial to fully
understand gait alterations in stroke patients. Furthermore, the integration of multimodal
data facilitates personalized treatment plans. Detailed patient profiles derived from both EMG
and kinematic data enable the customization of rehabilitation interventions.

In fact, previous studies emphasized the advantages of employing multimodal ap-
proaches when dealing with SP. For instance, Murloy et al. used both kinematics and
EMG parameters to cluster SP at the admission and after 6 months [48], whereas Barroso
and colleagues found synergistic parameters between kinematic and muscle activation to
discriminate the paretic and non-paretic sides of SP [49]. In addition, Saremi et al. inves-
tigated the validity of different accelerometry measurements in healthy and hemiparetic
subjects [50].

Although our findings are promising, it is imperative to emphasize that additional
investigations are warranted to validate these observations. The present findings may be
attributed to the constraints posed by the limited sample size; therefore, it is essential to con-
duct further research, incorporating diverse datasets to corroborate these results. Moreover,
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the limited sample size did not allow to consider the hemorrhagic and ischemic patients
separately. In this regard, it should be highlighted that previous studies have highlighted
specific signs and symptoms that differentiate between hemorrhagic and ischemic strokes,
including decreased consciousness [1], dilated pupils, agitation, severe headache, lower
Glasgow Coma Scale (GCS) scores, seizures, and eye gaze impairments at higher rates
than ischemic stroke patients [2]. Furthermore, the association of certain biomarkers with
stroke types can provide insights into the underlying pathophysiology [3]. Concerning
motor disabilities, hemorrhagic and ischemic stroke patients may both experience limb
weakness, hemiparesis, spasticity, or ataxia [1,4], and ischemic strokes are associated with
significant long-term disability and morbidity, impacting overall quality of life [5]. Hence,
the evaluation of the difference between the two kinds of patients could benefit from a
multimodal approach where the kinematic and EMG recordings can be integrated with also
neuroimaging data coming from computerized tomography (CT) or magnetic resonance
imaging (MRI) scans.

Furthermore, it is noteworthy that the dataset under consideration includes addi-
tional metrics, such as data derived from force platforms. Hence, comprehensive analyses
encompassing these further information sources are indispensable for a more holistic un-
derstanding of the subject matter. Moreover, in this study, only the kinematic data of the
calcaneus were considered; therefore, further studies are indeed necessary considering
also other anatomical landmarks that can highlight changes in posture or coordination
that may not be detectable through EMG alone, contributing to a more thorough diagnosis
and monitoring of the rehabilitation process. To this end, it could be interesting to inves-
tigate the performance to assess gait dysfunction through the evaluation of complexity
applied to low-cost kinematic systems based on video recordings in both the visible and
the infrared spectrum, potentially providing further information on the muscle activation
condition [51,52].

Additionally, forthcoming studies should involve regression analyses employing
kinematic and EMG complexity features to assess clinical motor impairment scales (e.g.,
Performance Oriented Mobility Assessment (POMA) and Functional Ambulation Cate-
gories (FAC)), aiming to discern potential correlations between kinematic and EMG-derived
complexity metrics and the severity of motor impairments assessed through established
clinical scales. These findings could be a solid tool for healthcare professionals in clinical
practice for assessing the effectiveness of the rehabilitation therapy in SP, but also for
creating different gait models for various conditions affecting movement, especially those
related to neurological issues. Finally, the employment of such models to signals acquired
through wearable and printable EMG sensors in an Internet of Things (IoT) framework
can provide a support for telemedicine’s applications by monitoring stroke patients during
their daily activities.

5. Conclusions

This study explored the potential of ML algorithms in the analysis of kinematic and
EMG signals for the assessment of post-stroke patients. By incorporating a variety of
classifiers and implementing a comprehensive set of complexity features derived from
both kinematic and EMG signals, a robust tool for evaluating motor disabilities in stroke
survivors was developed. The resulting models can be relevant for screening purposes.
Further studies are indeed necessary to implement models able to provide a valuable
support to physicians by delivering precise assessments of the motor impairments observed
following a stroke.
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