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ABSTRACT

Do quantum correlations lead to better performance with respect to several different systems working independently? For quantum thermal
machines, the question is whether a working medium (WM) made of N constituents exhibits better performance than N independent engines
working in parallel. Here, by inspecting a microscopic model with the WM composed by two non-interacting quantum harmonic oscillators,
we show that the presence of a common environment can mediate non-trivial correlations in the WM leading to better quantum heat engine
performance—maximum power and efficiency—with respect to an independent configuration. Furthermore, this advantage is striking for
strong dissipation, a regime in which two independent engines cannot deliver any useful power. Our results show that dissipation can be
exploited as a useful resource for quantum thermal engines and are then corroborated by optimization techniques here extended to non-
Markovian quantum heat engines.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1116/5.0190340

I. INTRODUCTION

On the road to the development of quantum technologies,1 a fun-
damental question is whether quantum correlations between the con-
stituents of a system can improve performances.2 (for instance, the
qubits in a quantum computer). In the context of quantum thermal
machines,3–20 the question can be posed as follows: can a working
medium (WM) made of N constituents show better performances
than N independent engines working in parallel? Furthermore, can
unavoidable dissipation be exploited to improve machine performance
or does it only play a detrimental role? Even though previous
investigations remarkably found parameter regions where a positive
answer,21–34 even related to damping induced phenomena35–46 can be
given, a complete picture has not yet been achieved. In this work, we
show that a quantum heat engine where the working medium is com-
posed by two non-interacting quantum harmonic oscillators (QHOs),

connected to common baths—see Fig. 1(a)—via periodically modu-
lated couplings,47–49 exhibits an improvement in performance due to
bath-mediated correlations35,37 with respect to the case of two inde-
pendent single-oscillator engines working in parallel—see Fig. 1(b).
This effect is striking in the case of strong dissipation, when one would
naively expect overdamped dynamics and poor performance of the
engine. While this is the case for independent machines, for which the
engine operating regime disappears, the presence of common baths
sustains instead efficiency and power of the engine. We explain this
surprising result in terms of the appearance, at strong damping, of a
frequency- and phase-locked mode,50–53 in which the oscillators have
a common frequency and oscillate in phase opposition. This normal
mode turns out to be only weakly damped, with a damping time
increasing with the dissipation strength. Our results are first illustrated
in the case of monochromatic drives, and then corroborated
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optimizing over arbitrary periodic drivings by means of a gradient
optimization methods (a technique at the heart of many machine
learning problems54–61), without any a priori assumption on the shape
or speed of the drivings. Furthermore, we characterize the heat engine
performance in terms of both efficiency and extracted power. These
quantities cannot be simultaneously optimized: indeed, high power
engines typically exhibit a low efficiency, and vice versa. We, thus,
employ the concept of the Pareto front,62 recently employed in the
context of quantum thermodynamics,54,57,58,63–65 to find optimal
tradeoffs between the power and the efficiency of the engine. Our cal-
culations of the Pareto front extend the optimization approach to non-
Markovian quantum thermodynamics, beyond the standard Lindblad
approximation. Finally, we have investigated whether there is a rela-
tionship between collective advantage and the establishment of non-
classical correlations between the two quantum harmonic oscillators
(QHOs), focusing on the logarithmic negativity37,66–71 as a measure of
entanglement. While we could not find a direct connection between
entanglement and collective advantage, we obtained as an interesting
by-product a protocol to measure entanglement via a small number of
measurements of thermodynamic quantities, more precisely of the out-
put work at specific operating conditions, instead of a full quantum
tomography to reconstruct the density matrix of the system.

II. GENERAL SETTING AND THERMODYNAMIC
OBSERVABLES
A. Model

We consider a quantum thermal machine, where the WM is in
contact with two thermal reservoirs � ¼ 1; 2, respectively, at tempera-
tures T1 and T2. The WM is composed of two uncoupled (no direct
coupling) QHOs, labeled l ¼ A; B, as sketched in Fig. 1(a). This con-
figuration with common environments, dubbed joint, will be com-
pared with the one sketched in Fig. 1(b), where two independent
QHOs work in parallel with separate baths. The WM-bath couplings

with the �¼ 1 reservoir are assumed weak and governed by a time-
dependent periodic modulation47–49 gðlÞ1 ðtÞ ¼ gðlÞ1 ðt þ T Þ with period
T ¼ 2p=X. On the other hand, the couplings with the �¼ 2 reservoir
are static, gðlÞ2 ¼ 1. Coupling modulation can be suitably engineered to
perform thermodynamic tasks,47–49 and here, we shall focus on the
heat engine working mode.

The total Hamiltonian is (we set �h ¼ kB ¼ 1)72

HðtÞ ¼
X
l¼A;B

Hl þ
X
�¼1;2

H� þ HðtÞ
int;�

h i
; (1)

where the Hamiltonian of the lth QHO reads Hl ¼ ðp2l =2mÞ
þð1=2Þmx2

l x
2
l , with the two QHOs having different characteristic fre-

quencies xA and xB. The reservoirs are modeled in the Caldeira–
Leggett framework73–76 as a collection of independent harmonic
oscillators

H� ¼
Xþ1

k¼1

P2
k;�

2mk;�
þ 1
2
mk;�x

2
k;�X

2
k;�

 !
: (2)

A bilinear coupling in the WM and bath position operators,
weighted by the driving controls gðlÞ� ðtÞ, describes the WM–reservoir
interactions

HðtÞ
int;� ¼

X
l¼A;B

Xþ1

k¼1

�gðlÞ� ðtÞcðlÞk;�xlXk;� þ
ðgðlÞ� ðtÞcðlÞk;�Þ

2

2mk;�x2
k;�

x2l

2
4

þ
gðlÞ� ðtÞgð�lÞ� ðtÞcðlÞk;�c

ð�lÞ
k;�

2mk;�x2
k;�

xlx�l

3
5; (3)

where we introduced the convention according to which if l¼A then
�l ¼ B, and vice versa. The factors cðlÞk;� represent the coupling between
the lth QHO and the kth mode of the �th reservoir. In the following,
we assume that the couplings with the bath �¼ 2 are much stronger
than those with the bath �¼ 1. Without loss of generality, we also
choose for the bath � equal couplings cðAÞk;� ¼ cðBÞk;� � ck;� . Looking at
the coupling with the static bath �¼ 2, this choice of equal couplings
leads to a mirror symmetry A $ B. In the resonant case xA ¼ xB,
this symmetry explains the existence of a dissipation-free subspace,
with the normal mode corresponding to relative coordinate xA � xB
completely undamped.35,37,38 However, this implies that in the reso-
nant case, the system cannot reach a periodic steady state, and thus, we
are not going to deal with this case in the rest of this work. The interac-
tion in Eq. (3) includes counter-term contributions that serve two pur-
poses: to avoid renormalizations of the characteristic frequencies of the
QHOs xA;B and to cancel the direct coupling among them, which
would naturally arise in the Caldeira–Leggett model (see the supple-
mentary material). The properties of the bath � are governed by the
so-called spectral density74

J �ðxÞ �
p
2

Xþ1

k¼1

c2k;�
mk;�xk;�

dðx� xk;�Þ: (4)

Finally, we assume that at initial time t0 ! �1, the reservoirs
are in their thermal equilibrium at temperatures T� , with the total den-
sity matrix written in a factorized form qðt0Þ ¼ qAðt0Þ � qBðt0Þ
�q1ðt0Þ � q2ðt0Þ, where qlðt0Þ is the initial density matrix of each

FIG. 1. Sketch of the dynamical quantum heat engines under study. The external
driving of the machine occurs through generic periodic modulations of the couplings
with one reservoir. (a) Two quantum harmonic oscillators, with frequencies xA and
xB, are in contact with two common thermal reservoirs at temperatures T� , with
� ¼ 1; 2. The WM exchanges heat currents J� with the reservoirs and total power
P generated by an external drive that periodically modulates the weak coupling with
the �¼ 1 reservoir (dashed lines). The �¼ 2 WM-bath coupling is static and much
stronger (solid lines). (b) Two uncoupled oscillators in the same configuration as in
panel (a) but now in contact with independent thermal reservoirs. Here, no correla-
tions are mediated by the baths, and the quantum thermal machine consists of inde-
pendent two-terminal devices working in parallel.
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QHO (l ¼ A;B), and q�ðt0Þ ¼ expð�H�=T�Þ=Tr½expð�H�=T�Þ� is
the thermal density matrix of each reservoir (� ¼ 1; 2).

B. Thermodynamic quantities

Hereafter, we work in the Heisenberg picture, and we focus on
averaged thermodynamic quantities such as power and heat currents,
which determine the working regime and the performance of a quan-
tum thermal machine. Except in the resonant case xA � xB,

35,37 due
to dissipation, the WM reaches a periodic steady state regardless of the
initial conditions. We then concentrate on quantities averaged over the
period T , in the off resonant case xB < xA. The average power is
defined as

P �
ðT
0

dt
T hPðtÞi ¼

ðT
0

dt
T Tr

@HðtÞ
int;1ðtÞ
@t

qðt0Þ

" #
; (5)

where we have introduced both the temporal and quantum averages
(the latter denoted by h…i), t0 ! �1 is the initial time, and qðt0Þ
the initial density matrix of the system (see Appendix A). Notice that a
working heat engine is obtained when P< 0. Similarly, the average
heat current associated with the �th reservoir reads

J� �
ðT
0

dt
T hJ�ðtÞi ¼ �

ðT
0

dt
T Tr _H�ðtÞqðt0Þ

� �
(6)

with J� > 0 when energy flows into the WM. The average power and
heat currents are expressed (see Appendix A) in terms of the QHOs
and bath position operators xlðtÞ and Xk;�ðtÞ, respectively. The exact
solution for Xk;�ðtÞ can be found by inspecting the set of coupled equa-
tions of motion, see also the supplementary material. The behavior of
thermodynamic quantities is eventually determined by the dynamics
of xAðtÞ and xBðtÞ.

As discussed in Ref. 48, the aforementioned quantities satisfy the
energy balance relation P þ

P
�J� ¼ 0, in compliance with the first

law of thermodynamics. Another relevant quantity of interest is the
so-called entropy production rate r � �

P
�J�=T� . In accordance with

the second law of thermodynamics, it is always10,77 r � 0. This repre-
sents another key figure of merit for thermal machines: for instance,
for a good heat engine, one should look for the best power output
while minimizing at the same time the entropy production rate.

III. RESULTS
A. Bath-induced dynamics and response functions

Under the assumption that the WM is weakly coupled to the
modulated �¼ 1 reservoir, a perturbative approach in HðtÞ

int;1 is consid-
ered. The final expressions for the average power and heat current
read (see the supplementary material)

P ¼ �
Xþ1

n¼�1
nX
ðþ1

�1

dx
2pm

J 1ðxþ nXÞNðx; nXÞg†n � v002ðxÞ � gn

(7)

and

J1 ¼
Xþ1

n¼�1

ðþ1

�1

dx
2pm

ðxþnXÞJ 1ðxþ nXÞNðx;nXÞg†n � v002ðxÞ � gn;

(8)

and J2 ¼ �ðP þ J1Þ. In the above expressions enter J 1ðxÞ, the spec-
tral density of the �¼ 1 bath, governing memory effects, and the
function

Nðx;XÞ ¼ coth
xþ X
2T1

� �
� coth

x
2T2

� �
: (9)

It is worth noticing that the aforementioned quantities are written as
quadratic forms where we have introduced the 2n components vector

gn ¼ ðgðAÞn ; gðBÞn Þt (and g†n its adjoint) with gðlÞn the nth Fourier coeffi-

cient of gðlÞ1 ðtÞ. We assume that these coefficients are related to two
independent drive sources, and hence, they satisfy two independent
constraints X

n

jgðlÞn j2 ¼ gðlÞ2; for l ¼ A; B; (10)

where gðlÞ are two fixed normalization constants. Both P and J� depend
on the imaginary part, v002ðxÞ, of the retarded response matrix
v2ðxÞ ¼ v02ðxÞ þ iv002ðxÞ. The elements of the two-by-two matrix are
indeed the Fourier transform of (l; l0 ¼ A;B)

vðl;l
0 Þ

2 ðtÞ � imhðtÞ xð0Þl ðtÞ; xð0Þl0 ð0Þ
h iD E

; (11)

where hðtÞ is the step function and xð0Þl ðtÞ evolve under the unper-
turbed Hamiltonian and their response functions are linked to the
static �¼ 2 bath only (see Appendix B). Their imaginary parts read

vðllÞ
00

2 ðxÞ ¼
xðx2 � x2

�l
Þ2c02ðxÞ

jDðxÞj2
;

vðl
�lÞ00

2 ðxÞ ¼
xðx2 � x2

l Þðx2 � x2
�l
Þc02ðxÞ

jDðxÞj2
;

(12)

DðxÞ ¼ ðx2 � x2
AÞðx2 � x2

BÞ þ ixð2x2 � x2
A � x2

BÞc2ðxÞ; (13)

where c02ðxÞ is the real part of the damping kernel c2ðxÞ of the bath
�¼ 2 (see Appendix B). In the following discussion, we will assume a
Ohmic spectral density for the latter bath, which implies c2ðxÞ ¼ c2, a
constant real number.74 Looking at the structure of the symmetric
matrix v002ðxÞ, one can notice that at any frequency x, there is a null
eigenvalue and a finite one given by

k ¼ c2x

jDðxÞj2
2x4 � 2ðx2

A þ x2
BÞx2 þ x4

A þ x4
B

� �
: (14)

It turns out that its associated frequency-dependent eigenvector,
when evaluated at xA=B corresponds to the localized vector
ð1; 0Þt = ð0; 1Þt . Furthermore, it is possible to find a completely delocal-
ized and anti-symmetric eigenvector ð�1; 1Þt . This is achieved when
the frequency is equal to

�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

A þ x2
B

2

r
; (15)

whose value will play an important role (see below). It is instructive to
evaluate the imaginary part of the response function at these three
points:

v002ðxlÞ ¼
1

c2xl

dl;A 0

0 dl;B

 !
(16)
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and

v002ð�xÞ ¼ c2 �x

D4

1 �1

�1 1

 !
; (17)

where we introduced D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

A � x2
BÞ=2

p
for notational conve-

nience. From the above expression, a completely different behavior as
a function of c2 emerges. Indeed, for c2 � xl , the localized modes are
predominant, while they subside for c2 	 xl , when the delocalized
mode becomes the leading one, as can be seen by the prefactors of the
above matrices. In Fig. 2, we plot the finite eigenvalue k in a density
plot as a function of frequency x and damping strength c2. From this
picture the above structure, and its evolution with increasing damping
strength, becomes clear.

This shows that the system response crucially depends on the
damping strength c2. More precisely, this can be seen by inspecting the
zeros of DðxÞ that govern intrinsic excitations of the normal modes
(see also Appendix B). Explicitly, at very weak damping (i.e., when
c2 � xl) v002ðxÞ resembles the one of two independent QHOs with
differences of order Oðc2=xl) Conversely, in the opposite strong
damping regime (i.e., when c2 	 D4=�x3), the key result is that the
WM becomes effectively frequency locked to a unique characteristic
frequency. In this regime, the two QHOs oscillate, at finite time, with a
common frequency �x. Moreover, they are also phase locked in anti-
phase (see Appendix B). This important behavior is tightly related to
bath-mediated correlations: indeed, c2 plays a twofold role. On the one
hand, it is responsible for dissipation but, on the other hand, it also
mediates an effective coupling between the two QHOs, establishing
non-trivial correlations between them even without any direct, a priori
coupling.

B. Quantum thermal machine performance

We now present the effect of bath-mediated correlations on the
performance of a dynamical heat engine. To ensure a working heat

engine,48,49 we choose for the bath �¼ 1 a structured non-Markovian
environment78–83 with a Lorentzian spectral function

J 1ðxÞ ¼
d1mc1x

ðx2 � x2
1Þ

2 þ c21x2
(18)

with a peak centered at x 
 x1, an amplitude governed by d1, and a
width determined by c1. Notice that for sufficiently small c1, this spec-
tral density acts as a sharp filter, centered around 6x1. Such struc-
tured environment represents a common example of non-Markovian
bath48,81 and can be realized with state-of-the-art superconducting cir-
cuits.84–87

To begin, we investigate the output power produced by the heat
engine, in the simple case of a monochromatic drive: gðAÞ1 ðtÞ
¼ cosðXtÞ and gðBÞ1 ðtÞ ¼ cosðXt þ /Þ, with X the external frequency
and / the relative phase of two independent drives. Although the
choice of a single harmonic might seem a simplifying assumption,
below we show that in most cases this represents the optimal one. In
this case, in order to enforce the two constraints in Eq. (10) with the
symmetric choice gðlÞ ¼ 1=

ffiffiffi
2

p
, one has gðAÞn ¼ dn;61=2 and gðBÞn

¼ e7i/dn;61=2 and Eq. (7) becomes

P ¼ �X
ðþ1

�1

dx
4pm

J 1ðxþ XÞNðx;XÞv00eff ðxÞ (19)

with

veff ðxÞ ¼ vðA;AÞ2 ðxÞ þ vðB;BÞ2 ðxÞ þ 2 cosð/ÞvðA;BÞ2 ðxÞ; (20)

an effective response function that explicitly depends on the phase /,
governing the constructive/destructive interference induced by the
non-diagonal term vðA;BÞ2 . Looking for the maximum output power,
with these two monochromatic drives, it is easy to see that only two
phase values are relevant, i.e., / ¼ 0 or / ¼ p. Indeed, for / ¼ 0;
v00eff ðxÞ is peaked around x 
 xl , while for / ¼ p it is peaked
around x 
 �x.

To appreciate the effects of bath-mediated correlations, the output
power produced by the joint configuration of Fig. 1(a) should be com-
pared to the one obtained in the independent configuration of Fig. 1(b).
In the latter case, P is given by an expression analogous to Eq. (19)
where veff ðxÞ ! veff ;indðxÞ ¼ �

P
l¼A;Bðx2 � x2

l þ ic2xÞ�1.
In the limit of small damping strength c2 ! 0, the response func-

tion v2ðxÞ reduces to the one above, and therefore, no collective effects
are expected to show up. However, we know that the response func-
tions qualitatively change while increasing the damping strength. To
see these effects in Fig. 3(a), we consider the case of a moderate damp-
ing strength c2 ¼ 0:1xA. Here, the engine output power is reported
considering the temperature configuration88 T1 ¼ 0:6xA;
T2 ¼ 0:4xA, and the representative value xB ¼ 0:6xA. The density
plot in the x1 � X plane shows the working regions of the dynamical
heat engine, where P< 0. From the figure, it is clear that these regions
follow two distinct sectors that correspond to the lines x1 ¼ xl þ X
with l ¼ A;B. This is due to the Lorentzian spectral density of Eq. (18)
acting as an effective filter. For the representative value xB ¼ 0:6xA,
the maximum output power is obtained for / ¼ 0. Already at this
moderate damping c2 ¼ 0:1xA, a dissipation-induced benefit in the
output power starts to emerge. This can be seen looking at the smaller
values in the inset of Fig. 3(a), where the power of the independent
case of Fig. 1(b) is reported.

FIG. 2. Density plot of the eigenvalue k as a function of frequency x and damping
strength c2 (in units of xA). We have fixed xA ¼ 1 and xB ¼ 0:6. Notice that with
this choice �x of Eq. (15) corresponds to 0.82.
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Marked signatures of bath-mediated correlations shows up in the
strong dissipation regime (c2 	 xA;B), when full frequency locking is
established, as reported in Fig. 3(b) with c2 ¼ 100xA. Strikingly, the
joint configuration results in a wide and sizeable working regime for
the dynamical heat engine. Moreover, differently from panel (a), the
working region is now concentrated along a single line, i.e., x1

¼ �x þ X that extends over a wider region in the x1 � X plane. The
fact that only a single region now appears is consistent with the fre-
quency locking mechanism, with the maximum power obtained for
/ ¼ p. In addition, comparing the moderate and strong damping situ-
ation, one can note a large increase in the output power magnitude
observed for this parameter choice. The behavior of the power as a
function of the damping strength c2, both for the joint and the inde-
pendent configuration, is analyzed in Fig. 3(c), where the maximum
output power is reported. It is clear that above a certain critical value
of c2 the independent configuration is fully overdamped and ceases to
work as a heat engine, while on the contrary, the joint configuration

exhibits a solid and stable performance. Finally, in Fig. 3(d), we have
reported the maximum output power of the joint case for the two
opposite regimes of very weak (c2 ! 0) and ultra-strong (c2 ! 1)
damping, whose behaviors can be obtained in analytic form (see
Appendix C). In the former, weak damping regime, one finds a phase-
independent, completely uncorrelated power. In the latter, instead,
c2 ! 1 regime, the dependence on the phase / is crucial: only for
/ ¼ p one obtains P< 0. Figure 3(d) shows that a wide region of
parameters exists where the strong dissipation regime can even outper-
form over its weak counterpart, demonstrating that frequency locking
can be the optimal working point to benefit from collective effects.

C. Pareto optimal performances

Here, we generalize the analysis of the dissipation-induced collec-
tive effects on the performance of quantum thermal machine by (i)
performing a functional optimization over arbitrary periodic driving

FIG. 3. Output power of Eq. (19) for the dynamical heat engine with a monochromatic drive. (a) Density plot of the (dimensionless) output power �~P ¼ �Px2
A=d1 for the joint

configuration, obtained by optimizing with respect to the phase displacement /, as a function of X=xA and x1=xA with xB ¼ 0:6xA; / ¼ 0, and damping strength
c2 ¼ 0:1xA. The inset shows the comparison with the independent configuration of Fig. 1(b), on the same scale. (b) Same as in panel (a) but for strong dissipation with
c2 ¼ 100xA and / ¼ p (see the text). (c) Maximum output power for the representative value xB ¼ 0:6xA as a function of damping strength c2, both in the joint and in the
independent case. For the joint case, power is maximized over x1, X, and /. (d) Maximum output power for the joint configuration in the very weak (c2 ! 0) and ultra-strong
(c2 ! 1) regime, as a function of xB=xA. Here, the same optimization as in panel (c) has been performed. Other parameters are: T1 ¼ 0:6xA; T2 ¼ 0:4xA, and
c1 ¼ 0:01xA.
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functions gðlÞ1 ðtÞ and (ii) deriving the Pareto front, i.e., the collection of
driving functions that are Pareto-optimal tradeoffs between power and
efficiency g ¼ �P=J1.

89 A Pareto-optimal cycle is one such that it is
not possible to further improve the power or efficiency, without
sacrificing the other one. The Pareto front is then defined as the collec-
tion of ðg;�PÞ points of all Pareto-optimal cycles, which in general
will include the maximum power case, the maximum efficiency case,
and intermediate tradeoffs. Note that if a cycle is on the Pareto front of
ðg;�PÞ, it is also on the Pareto front of ðr;�PÞ, i.e., it is also Pareto-
optimal between high power and low entropy production. Therefore,
we search for the Pareto front in ðr;�PÞ and then transform these
points to ðg;�PÞ removing the non-Pareto-optimal ones. We deter-
mine the ðr;�PÞ Pareto front of the dynamical heat engine with

respect to the driving coefficient gðlÞn expressing both thermodynamic

quantities as �PðfgðlÞn gÞ and rðfgðlÞn gÞ. As shown in the supplemen-

tary material without loss of generality, we can assume the gðlÞn coeffi-
cients to be real. We then consider a collection of fixed values of the
entropy production rate frig, and for each one, we repeat the follow-
ing optimization problem:

�Pi ¼ max
fgðlÞn g

�PðfgðlÞn gÞ
h i

; (21)

subject to rðfgðlÞn gÞ ¼ ri and the two constraints in Eq. (10). The
Pareto front is then given by all points fðri;�PiÞg. Using Parseval’s
theorem, the two constraints in Eq. (10) are equivalent to bounding
the time average of jgðlÞ1 ðtÞj2. This allows us to control the driving
strength to both \QHOs, ensuring that the coupling to bath 1 remains
in the weak-coupling regime.

We solve the optimization problem in Eq. (21) numerically, using
gradient-based optimization techniques, considering a set of 5000 dis-
crete frequencies, i.e., 10 000 parameters gðlÞn with n> 0 [negative fre-
quency coefficients must be the same as positive ones to guarantee that
gðlÞðtÞ is real]. We then use automatic differentiation and the ADAM
algorithm,90 implemented in the PyTorch package,91 to perform a gra-
dient descent optimization starting from a random guess of the driving
parameters. A modification of the Lagrange multipliers technique suit-
able for a gradient descent approach92 is used to enforce the entropy
constraint in Eq. (21), while the two constraints in Eq. (10) are exactly
imposed renormalizing the coefficients (see the supplementary mate-
rial for details). In Fig. 4, we report the results for the moderate damp-
ing case (c2 ¼ 0:1xA) for three representative values of xB. In all
cases, the value of x1 has been chosen as the one that yields the maxi-
mum output power.

Notably, in all cases, the entire Pareto front of the bath-mediated
situation in the joint case is strictly better than that of the independent
configuration, i.e., for all points along the Pareto front of the indepen-
dent case, there is at least one point in the joint case that yields higher
power and higher efficiency. Furthermore, not only is the maximum
power higher, but especially the efficiency of the joint case is enhanced
along the entire Pareto front, reaching values that are twice as large in
the xB=xA ¼ 0:6; 0:9 cases—see panels (c)–(f) of Fig. 4. Interestingly,
as we move fromxB ¼ 0:3xA toxB ¼ 0:9xA, the Pareto fronts move
from a region of high power and low efficiency—upper left corner in
panels (b), (d), and (f)—to a region of lower power but higher
efficiency—lower right corner in panels (b), (d), and (f).

Again, the effect of the bath-mediated interaction between the
QHOs is clearly visible, even in the moderate damping case,

comparing the optimal driving in the joint and independent case.
Indeed, in the latter, the optimal driving consists of applying two dif-
ferent frequencies to each QHO: intuitively, this is expected, since each
QHO has a different characteristic frequency. However, in the joint
case, the optimal driving turns out to be monochromatic along the
entire Pareto front, for all explored values of xB except for
xB ¼ 0:6xA, where two frequencies become optimal when the power
is lower than j~Pj 
 0:086 (see the supplementary material).

In Fig. 5, we report the results of the joint case for the strong dis-
sipation regime at c2=xA ¼ 100. As in Fig. 4, we set x1 to the value
that yielded maximum power in the corresponding x1 � X plane and
the left and right panels correspond, respectively, to the Pareto front in
the ðr;�PÞ and ðg;�PÞ space. The three curves correspond to the dif-
ferent values ofxB reported in the legend.

Remarkably, the strong dissipation regime displays a high-
performance Pareto front, reaching values of the power that are
roughly three times larger than in the moderate damping regime, while

FIG. 4. Comparison between the joint (blue dots) and independent (orange dots) Pareto
front in the moderate damping case, i.e., c2 ¼ 0:1xA. The left column reports the
Pareto front in the ð~r;�~PÞ space, and the right column reports the same points in the
ðg=gC;�~PÞ, where gC ¼ 1� T2=T1 is the Carnot efficiency. Each row corresponds
to a different value of xB=xA: (a) and (b) correspond to 0.3, (c) and (d) 0.6, and (e)
and (f) 0.9. For each xB, the value of x1 is fixed to the one that yields maximum power

as in Fig. 3(a). The driving magnitudes are fixed to jgðlÞj2 �
P

njg
ðlÞ
n j2 ¼ 0:5, which

are consistent with the monochromatic driving. All other system parameters are chosen
as in Fig. 3. The numerical calculations are performed optimizing over 5000 evenly
spaced frequencies, for each QHO, in the ½0; 0:5xA� interval. All plots report dimen-
sionless quantities, i.e., ~P ¼ Px2

A=d1 and ~r ¼ r=xA.
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operating at a high efficiency g 
 0:5gC. In addition, the optimal driv-
ing along the entire Pareto front always consists of a monochromatic
drive (see the supplementary material).

D. Measuring entanglement via average work

Before closing, we report another important result of the strong
damping regime: we will demonstrate a direct prescription to assess the
degree of entanglement for the WM from measurements of average
works. The quantifier we use for detecting quantum correlations is the
so-called logarithmic negativity35,42,66,67,69 En (see the supplementary
material). Here, we discuss a possible pathway to measure the degree of
entanglement for a quantum system via thermodynamic observables.

We recall that the logarithmic negativity is defined as35,66,71

En � Max 0;�log ð2~�Þ½ �; (22)

where ~� is the so-called symplectic eigenvalue of the partial transposed
density matrix. Strictly positive values of En are a fingerprint of entan-
glement. To be in this regime, ~� < 1=2 is required and this implies a
constraint on temperatures: only for T < Tc, with Tc a critical temper-
ature, the WM will be entangled. The behavior of Tc is shown in Fig. 6
as a function of xB for different damping strengths c2. As one can see,
Tc tends to saturate to the value T� for c2 ! 1. Since T� is always
the upper bound with respect to all other critical temperatures, we
focus on the best working point at ultra-strong damping. In this
regime, we found a closed analytic expression for ~� (see the supple-
mentary material) given by

~�2 ¼
�x3T2coth

2 �x
2T2

� �
2ð�x4 � D4Þ

1

coth
�x
2T2

� �
þ 2T2D

4

�xð�x4 � D4Þ

: (23)

Using the above expression, we obtain the critical temperature T�

shown as a black curve in Fig. 6.
We will now demonstrate a direct link between ~�2 in Eq. (23)

and a combination of works W [obtained from the average power as

W ¼ ð2p=XÞPðXÞ] evaluated at different working points of the
machine. As shown in the sketch of Fig. 7, we select three working
points in the x1 � X plane, obtained at the intersection between the
horizontal dotted line at a fixed x1 ¼ x�

1 < �x and three lines: x1 ¼
�x � X (red), x1 ¼ X (green), and x1 ¼ ��x þ X (blue). In addition,
we consider a peaked spectral function J 1ðxÞ, acting as a sharp filter.

Using monochromatic drives, in the ultra-strong damping
regime, the average work crucially depends on /. We now inspect the
following combination of these average works: DW/ ¼ Wð2Þ

/
þWð3Þ

/ �Wð1Þ
/ . The result (see Appendix C) is

DW/¼p ¼ p
m�x

coth
�x
2T2

� �
þ 2T2D

4

�xð�x4 � D4Þ

" #
J 1ðx�

1Þ ;

DW/¼0 ¼
2pT2

m

�x2

�x4 � D4 J 1ðx�
1Þ:

(24)

Comparing these results with ~�2 in Eq. (23), we arrive at the important
identity

FIG. 5. Pareto front of the joint case in the ultra-strong damping regime, i.e.,
c2 ¼ 100xA. As in Fig. 4, (a) reports the Pareto front in the ð~r;�~PÞ space, and
(b) reports the same points in the ðg=gC;�~PÞ. Each curve corresponds to different
values of xB=xA as shown in the legend. The driving magnitudes are fixed to
jgðlÞj2 ¼ 0:5, which are consistent with the monocromatic driving. All other system
parameters are chosen as in Fig. 3. The numerical calculations are performed opti-
mizing over 5000 evenly spaced frequencies, for each QHO, in the ½0; 0:5xA�
interval.

FIG. 6. Plot of the critical temperature Tc below which non-zero entanglement in the
WM is expected as a function of xB for different values of c2 (see legend). The
black solid line is the plot of the asymptotic critical temperature T� for c2 ! 1. All
temperatures are in units of xA.

FIG. 7. Sketch of the three working points in the x1 � X plane where we evaluate
the average work W ð1;2;3Þ

/ . The horizontal dotted line highlights the representative
value for x1 ¼ x�

1 around which the spectral density J 1ðxÞ is peaked.
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~�2 ¼
coth2

�x
2T2

� �
4

DW/¼0

DW/¼p
: (25)

This expression represents a direct link between entanglement and a
function of the average works computed for specific driving protocols.
Equation (25) is universal and does not depend on the particular work-
ing regime of the thermal machine, provided that ultra-strong damp-
ing has been reached.

IV. DISCUSSION

We have shown that dissipation can trigger a collective advantage
for a quantum heat engine made of two non-interacting quantum har-
monic oscillators connected to common heat baths, with the couplings
to one of them periodically driven. This advantage is rooted in the
non-trivial correlations between the oscillators mediated by the baths.
Of particular interest is the regime of strong dissipation, where two
independent single-oscillator engines working in parallel cannot
deliver any power, whereas with common baths the engine shows high
performances. The fact that the strong dissipation is a useful resource
might seem surprising, but we have explained this result in terms of
the appearance of a (weakly damped) frequency- and phase-locked
mode, with the two oscillators moving with a common frequency and
oscillating in phase opposition. The claim of collective advantage has
been corroborated by the optimization over generic periodic driving
protocols, building the full Pareto fronts and, thus, providing the opti-
mal tradeoffs between power and efficiency. As a final outcome of our
work, we have found a precise prescription in terms of thermodynamic
quantities, such as average works, which allows to assess the degree of
entanglement of the whole quantum system.

Our results open up several perspectives. First of all, it would be
interesting to investigate whether the dissipation-induced collective
advantage can be extended to N> 2 oscillators and possibly to establish a
link between collective advantage and multipartite quantum correlations.
Second, it would be interesting to consider different, nonlinear working
media, in particular hybrid oscillator-qubit systems of particular interest
for quantum computing and more generally for quantum technologies.
Third, our Pareto front analysis paves the way to the use of machine
learning tools for non-Markovian quantum thermodynamics processes.

SUPPLEMENTARY MATERIAL

See the supplementary material for further technical details.
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APPENDIX A: THERMODYNAMIC OBSERVABLES

The average power of Eq. (5) is associated with the time-
dependent power operator, induced by the time varying coupling
coefficients gðlÞ1 ðtÞ that modulate the �¼ 1 WM/bath coupling. Its
expression is

PðtÞ ¼
@HðtÞ

int;1ðtÞ
@t

¼
X
l¼A;B

Xþ1

k¼1

� _g ðlÞ1 ðtÞck;1xlðtÞXk;1ðtÞ
h

þ gðlÞ1 ðtÞ _g ðlÞ1 ðtÞ
c2k;1

mk;1x2
k;1

x2l ðtÞ þ @t gðlÞ1 ðtÞgð�lÞ1 ðtÞ
h i

�
c2k;1

2mk;1x2
k;1

xlðtÞx�l ðtÞ
#
: (A1)

The average heat currents in Eq. (6) instead describe the heat flows
from or toward the �th reservoirs and depend on the operators
J�ðtÞ given by

J�ðtÞ ¼ � _H �ðtÞ ¼ �
X
l¼A;B

gðlÞ� ðtÞxlðtÞ
Xþ1

k¼1

ck;� _Xk;�ðtÞ: (A2)

It is clear that these quantities depend on the WM and baths posi-
tion operators, which obey a set of coupled equations of motion (see
the supplementary material). The bath position operators can be
expressed exactly as

Xk;�ðtÞ¼ nk;�ðtÞþ
X
l¼A;B

ck;�
mk;�xk;�

ðt
t0

dsgðlÞ� ðsÞxlðsÞsin xk;�ðt� sÞ
� �

;

(A3)

where
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nk;�ðtÞ � Xk;�ðt0Þ cos xk;�ðt � t0Þ
� �

þ Pk;�ðt0Þ
mk;�xk;�

sin xk;�ðt � t0Þ
� �

:

(A4)

The corresponding fluctuating force is

n�ðtÞ �
Xþ1

k¼1

ck;�nk;�ðtÞ (A5)

with zero quantum average hn�ðtÞi ¼ 0 and correlator74

hn�ðtÞn�0 ðt0Þi ¼ d�;�0
ð1
0

dx
p

J �ðxÞ

� coth
x
2T�

� �
cos xðt � t0Þ
� �

� i sin xðt � t0Þ
� �� �

:

(A6)

Looking at Eqs. (A1)–(A3), the behavior of these thermodynamic
quantities is determined by the dynamics of xAðtÞ and xBðtÞ.

APPENDIX B: TIME EVOLUTION OF QHO OPERATORS
AND RESPONSE FUNCTIONS

The WM is weakly coupled to the �¼ 1 reservoir. Therefore,
in the main text, we have considered a perturbative expansion under
which the position operator of the lth QHO can be then written as

xlðtÞ ¼ xð0Þl ðtÞ þ DxlðtÞ; (B1)

where xð0Þl ðtÞ evolves under the unperturbed Hamiltonian and is influ-
enced only by the coupling with the static reservoir �¼ 2. The pertur-
bative correction due to HðtÞ

int;1 is (see the supplementary material)

DxlðtÞ ¼ �i
X
l0¼A;B

ðt
t0

dsgðl
0Þ

1 ðsÞn1ðsÞ xð0Þl0 ðsÞ; xð0Þl ðtÞ
h i

(B2)

with n1ðtÞ defined in Eq. (A5). From this expression, it is clear that
to evaluate Eqs. (5) and (6) via Eqs. (A1) and (A2), one needs the
fluctuating force correlators74 hn1ðtÞn1ðt0Þi, given in Eq. (A6), and

hxð0Þl ðtÞxð0Þl0 ðt0Þi, which depends only on the static (unperturbed)
bath �¼ 2. The latter are needed to evaluate the response functions

vðll
0Þ

2 ðtÞ defined in Eq. (11). To obtain its expression and study its

properties, we begin considering the coordinates xð0Þl ðtÞ of the WM,
which satisfy a set of coupled Langevin equations (see also the sup-
plementary material). These equations can be conveniently written
in Fourier space

�x2 þ x2
A � ixc2ðxÞ

� �
xð0ÞA ðxÞ � ixc2ðxÞx

ð0Þ
B ðxÞ ¼ n2ðxÞ

m
;

�x2 þ x2
B � ixc2ðxÞ

� �
xð0ÞB ðxÞ � ixc2ðxÞx

ð0Þ
A ðxÞ ¼ n2ðxÞ

m
:

(B3)

They depend on the noise term n2ðxÞ ¼
Ð1
�1 dteixtn2ðtÞ with n2ðtÞ

in Eq. (A5) and on the damping kernel in Fourier space c2ðxÞ,
defined in terms of the time kernel c2ðtÞ (see the supplementary
material) as

c2ðxÞ ¼
ðþ1

�1
dteixthðtÞc2ðtÞ: (B4)

To understand the physics of two QHOs with bath-mediated inter-
actions, we study in Eq. (B3) the intrinsic excitations of the normal
modes in the absence of the noise term [i.e., setting n2ðxÞ ¼ 0].
Following the standard procedure,74 they are given by the zeros of
DðxÞ in Eq. (13), which is the determinant of the coefficient matrix
of Eq. (B3). These zeros, which are four in our case: zj ¼ z0j þ iz00j ,
determine the dynamics of xð0ÞA;BðtÞ at finite times. In particular, their
real parts give the possible frequencies of oscillations, while the
imaginary ones describe their damping. Their explicit form will
depend on the shape of the damping kernel c2ðxÞ and, eventually,
on the spectral density of the static bath �¼ 2. Here, we consider a
Ohmic spectral density with a Drude cut-off J 2ðxÞ ¼ mxc2
=ð1þ x2=x2

c Þ, which leads to c02ðxÞ ¼ J 2ðxÞ=mx and c002ðxÞ
¼ J 2ðxÞ=mxc

74 with xc the high energy cutoff. When not neces-
sary, we will consider the latter as the highest energy of the system
(xc ! 1) with then J 2ðxÞ ¼ mxc2, and a constant and real
c2ðxÞ ¼ c2.

In Fig. 8, we report the real—panel (a)—and imaginary—panel
(b)—parts of the four zeros as a function of the damping strength
c2. Looking at Fig. 8(a), it is easy to see that for c2 � xA;B, the sys-
tem behaves as two independent QHOs with characteristic frequen-
cies xA and xB. On the other hand, at large damping c2 	 D4=�x3

[with �x in Eq. (15) and D2 ¼ ðx2
A � x2

BÞ=2] two modes are fre-
quency locked to the common frequency �x, with z01 ¼ �z04 ! �x,
while the other two are overdamped, namely, z02 ¼ �z03 ¼ 0.

FIG. 8. Plot of (a) the real part z0j and (b) the imaginary part z
0
j 0 of the four zeros of

DðxÞ for the case of a Ohmic spectral density for the �¼ 2 bath in the limit of large
cut-off xc ! 1, as a function of the damping strength c2 for representative
parameter values xA ¼ 1 and xB ¼ 0:6. All quantities are in units of xA.
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Considering now the imaginary parts shown in Fig. 8(b), we
see that for small damping, they all are / c2 and acquire different
behaviors at larger c2. In particular, the zeros that tend to a finite
frequency z01 ¼ �z04 ! �x have imaginary parts that tend to vanish
with increasing c2. On the other hand, the overdamped ones z2 and
z3 possess imaginary contributions that run together until a critical
value and bifurcate after it with opposite behavior.

In the regime of very weak c2 � xA;B, we obtain

z1;4 ¼ 6xA � i
c2
2
; z2;3 ¼ 6xB � i

c2
2
; (B5)

while at ultra-strong damping c2 	 D4=�x3, we have

z1;4 ¼ 6�x � i
D4

4c2 �x
2 ; z2 ¼ �i

ð�x4 � D4Þ
2c2 �x

2 ; z3 ¼ �2ic2; (B6)

in full agreement with the behavior reported in Fig. 8. Notice that
the zeros that survive at the common frequency �x are very stable,
i.e., with a very small imaginary part / 1=c2.

The aforementioned results demonstrate that at strong damping,
the two QHOs become frequency locked oscillating, at finite time, with
a common frequency �x. Moreover, they are also phase locked in anti-
phase (with relative phase p), as one can see from the relation of the
homogeneous solution of Eq. (B3) with xAðxÞ ¼ �xBðxÞ at large c2.
All these regimes are reflected on the retarded response function.
Indeed, switching on the noise n2ðxÞ, the system (B3) has the long
time compact solution x† ¼ v2 � n†=m, where x ¼ ðxð0ÞA ðxÞ;
xð0ÞB ðxÞÞ is the two-component vector of the positions of the oscillators,
n ¼ n2ðxÞð1; 1Þ is the noise vector, and v2ðxÞ is the two-by-two
response-function matrix, inverse of the coefficient matrix. Its elements
are the Fourier transform of Eq. (11) and are given by

vðllÞ2 ðxÞ ¼
� x2 � x2

�l
þ ixc2ðxÞ

h i
DðxÞ ; vðl

�lÞ
2 ðxÞ ¼ ixc2ðxÞ

DðxÞ : (B7)

The behavior of the response function is connected to the already
discussed normal modes. We are particularly interested in the imag-
inary part of such response function.

At very weak damping (c2 � xA;B), v002ðxÞ is exactly the one of
two independent QHOs [see also Eq. (B5)],

vðllÞ
00

2 ðxÞ ¼ dl;l0
ixc2

ðx2 � x2
l Þ

2 þ x2c22
: (B8)

In the opposite regime (c2 	 D4=�x3) from Eq. (B6), we obtain

vðll
0Þ00

2 ðxÞ ¼ ð1� dl;l0 Þ þ
x2
�l

x2
l

dl;l0

" #
x

x2
l þ x2

�l

jz002 j
x2 þ jz002 j

2

þ xð�1Þ1�dl;l0

2ðx2
l þ x2

�l
Þ
X
p¼6

jz001 j

xþ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

l þ x2
�l
Þ=2

q� �2

þ jz001 j
2

:

(B9)

Here, since z001 and z002 scale as 1=c2—see Eq. (B6)—both the diagonal
and the off diagonal response functions are dominated by contribu-
tions peaked around 6�x ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

A þ x2
BÞ=2

p
. Indeed in this

regime, the WM becomes effectively frequency locked to a unique

common frequency, i.e., �x. In addition, the phase locking at p, dis-
cussed above, is here reflected in the property
vðllÞ

00

2 ðxÞ ! �vðllÞ
00

2 ðxÞ. Note that the first term in Eq. (B9) / x,
although negligible with respect to the second one, can give a finite
dissipative contributions to the power (see below).

For the sake of comparison, we quote the behavior associated
with the independent configuration [see Fig. 1(b)]. In this case, the
response function is diagonal and given by48 vðll

0Þ
2;indðxÞ ¼ �dl;l0=½x2

�x2
l þ ixc2�. It is then straightforward to see that at very weak

damping, the normal modes are the same as in the joint case in Eq.
(B5), while for strong damping, they are given by z1;ind
¼ �ix2

A=c2; z2;ind ¼ �ix2
B=c2 and z3;4;ind ¼ �ic2. As we can see, in

the latter case, all zeros are purely imaginary, implying always an
overdamped regime at strong damping. This behavior is in sharp
contrast with the case discussed above of the joint configuration.

APPENDIX C: AVERAGE POWER FOR WEAK
AND STRONG DAMPING

To obtain expressions for the average power P in the weak and
in the strong damping regime, we start from Eq. (19) and the

expressions for vðl
�lÞ00

2 ðxÞ quoted above.
In the very weak damping regime c2 � xA;B, the average

power is phase-independent, and using Eq. (B8), we get

P ¼ � X
8m

X
l¼A;B

1
xl

X
p¼6

pJ 1ðpxl þ XÞNðpxl;XÞ: (C1)

In the opposite regime of ultra-strong damping c2 	 D4=�x3,
we use instead Eq. (B9). Here, the power depends on the phase /.
When / ¼ p, one finds

Pp ¼ X
4m�x

T2ðx2
B � x2

AÞ
2

�xx2
Ax

2
B

J 1ðXÞ �
X
p¼6

pJ 1ðp�x þ XÞNðp�x;XÞ
" #

;

(C2)

while for the case / ¼ 0 the dominant contributions of vðll
0Þ

2 ðxÞ,
around the characteristic frequency �x, cancels out in veff ðxÞ and
only the dissipative part around x 
 0 remains yielding

P0 ¼
X
2m

T2J 1ðXÞ
1
x2

A
þ 1
x2

B

� �
> 0; (C3)

i.e., no useful power can be delivered. Importantly, we notice that
the corresponding power of the independent case, Pind, coincides
exactly with the above result: Pind � P0. Indeed, in this regime, we
have vindeff ðxÞ ¼

P
l¼A;B i=½c2ðxþ ix2

l =c2Þ�.
From the above equations, it is easy to obtain the analytic

expressions of the average work at ultra-strong damping along the
lines of Fig. 7. For / ¼ p, we have

Wð1Þ
/¼p ¼ � p

2m�x
J 1ðx�

1ÞNð��x; �x � x�
1Þ;

Wð2Þ
/¼p ¼ p

2m
T2

�x2

ðx2
B � x2

AÞ
2

x2
Ax

2
B

J 1ðx�
1Þ;

Wð3Þ
/¼p ¼ p

2m�x
J 1ðx�

1ÞNð��x; �x þ x�
1Þ;

(C4)
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while for / ¼ 0, we obtain

Wð2Þ
/¼0 ¼

pT2

m
1
x2

A
þ 1
x2

B

� �
J 1ðx�

1Þ; (C5)

and Wð1Þ
/¼0;W

ð3Þ
/¼0 ! 0. From the above expressions, it is immediate

to obtain the expressions for DW/ quoted in Eq. (24).
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