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Abstract: Two mutually related pandemics are ongoing worldwide: the COVID-19 and antimicrobial
resistance pandemics. This study aims to evaluate the impact of COVID-19 on multi-drug-resistant
Gram-negative bacteria (MDR-GN) bloodstream infections (BSIs) in a single intensive care unit (ICU).
We conducted a retrospective study including patients admitted to the ICU, reorganized for COVID-
19 patients’ healthcare, with at least one confirmed MDR-GN BSI during 2019–2020. We compared
clinical and microbiological features, incidence density, antibiotic therapy and mortality rate in pre-
and during-COVID-19 pandemic periods. We estimated the impact of COVID-19 on mortality by
means of univariate Cox regression analyses. A total of 46 patients were included in the study
(28 non-COVID-19/18 COVID-19). Overall, 63 BSI episodes occurred (44/19), and non-COVID-19
patients had a higher incidence of MDR-GN BSIs and were more likely to present K. pneumoniae
BSIs, while the COVID-19 group showed more A. baumannii BSIs with higher per pathogen incidence.
COVID-19 patients presented more critical conditions at the BSI onset, a shorter hospitalization time
from BSI to death and higher 30-day mortality rate from BSI onset. COVID-19 and septic shock were
associated with 30-day mortality from MDR-GN BSIs, while early active therapy was a protective
factor. In conclusion, COVID-19 showed a negative impact on patients with MDR-GN BSIs admitted
to the ICU.

Keywords: antibiotic therapy; multi-drug-resistant bacteria; COVID-19; bloodstream infections;
intensive care unit

1. Introduction

Since 2020, two mutually related pandemics are ongoing worldwide: COVID-19 and
antimicrobial resistance (AMR) pandemics. The former is a big global threat that has
resulted, at the time of writing, in over 6 million deaths [1] and disrupted healthcare
systems at all levels, leading to a reorganization of health facilities and changes in social
behavior all over the world. The second, much less visible and known, is also called a
«hidden pandemic», and it has been recognized as one of the most urgent threats facing
global health, economic and social development, causing over 1 million estimated deaths
attributable to AMR bacteria in 2019 [2–4].
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From the beginning of the SARS-CoV-2 pandemic, experts have warned about the
relation between COVID-19 and AMR and suggested increasing Infection Prevention and
Control (IPC) measures and antimicrobial stewardship programs to avoid unnecessary
antibiotic use to reduce the potential long-term impact on AMR [5,6]. Nevertheless, the
gap between the prevalence of antibiotic prescribing (~75%) and the estimated bacterial
co-infection (8.6%) upon admission of COVID-19 patients requiring hospitalization was
largely reported, thus leading to a high level of inappropriate antimicrobial exposure [7].

Studies reported conflicting evidence on the impact of COVID-19 on multi-drug-
resistant organism (MDRO) infections. Several reports—particularly from Italy, Brazil, and
Germany—described outbreaks or significant increases in MDRO infections during the
COVID-19 period [8–10]. However, other studies from Spain and France did not describe an
increase in MDR infections [11,12], and, interestingly, an Irish study showed a decrease in
hospital-acquired Clostridioides difficile infections compared to the pre-COVID-19 pandemic
period [13].

As for critically ill patients admitted to intensive care units (ICUs) during the COVID-19
pandemic, few papers have investigated the burden of MDRO, especially for Gram-negative
bacteria invasive infections such as bloodstream infections (BSIs) [9,14–16]. In a review
in 2020, Fattorini et al. found that only 1.3% of 522 COVID-19 patients in the ICUs devel-
oped an infection from MDR bacteria [17], while another review showed a prevalence of
carbapenem-resistant Klebsiella pneumoniae that ranged from 0.35% to 53% [18]. As a matter
of fact, many hospitals have reported MDRO outbreaks in the ICU during the COVID-19
pandemic, mostly caused by Gram-negative bacteria or Candida auris [19]. Carbapenem-
resistant Acinetobacter baumannii (CRAB) seems to be the main pathogen involved with a
higher incidence compared to the pre-COVID-19 period and a higher risk of death than
other MDROs [20–22].

In order to add new findings regarding the burden of MDRO infection in SARS-CoV-
2-infected, critically ill patients, this study aimed to evaluate the impact of COVID-19
on MDR Gram-negative bacteria BSIs (MDR-GN BSIs) in a single ICU reorganized for
exclusive COVID-19 patients’ healthcare.

2. Results

During the study period, 63 (44 pre-pandemic (no-CoV) and 19 pandemic (CoV)) BSI
episodes were observed in 46 patients (28 no-CoV and 18 CoV). The demographic and
clinical characteristics of the study population with the microbiological data and clinical
characteristics of the BSI episodes are summarized in Table 1. No differences between
no-CoV and CoV patients were observed regarding age, gender, previous hospitalization,
previous antibiotic therapy, and the burden of comorbidities, calculated through CCI.

Table 1. Characteristics of the study population. Demographic, clinical characteristics, outcomes
of the study population and microbiological data, and clinical and treatment characteristics of the
BSI episodes.

Characteristics
Total Population No-CoV CoV

p Value
(n 46) (n 28) (n 18)

General, n, %
Age, years, median (IQR) 65.5 (57–73) 66.5 (56.7–73) 63.5 (57.5–72.5) ns
Gender, F/M 14 (30.4)/32 (69.6) 11 (39.3)/17 (60.7) 3 (16.7)/15 (83.3) ns
Other hospitalization in previous 90 days 10 (21.7) 8 (22.8) 2 (10.5) ns
Pre-hospitalization antibiotic therapy in
previous 90 days 13 (28.3) 6 (20.4) 7 (36.8) ns

Pre-BSI antibiotic therapy 45 (97.8) 27 (95.4) 18 (100) ns
Patients with >1 BSI from different MDRO 14 (30.4) 13 (28.3) 1 (2.2) 0.003
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Table 1. Cont.

Characteristics
Total Population No-CoV CoV

p Value
(n 46) (n 28) (n 18)

Comorbidities, n. (%)
Myocardial infarction 7 (15.2) 5 (17.9) 2 (11.1) ns
Congestive heart failure 14 (30.4) 10 (35.7) 4 (22.2) ns
Peripheral vascular disease 13 (28.3) 8 (28.6) 5 (27.8) ns
Cerebrovascular disease 4 (8.7) 3 (10.7) 1 (5.5) ns
Dementia 3 (6.5) 2 (7.1) 1 (5.5) ns
Chronic obstructive pulmonary disease 6 (13) 6 (21.4) 0 NA
Liver disease {1} 1 (2.2) 1 (3.6) 0 NA
Diabetes mellitus 11 (23.9) 8 (28.6) 3 (7.2) ns
Hemiplegia 1 (2.2) 1 (3.6) 0 NA
Chronic kidney disease {2} 2 (4.4) 1 (3.6) 1 (5.5) ns
Solid tumor 3 (6.5) 3 (10.7) 0 NA
Leukemia 1 (2.2) 0 1 (5.5) NA
Charlson Comorbidity Index, median (IQR) 3.5 (2–6) 4 (2–6) 2 (1.25–4) ns
APACHE II score {3}, median (IQR) 18.5 (13–23) 22 (16–23) 11 (3.2–21.5) 0.003
Polytrauma 9 (19.6) 9 (32.1) 0 (0) 0.007

Outcome, median (IQR)
Days of hospitalization overall 43 (29.5–98.75) 69.5 (43.5–141.5) 28.5(18.7–35.7) 0.001
Days of hospitalization until ICU admission 2 (0–6) 2 (0–9.75) 2 (0.25–5) ns
Days of hospitalization until BSI 25.5 (12.25–37.5) 29 (15–48.25) 20 (9.5–26.75) 0.02
Days of ICU hospitalization 31.5 (21.25–68) 56 (28–91.25) 25 (13.5–29.5) 0.004
Days of ICU hospitalization until BSI 18.5 (9–29) 23 (9.75–34.75) 14.5 (9–21.75) ns
Days of hospitalization from BSI to death 15.5 (4.25–45.75) 44 (14.5–117.5) 5 (1.25–11.75) 0.003
Overall in-hospital mortality, n. (%) 29 (63) 15 (53.6) 14 (77.8) ns
Mortality 30 days from ICU admission, n. (%) 20 (43.5) 6 (21.4) 14 (77.8) <0.0001
Mortality 30 days from BSI, n. (%) 20 (43.5) 6 (21.4) 14 (77.8) <0.0001

BSI Characteristics
Total BSI No-CoV CoV

(n 63) (n 44) (n 19)

Microbiological data, n (%)
Pre-BSI infections from no MDRO {4} 57 (90.6) 43 (97.7%) 14 (73.7) 0.003
Pre-BSI infections from MDRO {4} 48 (76.2) 38 (86.4) 10 (52.6) 0.004
MDRO colonization 45 (71.4) 36 (81.8) 9 (47.4) 0.005
Overall BSI incidence density, n per 100 patients 16.5 11.2 ns
K. pneumoniae BSI 26 (41.3) 22 (50) 4 (21) 0.032
-Incidence density, n per 100 patients 8.2 2.4 0.012
A. baumannii BSI 32 (50.8) 17 (38.6) 15 (78.9) 0.003
-Incidence density, n per 100 patients 6.4 9 ns
P. aeruginosa BSI 5 (7.9) 5 (11.4) 0 ns
Source of BSI

ns
- Lung 31 (49.2) 21 (47.7) 10 (52.6)
- Urine 5 (7.9) 5 (11.4) 0
- Abdomen 2 (3.2) 2 (4.5) 0

Primary BSI 25 (39.7) 16 (36.4) 9 (47.4) ns
Source control 8 (12.7) 4 (9.1) 4 (21) ns

Clinical data
Septic shock at BSI onset, n (%) 25 (39.7) 12 (27.3) 13 (68.4) 0.003
PITT score on the BSI day, median (IQR) 3 (1–8) 3 (1–5) 8 (2–8) 0.002

Treatment data
Early active therapy (<24 h), n (%) 31 (49.2) 21 (47.7) 10 (52.6) ns
Time to definite therapy, median (IQR) 1 (1–2) 1 (1–2) 1 (1–2) ns

{1} from chronic hepatitis to cirrhosis; {2} from moderate CKD (creatinine > 3 mg/dL) to dialysis or status post
kidney transplant; {3} APACHE II score at ICU admission; {4} pre-BSI infections: an infection before BSI onset.
No-CoV: pre- COVID-19 pandemic period; CoV: during COVID-19 pandemic; MDRO: multi-drug-resistant
organism; ns: not significant; NA: not applicable; ICU: intensive care unit; BSI: bloodstream infection; early active
therapy: at least one in vitro active drug within the first 24 h.
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Instead, the no-CoV population was more likely to present a higher APACHE II score
at ICU admission than the CoV population (median 22 (IQR 16–23) vs. 11 (3.2–21.5), respec-
tively, p: 0.003), to get admitted to the ICU for polytrauma (9 (32.1%) vs. 0 (0), p: 0.007), and
to show more than one BSI episode from different MDR species (13 (28.3%) vs. 1 (2.2%),
p: 0.003).

2.1. Microbiological Data

The overall MDR-GN BSI incidence density for the pre-COVID19 period was 16.5 per
100 patients and 11.2 per 100 patients for the COVID-19 period (p: 0.12). In the pre-COVID-
19 period, the K. pneumoniae BSI incidence density was 8.2 per 100 patients, and the A.
baumannii BSI incidence density was 6.4 per 100 patients. Instead, during the COVID-
19 pandemic, the K. pneumoniae BSI incidence density was significantly lower (2.4 per
100 patients, p: 0.012), and the A. baumannii BSI incident density was higher (9.0 per
100 patients, p: 0.34).

As for the BSI episodes, no differences were observed regarding the BSI focus, source
control, early active therapy, and the time to definite therapy. However, CoV patients
presented significantly more critical conditions at the BSI onset with higher PITT scores
(8 (2–8) vs. 3 (1–5), p: 0.002) and more frequently had septic shock (13 (68.4%) vs. 12 (27.3%),
p: 0.003) than no-CoV patients. In contrast, the no-CoV group was more likely to show an
infection before BSI onset (pre-BSI infection) from both no-MDRO (p: 0.003) and MDRO
(p: 0.004), although no differences were observed in antibiotic therapy performed before
the BSI onset.

MDRO colonization before the BSI onset (36 (81.8%) vs. 9 (47.4%)) and K. pneumoniae
BSI (22 (50%) vs. 4 (21%)) were significantly more frequent in no-CoV patients (p: 0.005
and p: 0.032, respectively); on the other hand, the CoV group showed more A. baumannii
BSIs (15 (78.6%) vs. 17 (38.6%), p:0.003). Difficult-to-treat resistant (DTR) P. aeruginosa was
only observed in five no-CoV patients. As for the local epidemiology in the ICU, MDR K.
pneumoniae almost exclusively presented KPC genes (twenty-four) except for one NDM+
and one OXA-48+ strain.

2.2. Hospitalization and Mortality Data

No-CoV patients showed a significantly longer overall hospital stay (p:0.001) as well
as in the ICU (p: 0.004) and a longer time from hospital admission to BSI onset (p: 0.02),
whereas CoV patients presented a shorter hospitalization time from BSI onset to death
(p: 0.003). No differences were observed in the days from ICU hospitalization to BSI
onset (Table 1).

Patients that presented more critical conditions at the BSI onset with documented
septic shock had a higher 30-day mortality rate from BSI onset; p < 0.0001 (Figure 1A).
Meanwhile, patients that underwent an early active therapy (as at least one in vitro active
drug within the first 24 h) showed a higher survival rate; p: 0.038 (Figure 1B).

Finally, CoV patients had a higher 30-day mortality rate from ICU admission (14 (77.8%)
vs. 6 (21.4%), p < 0.0001) and from BSI onset (14 (77.8%) vs. 6 (21.4%), p < 0.0001), as shown
in Figure 1C.
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causative agent of BSIs during the COVID-19 pandemic. 

In fact, during the COVID-19 pandemic, the impact on AMR has been more pro-
nounced inside ICU settings [19,23]. These observations are supported by the evidence 
that antibiotics prescription was higher in ICUs than in general wards, peaking at more 
than 86% among critical patients and therefore leading to unnecessarily high antimicro-
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Figure 1. Cumulative proportions on overall 30-day mortality estimates from MDR-GN BSI onset.
(A), between patients with (red line) or without (blue line) septic shock at the BSI onset; (B), between
patients that received early active therapy (red line) and who did not receive it (blue line); (C), between
pre-pandemic patients (blue line) and COVID-19 patients (red line). Axis X: number of days from BSI
onset; axis Y: probability of survival from BSI onset. Abbreviations: MDR-GN: multi-drug-resistant
Gram-negative bacteria; BSI: bloodstream infection; early active therapy: at least one in vitro active
drug within the first 24 h.

3. Discussion

In the present study, we showed that COVID-19 had a negative impact on patients
with MDR-GN BSIs admitted to the ICU. We also confirmed the prognostic role of severity
at ICU admission and at the BSI onset and confirmed the importance of A. baumannii as a
causative agent of BSIs during the COVID-19 pandemic.

In fact, during the COVID-19 pandemic, the impact on AMR has been more pro-
nounced inside ICU settings [19,23]. These observations are supported by the evidence
that antibiotics prescription was higher in ICUs than in general wards, peaking at more
than 86% among critical patients and therefore leading to unnecessarily high antimicrobial
use [7]. Furthermore, other contributing factors to AMR could be the patients’ critical
illness, inappropriate adherence to IPC protocols, personal protective equipment shortages,
critically low healthcare workers/patients ratios with overcrowded wards, and the disrup-
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tion of MDRO screening and surveillance programs as well as antimicrobial stewardship
activities [19,23].

However, how the incidence of MDRO infections changed during the pre-COVID-19
and during-COVID-19 periods is still debated. We found that the overall MDR-GN BSI
incidence density was lower in the CoV patients than the no-CoV ones, although the rate
per pathogen showed an increase in the CRAB incidence in the former group of patients,
albeit not significant. Several studies reported a decrease or no change in the incidence
of MDRO colonization or infection in ICUs during the COVID-19 pandemic period, as
with our findings [9,21,24,25], while other studies observed a significant increase in MDRO
infections [15,20,22] or an increase only in a specific subgroup of patients with colonization
or infection due to CRAB, as our study showed [9,21]. The change in our local epidemiology
is associated with some outbreaks of CRAB infection during the observation period which
reduced the K. pneumoniae incidence density. Furthermore, the higher level of CRAB
pneumonia in the CoV patients as a source of BSIs, although not significant, could explain
this epidemiology alternation, but the real explanation is not fully elucidated. Of interest,
the burden of A. baumannii infections in CoV patients has been described worldwide with
several outbreaks reported [19]. This so-called “little pandemic” within the huge COVID-
19 pandemic represents a matter of concern as the greatest threat to COVID-19 patients
admitted to ICUs [9,20–22,26]. However, new observational studies are needed to assess the
real impact of CRAB invasive infections on mortality in critically ill CoV patients [20,22,26].

Among critically ill COVID-19 patients, BSIs are one of the major secondary infections
often caused by Gram-negative bacteria [27,28]; moreover, several studies showed an
increase in MDR-GN BSI during the COVID19 pandemic. Nevertheless, the real burden of
these invasive infections and how they impact on mortality have not been fully estimated
yet [14,20,22,26].

Despite the remarkable difference in patients’ severity (the no-CoV group showed
more critical conditions at ICU admission), mortality was higher in the CoV patients. This
result is comparable to other previous reports from Italy and France, in which a higher
in-hospital mortality rate was observed in patients with SARS-CoV-2 infection admitted
to ICUs [14,20]. In particular, our experience showed that, although the two groups did
not significantly differ in days from ICU admission to BSI onset, CoV patients presented a
much shorter survival time after BSI onset than no-CoV patients, as shown in Figure 1C.

This observation joined with the more severe clinical condition of CoV patients at the
BSI onset (with higher PITT scores and more frequent septic shock) seems to suggest that
MDR-GN BSIs might represent only the last fatal complication in patients with an already
ominous prognosis. Nevertheless, we confirmed that early active therapy represents an
important factor associated with a better outcome in critically ill patients with MDR-GN
BSIs [29–31]. Therefore, additional studies are warranted in order to fully elucidate whether
the BSI onset impacts the outcome of CoV patients or if it represents just the “last” event in
patients with a poor prognosis per se.

CoV patients presented a significantly lower MDRO colonization but a more frequent
primary BSI than the no-CoV group, although this did not reach statistical significance.
These results could indirectly confirm gut damage, microbiota variation and persistent
microbial translocation during SARS-CoV-2 infection, which is more pronounced in severe
infections and independent from gastrointestinal manifestations [32,33]. In this context, the
observed gut mucosal perturbation may play a pathogenetic role in the development of
BSIs following infections [34,35].

Our study has several limitations. First of all, it was retrospective nature and had a
small population. So, due to the small population and some residual confounder factors,
we decided to not perform a powerful statistical assessment via multivariable analysis.
Secondly, we did not recollect data about the immunosuppressive treatment that could
affect the different outcomes of our patients. Thirdly, the monocentric study reflected the
ecology and epidemiology of our hospital which could differ from other ICUs; therefore,
our results might not be generalized. Finally, we only focused on bacteremia, and we did
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not recollect data from other MDR infections; accordingly, our report may underestimate
the real AMR burden pre- and during the COVID-19 pandemic.

4. Materials and Methods

Over two years (2019–2020), we conducted an observational, retrospective, single-
center study including patients admitted to the same ICU of an academic tertiary hospital
in Rome, with at least one confirmed MDR-GN BSI.

All clinical data were systematically analyzed from patients admitted in the pre-
COVID-19 period (March–December 2019) and during (March–December 2020) the first
COVID-19 pandemic period in a single ICU which, in March 2020, was reorganized for
exclusive COVID-19 patients’ healthcare. Patients were enrolled in the study if they fulfilled
the following inclusion criteria: (I) age > 18 years, (II) confirmed MDR-GN BSI, and (III)
confirmed SARS-CoV-2 infection via polymerase-chain-reaction assay on nasopharyngeal
swab only during the COVID-19 period. Only the first BSI from the same MDR-GN
species was included in the analyses. The flow chart of the study population is represented
in Figure 2.
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Figure 2. Flow chart of the study population. Abbreviations: no-CoV: pre-COVID-19 pandemic
period; CoV: during COVID-19 pandemic; ICU: intensive care unit; MDR-GN: multi-drug-resistant
Gram-negative bacteria; BSI: bloodstream infection.

We reviewed patient data from medical records and anonymously recorded the fol-
lowing information in an electronic database: demographics, comorbidities, clinical and
laboratory findings at the ICU admission and at the BSI onset, microbiological data during
ICU hospitalization, antibiotic treatments and procedures administered during hospital-
ization and/or in the 90 days prior to BSI onset, source of BSI, duration of hospitalization
and ICU stay, and time to BSI onset and 30-day mortality from ICU admission and from
BSI onset.

4.1. Definitions

The patients admitted to the ICU in the pre-COVI-19 period and during the COVID-19
pandemic were named no-CoV and CoV, respectively.
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Patients’ severity at ICU admission was defined by the APACHE II score that collected
these characteristics: history of severe organ failure, age, body temperature, mean arterial
pressure, pH, heart and respiratory rate, sodium, potassium, creatinine, acute renal failure,
hematocrit, white blood cell count, Glasgow Coma Scale and FiO2 [36], whereas the
burden of comorbidities was estimated by means of the Charlson Comorbidity Index
(CCI) [37]. The severity of BSI was defined according to the PITT score that collected these
characteristics: body temperature, arterial pressure and need for vasopressor, mechanical
ventilation, cardiac arrest, and mental status [38]. Septic shock was defined according to
the international consensus [39]. BSI onset was considered the date of the index blood
culture collection.

According to the hospital’s guidelines, rectal/stool swab culture was routinely eval-
uated for MDRO strains, and an MDRO colonization was defined as a rectal/stool swab
positive culture in the absence of clinical signs of infection. MDR bacteria was defined
according to the classification of Magiorakos et al. [40], while DTR P. aeruginosa was defined
as in the IDSA guidelines 2022 [41]. Primary bloodstream infection was defined as a BSI
occurring in patients without a recognized source of infection.

The source control was achieved when all those physical measures used to control the
focus of BSI and to restore the optimal function of the affected area were performed.

Early active therapy was defined as the use of at least one in vitro active drug within
the first 24 h from the BSI onset, and the time to definite therapy was days from BSI onset
to the definite therapy. All infections caused by MDR or non-MDR bacteria that occurred
before the BSI were defined pre-BSI infection from MDRO or nno-MDRO, respectively.

4.2. Microbiological Analyses

Blood culture bottles were incubated in the automatic VirtuoBacT/Alert system
(bioMérieux, Inc., Marcy l’Etoile, France). Isolated colonies from blood cultures were
identified using the Matrix-Assisted Laser Desorption Ionization–Time Of Fight Mass
Spectrometry (MALDI-TOF MS) system (Bruker Daltonik GmbH, Bremen, Germany). An-
timicrobial susceptibility was tested using the MicroScan WalkAway system (Beckman
Coulter, Inc., Brea, CA, USA). The MICs of antibiotics were assessed by following EUCAST
breakpoint tables for the interpretation of MICs and zone diameters, version 9.0, valid from
2 January 2019 [42].

Strains showing a carbapenem-resistant phenotype (according to EUCAST criteria [42])
were tested using the real-time PCR assay Xpert Carba-R kit for the GeneXpert system
(Cepheid, Sunnyvale, CA, USA) to evaluate the presence of the blaVIM, blaIMP, blaKPC,
blaOXA-48, and blaNDM carbapenemase genes.

Statistical Analysis

The data were given as medians with interquartile ranges (IQR, 25th–75th percentile)
for continuous variables and as simple frequencies, proportions, and percentages for cate-
gorical variables. The Mann–Whitney test was used for unpaired samples. Dichotomous
variables were compared using Fisher’s exact tests or chi-square test statistics, as appropri-
ate. Log-rank tests and univariate Cox regression were used for categorical or continuous
variables, respectively. p-value analyses were two-sided, and a p-value of less than 0.05 was
considered statistically significant.

The rates of MDR-GN BSI in the pre-COVID-19 period and during the COVID-19
pandemic were expressed in incidence densities which were calculated using the number
of MDR-GN BSI episodes in the study period as the numerator and the number of patients
admitted in the ICU in the same period as the denominator multiplied by 100. We analyzed
total rates and rates per pathogen in the ICU. To assess the differences between the two
periods, the incidence densities in 2019 were compared with the data from 2020. All
statistical analyses were performed with SATA/IC software (StataCorp) version 15.

The study was approved by the local Ethics Committee (ID Prot. 109/2020).
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5. Conclusions

COVID-19 had a negative prognostic impact on patients with MDR-GN BSI admitted
to the ICU. Enhancing IPC measures is crucial to reducing the likelihood of MDRO colo-
nization and bacteremia, which is related to a worse outcome. Further studies are needed
to clearly assess the relationship between COVID-19 and AMR.
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