
Biomedicine & Pharmacotherapy 144 (2021) 112278

Available online 7 October 2021
0753-3322/© 2021 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Longitudinal stability of molecular alterations and drug response profiles in 
tumor spheroid cell lines enables reproducible analyses 

A.C. Nickel a,1, D. Picard b,c,d,l,1, N. Qin b,c,d,l, M. Wolter c, K. Kaulich c, M. Hewera a, 
D. Pauck b,c, V. Marquardt b,c, G. Torga e, S. Muhammad a, W. Zhang f, O. Schnell g, 
H.-J. Steiger a, D. Hänggi a, E. Fritsche h, N.-G. Her i, D.-H. Nam j, M.S. Carro g, M. Remke b,c,d,l, 
G. Reifenberger c,d,l, U.D. Kahlert a,k,* 

a Department of Neurosurgery, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany 
b Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, 
Germany 
c Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany 
d German Cancer Research Center (DKFZ), Heidelberg, Germany 
e Drug Development Unit, Sarah Cannon Research Institute, London, UK 
f Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China 
g Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany 
h Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany 
i R&D Center, AIMEDBIO Inc., Seoul, South Korea 
j Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, South Korea 
k Molecular and Experimental Surgery, Department of General, Visceral, Vascular, and Transplant Surgery, University Hospital Magdeburg, Magdeburg, Germany 
l German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany   

A R T I C L E  I N F O   

Keywords: 
Glioblastoma 
In vitro drug screening 
Longitudinal molecular profiling 
Tumor spheroids 

A B S T R A C T   

The utility of patient-derived tumor cell lines as experimental models for glioblastoma has been challenged by 
limited representation of the in vivo tumor biology and low clinical translatability. Here, we report on longitu
dinal epigenetic and transcriptional profiling of seven glioblastoma spheroid cell line models cultured over an 
extended period. Molecular profiles were associated with drug response data obtained for 231 clinically used 
drugs. We show that the glioblastoma spheroid models remained molecularly stable and displayed reproducible 
drug responses over prolonged culture times of 30 in vitro passages. Integration of gene expression and drug 
response data identified predictive gene signatures linked to sensitivity to specific drugs, indicating the potential 
of gene expression-based prediction of glioblastoma therapy response. Our data thus empowers glioblastoma 
spheroid disease modeling as a useful preclinical assay that may uncover novel therapeutic vulnerabilities and 
associated molecular alterations.   

1. Introduction 

In vitro culturing of cancer cells derived from human tumor speci
mens is a standard method in cancer research. Historically, in vitro drug 
testing of cultured cancer cells led to the discovery of pharmacological 
approaches that translated into clinical beneficial treatments for various 
cancers [1,2]. More recently, in vitro drug testing on large collections of 
genetically characterized cancer cell lines was conducted to identify 
tumor type-specific or tumor-agnostic chemotherapies [3,4]. 

Interestingly, inconsistencies in drug response data among different 
studies using the same interventions and the same cell models were 
identified, launching the debate whether classic cancer cell lines can still 
serve as a suitable research tool in drug development projects [2,5]. 
With the recent advances in high-throughput molecular profiling and 
computational technologies, and in the wake of establishing guidelines 
how to interpret in vitro drug screening data, technical and biological 
confounders impacting the reproducibly of cancer cell line-based in vitro 
drug testing are increasingly identified. Our study follows this line of 

* Correspondence to: University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Dusseldorf, Germany. 
E-mail address: ulf.kahlert@med.ovgu.de (U.D. Kahlert).   

1 These authors contributed equally to this paper. 

Contents lists available at ScienceDirect 

Biomedicine & Pharmacotherapy 

journal homepage: www.elsevier.com/locate/biopha 

https://doi.org/10.1016/j.biopha.2021.112278 
Received 16 August 2021; Received in revised form 29 September 2021; Accepted 29 September 2021   

mailto:ulf.kahlert@med.ovgu.de
www.sciencedirect.com/science/journal/07533322
https://www.elsevier.com/locate/biopha
https://doi.org/10.1016/j.biopha.2021.112278
https://doi.org/10.1016/j.biopha.2021.112278
https://doi.org/10.1016/j.biopha.2021.112278
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biopha.2021.112278&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Biomedicine & Pharmacotherapy 144 (2021) 112278

2

research focusing on glioblastoma, the most common malignant primary 
brain tumor with an eminent need to identify more effective, person
alized treatment options [6,7]. We applied glioblastoma stem cell-like 
spheroid modeling technology that is assumed to better recapitulate 
tumor pathophysiology as opposed to conventional monolayer cultures 
[8–10]. Specifically, we performed a longitudinal study with determi
nation of molecular profiles and drug response data to 231 clinical 
approved drugs comparing early and late in vitro passages of seven 
established glioblastoma cell lines that spontaneously grow as tumor 
spheroids in vitro (30 passages, ranging between 200 and 250 days in 
culture). Our approach involved multi-omics profiling, including 
large-scale DNA methylation analysis, next generation 
sequencing-based genomic profiling, and whole transcriptome RNA 
sequencing [11,12], combined with semi-automated in vitro drug 
screening. Thereby, we aimed to assess the stability of molecular profiles 
and drug response data over time, and to identify gene expression-based 
predictors of response to specific drugs. 

2. Material and methods 

2.1. Cell line culture conditions 

Glioblastoma cell lines spontaneously growing as spheroid cultures 
were generously provided by Vescovi (HSR-GBM1, hereafter named 
GBM1, Milan, Italy) [13]; Riggins (JHH520, RRID:CVCL_VT33, Balti
more, USA) [14,15]; Herold-Mende (NCH644,RRID:CVCL_X914, Hei
delberg, Germany) [16,17], and Carro (BTSC 349, BTSC 268, BTSC 23 
and BTSC 233, Freiburg, Germany) [18,19]. Detailed characteristics of 
these glioblastoma cell lines have been reported before [13–19]. GBM1, 
JHH520 and NCH644 were cultivated in neurosphere medium con
taining serum-free Dulbecco’s modified Eagle medium and 30% F12 
medium (both Gibco, ThermoFisher, Germany) supplemented with 2% 
B27 (Gibco BRL), 20 ng/ml bovine fibroblast growth factor (FGF, 
Peprotech, Rocky Hill, NJ), 20 ng/ml human epidermal growth factor 
(EGF, Peprotech), 5 µg/ml heparin (Sigma-Aldrich, St Louis, MO) and 
1% Penicillin-Streptomycin mixture (Pen/Strep, Gibco), Cell lines 
BTSC23, BTSC233, BTSC349 and BTSC268 were cultured in neurobasal 
medium-A containing 2% B27-supplement, 1% N2-supplement (Gibco 
BRL), 20 ng/ml FGF (Peprotech), 20 ng/ml hEGF (Peprotech), 5 µg/ml 
heparin (Sigma-Aldrich, St. Louis, MO) and 1% Pen/Strep (Gibco BRL). 

All cell lines were cultivated under standard cell culture conditions at 
37 ◦C temperature and 5% carbon dioxide. The medium was regularly 
exchanged three times per week and the cellular spheres were separated 
twice weekly by incubating them in TrypLE (Gibco BRL) for 3 min, 
followed by stopping the reaction with 3–5 ml medium and a subsequent 
pelleting by centrifugation for 5 min at 200×g. The medium-TrypLE 
solution was replaced by fresh medium and the cells were further 
cultured in new T75 suspension culture flasks. The cells were regularly 
tested for the absence of mycoplasma contamination using a PCR-based 
method and cell lines were verified as authentic by short tandem repeat 
analysis (STR) at the local Institute for Forensic Medicine, University 
Hospital Düsseldorf, Germany. 

2.2. Sample collection 

Cell pellets for all further analysis were collected simultaneous on the 
day performing the drug screen to obtain a multi-OMICS overview at the 
specific time point. Cells were pelleted at 200×g for 5 min and washed 
twice with PBS. The pellets were then stored at − 80 ◦C for further 
analysis. The same sample collection was repeated after 30 passages. A 
passage was counted after detaching and separating the spheres into 
single cells using TrypLE for 3 min. 

2.3. RNA sequencing analysis 

Total RNA was extracted from snap-frozen cell pellets using the 

NucleoSpin RNA extraction kit (Macherey-Nagel, Germany) with DNa
seI treatment according to manufactures protocol. RNA was quantified 
using the Qubit RNA HS Assay (Thermo Fisher Scientific, Germany) and 
RNA quality was measured as RNA quality number (RQN) by capillary 
electrophoresis using the Fragment Analyzer and the total RNA Standard 
Sensitivity Assay (Agilent Technologies, Inc. Santa Clara, USA). Only 
RNA samples with a RQN value reaching the minimum of 7 were used 
for RNA sequencing. The library preparation was performed according 
to the manufacturer’s protocol using the VAHTS™ Stranded mRNA-Seq 
Library Prep Kit for Illumina® V2 (Vazyme, China). Briefly, 300 ng total 
RNA were used for mRNA capturing, fragmentation, the synthesis of 
cDNA, adapter ligation and library amplification. Bead purified libraries 
were normalized and finally sequenced on the HiSeq 3000 (Illumina 
Inc., USA) with a read setup of 1 × 150 bp. The bcl2fastq tool was used to 
convert the bcl files to fastq files as well for adapter trimming and 
demultiplexing. Data analyses on fastq files were conducted with CLC 
Genomics Workbench (version 10.1.1, QIAGEN, The Netherlands). The 
reads of all probes were adapter trimmed and quality trimmed (using the 
default parameters: bases below Q13 were trimmed from the end of the 
reads, ambiguous nucleotides maximal 2). Fastq files were imported into 
Partek Flow (Partek Incorporated, St. Louis, MO, USA). Quality analysis 
and quality control were performed on all reads to assess read quality 
and to determine the amount of trimming required (both ends: 13 bases 
5́ and 1 base 3́). Trimmed reads were aligned against the hg38 genome 
using the STAR v2.4.1d aligner [20]. Unaligned reads were further 
processed using Bowtie 2 v2.2.5 aligner [21]. Finally, aligned reads were 
combined before quantifying the expression against the ENSEMBL 
(release 84) database using the Partek Expectation-Maximization algo
rithm and quantile normalized. Partek Flow default settings were used in 
all analyses. 

2.4. DNA methylation array 

Genomic DNA was extracted from cell pellets using the innuPREP 
DNA mini kit (Analytic Jena, Germany) according to manufacturer’s 
instruction. 50 ng/µl of the DNA was hand in to be processed for the 
Infinium MethylationEPIC Array (Ilumina Inc., USA) at Molec
ularNeuropathology.org, the Genomics and Proteomics Core Facility in 
Heidelberg for performing the Infinium MethylationEPIC Array (Ilum
mina Inc., USA). The data was used for molecular subgrouping, and copy 
number profiling and beta methylation values as described before [22] 
and further analyzed for possible correlation between all OMICS data 
sets and changes between long-term cultured cell lines. Raw.idat files 
were uploaded to MolecularNeuropatholog.org. In addition to the 
determination of tumor type, data were processed for DNA copy number 
analyses. For beta-value processing,.idat files were processed using 
Partek® Genomics Suite® software using the minimal functional 
normalization using 2 principal components, and both NOOB back
ground and dye correction. 

2.5. Glioma-tailored gene mutation panel 

A customized glioma gene panel detecting 20 glioma-associated 
genes was performed according to Zacher et al. [23] with minor 
changes. The glioma panel consisted of 660 primer pairs covering the 
coding sequences or mutational hot spot regions of the following genes: 
ATRX, BRAF, CDKN2A, CDKN2B, CDKN2C, CIC, EGFR, FUBP1, H3–3A, 
IDH1, IDH2, NF1, NF2, NRAS, PIK3CA, PIK3R1, PTEN, RB1, TERT pro
moter and TP53. DNA was extracted using the Maxwell RSC Blood DNA 
Kit (Promega, Germany) and quantified using the QuantiFluor® ONE 
dsDNA System (Promega, Germany) followed by TaqMan RNase P 
Detection Reagents Kit (Life Technologies, Germany) using a StepOne 
Plus™ real-time PCR machine (Life Technologies, Germany). Library 
preparation was generated using the Ion AmpliSeq™ Library 2.0 Kit 
(Life Technologies, Germany) and the customized AmpliSeq™ glioma 
gene panel. Sequencing was performed on Ion S5(TM) (Life Technologies, 
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Germany) and aligned to the human reference genome GRC37 (hg19) 
using the Torrent Suite 5.12.1.0 software. The sequence and copy 
number variants analysis was performed using the software Ion Reporter 
v5.12.0.0, IGV v.2.5.0 [24] and NextGene Version 2.4.2.2. 

2.6. Drug library, quantification of cell growth and proliferation 

A drug library composed of 231 established chemotherapeutic agents 
and novel anti-cancer compounds was dispensed in 384-well plates 
(Corning, USA) using the Tecan D300e Digital Dispenser (Tecan, USA). 
Each drug was dispensed at different concentrations eventually leading 
to final drug concentrations between 32.5 nM and 25 µM after the 
application of 30 µl cell suspension. Plates loaded with the drug library 
were stored until needed at − 80 ◦C. Prior to seeding the cells into the 
drug coated plates, a growth curve of each single cell line was analyzed 
for calculating the best cell number for performing the screen. For the 
assay spheroids were treated with TrypLE (Gibco, Germany) and filtered 
through a 45 µm filter for obtaining single cells. Prior to dispension of 
30 µl of cell suspension onto the prepared 384 well plates (MultiDrop 
Combi, Thermofisher Scientific, USA), we determined cell viability and 
proliferative capability (Ki-67) using a GUAVA MUSE cytometer (Count 
and Viability Assay and Ki67 Proliferation kit, Luminex, USA) and in
cubation for 72 h. Readout was performed using the CellTiter-Glo 
luminescent cell viability assay (Promega, Germany) according to 
manufactures protocol. In brief, this luminescence-based assay is 
quantifying the ATP inside the medium that is produced by the living 
cells. The CellTiter-Glo® reagent was diluted 1:1 with PBS and 30 µl was 
added into each well of the plate and incubated for 10 min in the dark. 
The luminescence readout was determined with the Spark plate reader 
(Tecan, USA). The AUC and IC50 were calculated for each drug and cell 
line. 

2.7. Quantification and statistical analysis 

All statistical analyses were performed using the Partek® Genomics 
Suite® software. Comparisons of distributions were performed using the 
paired t-test. P-values < 0.05 were considered statistically significant. 
Hierarchical clustering and subgroup affiliation of DNA methylation 
profiling, RNA sequencing and drug screen outcome was performed 
using the Partek® Genomics Suite® software by selecting 5% or 10% of 
the most changed values between cells x + 0 vs x + 30. Similarity 
Network Fusion (SNF), a computational method for data integration, 
was performed combining mRNA expression and DNA methylation data 
according to Wang et al. [25]. The efficiency of the tested drug library 
was evaluated by calculating AUC using an R programmed script. Sig
nificance was considered if p < 0.05. Gene expression and drug response 
data compendium was analyzed and networks generated through the 
use of QIAGEN’s Ingenuity Pathway Analysis tool (IPA, www.qiagen. 
com/ingenuity). Drug response and transcriptome data of cell models 
from x + 0 time point was used for the analysis. 

2.8. Data and code availability 

The acquired data supporting the current study will be deposited in 
the public repository European Genome-Phenome Archive 
(GSE181315). 

3. Results 

3.1. DNA mutation profiling and classification into molecular 
glioblastoma subtypes 

Identity of the glioblastoma spheroid models BTSC23, BTSC233, 
BTSC268, BTSC349, JHH520, NCH644 and GBM1 was confirmed by 
short tandem repeat (STR) analyses (Supplementary Table 1) and DNA 
mutation profiles in these cell lines were characterized by next 

generation sequencing of glioma-associated genes (Supplementary 
Table 2). All cell lines carried TERT promoter mutations. Furthermore, 
frequent mutations were detected in the NF1 and/or TP53 genes. None 
of the glioblastoma spheroid models carried mutations in the IDH1, 
IDH2, H3–3A and BRAF genes. In addition, following consensus mo
lecular subtyping of clinical samples according to Capper et al. [26] and 
Verhaak et al. [27], we performed array-based DNA methylome analyses 
and characterized gene expression profiles using whole transcriptome 
sequencing (Fig. 1A and B). All spheroid culture models were assigned to 
molecular glioblastoma subgroups using the DNA methylome or tran
scriptome data, respectively (Table 1). Precise assignment to the 
established DNA methylome classes, however, was challenging as the 
models either corresponded in variable percentages to the GBM RTK I or 
GBM RTK II methylation classes (BTSC cell lines) or could not be 
matched to any DNA-methylation class with a sufficiently high classifier 
score (GBM1, JHH520, NCH644). 

3.2. Longitudinal molecular profiling over extended culture times 

To investigate whether the glioblastoma spheroid culture models 
remain molecularly stable or evolved during long-term culturing by 
reshaping their epigenetic and transcriptional landscapes, we analyzed 
the transcriptomes and DNA methylomes of the seven models at two 
distinct time points in culture with intervals of 200–250 days corre
sponding to 30 in vitro passages of each model. The starting passage 
number of the different lines varied from passage 10 (BTSC 23, 233, 268, 
349) to passages around 40 for the other used lines (JHH520, GBM1, 
NCH644). Unsupervised hierarchical cluster analyses of the tran
scriptome (Fig. 1A) and DNA methylome data sets (Fig. 1B) revealed 
minor differences with increasing time in culture in individual cell 
models, however, the profiles by-and-large remained stable, except for 
BTSC349 where several overall changes were detected in the methylome 
and transcriptome profiles. Overall, the mRNA expression of DNA 
methyltransferase 1 (DNMT1) changed significantly between the earlier 
and later passages of the seven models with almost 2-fold (1.86; 
p = 0.0003) increased expression in the later passages. Similarity 
Network Fusion (SNF) analysis using the transcriptome and DNA 
methylome data was then conducted to discern the biological hetero
geneity or similarity of the individual models analyzed at different time 
points in culture. This analysis confirmed that the glioblastoma spheroid 
cell lines do not tend to undergo major changes during prolonged in vitro 
culturing time (Fig. 1C). We next were interested which genes are 
changed in the two models showing the least similarity between the two 
time points (BTSC233 and BTSC349). Notably, only the marginal 
number of n = 15 genes exhibited differential mRNA expression levels 
by more than 2-fold (paired t-test) between pooled early and late pas
sages (Supplementary Table 3). 

3.3. Determination and reproducibility of in vitro drug response patterns 

To determine whether the molecularly stable glioblastoma spheroid 
models may also serve as reproducible models for functional studies, the 
response of each model to clinically approved drugs (chemical library 
specifications can be found in Supplementary Table 4) was investigated 
at the low passage (x + 0 passages) and at the high passage numbers 
(x + 30 passages). No phenotypic differences in between the two time 
points in terms of cell growth and viability as well as cellular prolifer
ation were detected (viability: 80–97%; Ki67-positive 50–90%, Sup
plementary Figs. 1 and 2). In line, scatterplots for six of the seven models 
indicated a consistent response pattern to most inhibitors comparing 
early and late drug screening time points (R-value between 0.628 and 
0.824, p < 0.0001 in all models, Fig. 2A). The cell line BTSC23 was 
excluded from the scatterplots as drug testing on passage x + 30 was not 
successful due to the slow growth of this model precluding expansion of 
the culture to the cell number needed for the performance of the screen. 
Since all other models showed an overall similarity in drug response 
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between earlier and later passages, we identified drugs that had the most 
pronounced effects on selected models but were less effective in other 
models. Scoring of substance effectivity was achieved by quantification 
of the area under the curve (AUC) in our cell growth-to-drug concen
tration graphs followed by averaging the calculated AUCs per inter
vention. The lower the AUC value, the more effective the drug was to the 
respective glioma cells. As a consequence, we determined approximately 
half of the drugs did cause a significant reduction in cell growth 
(Fig. 2B). Selecting the five drugs representing different prominent anti- 
cancer drug classes, namely bortezomib, ganetespib, dinaciclib, homo
harringtonine, romidepsin, that represent inhibitors of cycline depen
dent kinases (CDK), heat shock protein 90/HSP90 and histone 
acetylates, we found that – although to different extent – almost all 
models were sensitive against bortezomib, ganetespib and dinaciclib 
treatment and approximately half of the models were inhibited in their 
growth when treated with either homoharringtonine or romidepsin 
(AUC values see Supplementary Table 5). 

3.4. Association of in vitro drug response patterns with molecular profiles 

Having identified groups of glioblastoma spheroid models that were 
responsive or non-responsive to selected drugs, we tried to identify 
potentially underlying molecular mechanism by using the Ingenuity 
Pathway Analysis tool (IPA; Qiagen). We deduced underlying therapy 

Fig. 1. Gene expression and DNA methylation profiles of the investigated glioblastoma spheroid models. (A) Results of unsupervised hierarchical clustering analysis 
based on gene expression profiles; green: downregulated genes, red: upregulated genes. (B) Results of hierarchical clustering analysis based on DNA-methylome 
profiles; yellow: unmethylated CpG sites, white to violet: methylated CpG sites. (C) Similarity Network Fusion (SNF) analysis was performed using the tran
scriptome and DNA methylome data to visualize similarities between passage x + 0 and x + 30. The stronger the connecting lines between the culture passages, the 
closer they are related. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Molecular classification of glioblastoma spheroid cell lines based on DNA 
methylation or mRNA expression profiles. Gene expression and DNA methyl
ation profiles were used to classify each model into the respective transcriptional 
subgroups of glioblastoma, i.e. proneural (PN), classical (CL) or mesenchymal 
(MES), according to Verhaak et al. [27], as well as DNA-methylation-based 
subclasses, i.e., receptor tyrosin kinase I (GBM RTKI) or RTK II/classical (GBM 
RTK II), according to Capper et al. [26]). If a sample could not be clearly assigned 
to a single DNA methylation subclass, the percentages matching to the indi
vidual subclasses are shown.  

Cell 
model 

DNA-methylation Transcriptome 

X + 0 X + 30 X + 0 X + 30 

BTSC 23 RTK I (74%) RTK II 
(22%) 

RTK I (78%) RTK II 
(18%) 

PN 

BTSC 233 RTK I (27%) RTK II 
(61%) 

RTK I (28%) RTK II 
(64%) 

CL 

BTSC 268 RTK I (43%) RTK II 
(55%) 

RTK I (29%) RTK II 
(59%) 

CL 

BTSC 349 RTK I (34%) RTK II 
(34%) 

RTK I (31%) RTK II 
(57%) 

MES 

GBM1 no match CL 
JHH520 no match MES 
NCH644 no match PN 

PN: pro-neural; CL: classical; MES: mesenchymal. 
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resistance mechanisms focusing on candidates from three different 
prominent classes of pharmaco-intervention. Focusing on the treatments 
with dinaciclib, ganetespid and romidepsin we used the spheroid model- 
specific transcriptome/drug response data compendium from the earlier 
test time point to conduct IPA. Applying the postulated therapy 
sensitivity-predicting gene signatures (exact listing of genes and their 
mean fold changed expression in sensitive cells compared to resistant 
cells can be found in Supplementary Table 6) enabled us to rank our cell 
models – at both test time points – from sensitive to high resistant cells 
(Fig. 3). Examples of drug resistance predicting transcriptional changes 
are: For dinaciclib, almost all models resistant to this drug were char
acterized by upregulated expression of PIK3R1, which could lead to 
suppressed signaling towards CDKs and thereby might cause resistance 
[28–30]. Resistant cell models showed a higher expression of ELL2 
transcripts. ELL2 is known to contribute to endoplasmic reticulum 
stress-mediated cell death and the unfolded protein response, which 
generally represents an adaptive pro-survival mechanism. Concerning 
sensitivity towards the HSP90 inhibitor ganetespid, we found that 
platelet-derived growth factor alpha (PDGFRA) transcript levels were 
lower in sensitive cells. Moreover, mRNA expression levels of pathway 
activating members of the Wingless (WNT) signaling pathway were 
found to be significantly downregulated in cells sensitive to the HDAC 
inhibitor romidepsin. Both PDGFRA and WNT signaling are prominent 

markers for stemness in glioma, generally accepted to be involved in 
mediating therapy resistance in this disease [31,32]. 

4. Discussion 

The present study comprises a multi-OMICS molecular profiling 
approach combined with automated drug testing of patient-derived 
glioblastoma spheroid cell lines. These models more closely represent 
the 3D growth conditions in primary glioblastoma tissues and hence are 
considered advantageous to commonly used glioma cell lines cultured as 
monolayers [8–10]. To assess molecular and functional stability of the 
glioblastoma spheroid models, we performed the investigations at two 
distinct time points differing by 30 passages of in vitro culturing. In 
addition, we performed integrative analyses of the obtained molecular 
and functional datasets to identify potential associations of specific gene 
signatures with the response of glioblastoma cells to certain drugs. 
Glioblastoma spheroid lines may show in vitro culture-related differ
ences in their DNA methylome in comparison to primary tumor speci
mens, which may further evolve upon extended in vitro propagation 
[33]. DNA methylation has been shown to alter during cell culture 
already in early passages which may explain why the profiles of these 
cells did not match with glioblastoma methylation profiles obtained 
from primary tissue specimens [33–35]. Consequently, we were not able 

Fig. 2. Results of in vitro drug testing of the investigated glioblastoma spheroid models at different culture time points. (A) Scatterplots showing responses to each of 
the 231 compounds of the investigated drug library in the six cell lines with available data at the two passages x + 0 vs. x + 30. (B) Unsupervised hierarchical 
clustering of the cell lines at passages x + 0 based on their viability response to the 231 active compounds of the drug library revealing cell line unique overall 
response profiles. Differences in the drug responses were identified by quantifying the area under the curve (AUC) of cell growth drug concentration graphs. An AUC 
value below 0.5 indicates sensitivity of a cell to a given intervention with white to light blue colors indicating high to low sensitivity, and darker blue colors coding 
for less or lack of response to the respective drugs (AUC higher than 0.5, as indicted with scale bar on left). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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to unequivocally assign the investigated spheroid models to the 
methylation-based subclasses of glioblastoma according to Capper et al. 
[27]. However, transcriptional classification according to Verhaak et al. 
[26] was maintained and showed marginal differences across the indi
vidual models. These results might be counterintuitive as classification 
according to the DNA methylation patterns is assumed to reflect the cell 
of origin and hence to be more stable when compared to 
transcriptome-based classification, which would be expected to be less 
stable and more rapidly adapting to different environmental conditions. 
Our results show that glioblastoma spheroid cell lines represent 
molecularly stable in vitro models allowing for reproducible functional 
analyses such as large-scale drug screening. Previously, larger 
anti-cancer drug screening studies raised concerns on the 

reproducibility of drug testing results using classic cancer cell lines [5, 
36,37]. Our experimental data provides evidence of molecular stability 
and reproducibility of drug testing results over in vitro passaging and 
clearly support the use of glioblastoma spheroid cell lines as faithful in 
vitro models. Indeed, our data indicate that the use of spheroid models 
may minimize reproducibility issues, although particular caution needs 
to be taken by using standardized procedures, regular quality controls 
[38], and essentially following the recommendations by the Global 
Biological Standards Institute concerning reproducibility concerns in 
biomedical research [39]. 

The comparison of molecular profiles with cellular drug response 
data allowed us to evaluate possible computational predictions of bio
logical drug response. In particular, we provide evidence that response 

Fig. 3. Comparisons of in vitro drug response to selected drugs and gene expression data in the investigated glioblastoma spheroid models. Ingenuity pathway 
analysis (IPA, Qiagen) using transcriptome and drug response data identified differentially regulated genes associated to variations in drug resistances (gene lists and 
differential expression levels in resistant vs. sensitive models can be found in Supplementary Table 6). Focusing on substances (A) dinaciclib, (B) ganetespib and (C) 
romidepsin, representing three different prominent anti-cancer drug classes demonstrating differential activity, clustering the cells according to the identified gene 
expression signatures enables a ranking of our longitudinal assessed cell models also for their resistance to the respective drug intervention. Color coding: green: 
downregulated gene expression by up to − 3-fold, red: upregulated gene expression by up to 3-fold. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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of glioblastoma spheroid cell lines to the CDK inhibitor dinaciclib is 
linked to differential expression of a limited set of transcripts including 
PIK3R1 and elongation factor for RNA polymerase II (ELL2). The 
possible resistance or sensitivity mode of action for PIK3R1 could be the 
direct influence on the X-box binding protein 1 (XBP1) [40 {Park, 2010 
#510]. The respective gene product dictates the progression of UPR, and 
it is likely that the pathway cannot be blocked to the same extent in 
resistant cells as in the responsive models that showed higher mRNA 
expression of XPB1 [41]. Similar mechanism could be true in the models 
that were sensitive to dinaciclib showing elevated ELL2 levels. ELL2 has 
been reported to be involved in signaling following inhibition of CDKs 
by dinaciclib [28,42,43]. Resistance to HSP90 inhibitors were reported 
in cancers with altered activation of PDGFRA [44]. Interestingly, 
PDGFRA is a prominent client of HSP90, also in glioblastoma, and 
expression of PDGFRA was shown to mediate sensitivity of cancer cells 
for antibiotic-based HSP blockade [45]. Our data suggest that PDGFRA 
expression may influence stress resistance to ganetespib with reduced 
activity and increased cell vulnerability. Lastly, WNT signaling is known 
to regulate many molecular networks involved in therapy resistance in 
glioblastoma [46], and reducing the activity of this pathway in glioma 
cells emerges as a clinical relevant strategy to improve treatment of 
brain cancer patients [47]. HDAC inhibitors may represent an option to 
treat glioblastoma stem cell populations [48]. However, little is known 
on WNT mediating resistance to HDAC inhibitors. Our data suggest that 
reduced expression of WNT pathway members can contribute to 
increased sensitivity to the HDAC inhibitor romidepsin. 

A possible limitation of our study relates to the use of established 
glioblastoma spheroid lines, which did not allow for comparative ana
lyses of primary cultures or very early in vitro passages with later cul
tures after propagation over 30 or more in vitro passages. Some of the 
glioma cell lines used in this study have been reported to be aneuploid 
[16,49–51]. However, we did not determine the karyotype of each 
model investigated here. Hence, we cannot state whether the presented 
data on stability of molecular and drug response profiles in glioblastoma 
spheroid cell lines applies to both aneuploid and diploid models. 

In conclusion, our data indicate that glioblastoma spheroid cell lines 
maintained under neural stem cell conditions remain molecularly stable 
over prolonged in vitro passaging and represent a robust model for 
reproducible identification of novel therapeutic vulnerabilities of this 
disease, as well as for the characterization of mechanisms of drug 
sensitivity and predictive molecular signatures. 

CRediT authorship contribution statement 

A.C. Nickel: Investigation, Visualization, Writing – original draft. D. 
Picard: Investigation, Formal analysis, Visualization. N. Qin: Re
sources. M. Wolter: Writing – review & editing, Resources. K. Kaulich: 
Resources. M. Hewera: Resources. D. Pauck: Writing – review & edit
ing, Resources. V. Marquardt: Resources. G. Torga: Writing – review & 
editing. S. Muhammad: Writing – review & editing. W. Zhang: Writing 
– review & editing. O. Schnell: Writing – review & editing. H.J. Steiger: 
Writing – review & editing. D. Hänggi: Writing – review & editing. E. 
Fritsche: Funding acquisition. M.S. Carro: Resources. M. Remke: Re
sources. G. Reifenberger: Writing – review & editing. U.D. Kahlert: 
Conceptualization, Writing – original draft, Writing – review & editing, 
Supervision, Funding acquisition. 

Conflict of interest statement 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This study was funded by the German Federal Ministry of Education 

and Research (BMBF KZ03VP03791/92). J. Wang, Hong Kong Univer
sity of Science and Technology, is acknowledged for fruitful discussions. 
We also would like to thank Gabriele Brockerhoff and Ulrike Hübenthal 
for the preparation and printing of the drug test plates. Furthermore, we 
like to thank Kübra Taban and Mara Maue, both Heinrich-Heine Medical 
Faculty and University Hospital Düsseldorf, Germany for their support 
of the in vitro drug screening experiments. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.biopha.2021.112278. 

References 

[1] R.H. Shoemaker, The NCI60 human tumour cell line anticancer drug screen, Nat. 
Rev. Cancer 6 (10) (2006) 813–823, https://doi.org/10.1038/nrc1951. 

[2] K.V. Kitaeva, C.S. Rutland, A.A. Rizvanov, V.V. Solovyeva, Cell culture based in 
vitro test systems for anticancer drug screening, Front. Bioeng. Biotechnol. 8 
(2020) 322, https://doi.org/10.3389/fbioe.2020.00322. 

[3] J. Barretina, G. Caponigro, N. Stransky, K. Venkatesan, A.A. Margolin, S. Kim, C. 
J. Wilson, J. Lehar, G.V. Kryukov, D. Sonkin, A. Reddy, M. Liu, L. Murray, M. 
F. Berger, J.E. Monahan, P. Morais, J. Meltzer, A. Korejwa, J. Jane-Valbuena, F. 
A. Mapa, J. Thibault, E. Bric-Furlong, P. Raman, A. Shipway, I.H. Engels, J. Cheng, 
G.K. Yu, J. Yu, P. Aspesi Jr., M. de Silva, K. Jagtap, M.D. Jones, L. Wang, C. Hatton, 
E. Palescandolo, S. Gupta, S. Mahan, C. Sougnez, R.C. Onofrio, T. Liefeld, 
L. MacConaill, W. Winckler, M. Reich, N. Li, J.P. Mesirov, S.B. Gabriel, G. Getz, 
K. Ardlie, V. Chan, V.E. Myer, B.L. Weber, J. Porter, M. Warmuth, P. Finan, J. 
L. Harris, M. Meyerson, T.R. Golub, M.P. Morrissey, W.R. Sellers, R. Schlegel, L. 
A. Garraway, The Cancer Cell Line Encyclopedia enables predictive modelling of 
anticancer drug sensitivity, Nature 483 (7391) (2012) 603–607, https://doi.org/ 
10.1038/nature11003. 

[4] M.J. Garnett, E.J. Edelman, S.J. Heidorn, C.D. Greenman, A. Dastur, K.W. Lau, 
P. Greninger, I.R. Thompson, X. Luo, J. Soares, Q. Liu, F. Iorio, D. Surdez, L. Chen, 
R.J. Milano, G.R. Bignell, A.T. Tam, H. Davies, J.A. Stevenson, S. Barthorpe, S. 
R. Lutz, F. Kogera, K. Lawrence, A. McLaren-Douglas, X. Mitropoulos, 
T. Mironenko, H. Thi, L. Richardson, W. Zhou, F. Jewitt, T. Zhang, P. O’Brien, J. 
L. Boisvert, S. Price, W. Hur, W. Yang, X. Deng, A. Butler, H.G. Choi, J.W. Chang, 
J. Baselga, I. Stamenkovic, J.A. Engelman, S.V. Sharma, O. Delattre, J. Saez- 
Rodriguez, N.S. Gray, J. Settleman, P.A. Futreal, D.A. Haber, M.R. Stratton, 
S. Ramaswamy, U. McDermott, C.H. Benes, Systematic identification of genomic 
markers of drug sensitivity in cancer cells, Nature 483 (7391) (2012) 570–575, 
https://doi.org/10.1038/nature11005. 

[5] B. Haibe-Kains, N. El-Hachem, N.J. Birkbak, A.C. Jin, A.H. Beck, H.J. Aerts, 
J. Quackenbush, Inconsistency in large pharmacogenomic studies, Nature 504 
(7480) (2013) 389–393, https://doi.org/10.1038/nature12831. 

[6] R. Stupp, W.P. Mason, M.J. van den Bent, M. Weller, B. Fisher, M.J. Taphoorn, 
K. Belanger, A.A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R.C. Janzer, S. 
K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J.G. Cairncross, E. Eisenhauer, R. 
O. Mirimanoff, European Organisation for Research and Treatment of Cancer Brain 
Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical 
Trials Group, Radiotherapy plus concomitant and adjuvant temozolomide for 
glioblastoma, N. Engl. J. Med. 352 (10) (2005) 987–996, https://doi.org/10.1056/ 
NEJMoa043330. 

[7] C. Pauli, B.D. Hopkins, D. Prandi, R. Shaw, T. Fedrizzi, A. Sboner, V. Sailer, 
M. Augello, L. Puca, R. Rosati, T.J. McNary, Y. Churakova, C. Cheung, J. Triscott, 
D. Pisapia, R. Rao, J.M. Mosquera, B. Robinson, B.M. Faltas, B.E. Emerling, V. 
K. Gadi, B. Bernard, O. Elemento, H. Beltran, F. Demichelis, C.J. Kemp, 
C. Grandori, L.C. Cantley, M.A. Rubin, Personalized in vitro and in vivo cancer 
models to guide precision medicine, Cancer Discov. 7 (5) (2017) 462–477, https:// 
doi.org/10.1158/2159-8290.CD-16-1154. 

[8] J.D. Lathia, S.C. Mack, E.E. Mulkearns-Hubert, C.L. Valentim, J.N. Rich, Cancer 
stem cells in glioblastoma, Genes Dev. 29 (12) (2015) 1203–1217, https://doi.org/ 
10.1101/gad.261982.115. 

[9] N. Chaicharoenaudomrung, P. Kunhorm, W. Promjantuek, N. Rujanapun, 
N. Heebkaew, N. Soraksa, P. Noisa, Transcriptomic profiling of 3D glioblastoma 
tumoroids for the identification of mechanisms involved in anticancer drug 
resistance, In Vivo 34 (1) (2020) 199–211, https://doi.org/10.21873/ 
invivo.11762. 

[10] K.M. Wilson, L.A. Mathews-Griner, T. Williamson, R. Guha, L. Chen, P. Shinn, 
C. McKnight, S. Michael, C. Klumpp-Thomas, Z.A. Binder, M. Ferrer, G.L. Gallia, C. 
J. Thomas, G.J. Riggins, Mutation profiles in glioblastoma 3D oncospheres 
modulate drug efficacy, SLAS Technol. 24 (1) (2019) 28–40, https://doi.org/ 
10.1177/2472630318803749. 

[11] S. Chakraborty, M.I. Hosen, M. Ahmed, H.U. Shekhar, Onco-multi-OMICS 
approach: a new frontier in cancer research, Biomed. Res. Int. 2018 (2018), 
9836256, https://doi.org/10.1155/2018/9836256. 

[12] N. Zhao, Y. Liu, Y. Wei, Z. Yan, Q. Zhang, C. Wu, Z. Chang, Y. Xu, Optimization of 
cell lines as tumour models by integrating multi-omics data, Brief Bioinform. 18 (3) 
(2017) 515–529, https://doi.org/10.1093/bib/bbw082. 

[13] A.L. Vescovi, E.A. Parati, A. Gritti, P. Poulin, M. Ferrario, E. Wanke, P. Frolichsthal- 
Schoeller, L. Cova, M. Arcellana-Panlilio, A. Colombo, R. Galli, Isolation and 

A.C. Nickel et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.biopha.2021.112278
https://doi.org/10.1038/nrc1951
https://doi.org/10.3389/fbioe.2020.00322
https://doi.org/10.1038/nature11003
https://doi.org/10.1038/nature11003
https://doi.org/10.1038/nature11005
https://doi.org/10.1038/nature12831
https://doi.org/10.1056/NEJMoa043330
https://doi.org/10.1056/NEJMoa043330
https://doi.org/10.1158/2159-8290.CD-16-1154
https://doi.org/10.1158/2159-8290.CD-16-1154
https://doi.org/10.1101/gad.261982.115
https://doi.org/10.1101/gad.261982.115
https://doi.org/10.21873/invivo.11762
https://doi.org/10.21873/invivo.11762
https://doi.org/10.1177/2472630318803749
https://doi.org/10.1177/2472630318803749
https://doi.org/10.1155/2018/9836256
https://doi.org/10.1093/bib/bbw082


Biomedicine & Pharmacotherapy 144 (2021) 112278

8

cloning of multipotential stem cells from the embryonic human CNS and 
establishment of transplantable human neural stem cell lines by epigenetic 
stimulation, Exp. Neurol. 156 (1) (1999) 71–83, https://doi.org/10.1006/ 
exnr.1998.6998. 

[14] D.W. Parsons, S. Jones, X. Zhang, J.C. Lin, R.J. Leary, P. Angenendt, P. Mankoo, 
H. Carter, I.M. Siu, G.L. Gallia, A. Olivi, R. McLendon, B.A. Rasheed, S. Keir, 
T. Nikolskaya, Y. Nikolsky, D.A. Busam, H. Tekleab, L.A. Diaz Jr., J. Hartigan, D. 
R. Smith, R.L. Strausberg, S.K. Marie, S.M. Shinjo, H. Yan, G.J. Riggins, D. 
D. Bigner, R. Karchin, N. Papadopoulos, G. Parmigiani, B. Vogelstein, V. 
E. Velculescu, K.W. Kinzler, An integrated genomic analysis of human glioblastoma 
multiforme, Science 321 (5897) (2008) 1807–1812, https://doi.org/10.1126/ 
science.1164382. 

[15] Z.A. Binder, K.M. Wilson, V. Salmasi, B.A. Orr, C.G. Eberhart, I.M. Siu, M. Lim, J. 
D. Weingart, A. Quinones-Hinojosa, C. Bettegowda, A.B. Kassam, A. Olivi, H. Brem, 
G.J. Riggins, G.L. Gallia, Establishment and biological characterization of a panel 
of Glioblastoma Multiforme (GBM) and GBM variant oncosphere cell lines, PLoS 
One 11 (3) (2016), e0150271, https://doi.org/10.1371/journal.pone.0150271. 

[16] B. Campos, F. Wan, M. Farhadi, A. Ernst, F. Zeppernick, K.E. Tagscherer, 
R. Ahmadi, J. Lohr, C. Dictus, G. Gdynia, S.E. Combs, V. Goidts, B.M. Helmke, 
V. Eckstein, W. Roth, P. Beckhove, P. Lichter, A. Unterberg, B. Radlwimmer, 
C. Herold-Mende, Differentiation therapy exerts antitumor effects on stem-like 
glioma cells, Clin. Cancer Res. 16 (10) (2010) 2715–2728, https://doi.org/ 
10.1158/1078-0432.CCR-09-1800. 

[17] N. Podergajs, N. Brekka, B. Radlwimmer, C. Herold-Mende, K.M. Talasila, 
K. Tiemann, U. Rajcevic, T.T. Lah, R. Bjerkvig, H. Miletic, Expansive growth of two 
glioblastoma stem-like cell lines is mediated by bFGF and not by EGF, Radio. 
Oncol. 47 (4) (2013) 330–337, https://doi.org/10.2478/raon-2013-0063. 

[18] V. Fedele, F. Dai, A.P. Masilamani, D.H. Heiland, E. Kling, A.M. Gatjens-Sanchez, 
R. Ferrarese, L. Platania, D. Soroush, H. Kim, S. Nelander, A. Weyerbrock, M. Prinz, 
A. Califano, A. Iavarone, M. Bredel, M.S. Carro, Epigenetic regulation of ZBTB18 
promotes glioblastoma progression, Mol. Cancer Res. 15 (8) (2017) 998–1011, 
https://doi.org/10.1158/1541-7786.MCR-16-0494. 

[19] R. Ferrarese, G.Rt Harsh, A.K. Yadav, E. Bug, D. Maticzka, W. Reichardt, S. 
M. Dombrowski, T.E. Miller, A.P. Masilamani, F. Dai, H. Kim, M. Hadler, D. 
M. Scholtens, I.L. Yu, J. Beck, V. Srinivasasainagendra, F. Costa, N. Baxan, 
D. Pfeifer, D. von Elverfeldt, R. Backofen, A. Weyerbrock, C.W. Duarte, X. He, 
M. Prinz, J.P. Chandler, H. Vogel, A. Chakravarti, J.N. Rich, M.S. Carro, M. Bredel, 
Lineage-specific splicing of a brain-enriched alternative exon promotes 
glioblastoma progression, J. Clin. Investig. 124 (7) (2014) 2861–2876, https://doi. 
org/10.1172/JCI68836. 

[20] A. Dobin, C.A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, 
M. Chaisson, T.R. Gingeras, STAR: ultrafast universal RNA-seq aligner, 
Bioinformatics 29 (1) (2013) 15–21, https://doi.org/10.1093/bioinformatics/ 
bts635. 

[21] B. Langmead, S.L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. 
Methods 9 (4) (2012) 357–359, https://doi.org/10.1038/nmeth.1923. 

[22] D. Capper, N.W. Engel, D. Stichel, M. Lechner, S. Gloss, S. Schmid, C. Koelsche, 
D. Schrimpf, J. Niesen, A.K. Wefers, D.T.W. Jones, M. Sill, O. Weigert, K.L. Ligon, 
A. Olar, A. Koch, M. Forster, S. Moran, O.M. Tirado, M. Sainz-Jaspeado, J. Mora, 
M. Esteller, J. Alonso, X.G. Del Muro, W. Paulus, J. Felsberg, G. Reifenberger, 
M. Glatzel, S. Frank, C.M. Monoranu, V.J. Lund, A. von Deimling, S. Pfister, 
R. Buslei, J. Ribbat-Idel, S. Perner, V. Gudziol, M. Meinhardt, U. Schuller, DNA 
methylation-based reclassification of olfactory neuroblastoma, Acta Neuropathol. 
136 (2) (2018) 255–271, https://doi.org/10.1007/s00401-018-1854-7. 

[23] A. Zacher, K. Kaulich, S. Stepanow, M. Wolter, K. Kohrer, J. Felsberg, B. Malzkorn, 
G. Reifenberger, Molecular diagnostics of gliomas using next generation 
sequencing of a glioma-tailored gene panel, Brain Pathol. 27 (2) (2017) 146–159, 
https://doi.org/10.1111/bpa.12367. 

[24] J.T. Robinson, H. Thorvaldsdottir, W. Winckler, M. Guttman, E.S. Lander, G. Getz, 
J.P. Mesirov, Integrative genomics viewer, Nat. Biotechnol. 29 (1) (2011) 24–26, 
https://doi.org/10.1038/nbt.1754. 

[25] B. Wang, A.M. Mezlini, F. Demir, M. Fiume, Z. Tu, M. Brudno, B. Haibe-Kains, 
A. Goldenberg, Similarity network fusion for aggregating data types on a genomic 
scale, Nat. Methods 11 (3) (2014) 333–337, https://doi.org/10.1038/nmeth.2810. 

[26] D. Capper, D.T.W. Jones, M. Sill, V. Hovestadt, D. Schrimpf, D. Sturm, C. Koelsche, 
F. Sahm, L. Chavez, D.E. Reuss, A. Kratz, A.K. Wefers, K. Huang, K.W. Pajtler, 
L. Schweizer, D. Stichel, A. Olar, N.W. Engel, K. Lindenberg, P.N. Harter, A. 
K. Braczynski, K.H. Plate, H. Dohmen, B.K. Garvalov, R. Coras, A. Holsken, 
E. Hewer, M. Bewerunge-Hudler, M. Schick, R. Fischer, R. Beschorner, 
J. Schittenhelm, O. Staszewski, K. Wani, P. Varlet, M. Pages, P. Temming, 
D. Lohmann, F. Selt, H. Witt, T. Milde, O. Witt, E. Aronica, F. Giangaspero, 
E. Rushing, W. Scheurlen, C. Geisenberger, F.J. Rodriguez, A. Becker, M. Preusser, 
C. Haberler, R. Bjerkvig, J. Cryan, M. Farrell, M. Deckert, J. Hench, S. Frank, 
J. Serrano, K. Kannan, A. Tsirigos, W. Bruck, S. Hofer, S. Brehmer, M. Seiz- 
Rosenhagen, D. Hanggi, V. Hans, S. Rozsnoki, J.R. Hansford, P. Kohlhof, B. 
W. Kristensen, M. Lechner, B. Lopes, C. Mawrin, R. Ketter, A. Kulozik, Z. Khatib, 
F. Heppner, A. Koch, A. Jouvet, C. Keohane, H. Muhleisen, W. Mueller, U. Pohl, 
M. Prinz, A. Benner, M. Zapatka, N.G. Gottardo, P.H. Driever, C.M. Kramm, H. 
L. Muller, S. Rutkowski, K. von Hoff, M.C. Fruhwald, A. Gnekow, G. Fleischhack, 
S. Tippelt, G. Calaminus, C.M. Monoranu, A. Perry, C. Jones, T.S. Jacques, 
B. Radlwimmer, M. Gessi, T. Pietsch, J. Schramm, G. Schackert, M. Westphal, 
G. Reifenberger, P. Wesseling, M. Weller, V.P. Collins, I. Blumcke, M. Bendszus, 
J. Debus, A. Huang, N. Jabado, P.A. Northcott, W. Paulus, A. Gajjar, G. 
W. Robinson, M.D. Taylor, Z. Jaunmuktane, M. Ryzhova, M. Platten, A. Unterberg, 
W. Wick, M.A. Karajannis, M. Mittelbronn, T. Acker, C. Hartmann, K. Aldape, 
U. Schuller, R. Buslei, P. Lichter, M. Kool, C. Herold-Mende, D.W. Ellison, 

M. Hasselblatt, M. Snuderl, S. Brandner, A. Korshunov, A. von Deimling, S. 
M. Pfister, DNA methylation-based classification of central nervous system 
tumours, Nature 555 (7697) (2018) 469–474, https://doi.org/10.1038/ 
nature26000. 

[27] R.G. Verhaak, K.A. Hoadley, E. Purdom, V. Wang, Y. Qi, M.D. Wilkerson, C. 
R. Miller, L. Ding, T. Golub, J.P. Mesirov, G. Alexe, M. Lawrence, M. O’Kelly, 
P. Tamayo, B.A. Weir, S. Gabriel, W. Winckler, S. Gupta, L. Jakkula, H.S. Feiler, J. 
G. Hodgson, C.D. James, J.N. Sarkaria, C. Brennan, A. Kahn, P.T. Spellman, R. 
K. Wilson, T.P. Speed, J.W. Gray, M. Meyerson, G. Getz, C.M. Perou, D.N. Hayes, 
The Cancer Genome Atlas Research Network, Integrated genomic analysis 
identifies clinically relevant subtypes of glioblastoma characterized by 
abnormalities in PDGFRA, IDH1, EGFR, and NF1, Cancer Cell 17 (1) (2010) 
98–110, https://doi.org/10.1016/j.ccr.2009.12.020. 

[28] M.D. Galbraith, H. Bender, J.M. Espinosa, Therapeutic targeting of transcriptional 
cyclin-dependent kinases, Transcription 10 (2) (2019) 118–136, https://doi.org/ 
10.1080/21541264.2018.1539615. 

[29] T.T. Huang, E.J. Lampert, C. Coots, J.M. Lee, Targeting the PI3K pathway and DNA 
damage response as a therapeutic strategy in ovarian cancer, Cancer Treat. Rev. 86 
(2020), 102021, https://doi.org/10.1016/j.ctrv.2020.102021. 

[30] S.W. Park, Y. Zhou, J. Lee, A. Lu, C. Sun, J. Chung, K. Ueki, U. Ozcan, The 
regulatory subunits of PI3K, p85alpha and p85beta, interact with XBP-1 and 
increase its nuclear translocation, Nat. Med. 16 (4) (2010) 429–437, https://doi. 
org/10.1038/nm.2099. 

[31] C. Cenciarelli, H.E. Marei, A. Felsani, P. Casalbore, G. Sica, M.A. Puglisi, A. 
J. Cameron, A. Olivi, A. Mangiola, PDGFRalpha depletion attenuates glioblastoma 
stem cells features by modulation of STAT3, RB1 and multiple oncogenic signals, 
Oncotarget 7 (33) (2016) 53047–53063, https://doi.org/10.18632/ 
oncotarget.10132. 

[32] Y. Lee, J.K. Lee, S.H. Ahn, J. Lee, D.H. Nam, WNT signaling in glioblastoma and 
therapeutic opportunities, Lab. Investig. 96 (2) (2016) 137–150, https://doi.org/ 
10.1038/labinvest.2015.140. 

[33] Y. Shen, C.J. Grisdale, S.A. Islam, P. Bose, J. Lever, E.Y. Zhao, N. Grinshtein, Y. Ma, 
A.J. Mungall, R.A. Moore, X. Lun, D.L. Senger, S.M. Robbins, A.Y. Wang, J. 
L. MacIsaac, M.S. Kobor, H.A. Luchman, S. Weiss, J.A. Chan, M.D. Blough, D. 
R. Kaplan, J.G. Cairncross, M.A. Marra, S.J.M. Jones, Comprehensive genomic 
profiling of glioblastoma tumors, BTICs, and xenografts reveals stability and 
adaptation to growth environments, Proc. Natl. Acad. Sci. USA 116 (38) (2019) 
19098–19108, https://doi.org/10.1073/pnas.1813495116. 

[34] S. Bork, S. Pfister, H. Witt, P. Horn, B. Korn, A.D. Ho, W. Wagner, DNA methylation 
pattern changes upon long-term culture and aging of human mesenchymal stromal 
cells, Aging Cell 9 (1) (2010) 54–63, https://doi.org/10.1111/j.1474- 
9726.2009.00535.x. 

[35] H.A. Rogers, R. Chapman, H. Kings, J. Allard, J. Barron-Hastings, K.W. Pajtler, 
M. Sill, S. Pfister, R.G. Grundy, Limitations of current in vitro models for testing the 
clinical potential of epigenetic inhibitors for treatment of pediatric ependymoma, 
Oncotarget 9 (92) (2018) 36530–36541, https://doi.org/10.18632/ 
oncotarget.26370. 

[36] U. Ben-David, B. Siranosian, G. Ha, H. Tang, Y. Oren, K. Hinohara, C.A. Strathdee, 
J. Dempster, N.J. Lyons, R. Burns, A. Nag, G. Kugener, B. Cimini, P. Tsvetkov, Y. 
E. Maruvka, R. O’Rourke, A. Garrity, A.A. Tubelli, P. Bandopadhayay, 
A. Tsherniak, F. Vazquez, B. Wong, C. Birger, M. Ghandi, A.R. Thorner, J.A. Bittker, 
M. Meyerson, G. Getz, R. Beroukhim, T.R. Golub, Genetic and transcriptional 
evolution alters cancer cell line drug response, Nature 560 (7718) (2018) 325–330, 
https://doi.org/10.1038/s41586-018-0409-3. 

[37] M. Niepel, M. Hafner, C.E. Mills, K. Subramanian, E.H. Williams, M. Chung, 
B. Gaudio, A.M. Barrette, A.D. Stern, B. Hu, J.E. Korkola, L. Consortium, J.W. Gray, 
M.R. Birtwistle, L.M. Heiser, P.K. Sorger, A multi-center study on the 
reproducibility of drug-response assays in mammalian cell lines, Cell Syst. 9 (1) 
(2019) 35–48, https://doi.org/10.1016/j.cels.2019.06.005. 

[38] M. Hewera, A. Nickel, N. Knipprath, S. Muhammad, X. Fan, H. Steiger, D. Hänggi, 
U. Kahlert, Measures to increase value of preclinical research - an inexpensive and 
easy-to-implement approach to a QMS for an academic research lab [version 1; 
peer review: awaiting peer review], F1000Research 9 (660) (2020), https://doi. 
org/10.12688/f1000research.24494.1. 

[39] L.P. Freedman, G. Venugopalan, R. Wisman, Reproducibility2020: progress and 
priorities, F1000Res 6 (2017) 604, https://doi.org/10.12688/ 
f1000research.11334.1. 

[40] J.N. Winnay, J. Boucher, M.A. Mori, K. Ueki, C.R. Kahn, A regulatory subunit of 
phosphoinositide 3-kinase increases the nuclear accumulation of X-box-binding 
protein-1 to modulate the unfolded protein response, Nat. Med. 16 (4) (2010) 
438–445, https://doi.org/10.1038/nm.2121. 

[41] T.K. Nguyen, S. Grant, Dinaciclib (SCH727965) inhibits the unfolded protein 
response through a CDK1- and 5-dependent mechanism, Mol. Cancer Ther. 13 (3) 
(2014) 662–674, https://doi.org/10.1158/1535-7163.MCT-13-0714. 

[42] B. Garcia-Reyes, A.L. Kretz, J.P. Ruff, S. von Karstedt, A. Hillenbrand, 
U. Knippschild, D. Henne-Bruns, J. Lemke, The emerging role of Cyclin-Dependent 
Kinases (CDKs) in pancreatic ductal adenocarcinoma, Int. J. Mol. Sci. 19 (10) 
(2018), https://doi.org/10.3390/ijms19103219. 

[43] M.P. Garcia-Cuellar, E. Fuller, E. Mathner, C. Breitinger, K. Hetzner, L. Zeitlmann, 
A. Borkhardt, R.K. Slany, Efficacy of cyclin-dependent-kinase 9 inhibitors in a 
murine model of mixed-lineage leukemia, Leukemia 28 (7) (2014) 1427–1435, 
https://doi.org/10.1038/leu.2014.40. 

[44] B. Dewaele, B. Wasag, J. Cools, R. Sciot, H. Prenen, P. Vandenberghe, A. Wozniak, 
P. Schoffski, P. Marynen, M. Debiec-Rychter, Activity of dasatinib, a dual SRC/ABL 
kinase inhibitor, and IPI-504, a heat shock protein 90 inhibitor, against 
gastrointestinal stromal tumor-associated PDGFRAD842V mutation, Clin. Cancer 

A.C. Nickel et al.                                                                                                                                                                                                                                

https://doi.org/10.1006/exnr.1998.6998
https://doi.org/10.1006/exnr.1998.6998
https://doi.org/10.1126/science.1164382
https://doi.org/10.1126/science.1164382
https://doi.org/10.1371/journal.pone.0150271
https://doi.org/10.1158/1078-0432.CCR-09-1800
https://doi.org/10.1158/1078-0432.CCR-09-1800
https://doi.org/10.2478/raon-2013-0063
https://doi.org/10.1158/1541-7786.MCR-16-0494
https://doi.org/10.1172/JCI68836
https://doi.org/10.1172/JCI68836
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1007/s00401-018-1854-7
https://doi.org/10.1111/bpa.12367
https://doi.org/10.1038/nbt.1754
https://doi.org/10.1038/nmeth.2810
https://doi.org/10.1038/nature26000
https://doi.org/10.1038/nature26000
https://doi.org/10.1016/j.ccr.2009.12.020
https://doi.org/10.1080/21541264.2018.1539615
https://doi.org/10.1080/21541264.2018.1539615
https://doi.org/10.1016/j.ctrv.2020.102021
https://doi.org/10.1038/nm.2099
https://doi.org/10.1038/nm.2099
https://doi.org/10.18632/oncotarget.10132
https://doi.org/10.18632/oncotarget.10132
https://doi.org/10.1038/labinvest.2015.140
https://doi.org/10.1038/labinvest.2015.140
https://doi.org/10.1073/pnas.1813495116
https://doi.org/10.1111/j.1474-9726.2009.00535.x
https://doi.org/10.1111/j.1474-9726.2009.00535.x
https://doi.org/10.18632/oncotarget.26370
https://doi.org/10.18632/oncotarget.26370
https://doi.org/10.1038/s41586-018-0409-3
https://doi.org/10.1016/j.cels.2019.06.005
https://doi.org/10.12688/f1000research.24494.1
https://doi.org/10.12688/f1000research.24494.1
https://doi.org/10.12688/f1000research.11334.1
https://doi.org/10.12688/f1000research.11334.1
https://doi.org/10.1038/nm.2121
https://doi.org/10.1158/1535-7163.MCT-13-0714
https://doi.org/10.3390/ijms19103219
https://doi.org/10.1038/leu.2014.40


Biomedicine & Pharmacotherapy 144 (2021) 112278

9

Res. 14 (18) (2008) 5749–5758, https://doi.org/10.1158/1078-0432.CCR-08- 
0533. 

[45] D. Matei, M. Satpathy, L. Cao, Y.C. Lai, H. Nakshatri, D.B. Donner, The platelet- 
derived growth factor receptor alpha is destabilized by geldanamycins in cancer 
cells, J. Biol. Chem. 282 (1) (2007) 445–453, https://doi.org/10.1074/jbc. 
M607012200. 

[46] U.D. Kahlert, J.V. Joseph, F.A.E. Kruyt, EMT- and MET-related processes in 
nonepithelial tumors: importance for disease progression, prognosis, and 
therapeutic opportunities, Mol. Oncol. 11 (7) (2017) 860–877, https://doi.org/ 
10.1002/1878-0261.12085. 

[47] A.K. Suwala, A. Hanaford, U.D. Kahlert, J. Maciaczyk, Clipping the wings of 
glioblastoma: modulation of WNT as a novel therapeutic strategy, J. Neuropathol. 
Exp. Neurol. 75 (5) (2016) 388–396, https://doi.org/10.1093/jnen/nlw013. 

[48] R. Chen, M. Zhang, Y. Zhou, W. Guo, M. Yi, Z. Zhang, Y. Ding, Y. Wang, The 
application of histone deacetylases inhibitors in glioblastoma, J. Exp. Clin. Cancer 
Res 39 (1) (2020) 138, https://doi.org/10.1186/s13046-020-01643-6. 

[49] A. Dirkse, A. Golebiewska, T. Buder, P.V. Nazarov, A. Muller, S. Poovathingal, N.H. 
C. Brons, S. Leite, N. Sauvageot, D. Sarkisjan, M. Seyfrid, S. Fritah, D. Stieber, 
A. Michelucci, F. Hertel, C. Herold-Mende, F. Azuaje, A. Skupin, R. Bjerkvig, 
A. Deutsch, A. Voss-Bohme, S.P. Niclou, Stem cell-associated heterogeneity in 
Glioblastoma results from intrinsic tumor plasticity shaped by the 
microenvironment, Nat. Commun. 10 (1) (2019) 1787, https://doi.org/10.1038/ 
s41467-019-09853-z. 

[50] S. Seton-Rogers, Glioblastoma: transforming fusions induce aneuploidy, Nat. Rev. 
Cancer 12 (9) (2012) 585, https://doi.org/10.1038/nrc3350. 

[51] B. Boisselier, F. Dugay, M.A. Belaud-Rotureau, A. Coutolleau, E. Garcion, P. Menei, 
P. Guardiola, A. Rousseau, Whole genome duplication is an early event leading to 
aneuploidy in IDH-wild type glioblastoma, Oncotarget 9 (89) (2018) 
36017–36028, https://doi.org/10.18632/oncotarget.26330. 

A.C. Nickel et al.                                                                                                                                                                                                                                

https://doi.org/10.1158/1078-0432.CCR-08-0533
https://doi.org/10.1158/1078-0432.CCR-08-0533
https://doi.org/10.1074/jbc.M607012200
https://doi.org/10.1074/jbc.M607012200
https://doi.org/10.1002/1878-0261.12085
https://doi.org/10.1002/1878-0261.12085
https://doi.org/10.1093/jnen/nlw013
https://doi.org/10.1186/s13046-020-01643-6
https://doi.org/10.1038/s41467-019-09853-z
https://doi.org/10.1038/s41467-019-09853-z
https://doi.org/10.1038/nrc3350
https://doi.org/10.18632/oncotarget.26330

	Longitudinal stability of molecular alterations and drug response profiles in tumor spheroid cell lines enables reproducibl ...
	1 Introduction
	2 Material and methods
	2.1 Cell line culture conditions
	2.2 Sample collection
	2.3 RNA sequencing analysis
	2.4 DNA methylation array
	2.5 Glioma-tailored gene mutation panel
	2.6 Drug library, quantification of cell growth and proliferation
	2.7 Quantification and statistical analysis
	2.8 Data and code availability

	3 Results
	3.1 DNA mutation profiling and classification into molecular glioblastoma subtypes
	3.2 Longitudinal molecular profiling over extended culture times
	3.3 Determination and reproducibility of in vitro drug response patterns
	3.4 Association of in vitro drug response patterns with molecular profiles

	4 Discussion
	CRediT authorship contribution statement
	Conflict of interest statement
	Acknowledgments
	Appendix A Supporting information
	References


