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Abstract: The goals of this work are the evaluation of the performances of official methods in the
challenging determination of Cr(VI) in Cr(III)-rich particulate matter, and the development of a
novel and robust analytical protocol for this issue. A liquid chromatography inductively coupled
plasma mass spectrometry apparatus (LC-ICP-MS), together with an isotope-enriched spike addition
technique, was used to allow the study of Cr(III)/Cr(VI) interconversions during the extraction
step. An original separation strategy based on Cr(OH)3 head-column stacking was developed to
tolerate high concentrations of Cr(III) (up to 10 mg/kg, with a Cr(VI) limit of detection of 0.51 µg/kg)
without the need of any sample pretreatment. After observing, the official extraction protocols always
yield false positive values in the challenging situation of particulate matter of leather industries
(where huge amounts of Cr(III) are present), a new extraction strategy was developed. The novel
procedure involves a 48-h extraction at room temperature using a pH-8 phosphate buffer, which
demonstrated that no Cr(III)/Cr(VI) interconversions occur during this phase. To get rid of any
possible interference caused by co-extracted substances, the measurement of the redox potential,
together with the addition of a Fe(II)/Fe(III) redox buffer was performed to fix chromium speciation
during the overall analytical protocol.

Keywords: chromium (VI) exposure evaluation; particulate matter; chromium speciation; ion
chromatography; ICP-MS; isotope spiking

1. Introduction

Chromium (Cr) speciation is an extensively studied topic owing to the striking differ-
ence in toxicity of its two most stable oxidation states, the trivalent (Cr(III)) and hexavalent
(Cr(VI)) forms [1–3]. The former is considered an essential nutrient for living organisms
playing a crucial role in the metabolism of glucose and lipids and is characterized by a low
toxicity profile [2]. Oppositely, Cr(VI) is classified as Group 1 (carcinogenic to humans)
by the International Agency for Research on Cancer (IARC) [4], and chronic exposure
to such species can cause severe damage to the entire respiratory system owing to its
oxidizing power [5]. The potential risks associated with chromium exposure are critically
relevant considering that workers in various industrial sectors, including electroplating,
welding, painting, and the leather industry, are exposed to high concentrations of airborne
chromium, mainly through inhalation and dermal contact. Dermatological conditions,
renal disorders, asthma as well as lung cancer have been associated with some of these
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occupational exposures [6–10]. For a reliable risk assessment, it is, therefore, necessary to
accurately quantify Cr(VI), avoiding any Cr(III)/Cr(VI) interconversion, as only hexavalent
chromium (Cr(VI)) occupational exposure has to be considered within the occupational
safety and health (OSH) legislation on exposure to carcinogens or mutagens at work [11,12].
In addition, the toxicology of Cr(VI) differs among a wide variety of Cr(VI) compounds,
mainly depending on their solubility in water: highly insoluble chromates (e.g., ZnCrO4,
BaCrO4, and PbCrO4) are generally considered more toxic than soluble ones as the latter
are more rapidly absorbed and reduced to Cr(III) into the bloodstream of living organ-
isms [1,13]: for this reason, it is fundamental to quantify the total Cr(VI) concentration
considering both the soluble and insoluble fraction.

In the framework of OSH, the classical approach for occupational exposure assessment
through environmental monitoring is based on the active personal sampling of airborne
particles and subsequent analysis to determine Cr(VI) levels; exposure values are then
compared to properly selected Occupational Exposure Level Values (OELVs) [14]. The
recent binding Occupational Exposure Limit set under Directive (EU) 2017/2398 [15] is
10 µg/m3 (8-h time-weighted average (8-h TWA)) until January 17, 2025; after that period,
the OELV (8-h TWA) will be limited at 5 µg/m3. Some countries have proposed and
adopted other (sometimes more stringent) OELVs [6,16].

Up to now, the official methods proposed for the measurement of total Cr(VI) in airborne
particulate matter (PM) are the ISO 16740:2005 standard, NIOSH 7600-7605, and OSHA ID-
215 [17,18]. The three protocols are quite similar as they all exploit (i) polyvinylchloride (PVC)
filters as PM collectors, (ii) a 1,5-diphenylcarbazide (DPC) based colorimetric method for
Cr(VI) detection (direct or after a chromatographic separation), and (iii) alkaline extractants
operating at 95 ◦C (2% NaOH-3% Na2CO3 for ISO 16740 and NIOSH 7605, while 10% Na2CO3-
2% NaHCO3 mixed with phosphate buffer and magnesium sulfate for OSHA ID-215) [17].
Although these methods are designed to obtain the selective leaching of total Cr(VI), it was
shown that they are not sufficiently robust, as problems related to the occurrence of Cr(III) to
Cr(VI) interconversion during the hot alkaline extraction are reported [19]. Both these two issues
(the utilization of basic conditions and of hot extraction) were shown to be problematic even
when considered separately: the utilization of hot extraction induces Cr(III) oxidation even
working in acid conditions (that are known to favor the opposite reaction) [20], in addition,
the utilization of basic conditions induces Cr(III) oxidation even if the extraction is performed
at room temperature [21]. Any Cr(III) oxidative process during extraction should be avoided
as it can clearly provide Cr(VI) overestimations, and this problem is especially critical for all
particulate matters where the amount of Cr(III) may be markedly higher than Cr(VI) [22,23].
In this context, the leather factory environment could represent one of the most challenging
situations for any given analytical protocol as Cr(III) is used in huge amounts [24–26]. Cr-tanned
leathers contain up to 3–5% Cr(III) [24,25], which means very high chromium concentrations
are expected if the indoor particulate arises mainly from leather shavings. The absence of Cr(VI)
in leathers containing particulate cannot be claimed by simply stating that only Cr(III) is used
during the tanning treatment, as it is well known that during the aging of leathers, partial
oxidation of Cr(III) may occur [26].

From all the above issues and taking into account the weaknesses of the official
methods and the absence of any standard reference material, it is clear the availability of a
proper tool to carefully monitor for any Cr(III)-Cr(VI) interconversion during extraction is
indeed necessary. This tool would be essential to validate data or to revise any analytical
protocol being proposed. The speciated isotope dilution mass spectrometry (SIDMS),
represents such a tool that can be used to monitor and (sometimes) correct for Cr(VI)–Cr(III)
interconversions [27–31]: within the SIDMS technique 53Cr and 50Cr enriched isotopes can
be spiked to correct the quantification using isotopic abundance ratios [27–29,32].

Under this framework, we decided first to develop an analytical method based on
liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS), to
gain improved sensitivities with respect to traditional colorimetric methods [20,21,33] and
to allow for the monitoring of the Cr(III)/Cr(VI) interconversion processes by speciated
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isotope dilution [31,34]. In parallel, it was necessary to develop a novel separation strategy,
since the commonly employed Cr(III)/Cr(VI) LC separation methods cannot bear the
presence of huge amounts of Cr(III) [33,35]. This developed method was subsequently used
to confirm the suspected failure of the official methods in trying to yield reliable Cr(VI)
concentrations in the particulate matter sampled in different leather industries.

To fix the problems encountered with the official methods A novel extraction protocol
for the total Cr(VI) determination was then developed starting from the ISO 17075 method
for the determination of Cr(VI) in leather [36]. According to the literature relating to the
stability of Cr species at varying pH [19,37,38], a long extraction at room temperature at
circumneutral pH was optimized.

Finally, the goodness of the overall protocol was evaluated in the case study of par-
ticulate matter sampled in leather industries and used to properly characterize the risk of
occupational exposure to Cr(VI).

2. Materials and Methods
2.1. Reagents

Ultrapure water was used for the preparation of each solution used and was produced
with a Sartorius Arium mini plus UV Lab Water System. Ultra-pure H3PO4 (Merck, Milan,
Italy, Suprapur 85% in water) and K2HPO4 (Carlo Erba, Milan, Italy, ≥ 98%pure) were used
for the preparation of the ISO extracting solution: 1:10 m/m diluted ultra-pure H3PO4 was
also used to neutralize NIOSH extracting solutions. NaOH (Sigma Aldrich, Milan, Italy,
99.99% pure) and Na2CO3 anhydrous (Sigma Aldrich, Milan, Italy, ≥99.5%) were used for
the preparation of the NIOSH extracting solution. NH4NO3 (Sigma Aldrich, Milan, Italy,
≥99.0%) and NH3 (Sigma Aldrich, Milan, Italy, 25% in water) were used for the preparation
of the mobile phase.

The redox buffer was prepared by dissolving 4.30 g of Potassium Hexacyanoferrate(II)
3-hydrate (K4[Fe(CN)6]·3H2O, Merck, Milan, Italy, ≥99% pure) and 3.30 g of Potassium
Hexacyanoferrate(III) (K3[Fe(CN)6], Carlo Erba, Milan, Italy, ≥99% pure) in 1 L of ultra-
pure water.

The concentrated 1000 mg/L Cr(VI) standard solution was obtained by dissolving
2.829 g of K2Cr2O7 (Carlo Erba, Milan, Italy, ≥99% pure) in 1L of ultrapure water. Starting
from this concentrated solution, all other Cr(VI) standards were obtained by proper dilution.

The concentrated 1000 mg/L Cr(III) standard solution was obtained by dissolving
7.692 g of Cr(NO3)3]·9H2O, (Merck, Milan, Italy, ≥99% pure) in 1L of ultrapure water.
Starting from this concentrated solution, all other Cr(VI) standards were obtained by
proper dilution.

Solid PbCrO4 was obtained by precipitation with an excess of Pb, mixing equal parts
of a 1.5 M solution of Pb(NO3)2 (Sigma Aldrich, Milan, Italy, ≥99%) with a 0.5 M solution
of K2Cr2O7. The precipitate was washed several times with ultrapure water to remove any
soluble residual.

A 10 mg/L vanadium standard solution was obtained by dilution of a 1000 mg/L V
standard solution (Fluka, Milan, Italy, TraceCERT®).

Both the 50Cr(VI)-enriched standard solution (10 ± 0.4 µg/g) and the 53Cr(III)-enriched
standard solution (10 ± 0.2 µg/g) were purchased by ISC science (Oviedo, Spain). The
certified isotopic abundances, along with the ones of naturally occurring chromium are
reported in Table 1.

Table 1. Certified isotopic abundances (%) for the 50Cr(VI)-enriched and the 53Cr(III)-enriched
standard solutions. For clarity, isotopic abundances of naturally occurring Cr are also reported.

Standard Solution 50Cr (%) 52Cr (%) 53Cr (%) 54Cr (%)
50Cr(VI)-enriched std 93.7 5.7 0.51 0.10
53Cr(III)-enriched std <0.1 2.55 97.3 0.11
naturally occurring Cr 4.345 83.789 9.501 2.365
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2.2. Particulate Sampling

Workers may be exposed to Cr(VI) via inhalation and dermal exposure; however, for
the purpose of the study, the latter was not considered. Personal air samples of the inhalable
fraction of airborne particles were collected in the breathing zone of selected workers for the
assessment of inhalation exposure [39]. Sampling was performed at a flow rate of 2 L/min
with a two-piece poly-propylene cassette filter-holders (SKC Inc. 863 Valley View Road
Eighty Four (PA), USA) fitted with pre-weighed PVC filters (PALL-GLA-5000 low-ash PVC
membranes; 37 mm in diameter; porosity 5 µm). Furthermore, inhalable particles were also
monitored by fixed-site sampling in different spots of the working area; these sampling
lines were placed at the same time and place of personal sampling. Workers involved
in the shaving of tanned leathers were chosen because of their expected high exposure
to particulate matter. Each sampling campaign consisted of both personal sampling and
fixed-site sampling: 12 pairs of samples collected in parallel (duplicates) through personal
monitoring were obtained in four different shaving areas of two leather factories. Moni-
tored workers were divided into two “Similar Exposure Groups” (SEGs), according to EN
689 [14]. The first (SEG A) and second (SEG B) SEGs included workers involved in leather
shaving and enrolled in the first and second companies under investigation, respectively.
Further, four pairs of duplicates from fixed-site environmental sampling were collected
contextually. These samples were taken to cover all the most relevant situations, that is,
the particulate matter emitted from shaving of bovine, swine, goat, and chromium-free
tanned leathers. The air samples were first analyzed gravimetrically to determine the
inhalable particle fraction: in all cases, the determined values, which are reported in the
Supplementary Information, are far below the exposure threshold values (10 mg/m3).
After that, the samples were analyzed for total Cr(VI) using both the NIOSH 7600 protocol
and the modified ISO 17075 protocol. Results of exposure monitoring were used for risk
characterization, performed by testing compliance with the European OELV for Cr(VI).
The compliance with OELV was statistically evaluated by comparing it with the upper
confidence limit (UCL) of 70% with the 95th percentile of the distribution of at least six
measurements. If the UCL is lower than the OELV, it is concluded that the probability of
exceeding the OELV is acceptably low, that is a condition of compliance with the limit value.
Further details on exposure assessment and risk characterization methods are reported in
Supplementary Materials.

2.3. Extraction According to the NIOSH 7600 Protocol

The extraction solution for the NIOSH method was prepared by dissolving 20 g of
NaOH and 30 g of Na2CO3 anhydrous in 1 L of ultra-pure water and controlling that
the pH of this solution is above 12. This solution was then degassed for 5 min with N2
before every extraction. All extractions were performed at 95 ◦C (ensured with water bath)
for 45 min, using 5 mL of extractant in a 25 mL Schlenk tube, where the PVC filter was
previously inserted. Before starting the extraction, 50 µL of the 50Cr(VI)-enriched standard
solution and 50 µL of the 53Cr(III)-enriched standard solution were added to the Schlenk
tube. During the extraction, the Schlenk tube was constantly purged with Ar and gently
swirled every 10 min. After extraction, the solution was cooled down and transferred
into a 30 mL Low-Density Polyethylene (LDPE) container (Nalgene®): a 1:10 solution
of ultra-pure H3PO4 was added to lower the pH to 8.0 ± 0.1. 250 µL of the 10 mg/L V
standard solution is then added to the transferred and neutralized sample, to obtain a V
concentration equal to 100 µg/kg after dilution to 25.0 g.

2.4. Extraction According to the Modified ISO 17075 Protocol

The extraction solution for the modified ISO method was prepared by dissolving
22.8 g of K2HPO4·3H2O in a 1L volumetric flask with approximately 800 mL of ultra-pure
water and adjusting the pH to 8.0 ± 0.1 with ultra-pure concentrated H3PO4: after pH
adjustment, the solution was made up to volume with ultrapure water. In contrast with the
ISO protocol, we found it unnecessary to perform any degassing operation. To perform
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the extraction the filter was placed in a 30 mL LDPE container with approximately 5 g of
extraction solution. Then, 20 µL of the 50Cr(VI)-enriched standard solution and 20 µL of
the 53Cr(III)-enriched standard solution, together with 100 µL of the 10 mg/L V standard
solution were added to the LDPE container and the weight was raised up to 10.0 g with the
extraction solution. The extraction was then performed with an orbital shaker (180 rpm)
for 48 h. Whenever specified in the text, 200 µL of the Fe(II)/Fe(III) redox buffer was added
to the LDPE before raising the weight to 10.0 g.

2.5. Oxidation-Reduction Potential (ORP) Measurements

An AMEL model 337 potentiometer equipped with a combined Platinum electrode was
used for all ORP measurements reported in this work. These electrochemical measurements
were performed at different stages of and at fixed times after the extraction procedures to
monitor the evolution of the redox conditions in the extracting solutions and to assess the
effect of the Fe(II)/Fe(III) redox buffer, when present.

2.6. Chromatographic Separation and ICP-MS Detection

The chromatographic system is composed of a Metrohm 709 IC PEEK Pump equipped
with a Rheodyne 9725 injection valve (a 64 µL homemade PEEK sample loop was always
used) and by a Hamilton PRP-X100 (25 cm x 4 mm i.d.) anionic column, which is directly
connected to the nebulizer of the ICP-MS (Thermo, ICAP Q). The optimized mobile phase
is composed of a 20 mM NH4NO3 solution at pH 9.5, which is prepared as follows: 1.6 g
of NH4NO3 are dissolved in 1 L of ultrapure water and sonicated for 20 min; the pH is
then adjusted to 9.5 ± 0.05 with the 25% NH3 solution. All samples were filtered with a
disposable 0.25 µm membrane filter just before injection, while Cr(VI) elution is performed
in isocratic conditions at 0.8 mL/min.

The ICP-MS is operated in the Kinetic Energy Discrimination (KED) mode, using He
as collision gas and with all tuning parameters set following the manufacturer’s indications.
The m/z channels 50, 51, 52, 53, 54, and 56 were followed, setting a dwell time equal to
20 ms for all channels.

2.7. Natural Cr(VI) and Isotopic 50Cr(VI)-53Cr(III) Spikes Quantifications

From Table 1, both natural Cr and isotopically enriched standards have significant
amounts of chromium for all the 50, 52, 53, and 54 masses. Therefore, a simple direct
univariate “one mass-one species” correlation cannot be established in this case. Rather,
every species contributes to each m/z signal in a different but additive way. To determine
the concentrations of naturally occurring Cr(VI) present in samples (from now to on named
as natural Cr(VI)), together with the concentrations of the added 50Cr(VI) and 53Cr(III)
added spikes, the procedure reported in the Supplementary Materials was used.

2.8. Quality Assurance and Quality Control of the Developed Protocol

Since no Cr(VI) PM Standard Reference Materials (SRMs) are commercially available,
a direct quality assurance/quality control protocol performed on certified specimens is
not feasible. Nevertheless, the utilization of the SIDMS technique, which is a primary
method of measurement in chemical analysis [40], together with the reasons explained in
Section 3.5, are more than sufficient to state that the developed method is surely accurate.
For the NIOSH 7600 method, the precision was evaluated by performing three replicated
measurements for each of the four samples reported in Table 2: the calculated pooled
relative standard deviations for natural Cr(VI) and 50Cr(VI) (2.32% and 2.14%, respectively)
are not significantly different. Slightly better precisions (1.78%) were attained for the
modified protocol using the same strategy above reported, but on the data of Table 3: this
evidence is probably related to the simplified sample workup of the developed method.

Quality control was performed by adopting the following procedures. The LC-ICP-MS
instrument was calibrated on a daily basis, by analyzing three standard solutions spiked
with 20 µg/kg of 50Cr(VI) and 53Cr(III), which contained 0, 50, and 200 µg/kg of natural
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Cr(VI), respectively. In all extraction sections, a blank filter was also extracted and analyzed
to control for eventual unwanted reagents or glassware contaminations.

Finally, it should be noted that the SIDMS technique (which was used for each sample)
is intrinsically a very robust quality control technique, as it certifies the presence of false
positive/false negative data.

3. Results
3.1. Optimization and Features of the Chromatographic Separation

The presence of high quantities of Cr(III) in the extracted solutions is a relevant issue
not only in terms of its possible oxidation to Cr(VI) but also for the potential overlapping
of the Cr(III) peak tail (which is very pronounced at high Cr(III) concentrations) with
the Cr(VI) peak. It should be noticed that this latter problem is strictly related to the
utilization of ICP-MS as the detector, since the conventional UV-Vis detection after post-
column derivatization with DPC cannot detect Cr(III). In principle, to solve this problem,
one possible strategy relies on the inversion of the elution order, that is, having Cr(VI)
exiting first from the column. However, this cannot be accomplished by using a cationic
column instead of the normally used anionic one, because Cr(III) is present in various forms
ranging from cationic to neutral and/or anionic [19,33]. An interesting alternative approach
consisting of the complexation of Cr(III) with EDTA and the derivatization of Cr(VI) with
DPC over an anionic column was recently reported [31,41]. In this case, the elution order is
reversed because the former complex is anionic while the second is cationic. Considering
that to reach the quantitative complexation with EDTA, it is necessary to heat at 70 ◦C
for at least 25 min, this approach was not followed to avoid any possible Cr(III)/Cr(VI)
inter-conversion that, as already mentioned, is boosted by heating.

We, therefore, decided to solve this problem by exploring the possibility of a quantita-
tive head-column stacking of Cr(III) as Cr(OH)3. This is an unusual LC strategy because the
accumulation of a precipitate is expected to gradually clog the column with the increasing
the working pressure of the LC system. As will be clear later, this does not happen under
the conditions that we have optimized.

According to Palmer et al. [42], the dominant form of Cr(III) is Cr(OH)3 when the pH
is between 8 and 11, while the formation of soluble Cr(III) hydroxometallates is favored
at more basic pH values. For this reason, we tried different mobile phases within the
8–11 pH range (varying both the pH and the NH4NO3 concentration) finding that working
at pH = 9.5 with a 20 mM solution of NH4NO3, it is possible to retain the most Cr(III) with
only a minor part eluting from the anionic column with all the cations. It should be recalled
that NH4NO3 was chosen because it fully decomposes in the ICP torch, leaving no residues
on the extraction and skimmer cones. The chromatographic separation obtained in the
optimized conditions is reported in Figure 1, where it can be seen that the residual cationic
Cr(III) is sufficiently small to be very well separated from the Cr (VI) peak, even working
with a 5 mg/kg Cr(III) solution.

The limit of detection (LOD) under these separation conditions, determined according
to the IUPAC definition and European guidance [43] by injecting 10 times a 3 µg/kg
Cr(VI) solution, is equal to 0.51 µg/kg: considering a sampled air volume of 400 L and the
volume of the extractant used for the optimized protocol (10 mL), this yields a 0.013 µg/m3

detection limit (i.e., a 0.039 µg/m3 limit of quantification, LOQ) that is fully satisfactory
if compared to the actual (10 µg/m3) and to the incoming (5 µg/m3) OELV set under
Directive (EU) 2017/2398. The linearity was checked up to 1000 µg/kg: higher values were
not tested out of the absence of any practical interest.
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Figure 1. Chromatographic profiles obtained in optimized conditions for a 5 mg/kg Cr(III) + 100 ppb
50Cr(VI) standard solution, with 100 ppb of Vanadium used as internal standard. Green, red and blue
profiles represent the signals recorded at m/z 50, 51, and 52, respectively.

No column clogging was observed over hundreds of injections because we noticed
that the phosphate buffer, which is present in all the injected solutions, causes a gradual dis-
solution of Cr(OH)3 with the formation of a cationic Cr(III) phosphate (probably CrHPO4

+).
This was verified by injecting first a 1 mg/kg standard solution of natural Cr(III), followed
by a 1 mg/kg 53Cr(III) isotopic enriched solution, and then by several blank phosphate
buffer injections. As it can be seen in Figure 2, the peak area isotopic ratio of the cationic Cr
peak of the second injection (1 mg/kg of 53Cr(III)) is not consistent with the expected one,
meaning that 53Cr(III) is retained by the column. Both the 53/51 and the 52/51 peak area
ratios gradually increase in the subsequent blank phosphate buffer injections, meaning that
both the natural Cr and the 53Cr(III), retained by the column, are gradually solubilized.
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In conclusion, this quite uncommon and self-regenerating separation approach fully
meets our requirements, i.e., the robust determination of Cr(VI) in the presence of much
higher amounts of Cr(III). Moreover, the employment of ICP-MS allows the utilization of
the speciated isotope addition strategy, which is fundamental to study the performance of
the extraction protocols.

3.2. Evaluation of the NIOSH 7600 Protocol

Four different samples from fixed-sited sampling performed in four different shaving
areas of two leather factories were analyzed according to the NIOSH 7600 protocol.

After sampling and before starting the extraction, each filter was spiked with a 50Cr(VI)
and a 53Cr(III) standard solution to have a final concentration of the extracts equal to
20 µg/kg for each standard. All the extractions were conducted following strictly the
NIOSH protocol: the only exception is represented by the utilization of Ar instead of N2 as
protective gas, which, due to its higher density, guarantees better shielding against oxygen
diffusion. As the anionic column cannot tolerate the extremely basic pH of the NIOSH
extractant, it was necessary to lower the pH to 8.0 with pure H3PO4 after extraction.

In Table 2, the results obtained for the environmental sampling of the four different
shaving areas are reported. Even if all data are well below the OELV, and the 50Cr(VI) is
almost quantitatively recovered, the most problematic issue comes from the percentage of
oxidation of the 53Cr(III) added spikes. In all extractions, we observed 53Cr(III) to 53Cr(VI)
conversions ranging from 55% to 60%.

Table 2. Cr(VI) airborne concentrations detected with the NIOSH extraction protocol (fixed-site
sampling in four different shaving areas). Data of spikes recoveries/oxidations, together with three
blank extractions are presented. ORP values determined after extraction and neutralization.

Sample ID Cr(VI) Conc. (µg/m3) 50Cr(VI) Spike Recovery (%) 53Cr(III) Spike Oxidation (%) ORP (mV vs. Ag/AgCl)

Tanned goat leather shaving 0.347 91.0 60.3 180
Tanned swine leather shaving 0.626 90.1 59.4 180
Tanned bovine leather shaving 0.545 96.9 59.5 182
Tanned Cr-free leather shaving 0.282 94.6 54.8 173

Blank extraction + 20 µg/kg 53Cr(III) <0.05 µg/kg * – 68.0 190
Blank extraction + 200 µg/kg 53Cr(III) <0.05 µg/kg * – 20.2 185

Blank extraction + 1000 µg/kg 53Cr(III) <0.05 µg/kg * – 6.1 183

* In the case of the analysis of standard solutions, data refer to the concentrations found in extraction solutions.

The cause of such a relevant oxidation cannot be ascribed solely to the presence
of oxidants eventually co-extracted from the particulate matter, as the same behavior
is observed even in blank extractions (see the three last rows in Table 2): this would
indicate a major role of residual oxygen and/or the so-called reactive oxygen species [44].
The percentage of Cr(III) oxidation is not constant with increasing Cr(III) concentrations,
suggesting that this process is probably constrained by the limited availability of oxidants in
the extraction solution. Independently from a deep understanding of the real nature of such
an oxidation, which is out from the goals of this work, these data (and also the data that will
be reported later) clearly indicate that the NIOSH protocol systematically overestimates the
presence of Cr(VI) if significant amounts of Cr(III) are present in particulate matter. From
the data of the last three rows of Table 2, it is reasonable to think that the extent of such an
overestimation may be shadowed in all particulate samples where the real Cr(VI)/Cr(III)
ratio is high and/or when both Cr(VI) and Cr(III) concentrations are high. In such cases,
the official NIOSH 7600 extraction could provide reliable data, provided that any redox
role played by coextracted substances can be ruled out.

Unfortunately, the addition of the 53Cr(III) spike cannot be helpfully used to correct
such a positive bias because the amount of Cr(III) in the sample is not known and all the
added 53Cr(III) spike is ready to be oxidized from the beginning of the extraction, while
Cr(III) in the particulate is expected to be solubilized in a gradual, but unknown way.
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Even if the data collected over chromium isotopic spikes are not useful to correct this
bias, the utilization of isotopic spikes is fundamental to develop an extraction protocol that
is able to extract Cr(VI), avoiding any Cr(III)/Cr(VI) interconversion.

3.3. Development of the Alternative Extraction Procedure

As already mentioned in the introduction, the kinetics of the Cr(III)/Cr(VI) intercon-
version are quickened by high extraction temperatures and by the utilization of acid or basic
environments, and therefore, such conditions should be avoided. Among the extractants
proposed in the literature to recover Cr(VI) from various matrixes, the one used in the
validated ISO 17075 method for leather samples is quite interesting and should also be a
good candidate for particulate matter, as it works at room temperature with a phosphate
buffer at pH 8.0. The only negative aspect of this method relates to the evidence that the
insoluble Cr(VI) fraction is not extracted quantitatively. From a thermodynamic point of
view, the phosphate buffer is expected to solubilize all insoluble chromates since all the
respective phosphates are much more insoluble than chromates. However, the kinetics of
such dissolutions could be quite slow, as they are related to the dissolution of a precipitate
with the formation of a precipitate. Starting from these considerations (and since no data are
reported in the literature about this kind of dissolution), we decided to study the kinetics of
the extraction of the least soluble of the chromates, that is, PbCrO4 (Ksp = 1.8 × 10−14) with
the phosphate buffer described in the ISO 17075 method. The goal was to observe if an
extension of the established extraction time is sufficient to obtain total dissolution. Figure 3
depicts the kinetic extraction profiles obtained for three different PbCrO4 loadings. As it
can be seen, in all cases, the complete dissolution is obtained after 48 h, while only approx.
20% of the insoluble Cr(VI) is extracted within the 3 h prescribed by the ISO method.
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Figure 3. Extraction profiles of PbCrO4 at room temperature with 50 mL of the ISO phosphate buffer:
the three curves refer to three independent extractions carried out with increasing PbCrO4 loadings.

Once it is confirmed that no Cr(III)/Cr(VI) interconversions occur within such a long
extraction time, this evidence opens the possibility to use such mild conditions for the
recovery of the total Cr(VI) content.
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The performances of the extended ISO extraction were then tested on the same en-
vironmental particulate sampling (collected in double) reported in Table 2. Even if from
Figure 3 it could be argued that it is not necessary to wait for 48 h to gain the total insoluble
Cr(VI) extraction, we decided to use this time for practical purposes.

The data reported in Table 3 clearly indicate the total recovery of the 50Cr(VI) spike,
with no oxidation of the 53Cr(III) spike, thus confirming that Cr(VI)/Cr(III) interconversion
did not happen during the extraction. Interestingly, all the data reported in Table 3 were
obtained without any previous outgassing of the extraction solution, nor working under an
inert atmosphere, thus simplifying the overall extraction procedure.

Table 3. Cr(VI) airborne concentrations detected with the ISO-modified extraction protocol (same
location and time span of samples reported in Table 2). ORP values determined after extraction.

Sample ID Cr(VI) Conc. (µg/m3) 50Cr(VI) Spike Recovery (%) 53Cr(III) Spike Oxidation (%) ORP (mV vs. Ag/AgCl)

Tanned goat leather shaving <0.013 98.1 <2.5 132
Tanned swine leather shaving <0.013 98.8 <2.5 120
Tanned bovine leather shaving <0.013 98.6 <2.5 131
Tanned Cr-free leather shaving <0.013 99.9 <2.5 111

3.4. On the Role of Co-Extracted Substances

During the extraction, it is possible that substances other than Cr(VI) (which are
present in the particulate matter) can be eventually co-extracted. Even in a restricted field
such as the leather industries, the nature of the possible co-extracted substances is so wide
that is completely meaningless to assess and quantify their presence and, more importantly,
their possible action in terms of Cr(III)/Cr(VI) interconversion. Rather, the extraction
protocol should be sufficiently robust to be not influenced by their eventual presence.

In this context, we decided to take advantage of the utilization of ORP measurements as
an indicator of the presence of potential oxidation/reduction issues: high/low ORP values
would indicate a potential instability of redox couples (like the Cr(III)/Cr(VI) one) towards
oxidation/reduction phenomena, respectively. As a starting point, we have observed the
ORP value of the phosphate buffer used for the developed extraction is equal to 256 mV
(vs. Ag/AgCl) and that diluted Cr(III) and Cr(VI) standard solutions built using such a
buffer are indefinitely stable since no interconversions are observed up to 2 months from
their preparation. This is not surprising considering that from the Pourbaix diagram [19],
such potential is nearly at the turn of the Cr(III) and Cr(VI) stability regions. Moreover, we
observed that the composition of all extracts reported in Table 3 and in Table 2 (in this latter
case, after neutralization) is indefinitely stable, meaning no Cr(III)/Cr(VI) interconversions
occur in the ORP range between 110 and 256 mV.

On the other hand, a marked reduction of Cr(VI) was observed in all personal sampling
where the measured ORP value after extraction was below 100 mV (see Table 4), indicating
that, in such cases, the coextracted substances cause a negative bias in Cr(VI) quantification.

To fix this problem, we decided to use the addition of a redox buffer to the extraction
solution in order to stabilize the ORP value within the stability range reported above. For
this purpose, we used the Fe(CN)6

3−/Fe(CN)6
4− redox buffer (see the experimental section

for more details), which is able to stabilize the ORP around 220 mV. The effectiveness
of this procedure was by performing an extraction directly on 250 mg of a particularly
reducing leather sample, which, after extraction, showed an ORP value of 73 mV. If the
same extraction is performed in the presence of the redox buffer, the ORP value remains
almost constant around 220 mV and, more importantly, no Cr(VI) reduction was observed.

With this evidence, we recommend the introduction of this redox buffer into the
phosphate buffer solution in all cases where the ORP values are low and/or when the
isotopic Cr spikes indicate a Cr(VI) reduction. The only drawback of the utilization of
the Fe(CN)6

3−/Fe(CN)6
4− buffer is that it is not compatible with the conventional DPC

post-column derivatization, since we have observed that the Fe(CN)6
4− species strongly

interfere with the formation of the Cr(III)-DPC complex, which is the species detected by
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the UV-Vis detector [45]. Therefore, the Fe(CN)6
3−/Fe(CN)6

4− buffer can be used only if
ICP-MS is used as the detector.

3.5. On the Validation of Developed Extraction Protocol

No standard reference material for Cr(VI) in the particulate matter of the leather
industry is commercially available, but, even if it was available, the certified value should
raise doubts if the NIOSH 7600 method was used to assess the Cr(VI) concentration.
Consequently, there is no way to perform a direct validation against a reference material.
Nevertheless, the data so far reported are more than sufficient to assert that reliable data
can be obtained with our developed protocol. First of all, The extraction protocol is equal to
the validated ISO 17075 procedure for the determination of Cr(VI) in leather samples, but
utilizes a longer extraction time, which is more than sufficient to extract the insoluble Cr(VI)
fraction. Secondly, considering the ISO17075 method is set up to work with 6 mm × 6 mm
leather pieces, no diffusional limitations are expected during the extraction of Cr(VI) from
particulate particles, which are definitely much smaller. The utilization of the 53Cr(III)
and 50Cr(VI) isotopic spikes revealed that no Cr(III)/Cr(VI) interconversion occurs during
the long extraction. As will be shown later in real personal particulate sampling, it is
fundamental to use such isotopic spikes for all sample extractions in order to verify that
eventually, co-extracted substances do not cause Cr(III)/Cr(VI) interconversions. With
this strategy, every single result becomes self-consistent. Finally, the ORP measurement,
together with the addition of a Fe(II)/Fe(III) redox buffer, may be used to assess and correct
issues related to the presence of co-extracted reductants or oxidants.

3.6. Cr(VI) Determination on Personal Sampling, Occupational Exposure, and
Risk Characterization

An overall synopsis of the exposure monitoring results is shown in Tables 2 and 3
(airborne Cr(VI) concentrations; fixed-site samplings) and in Tables 4 and 5 (exposure to
Cr(VI); personal samplings). Airborne Cr(VI) levels and occupational exposure levels were
always lower than the OELVs (with a precautionary approach, here we consider the more
stringent limit set by the European Directive—i.e., 5 µg/m3), regardless of the type of
sampling and the method of analysis. Fixed-site samples analyzed through the NIOSH
protocol (Table 2) showed that airborne Cr(VI) concentrations in the investigated companies
were one order of magnitude lower than the OELV of 5 µg/m3. Samples collected at the
same time as the latter (duplicates) but analyzed with the ISO-modified extraction protocol
all resulted in <LOD values (Table 3), which were lower by another order of magnitude.

With regards to the personal exposure measurements carried out on SEG A and SEG B
workers, for the samples analyzed with the NIOSH protocol (Table 4), no exposure values
lower than the limit of quantification were identified.

Once the validity of each measurement was ensured (Appendix E of the EN 689 stan-
dard), it was verified that the definition of the SEG complied with adequate criteria of
quality, representativeness, and number. It was verified the exposure data of each SEG are
distributed with log-normal distribution (Kolmogorov–Smirnov; p < 0.05). It was therefore
possible to apply the statistical test for comparison with the selected OELV, as described
above (Appendix F of the EN 689 standard). Further, for the purpose of defining the maxi-
mum time interval before a subsequent evaluation, the indication provided by Appendix
I of the EN 689 standard was applied. Table 6 shows the result of the VLEP compliance
test for personal exposure to Cr(VI) by considering samples treated through the NIOSH
protocol. As anticipated, no exceedances of the limit value are observed and the compliance
with the selected OELV for Cr (VI) was statistically evaluated by comparing the OELV
with the UCL of 70% with the 95th percentile of the distribution of measurements obtained
within each SEG. Since the UCL is lower than the OELV for both the workers’ groups, the
probability of exceeding the OELV is acceptably low, and therefore the risk associated with
this occupational exposure can be considered acceptable for both the considered SEGs.
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Table 4. Cr(VI) occupational exposure detected with the NIOSH extraction protocol through personal
sampling in two SEGs of tanned leather shavers. Data of spikes recoveries/oxidations are presented,
together with ORP values determined after extraction and neutralization.

SEG Sample ID Cr(VI) Conc. (µg/m3) 50Cr(VI) Spike Recovery (%) 53Cr(III) Spike Oxidation (%) ORP (mV vs. Ag/AgCl)

A

A1 0.950 94.9 53.2 168
A2 0.305 94.0 56.6 161
A3 0.404 97.4 56.0 188
A4 0.548 95.7 49.6 149
A5 0.645 94.2 62.5 178
A6 0.428 94.9 56.7 170

B

B1 0.304 98.0 64.3 176
B2 0.514 96.0 61.8 160
B3 0.535 97.8 63.7 173
B4 0.394 95.1 59.3 138
B5 0.878 94.3 57.9 144
B6 0.326 93.0 59.8 152

Table 5. Cr(VI) occupational exposure detected with the ISO-modified extraction protocol through
personal sampling in two SEGs of tanned leather shavers (same workers, location, and time span of
samplings of Table 3). Data of spikes recoveries/oxidations are presented, together with ORP values
determined after extraction.

SEG Sample ID Cr(VI) Conc. (µg/m3) 50Cr(VI) Spike Recovery (%) 53Cr(III) Spike Oxidation (%) ORP (mV vs. Ag/AgCl)

A

A1 <0.013 98 <2.5 106
A2 <0.013 99.1 <2.5 173
A3 0.015 72.5 <2.5 84
A4 <0.013 79.2 <2.5 96
A5 <0.013 99.1 <2.5 197
A6 <0.013 99 <2.5 130

B

B1 <0.013 99.6 <2.5 115
B2 <0.013 98.8 <2.5 104
B3 0.024 100.3 <2.5 122
B4 <0.013 82.7 <2.5 97
B5 0.014 85.9 <2.5 99
B6 <0.013 99.1 <2.5 199

Table 6. OELV compliance test for Cr (VI) occupational exposure—Samples treated with the NIOSH
extraction protocol (data in Table 4). GM: geometric mean; GSD: geometric standard deviation.

SEG SEG-A SEG-B

Number of valid
measurements (n) 6 6

GM (µg/m3) 0.511 0.460
GSD (µg/m3) 1.49 1.48

OELV (µg/m3) 5 5
Ur 5.720 6.099

Ut (for n = 6 measurements) 2.187 2.187
Judgment Compliance Compliance

Period before next monitoring 36 months (J = 0.244) 36 months (J = 0.236)

Most of the samples from personal sampling analyzed with the ISO-modified extrac-
tion protocol (Table 5) are lower than the LOD (5 out of 6 for SEG A; 4 out of 6 for SEG
B). Thus, the above-described method to verify the representativeness of the SEG and the
statistical test for comparison with the OELVs cannot be applied. Based on the obtained
results, it is only possible to state that occupational exposure of the monitored workers
was always considerably lower than the OELV, in both SEGs: in fact, exposure values at
least lower than 1/100th of the OELV are observed. In this regard, it should be noted that,
according to the EN 482 standard, an analytical method should be able to measure 1/10
of the reference value with a measurement uncertainty ≤ 50%. Furthermore, according to
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the EN 689 standard, for an occupational exposure assessment, it is necessary to be able to
measure exposures lower than 1/10 of the limit value. The analytical method used respects
these requirements and the results obtained can be considered valid (LOQ for a sample
of 0.4 m3 = 0.039 µg/m3; OELV = 5 µg/m3; LOQ/VLEP percentage ratio = 0.78%). With
regards to the periodic re-assessment, the criterion defined by Appendix I of the EN 689
standard cannot be applied. However, since the mean of the measured occupational expo-
sure was less than one-tenth of the OELV for both the SEGs, the maximum time interval
before a subsequent evaluation can be fixed at 36 months.

Beyond compliance with the OELV for Cr (VI), which in this case study does not
present any critical issues, it has been demonstrated that the NIOSH 7600 method sys-
tematically provides widely overestimated values of Cr(VI) airborne concentrations and
occupational exposure, if compared with the duplicated samples analyzed through the
ISO-modified extraction protocol. As the main goal of this work is the development of
a novel extraction protocol and the evaluation of its eventual weaknesses, all extractions
were intentionally carried out without the addition of the Fe(II)/Fe(III) redox buffer, to
assess if its utilization is really necessary or not. In this respect, we can see that, from
the data reported in Table 5, 4 out of 12 samples (A3, A4, B4, and B5) show a significant
reduction of the 50Cr(VI) spike, together with quite low ORP values. This evidence clearly
indicates that the utilization of the Fe(II)/Fe(III) buffer should be considered mandatory
for the developed extraction protocol.

4. Conclusions

The proposed protocol for total Cr(VI) airborne determination has been proven to be
very robust in the challenging case study of leather industries, where Cr(VI) has to be deter-
mined in the presence of huge concentrations of Cr(III). In particular, the development of a
novel separation method capable of detecting Cr(VI) with high sensitivity and selectivity,
while also tolerating high Cr(III) concentrations, highlights the merits of LC-ICP-MS as a
potential future methodology to analyze Cr(VI) also in other matrixes.

The utilization of the isotopic spiking technique was fundamental both to study the
problems of the NIOSH method and to assess the goodness of the developed extraction pro-
cedure here reported. Apart from the method development, the isotopic spiking technique
is recommended for the analysis of all samples as all determination becomes automatically
validated and self-consistent.

The measurement of the ORP values was revealed to be a very good indicator of the
Cr(III)/Cr(VI) stability during extraction and will be used by our research group to extend
the applicability of the developed protocol to other industrial fields. In this context, the
addition of the Fe(II)/Fe(III) redox buffer is very efficient in preventing Cr(VI) reduction
induced by coextracted substances and it is supposed to work well even in the presence of
oxidizing coextracted substances.
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