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A B S T R A C T

This research introduces a novel mathematical framework for understanding collective human mobility
patterns, integrating mathematical modeling and data analysis. It focuses on latent-variable networks to
investigate the dynamics of human mobility using stochastic models. By analyzing origin–destination data,
the study uncovers scaling relations and explores the economic implications of mobility patterns, particularly
regarding the income elasticity of travel demand. The mathematical analysis begins with the development of a
stochastic model based on inhomogeneous random graphs, constructing a visitation model with multipurpose
drivers for travel demand. Through this model, the study gains insights into the structural properties and
dynamic correlations of human mobility networks, deriving analytical solutions for key network metrics:
visit distribution, assortativity behavior and clustering coefficient. Empirically, the study validates the model’s
assumptions and reveals scaling behaviors in origin–destination flows within a region, reproducing statistical
regularities observed in real-world cases. Notably, the model’s application to estimating income elasticity of
travel demand provides significant implications for urban and transport economics. Overall, this research
contributes to a deeper understanding of the interplay between human mobility and regional demographics
and economics. It sheds light on critical scaling relations across various aspects of collective human mobility
and underscores the importance of incorporating latent-variable structures into mobility modeling for accurate
economic analysis and decision-making in urban and transportation planning.
1. Introduction

How people move from one place to another represents a crucial
key to depicting human relations and social interactions in complex
societies [1–4]. Human mobility encompasses a wide range of spatial
and temporal scales, from daily commuting within a city to long-
term migration across countries. This mobility is influenced by factors
such as economic development, technological advancements, political
stability, and geographical features. Researchers have explored hu-
man mobility and transportation dynamics using various mathematical
approaches, ranging from individual path-based models to collective
population-based analyses [5–7]. In particular, data-driven studies on
human mobility are valuable for identifying the factors driving the
movement of individuals and goods, and how they affect economic
outcomes such as labor market dynamics, economic growth, trans-
portation planning, and consumer behavior [8,9]. This paper addresses
the modeling and explanation of the statistical properties of collective
human mobility using a data-driven approach. It aims to provide a

∗ Correspondence to: Department of Economics, University of Insubria, Via Monte Generoso 71, Varese, 21100, Italy.
E-mail address: fabio.vanni@uninsubria.it.

stochastic model for complex networks of human mobility, rooted in
an origin–destination structure that represents the foundational flows
of mobility. In particular, the point locations are characterized by
intrinsic features, considered latent variables, that define their ability
to generate new trips and attract new visits. These features are drivers
of travel demand dynamics and will be estimated from the land-use
structure of a region and the resident population.

The research purpose of this manuscript is to investigate whether
there exists a time-invariant and regionally consistent relationship
law between key components of the mobility network. This approach
enables us to tackle the issue of how various statistical configurations
of latent variables can yield different structures within the mobility
network, leading to the emergence of scaling properties in the visit
distribution. Specifically, we seek to explore the potential relation be-
tween the number of visits to locations, the distance traveled (or other
‘‘trip costs’’) to reach those locations, and the inherent attractiveness of
destinations (inferred by land-use data). Through a network approach,
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it becomes feasible to uncover higher-order relationships between ori-
gin and destination locations. This is achieved by examining assortative
behavior of the mobility graph and clustering coefficient, which serve
as measures of transitivity. Finally, from an economic standpoint, a
crucial aspect of this research is to comprehend the significance of
a latent variable (land-use) in elucidating income elasticity within
multi-purpose travel demand across transportation modes.

More in details, as research methodology, the paper provides a
mathematical description based on stochastic processes for mobility
network formation. The objective, from a mathematical standpoint, is
to integrate a stochastic model of origin–destination visitation processes
for collective human mobility. Specifically, complex network theory
will be utilized for both mathematical description and analysis of
mobility patterns. The model is rooted in the class of inhomogeneous
random graphs [10,11], also known as latent-variable networks [12–
16]. In this framework, the nodes represent locations, and the links
are weighted since they denote trips between origins and destinations
made by travelers who makes a certain effort for undertaking those
trips. So the trip cost (as distance traveled) is considered as the link
weight between to nodes. Consequently, the network takes the form
of a directed and weighted multigraph, serving as a representation of
collective mobility. Furthermore, the graph is labeled, as each node
is characterized as both an origin and a destination, with unique
features, taken as latent variables, that define the travel demand to-
wards different locations. The process describing the number of visits
to destinations has been formalized using a master equation for the
probability density function, following the literature on continuous-
time Markov processes [17,18]. Specifically, the evolution of the visit
distribution and graph correlations (as assortativity and clustering coef-
ficient) over time is described through an integro-differential equation
with an explicit asymptotic solution. This solution highlights the re-
lationship between visiting generation patterns and the intrinsic and
environmental features of locations, as specified by latent-variable
properties.

On the data analysis side, the study utilizes the SafeGraph dataset
for the New York metropolitan area [19]. The analysis of the Origin–
Destination (O-D) network is centered on the metropolitan area of New
York City, comprising 1076 Census Block Groups (CBGs). However,
arrivals to destinations from all CBGs across the US are considered,
while outgoing distributions are inaccessible due to data limitations
beyond the New York City region. The analysis is conducted on an
hourly basis, encompassing each day throughout November 2029 and
partially in June 2020. Examination of this data unveils clear scaling
relations in commuting patterns, consistent with findings from other
empirical studies [20–23]. I utilize monthly data to establish scale-
free distributions of arrival and visit frequency. In this context, visits
represent individuals arriving at destinations with specific trip weights,
reflecting travel effort in terms of distance traveled or travel time. The
presence of these scale-free distributions is attributed to the statistical
properties of the attractiveness latent variable, identified as land-use,
and the probabilistic mechanism of destination selection. Additionally,
at this particular time and spatial scale, the analysis reveals the absence
of network correlations in the Origin–Destination (OD) matrices. This
insight aids in identifying potential probabilistic laws driving OD trips
and their costs relative to destination attractiveness.

The paper’s novel contribution is twofold: analytical and empirical.
The analytical aspect addresses the problem of how different configura-
tions of latent-variable patterns determine the structure of the mobility
network, encompassing degree and strength distributions as well as
graph correlations such as assortativity and transitivity properties.
This sheds light on how land uses or attractiveness proxies can shape
individuals’ preferences regarding where, when, and how frequently
they move and visit places of interest. Additionally, the current model
serves as a generalized framework capable of encompassing popu-
lar models describing collective human mobility dynamics, including
2

gravity [24,25], radiation [26–28], and opportunity models [29,30].
These models can all be, in fact, explained with the mobility network
framework, provided proper selection and specification of parameters
and relationships between latent variables are made.

Empirically, the study aims to validate that land-use latent variables
effectively represent destination attractiveness and demonstrate the im-
pact of trip weights on the visitation process. Eventually, based on the
model’s assumptions validated by empirical analysis, we can observe
inverse power law shapes in both the degree arrival distribution and the
strength visit distribution and we can observe a topological relationship
between node degree and strength, which will be expressed through a
scaling relation. An important finding will be the connection between
the topological factor and the visitation process mechanism built on
latent variable structure, shedding light on the underlying dynamics.
Essentially, meanwhile the theoretical framework establishes the exis-
tence of critical scaling relations across multiple aspects of collective
human mobility, the empirical analysis confirms that specific scaling
coefficients are unique to the analyzed time period and region, yet
the formulas governing mobility scaling variables remain universally
applicable.

The emergence of power law visit distributions is shaped by the
statistical characteristics of the latent variable across regions and its
connection to the mechanism of generating trips between locations.
This connection dictates whether the mobility graph displays a neutral,
scale-free distribution of visits, as in the case our study, or introduces
correlations and alternative visit patterns. Through data analysis, we
engage in a model selection process to discern among various latent
variable characteristics.

Finally, the study underscores a reciprocal interplay between human
mobility and the demographic and economic structure of a region, a
topic extensively discussed in the literature [31–36]. Using a bottom-
up view of the research, attractiveness is the basic impulse that draws
people to a location. Although attractiveness is a latent variable that
cannot be directly measured, it can be inferred through proxies or
indexes. In this article, attractiveness is identified with land use. ‘‘Land
use’’ describes how humans utilize land and the landscape, encompass-
ing the economic and cultural activities at a given location. Travel
demand is directly determined by this land-use variable, which includes
factors such as zoning divisions (tax lots), and is influenced by socio-
economic status, including the average income of travelers, which
reflects individuals’ willingness to pay for traveling from one place to
another.

As an economic application, the study will illustrate the relationship
between the scaling exponents of attractiveness and the income elas-
ticity value, leveraging information on the allocation and utilization of
land resources for various economic and social activities. The estimated
income elasticity of demand is often utilized to forecast future changes
in consumption in response to income fluctuations [37–40].

An Appendix A section and supplementary material are provided
to enhance the discussion on the stochastic interpretation of the visit
process, further statistical analysis of the data, and a detailed descrip-
tion of data and interpretation of the latent variables in travel demand
modeling.

2. Model

A trip mobility network is built upon an origin–destination rationale
and it will be represented as a directed and weighted labeled multi-
graph where the nodes are administrative units of an urban or regional
area (a city, a county, a state etc...). The graph is directed (trip
direction) and it allows self-edges and multiple edges (many travelers
from and to the same origin and destination). Furthermore, the network
is a labeled graph since the nodes will be specified by intrinsic location
attributes. The modeling argument is based upon some fundamental
assumptions common in literature of collective human mobility [5,22,
42]. Firstly, the fluxes directed towards a specific destination repre-

sent a observable manifestation of individuals’ inclination to visit that
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Fig. 1. Example of a tessellation of a large urban area (i.e. New York City) in (Census) blocks (a) as in [41]. In particular, a block is characterized by an intrinsic attractiveness
𝑥 as a latent variable depending on many features of location (b).
location. Secondly, the motivation to visit is indicative of the effort
required, and it can be articulated in terms of the energy individuals
are willing to expend to reach said destination. Lastly, the aggregated
willingness to visit, across numerous individuals, depends only on the
attractive characteristics of the destination.

2.1. Mobility graph

A geographical region of interest, 𝑅, is specified as the portion of
territory for which we are interested in generating the flows. Over the
region of interest, a set of geographical tiles called tessellation, T, made
up of locations 𝑙𝑖 so that 𝑇 = {𝑙𝑖 ∶ 𝑖 = 1… 𝑛} so that the locations
are non-overlapping, 𝑙𝑖 ∩ 𝑙𝑗 = ∅,∀𝑖 ≠ 𝑗, and the union of all locations
completely covers the region of interest, ∪𝑛

𝑖=1𝑙𝑖 = 𝑅. The tessellation for
real geographical regions can be obtained in many ways according to
the scope. In the case of interest, location tiles are the census areas
defined by national authorities for administrative and demographic
purposes. In particular e census blocks are the smallest geographic unit
used by the United States Census Bureau for tabulation of data collected
from all houses. An example of tessellation is given, as an example, in
Fig. 1 for New York city, where tiles are the census block division of the
urban area. Similarly, the locations, other than being destinations, are,
at the same time, labeled as origins. The correspondent intrinsic feature
variable will represent the resident active population which stays in the
area from which a trip originates.1

At this point, it is possible to frame the network structure according
to the following definition:

Definition 1 (Trip Mobility Graph). We denote with G = (𝑇 ,𝐸) a
directed and weighted multigraph, where 𝑇 is the set of 𝑛 locations
(nodes) and 𝐸 is the set of trips (edges).

(T1) Each location 𝓁𝑖 ∈ 𝑇 is assigned a destination node-type label
denoted by the latent variable 𝑥𝑖, which takes values in the space

1 Despite of not being a proper hidden variable, the people which can
actively considered travelers undergoes to many factors (such as residence,
age, employment status, and many others).
3

𝛺𝑥 ⊆ R. The latent variable represents the attractiveness of the
destination where a trip ends, serving as the driving factor for
travel demand to each destination.

(T2) Conversely, each location 𝓁𝑖 ∈ 𝑇 is also labeled with another
origin node-type variable denoted as 𝑦𝑖, which takes values in the
space 𝛺𝑦 ⊆ R. The latent variable 𝑦𝑖 represents the productivity
of origin locations where trips start, serving as the driving force
for travel supply and demand.

(E1) Each edge 𝑒𝑖𝑗 ∈ 𝐸 represents a journey originating from a location
labeled 𝑦𝑖 and heading towards a destination characterized by its
attractiveness 𝑥𝑖.

(E2) Additionally, each edge is assigned a weight representing a spe-
cific aspect of the trip. More precisely, the arrival at a destination
reached from a departure point is comprised of a trip undertaken
at a cost r𝑖𝑗 .

The latent-variable probability measure is defined on (R,B(R))
where B(R) is the Borel 𝜎-algebra generated from the real line and
the probability will be assumed absolutely-continuous respect to the
Lebesgue measure, so that the probability density function can be
defined as 𝜌(𝑥) = 𝐹 ′(𝑥).

Let us consider that the latent variables can be viewed as inherent
characteristics of the region encapsulating various factors. Specifically,
each node is defined by its intrinsic attractiveness denoted by 𝑥, reflect-
ing the travel demand for a destination area. This attribute is influenced
by several location-specific properties such as job opportunities, the
presence of retail stores, geographic features, infrastructure, amenities,
and school districts. Similarly, each node is also characterized by
another property, denoted as 𝑦, which represents the location’s role as
an origin of trips. This attribute identifies the potential users who may
depart from the area, thereby indicating the area’s capacity to generate
trips. For a more detailed discussion, please refer to the Supplementary
Materials. In this context, these latent variables, namely attractiveness
and productiveness, can be viewed as drivers of travel demand from an
economic standpoint.

From a dynamical perspective, the model is presented as a stochastic
process that describes a random graph evolving in time [43,44]. The
model presented describes the occurrence dynamics of trips that occur
between origins with a given population 𝑦 and destination blocks
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with a given attractiveness label 𝑥. In this paper, I will, primarily,
focus on the case of exchangeable origin–destination blocks, so that
the trip generating process can be represented by two processes: the
trip production and the trip arrival process. The first accounts for the
number of trips (departures) originating from a block and the latter
accounts for the number of trips (visits) ending in each destination
block.

A visit generation process consists on a trip mobility graph evolv-
ing over time G𝑡 which is a temporal inhomogeneous random graph
model under the assumption of an infinitely large graph so that one
can consider a continuous approximation on the variables [10,11,45].
Consequently, the evolution of the mobility graph can be considered as
a process with the following properties:

Definition 2 (Trip Arrival Process). The graph processes for directed
multi-edges can be defined as random graph G𝑡 evolving so that ∀𝑡 a
ew edge is added G𝑡+1 = G𝑡 ∪ 𝓁 where 𝓁 ∈ 2

(𝑇
2

)

⧵ 𝐸(G𝑡) is chosen
randomly with replacement with probability proportional to a kernel
function K(𝑥, 𝑦) defined in the latent-variables space 𝛺𝑥 ×𝛺𝑦 → [0,∞).

◦ Let (𝑥𝑖)𝑖∈[𝑛] be a sequence of attractiveness latent variables such
that their empirical distribution approximates a probability mea-
sure 𝜇𝑥 as 𝑛 → ∞. Similarly, the productiveness variables (𝑦𝑖)𝑖∈[𝑛]
are random variables with an associated probability measure 𝜇𝑦.

◦ The kernel function K(𝑥, 𝑦) rules out the chances that a location
of attractiveness 𝑥 will be a destination of a visit whose trip
originated in a location of feature 𝑦. Consequently, the stochastic
process of trip arrivals is defined through the infinitesimal arrival
intensity 𝑑V𝑥 = K(𝑥, 𝑦)𝜇𝑦(𝑑𝑦) where 𝜇𝑦(𝑑𝑦) represents the mea-
sure assigned to the infinitesimal interval of productiveness for
origin locations.

Essentially, the latent variables 𝑥 and 𝑦 are considered to be inde-
pendently and identically distributed, with their empirical distribution
converging almost surely to the cumulative distribution function 𝐹 (𝑥)
and 𝐹 (𝑦) respectively. The graph evolves when a new visit from an ori-
gin to a destination is completed (a new link in the network) according
to the attraction and the production rates in the degree-space of the
mobility graph. The trip arrival process is driven by the rate 𝑑V𝑥 which
is interpreted as the propensity (or intensity) of new travels landing in
destinations of attractiveness 𝑥 conditional to trips that departed from
locations of infinitesimal productiveness 𝑦. Similarly, as dual problem,
a trip departure process can be defined by the infinitesimal departure
intensity 𝑑V𝑦 = K(𝑥, 𝑦)𝜇𝑦(𝑑𝑦).

From a computational point of view, the processes studied here
will have a fixed vertex set, and they will start without any edges and
grow by adding edges according to linking rule, without deleting any,
since the total number of visits up to a certain time is studied. The
evolving mobility graph {G(𝑡)} is fully described by means of a time-
varying adjacency matrix 𝐴(𝑡) which represents the origin–destination
table of the mobility problem at time 𝑡 and the sum along the columns
represent the in-degree of the nodes or equivalently the number 𝑘 of
visits received up to time 𝑡.

2.2. Visitation model

At this juncture, the visitation model is introduced by embedding
trip weights into the arrival process, following the framework outlined
in Definition 1, in line with the interpretation of the mobility graph out-
lined in Definition 2. Here, each edge of the mobility graph is assigned
weight r representing a trip cost random variable with probability
density function 𝜚𝑥(r).

Those weights have the meaning of trip ‘size’ as for example the
distance traveled from an origin to the selected destination, or the
emission impact of each trip, or any type of travel cost or visit benefit.
Consequently, the mobility graph process G̃ can be studied in terms
4

𝑡

of a weighted and labeled directed multigraph adjacency matrix �̃�(𝑡) =
𝐶 (𝑡)◦𝐴(𝑡), where ◦ denotes element-wise matrix multiplication, and 𝐶
is regarded as either a coefficient matrix or a random one, depending
on the real-world phenomena under study and the available data. Let
us notice that the in-strength (i.e. weighted in-degree) of a destination
node 𝜅 is defined as the sum of weights of all the visits received. In
the case that weights are all equal to 1 the strength 𝜅 is equivalent
to the degree 𝑘. A general framework which describes ensembles of
dynamic networks can be assessed by making a Markov assumption on
the evolution of the network by studying the probability of realization
of a member of configuration ensemble graph over time [46,47]. Specif-
ically, the temporal evolution of finding the trip mobility network in
the configuration A at time 𝑡 after 𝐿 steps (trips) can be written as:

P(A, 𝑡) =
𝐿
∏

𝑙=0
P(�̃�(𝑡𝑙 )

|�̃�(𝑡𝑙−1),𝜦)

where 𝜦 is any transition rule built on latent variables, which describes
the creation, at each time 𝑡𝑙, of a new trip from an origin towards a des-
tination. From a modeling perspective, the complexity of knowing the
configurational distribution of the origin–destination mobility network
can be reduced trough the study of the degree (or strength) distribution
and its higher order statistics.

The first statistic is the in-strength distribution, that results to be
the visit distribution defined as:

𝑃 (𝜅, 𝑡) =
∑

{A}

∑

𝑖
𝛿(𝜅 − 𝜅𝑖)P(A, 𝑡)

where 𝛿 is the delta function, and P(A, 𝑡) is the probability to find our
trip mobility network in the configuration A at time 𝑡, where each node
has a strength degree 𝜅𝑖. If the in-degree of a node is simply the number
of arrivals of new travelers, the in-strength of a location node is defined
as the number of arrivals of new travelers who have faced a cost. Such
weighted version of arrivals is named visits where each trip has an
intensity. In the case of this work, the derivation of the visit distribution
is assessed on the basis of the latent variable framework. The model
is developed upon the asymptotic regime assumption of an infinite
network where the number of locations in a tessellation is extremely
large, where each location can generate and attract an unlimited num-
ber of edges (trips). Consequently, the continuous mean-field approach
is used so that single locations can be studied as uncorrelated nodes
in the same class of locations with the same attractiveness [48–50]. So
rather than studying the single location 𝓁𝑖, one analyzes those locations
which belong to the same class of attractiveness level, i.e. 𝓁𝑥 seen as a
absolutely continuous random variable so that it admits a probability
density function 𝜌(𝑥) = 𝐹 ′(𝑥). Let us call conditional visit distribution
𝑝(𝜅, 𝑡|𝑥) the strength distribution conditional to destinations of the
attractiveness type 𝑥, and each class evolves independently one from
any another, so that a superposition of co-evolving conditional degree
distributions is possible. The overall visit distribution can be derived
according to the following proposition:

Proposition 1 (Visit Distribution). The visit distribution of the trip-mobility
network is fully characterized by the attraction rate 𝜈𝑥 that defines the
transition probability, per unit of time, that a destination of attractiveness
𝑥 increases its number of visits by one from any destination. The attraction
rate is defined as the mean intensity of the trip arrival process 𝜈𝑥 = ∫𝛺𝑦

𝑑V𝑥.

• The evolution of the conditional visit distribution can be described by
a master equation for destinations with attractiveness 𝑥 as:

𝜕 𝑝𝑥(𝜅, 𝑡) = ∫

𝜅
𝜈𝑥𝜚𝑥(r) [𝑝𝑥(𝜅 − r, 𝑡) − 𝑝𝑥(𝜅, 𝑡)]𝑑r (1)
𝜕𝑡 0
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with the initial condition 𝑝𝑥(𝜅, 0) = 𝛿(𝜅). In the asymptotic regime, the
conditional probability 𝑝(𝜅, 𝑡|𝑥) can be written as:

𝑝(𝜅, 𝑡|𝑥) ∼ 𝜖𝑡
1

√

2𝜋𝜈𝑥⟨r2⟩𝑥𝑡
𝑒
− (𝜅−𝜈𝑥⟨r⟩𝑥𝑡)2

2𝜈𝑥⟨r2⟩𝑥𝑡 , where 𝜖𝑡 =
2

1+erf
[

𝜈𝑥⟨r⟩𝑥𝑡
√

2𝜈𝑥⟨r2⟩𝑥𝑡

]

(2)

where the correction factor 𝜖𝑥 → 1 in the asymptotic limit 𝑡 → ∞, and
⟨r⟩𝑥 and ⟨r2⟩𝑥 are the first and the second moment of the trip-weight
distribution 𝜚𝑥(r).

• Finally, the temporal asymptotic expression of the visit distribution is
a mixture distribution as:

𝑃 (𝜅, 𝑡) = ∫𝛺𝑥

𝑝(𝜅, 𝑡|𝑥)𝜌(𝑥)𝑑𝑥 ∼
𝑚
∑

𝑖=1

|

|

|

𝜕𝑧(𝑥)
𝜕𝑥

|

|

|

−1

𝑥0,𝑖
𝜌
(

𝑥0,𝑖
)

(3)

where 𝑥0,𝑖 = 𝑥0,𝑖(𝜅, 𝑡) are the zeros of the expression 𝑧(𝑥) = 𝜅 −
𝜈𝑥⟨r⟩𝑥 𝑡, and 𝑃 (𝜅, 𝑡) the in-strength distribution of the overall trip
mobility network.

The functional form of ⟨r⟩𝑥 in Eq. (3) is crucially important to
determine the effect of trip-cost on the topology of visitation network
model and its related visit distribution. Let us observe that if, for
example, the trip weight distribution 𝜚𝑥(r) is a dirac delta, then the
strength distribution is equivalent to the degree distribution, this is a
degenerated case where trip-costs are not considered. Another particular
case is when the trip weight distribution is identical over the attrac-
tiveness variable so that 𝜚𝑥(r) = 𝜚(r) then the strength is proportional
to the degree 𝜅 = ⟨r⟩𝑘, which I call the constant distance condition. A
more general assumption in a macroscopic perspective is to assume an
invariant trip condition, when considering origin–destination locations
aggregated by their latent variables. It means that the center of resident
population of type 𝑦 is the same of any other resident population of
different type.2

In particular, there is a model selection issue, since different choices
of attractiveness features and trip-cost functional shapes can generate
the same effect on the strength-distribution, one could clarify the
ambiguity investigating higher order characterization of the degree
distribution of the mobility network.

Let us observe that the type of processes described in Proposi-
tion 1 can be reinterpreted in terms of a mixture of compound Poisson
processes as described in the Appendix which represents to be very
popular in financial mathematics to model stock prices, insurance
claims, and other financial phenomena [52,53]. The visitation model
of the mobility network can also be interpreted in combinatorial terms
by using urn processes for solving balls in bins problems and finding
the occupancy distributions as sketched in Supplementary Information.
Such approach is used in world trade literature as in [54–56]. Despite
different approaches, the one introduced in the paper has the advantage
to provide direct, though asymptotic, solutions to the scaling relations
in the mobility networks.

A more detailed characterization concerns the exploration of the
connectivity correlations in the origin–destination correspondences of
trip mobility network. Higher order statistics of a network in the
degree space, can be obtained trough by the conditional probability
𝑃 (𝜅(1), 𝜅(2),… , 𝜅(𝑘)|𝜅′, 𝑡) that a node with strength 𝜅′ connects to nodes

2 The center of population is a concept related definition at [51] defined
s the point at which an imaginary surface representation of a region would
alance if weights of identical size were placed on it so that each weight
epresented the location of one person. The assumption of invariant trips
mplies that all origin locations are exchangeable with respect to the node
ype 𝑦, and movements are isotropic, meaning that all directions towards

destination are equal. So under a mean-field perspective, for a given
estination of attractiveness 𝑥, we can consider a representative mean distance
rom all the origins of type 𝑦 condensed into their population center.
5

c

with strength 𝜅(1), 𝜅(2),… , 𝜅(𝑘) at time 𝑡. The simplest of these degree
orrelations is the two-point correlation being described by the condi-
ional probability 𝑃 (𝜅|𝜅′, 𝑡) as the probability that a trip departing from
n origin location of out-strength (departure) 𝜅′ reaches a destination
ode of in-strength (visit) 𝜅. The correlations between degrees of the
earest-neighbor vertices are described by the probability distribution:

(𝜅, 𝜅′, 𝑡) =
∑

{A}

∑

𝑖𝑗
𝛿(𝜅 − 𝜅𝑖)P(A, 𝑡)𝛿(𝜅𝑗 − 𝜅′)

However, the empirical evaluation of such conditional probability
n real networks is cumbersome, so the weighted degree-degree correla-
ions are commonly accounted by average-nearest-neighbor’s strength
unction 𝑘𝑛𝑛(𝜅, 𝑡) which makes use of a smoothed conditional probabil-
ty [57] often used as a measure of degree homophily of the nodes. In
he latent variable framework, as shown in Fig. 2(a), the conditional
ssortativity 𝑘𝑛𝑛(𝑥) measures how much a location with attractiveness
tend to be a destination of an origin location of population 𝑦 as

efined in [48,58,59]. In a similar way, the three-point correlations can
e studied in terms of the clustering coefficient spectrum 𝑐(𝜅, 𝑡) which
ndicates the probability that two neighbors of strength-𝜅 node are
eighbors themselves. In the case of weighted and directed networks
here many different ways to define the cluster coefficient [60,61].

At the latent variable level, the conditional clustering coefficient of
destination with attractiveness 𝑥 can be interpreted as the probability

hat two randomly chosen locations with trips towards a destination
ith attractiveness 𝑥 are neighbors. Consequently, the Markovian prop-

rty at the latent variable level [58,62,63] allows to calculate analytical
xpressions for the assortativity 𝑘𝑛𝑛(𝜅), quantifying two vertices cor-
elations, and clustering coefficient spectrum 𝑐(𝜅), as a measure of
hree vertices correlation. A very important result is that the degree
orrelations of trip-visit distributions are completely determined by
he attraction (and production) rate and by the origin–destination
onditional probability 𝜒(𝑦|𝑥).

roposition 2 (Visit Correlations). In the visiting mobility network under
he latent variable assumption, the origin–destination correlation is defined
s the conditional probability that a visit in the destination of attractiveness
has originated from a location of population 𝑦, and it is written as:

(𝑦|𝑥) = 𝜕
𝜕𝑦

logV𝑥 (4)

As consequence, the following estimates of the two-point and three-point
correlations hold:

• the average out-strength of origin neighbors of destinations with in-
strength 𝜅, can be written as:

𝑘𝑛𝑛(𝜅, 𝑡) ∼
𝑡

𝑃 (𝜅, 𝑡) ∬
𝜈𝑦𝑝(𝜅, 𝑡|𝑥)𝜒(𝑦|𝑥)𝜌(𝑥)𝑑𝑦𝑑𝑥 (5)

If destinations and origins are independent 𝜒(𝑦|𝑥) = 𝜒(𝑦) and
⟨𝑘𝑛𝑛⟩(𝜅, 𝑡) = const.

• the clustering coefficient for destinations of in-strength 𝜅 is:

𝑐(𝜅, 𝑡) ∼ 1
2𝜈0𝑃 (𝜅, 𝑡) ∭

𝑝(𝜅, 𝑡|𝑥)𝜌(𝑥)
(

𝜈𝑦′ + 𝜈𝑦′′
)

𝜒(𝑦′|𝑥)𝜒(𝑦′′|𝑥)𝑑𝑦′𝑑𝑦′′𝑑𝑥

(6)

The Markovian nature of this class of networks implies that all
igher-order correlations can be expressed as a function of the attrac-
ion and production rates 𝜈𝑥, 𝜈𝑦 and the conditional origin–destination
robability 𝜒(𝑦|𝑥), allowing an exact treatment of mobility models at
he mean-field level. Under the hypothesis that origins and destinations
re independent, that is 𝜒(𝑦|𝑥) = 𝜒(𝑦), so that visit production pro-
ess and visit attraction process are independent. As a consequence,
he average-nearest-neighbor’s strength function and the clustering

oefficient are constant along 𝜅 as discussed later in the text.
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Fig. 2. The two point and three point correlations of the trip mobility network can be calculated in terms of the hidden variables 𝑥 and 𝑦. In particular the conditional
average-nearest-neighbor’s strength at the latent variable level (a) is the in-out strength (origin–destination) assortativity coefficient, and the cluster coefficient at the latent variable
level (b) is the ‘‘In’’ clustering (or destination clustering) coefficient for weighted and directed networks as [60,61], i.e. a triangle such that there are two trips coming into of the
destination node (𝑥 ← 𝑦′ , 𝑥 ← 𝑦′′ , 𝑥′ ← 𝑦′′ ∨ 𝑥′′ ← 𝑦′).
2.3. Numerical validation & Monte Carlo simulations

For computational purposes, we now consider only the constant
distance case where the trip-costs have no effect on the visit distribution
since 𝜅 = ⟨r⟩𝑘 so that it is equivalent to study the degree distribu-
tion of the arrival process. As already assessed, for every couple of
origin–destination locations, trips can be realized according to a kernel
function K(𝑥, 𝑦) [16,64–66]. As a crucial case in the context of scale-
free networks, one can consider the attraction rate to be proportional
to some power of the destinations’ attractiveness:

Remark 1. Le us assume that the attraction rate is of the form
𝜈𝑥 = 𝜈0𝑥𝛼0 , with 𝛼0 > 0, and homogeneous trip-weight distribution
𝜚𝑥(⋅) = 𝜚(⋅), the asymptotic trip-visit distribution can be written as:

𝑃 (𝜅, 𝑡) ∼ 𝑡
− 1

𝛼0 𝜅
1
𝛼0

−1
𝜌(𝑥0) (7)

where 𝑥0 = 𝑥0(𝜅, 𝑡) =
(

𝜅
𝜈0𝑡

)
1
𝛼0 , and where 𝜌 is the attractiveness

probability density function. For 𝛼0 = 0 the Erdos–Renyi random graph
is recovered.

In the particular case that the attractiveness distribution is 𝜌(𝑥) ∼
𝜌0𝑥−𝜂 , the visiting in-degree distribution has the following asymptotic
tail distribution

𝑃 (𝜅, 𝑡) ∼ 𝑡
𝜂−1
𝛼0 𝜅

−(1+ 𝜂−1
𝛼0

) (8)

which shows the typical scale-free structure of an inverse power law
distribution for the visiting degree of the mobility network.

The analytical results in the previous remark is confirmed by nu-
merical integration of the compound distribution Eq. (3) by using the
truncated normal conditional probability Eq. (2). Moreover, a graph
process is performed via montecarlo (MC) simulation of the network
where occupation probability is expressed via a separable linking func-
tion K(𝑥, 𝑦) = 𝑔(𝑥)ℎ(𝑦) for the evolution of the adjacency matrix. Such
kernel gives arise to an attraction rate as 𝜈𝑥 = 𝜈0𝑔(𝑥), where 𝜈0 is a nor-
malization constant as shown in details in the supplementary materials.
So by choosing 𝑔(𝑥) = 𝑥𝛼0 we are in the case as specified in Remark 1. At
this point, it is possible to compare the three approaches and confirm
the consistency of results obtained. In Fig. 3 it can be observed how
the three approaches provide the same visit distribution for a particular
choice of the parameters as discussed in the caption. Moreover, in this
circumstances, the mobility graph has neutral correlations in terms
of assortativity and transitivity as confirmed by simulations Figs. 3(c)
3(d).

As expressed in different research works [15,66–69], different com-
binations of the attraction rate and attractiveness distribution can
generate the same trip-visit distribution. For example, a scale-free
visitation distribution can be obtained with the following relations:
6

Remark 2. Le us assume that the attraction rate is of the exponential
form 𝜈𝑥 = 𝜈0𝑒𝛾0𝑥, and homogeneous trip-weight distribution 𝜚𝑥(⋅) = 𝜚(⋅),
the asymptotic trip-visit distribution can be written as:

𝑃 (𝜅, 𝑡) ∼ 𝜅−1

𝛾0𝜈0
𝜌(𝑥0) (9)

where 𝑥0 = 𝑥0(𝜅, 𝑡) = 1
𝛾0

log 𝜅
𝜈0𝑡

, and where 𝜌 is the attractiveness
probability density function.

In the case that the attractiveness distribution is exponential 𝜌(𝑥) ∼
𝜌0𝑒−𝜆𝑥, the visiting in-degree distribution has the following asymptotic
tail distribution

𝑃 (𝜅, 𝑡) ∼ 𝑡
𝜆
𝛾 𝜅

−(1+ 𝜆
𝛾0

) (10)

which shows another way to obtain a scale-free structure with an
inverse power law distribution for the visiting degree of the mobility
network.

It is very common in literature to assume, at a collective level for
wide regions, that the visit production and the visit attraction process
are assumed to be independent. As consequence of Proposition 2, for
neutral networks the estimate of assortativity and clustering coefficient
is:

Remark 3. Under the hypothesis that visit production process and visit
attraction process are independent the average in-strength of nearest
neighbor function is constant, and in the asymptotic limit:

𝑘𝑛𝑛(𝜅, 𝑡) ∼
𝑡E[ℎ2(𝑦)]
𝑁E[ℎ(𝑦)]2

=
⟨𝜅2

𝑜𝑢𝑡⟩

⟨𝜅𝑜𝑢𝑡⟩
(11)

As regard with the clustering coefficient spectrum, under the same
hypothesis:

𝑐(𝜅) ∼
E[𝑔(𝑥)]E[ℎ2(𝑦)]

E[ℎ(𝑦)]
=

⟨𝜅𝑖𝑛⟩
𝑡𝑁

(

⟨𝜅2
𝑜𝑢𝑡⟩ − ⟨𝜅𝑜𝑢𝑡⟩
⟨𝜅𝑜𝑢𝑡⟩2

)2

(12)

Proof. The proof is given in Appendix A.3 □

Let us notice that the clustering coefficient is normalized respect
to time 𝑡 since 𝑐(𝜅) ∈ [0, 1] and so it results to be the generalization
for directed multigraphs without correlations as for simple graphs
in [48,66,70]. As a result, we can notice that in the case of neutral
networks, the two and three point correlations can be obtained by using
three different approaches providing the same estimate: latent variables
(‘latent estimate’), the adjacency matrix (‘expected value’) and, finally,
the algorithm computation of assortativity and clustering coefficients
for directed and weighted networks (‘simulation approach’).

Simulations for such results are shown in Fig. 4 where several
computational simulations of a graph for different time length 𝑡 is



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 185 (2024) 115175F. Vanni
Fig. 3. Visit distribution computed in the case of constant trip weights, and the attractiveness distribution is 𝜌(𝑥) ∼ 𝜌0𝑥−2 and kernel function K(𝑥, 𝑦) ∝ 𝑥1.5ℎ(𝑦) so that 𝜈𝑥 = 𝜈0𝑥1.5.
In (a), the probability density 𝑃 (𝜅) has been estimate with three different approaches: (1) it is evaluated through the numerical integration of the compound probability as in
Eq. (3). (2) It is evaluated through montecarlo (MC) graph simulation of sequential adjacency matrices with 𝑁 = 300 locations and with a simulation time of 𝑡 = 105 time steps. The
three approaches provide the same scale-free behavior of the visit distribution as 𝑃 (𝜅, 𝑡) ∼ 𝑡

2
3 𝜅− 5

3 as expected by the analytical asymptotic estimate Eq. (8). In (b) the compound
distribution approach is calculated at three different time snapshots. With the additional specification of 𝜙(𝑦) ∼ 𝜙0𝑦−2 in (c) the average-nearest-neighbor’s strength function shows
a neutral assortativity in the network, meanwhile the dashed line represents the assortativity mean value. In (d) the local clustering coefficient for different values of 𝜅 shows a
constant transitivity, and the dashed line represent the average global cluster coefficient.
presented alongside the prediction results for uncorrelated networks
for assortativity and clustering coefficient. It is worth noticing that
the analytical prediction are asymptotically valid so that no isolated
nodes or leafs exists since local neighborhood clustering is typically not
defined if a node has one or no neighbor and such situation influences
the estimation of the global clustering in sparse networks [71]. In the
present work, the clustering coefficient algorithm removes all the local
clustering of all the nodes with less than 2 neighbors, so the global
clustering coefficient is over-estimated.3 Many other examples of visit
distributions and degree correlations are presented in Appendix C and
more deeply discussed in the Supplementary Material. The emergence
of power laws in our analysis is driven by the statistical properties
of the latent variable and its influence on the kernel probability and
attraction rate. When land-use distribution follows a power-law pat-
tern and destination selection correlates with a power of land use,
the mobility graph exhibits neutrality, resulting in a scale-free distri-
bution of visits. However, different configurations of latent-variable
structures can also yield similar scale-free distributions. Conversely, if
the kernel probability lacks multiplicative factorization, diverse visit
distributions may arise, including power laws with exponential cut-offs
or non-power-law distributions.

In the recent decades, multiple models have emerged to elucidate
the universal principles of human mobility including the gravity model,

3 Another choice would be to set to zero the local clustering coefficient
for all nodes with less than two neighbors. Is such case the global clustering
coefficient would be under-estimated.
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radiation model, opportunities model, and their related extensions [5,
25–27,72,73]. Let us notice that the visitation network model incor-
porates many of the main popular collective human mobility models
under the lens of a latent variable perspective as shown in Appendix D.
For example, gravity models is equivalent to a neutral mobility network
with a visitation model driven by an attraction rate of the type 𝜈𝑥 ∼
⟨r⟩𝑥𝑥𝑎 with ⟨r⟩𝑥 = 1∕⟨𝑑⟩𝑥 which indicates that the trip weight is
inversely proportional to the travel distance to reach a destination
of attractiveness 𝑥. Alternatively, an intervening opportunity model
is equivalent to a neutral visitation model with an exponential-like
attraction rate. Finally, a radiation model rational can be interpreted
in terms of a network visitation model with neutral correlations and
an attraction rates similar to the gravity model one but with a sort of
cut-off for extremely large values of attractiveness. Consequently, it is
evident the importance of knowing the relation between attractiveness
and trip weights. We will assess such issue in the next sections where
empirical evidences will drive the research on the estimate of scaling
relations.

3. Data description

In the present section a network analysis of the main graph mea-
sures and topology will be conveyed in the particular case study of
New York metropolitan area by using Safegraph Mobility Dataset [19]
for the year 2019. Origin–destination (OD) data represent movement
flows through geographic space, from an origin (O) to a destination
(D). OD datasets represent information on trips between two geo-
graphic areas often represented by the geographical centroids of the
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Fig. 4. Two points and three point network correlations using three different approaches, in the case of uncorrelated graph as reported in Remark 3. The overall average strength
of nearest neighbors ⟨𝑘𝑛𝑛(𝜅)⟩𝜅 is replicated for each 𝑡 so to obtain a mean global value ⟨𝑘𝑛𝑛⟩ over a ensemble of 𝑆 = 50 replications as in (a). Similarly one can obtain the global
mean in-clustering coefficient ⟨𝑐⟩ in (b).
areas. Typically encoded with a square symmetric matrix, OD flow
data contain numerical data on the aggregate quantity of individuals
traveling from one geographic area to another over a specific time
period. Mostly used in transportation planning, OD flows are an in-
valuable source of data for understanding spatial and temporal patterns
of urban mobility and dynamics [2,9,74,75]. Visit flows can be in
practice estimated in various ways in real world data. In particular,
mobile phone location data are provided by SafeGraph trough dynamic
population Origin–Destination flow matrices with hourly temporal res-
olution and aggregated by census block groups (CBG) in the USA as
discussed in [76]. In the daily CBG to CBG visitor flows metric, each
row contains an origin CBG and a destination CBG, as well as the
number of mobile phone-based visitor flows from the origin CBG to
the destination CBG. Every day, the number of unique mobile phone
users who live in the origin CBG and visits to the destination CBG
are recorded. As regarding with visit production model, the population
in each block is the key information to obtain from data in order
to define the variable 𝑦 and its respective distribution. However the
population data is susceptible to the way data are collected and sam-
pled by the provider. In fact the demographic sampling depends on
many factors as the geographical boundaries which define a block,
a tract, or any administrative tessellation. Moreover in the statistical
sampling methodology the individual measurements in each block go
through a few transformations and aggregations which impacts the
final measurement [77]. Safegraph Mobility Data is one of the data
sources that allows users to track and analyze visits places and points
of interest. This data is collected by smartphone devices, and then
anonymized and aggregated by Safegraph [19]. In the present work
I have made use of SafeGraph’s Neighborhood Patterns dataset that
contains footfall data aggregated by census block group (CBG) in the
United States of America. This data includes the number of visitors
8

to a given Census Block Group parsed by the timing of their visit
(hour of the day) and the visitors’ primary daytime/nighttime Census
Block Group. Each row of the database represents a single area (a
census block group ID) as destination location and the columns add
context to the specified area. By analyzing millions of anonymous
mobile phone users’ visit trajectories to various places provided by
SafeGraph, the daily dynamic origin-to-destination (O-D) population
flows are computed, aggregated, and inferred at the census block group
geographic scales. In order to build the O-D table, the column used in
the work is given by the number of devices that stopped in this area
by home origin area. I will associate to each row of the O-D matrix all
the visits received in one month by a destination that originated from
devices located in origin areas specified in the SafeGraph as shown in
Table 1. The destination CBG is described in the first column through a
geographic identifier FIPS code of 12 digits which concatenates County
FIPS + Tract Code + Block Group, see [78]. The second column of
the table is a string reporting a list of origin home area IDs and the
correspondent numbers of visits received from devices from those home
locations. The second group of data in Table 1 used in the research are
the number of stops in destination CBG area each day (local time) over
the covered time period (month).4 As fully described in [76,79], a home
place of a user refers to his/her most common nighttime location during

4 In SafeGRaph data there is a difference between number of devices in a
location and number of stops in a location. The first represents the number of
stops by devices in our panel to this area during the date range. The count
includes stops by devices whose home area is the same as this area. The second
represents the number of unique devices in our panel that stopped in this area
during the date range. This includes devices whose home area is the same as
this area.
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Table 1
Example of the SafeGraph Neighbor Patterns data with columns used to build an O-D adjacency matrix and the number of
hourly visits. Data for a selected month.

CBG (destination) Device home areas in a month (origins)

‘‘360610144023’’ {‘‘360610144023’’:32 ; ‘‘360610144024’’:27 ; ‘‘360610152006’’:13 ; ...}
‘‘360610041001’’ {‘‘360610041001’’:30; ‘‘360610041006’’:16; ... }
⋮ {. . . }

CBG Stops by each hour in a month

‘‘360610144023’’ [5;3;1;1;0;1;1;3;2;0;2;1;1;1;3;6;4;3;1;2;12;6;9;...]
‘‘360610041001’’ [18;4;2;2;1;1;0;3;8;10;13;7;17;8;1;7;17;15;11;5;...]
⋮ [. . . ]
i
o

the last six weeks. For each day, GPS pings of each device are clustered
and only those clusters during nighttime hours (6 pm–7 am local time)
are kept. The CBG with the most clusters in that day is recorded. Based
on this, the most frequent CBG over the last six weeks that reflects the
primary night-time location is used as the ‘‘home location’’ for each
user. The daily CBG to CBG visitor flows metric, every day, the number
of unique mobile phone users who live in the origin CBG and visits to
the destination CBG are recorded. More specifically, GPS pings of each
user are clustered first. Only those clusters (and not single trajectory
points) with a duration of at least one minute are counted as a ‘‘visit’’.
By doing so, the daily mobile phone-based visitor flows between CBG
and CBG are grouped and summed up. A comprehensive analysis of
biases in mobile location SafeGraph data across spatial scales and over
time is deeply discussed in [80].5 The data utilized was obtained as a
free sample for academic institutions, acquired as a single file directly
downloaded from the SafeGraph website. This dataset encompasses
information for the year 2019 in the month of November and for the
year 2020 in the month of June.

From SafeGraph data it is possible to build a matrix of trip flows
between locations in a day for arbitrary large region 𝑅 of the US. In
articular, a county is considered with a tessellation at the resolution of
ensus block group level, then it is possible to reconstruct the adjacency
atrix of directed trips from an origin location towards a destination

s stops of devices as described in [19]. Fig. 5 plots a sequence of
isitation counts in different census block group areas during different
ime windows of a day for New York city.

The data has been re-organized as shown in Table 2 where the
𝑁 + 1) × (𝑁 + 1) matrix 𝑨 indicates the global origin–destination
able visiting flow between the 𝑁 blocks of the region 𝑅 plus one

external node which represents the resto of the world available in the
data outseide the region of interes 𝑅. In particular, 𝑎𝑖𝑗 is the number

5 The SafeGraph Patterns dataset demonstrated an average sampling rate
f approximately 7.5%, a considerable figure considering the US population’s
ize. Additionally, this sampling rate remained relatively consistent across
ounties, with the number of sampled devices strongly correlating with census
opulation figures. Consequently, the sampling bias correction can be per-
ormed by utilizing the official ACS population data [81], from Census Bureau
n the same year, with mobile phone visitor patterns, so the population flows
re inferred using the following equation:

𝑜𝑝𝑓𝑙𝑜𝑤𝑠(𝑜, 𝑑) = 𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑓𝑙𝑜𝑤𝑠(𝑜, 𝑑) ⋅
𝑝𝑜𝑝(𝑜)
𝑝𝑜𝑝𝑡𝑜𝑡

⋅
𝑑𝑒𝑣𝑖𝑐𝑒𝑠(𝑜)
𝑑𝑒𝑣𝑖𝑐𝑒𝑠𝑡𝑜𝑡

where 𝑝𝑜𝑝𝑓𝑙𝑜𝑤𝑠(𝑜, 𝑑) is the estimated population flows from geographic origin
area 𝑜 to geographic destination 𝑑, 𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑓𝑙𝑜𝑤𝑠(𝑜, 𝑑) is the computed mobile
phone-based visitor flow from 𝑜 to 𝑑, 𝑝𝑜𝑝(𝑜) indicates the population at the
geographic origin area 𝑜 extracted from the ACS, 𝑑𝑒𝑣𝑖𝑐𝑒𝑠(𝑜) refers to the
number of unique mobile devices residing in 𝑜, 𝑝𝑜𝑝𝑡𝑜𝑡 is the total population
in the considered region and 𝑑𝑒𝑣𝑖𝑐𝑒𝑠𝑡𝑜𝑡 is the total number of unique devices
egistered in the same total region. While sampling bias was generally minimal
cross demographics like gender, age, and moderate income, minority groups
uch as Hispanic populations, low-income households, and individuals with
ower education levels tended to experience higher levels of underrepresenta-
ion bias. This bias varied across space, time, urbanization levels, and spatial
cales.
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Table 2
Data matrix format. The vector 𝑫 represents the array of locations as destination units
n the tessellation region. Similarly 𝑶 represents the same array locations but as origins
f trips inside the tessellation region. The array 𝑊𝐷 is the set of destinations located

outside the region and 𝑊𝑂 is the set of all the origin locations outside the region. So
𝑨0 is the open O-D table, and 𝑨 is the close O-D table.

𝑨 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑶 𝑊𝑂
𝑎11 𝑎12 … 𝑎1𝑁 𝑤1

𝑫 ⋮ ⋮ ⋱ ⋮ ⋮
𝑎𝑁1 𝑎𝑁2 … 𝑎𝑁𝑁 𝑤𝑁

𝑊
𝐷

𝑤1 𝑤2 … 𝑤𝑁 𝑣𝑊

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑨0
𝑤1

⋮
𝑤𝑁

𝑤1 ⋯𝑤𝑁 𝑣𝑤

⎞

⎟

⎟

⎟

⎟

⎟

⎠

of visits registered as stop in the destination 𝑗 in 𝑅 that originated
in the location 𝑖 in 𝑅. For locations outside the selected region, the
entry 𝑤𝑖 counts the visits in the destination 𝑖 of the region 𝑅 that
originated from a location outside the region 𝑅. The in-degree for the
destination location 𝑖 is the sum along the columns of the row 𝑖 from
the matrix 𝑨 from which the empirical visit distribution is evaluated.
In addition, the trip-visit distribution, aka the in-strength distribution,
is evaluated by associating a weight to each visit. As a typical choice,
the weight is taken to be the distance between the origin block and the
destination one in kilometers as estimate of the distance from home
traveled by devices. Such information is recovered by the census bureau
geographical data using Census Block Group geometries with longitude
and latitude coordinates of the block centroid [19,83], calculated as
the haversine distance between the visitor’s home geohash-7 and the
destination location geohash-7 for each visit. The median distance
of all the travelers who visit a given destination, is also reported in
SafeGraph column. A more detailed estimate would be the effective
distance traveled by each visitor in the trip between its main location to
the selected destination. Such information is not reported in SafeGraph
at the moment neither in other data sources consistent with the data
structure in the study. However, the radial movement approximation is
motivated by the fact that travelers typically seek the shortest route [2,
22].

Additionally, the SafeGraph dataset provides the count of visits
received by each CBG at every hour of the day throughout an entire
month, albeit lacking information regarding the origin. Understanding
how the distribution of visits and mobility flow evolves throughout
each hour of the day can be valuable.

4. Mobility network analysis

The analysis of the Origin–Destination (O-D) network focuses on a
spatial scale corresponding to the metropolitan area of New York City,
comprising 1076 Census Block Groups (CBGs). However, in tallying
arrivals to destinations, all other CBGs outside the considered region
are also included, allowing for a comprehensive view of the visitation
process and accurate estimation of the in-degree and in-strength distri-
bution of the mobility network. Unfortunately, equivalent information
for outgoing distributions is unavailable, as it would necessitate access
to all other locations in the US, which is currently unavailable at this
stage of the research.
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Fig. 5. Number of cumulative visits in New York city [82] for different time windows.
Let us start with the estimate of the distribution of visits among
different destinations, which namely represent the in-strength distribu-
tion so that the in-strength of destinations is 𝜅𝑖 =

∑

𝑗 𝐶𝑖𝑗𝐴𝑖𝑗 where 𝐴𝑖𝑗
is the entry of the adjacency matrix indicating the number of arrivals
in destination 𝑖 of a trip originated in the location 𝑗. Whereas 𝐶𝑖𝑗 is the
visit ‘‘size’’ of the traveler who departed from origin 𝑗 and has arrived to
destination 𝑖. Such value is taken from weight matrix 𝐶 that represents,
in this particular case, the distances between origin–destination pairs.
In the following sections the analysis is referred to monthly data in
November 2019.

4.1. Visitation distribution and graph correlations

In this section I show that the O-D SafeGraph mobility network is
consistent with the hypothesis of uncorrelated graph with scale-free
visit distribution at a macroscopic scale as also discussed in [9]. In
Fig. 6(a) the empirical complementary cumulative distribution function
is plotted for the case of New York metropolitan area in November
2019. The inspection of in-strength distribution shows that the visit
distribution has a scale-free asymptotic behavior as 𝑃 (𝜅) ∼ 𝜅−𝜇 with
power law coefficient of 𝜇 ≈ 1.8. Let us now discuss the degree
correlations such as assortativity and clustering just in the case of
the origin–destination matrix. As already discussed, the average out-
strength of neighbors of destinations of in-strength 𝜅 measures the
tendency of having a directed trips from an origin location to a desti-
nation, defined as in [84,85], and from here the assortativity spectrum
can be built. As plotted in Fig. 6(b), the average nearest neighbor
in-strength function is flat, and this shows a neural assortativity be-
havior with a mean value of ⟨𝑘𝑛𝑛(𝜅)⟩𝜅 ≈ 15.4. Such estimate is in
agreement with the analytical prediction of the expected average in-
strength of the nearest neighbor for uncorrelated networks E[𝑘(𝑢)𝑛𝑛 ] =
⟨𝜅2

𝑜𝑢𝑡⟩∕⟨𝜅⟩ = 15.7 as proposed in Remark 3 . Under the same conditions,
the average in-clustering coefficient can be computed accordingly to
the definition [86,87] adapted to the in-clustering coefficient defined
in the present work. The clustering spectrum for the data is shown
in Fig. 6(c) where the clustering spectrum is flat as for uncorrelated-
graphs, and the global clustering coefficient is given by ⟨𝑐𝑖𝑛(𝜅)⟩ ≈ 0.02
consistently with the analytical prediction of E[𝑐(𝑢)] for uncorrelated
networks as reported in Remark 3. The absence of degree-correlations
allows to consider the origin–destination conditional probability to be
𝜒(𝑦|𝑥) = 𝜒(𝑦). This means that a destination receives a visit from a
randomly chosen origin location, without any particular choice of the
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origin but the number of resident populations in it. Consequently, the
correlations between origins and destinations are entirely due to trip
costs represented in the weight matrix is a well-mixed locations at level
of attractiveness property as specified in the model assumptions.

The scale free behavior of the visit distribution together with the
neutral tendency of degree correlations, allows us to narrow the type
of kernel function to be considered in the model. Despite that, we
do not have enough information to uniquely determine the attraction
rate and the latent variable distribution. We will face such issue in
the nex section when we will discuss possible proxies of attractiveness
latent-variable.

4.2. Degree-strength scaling network topology

In this section, I demonstrate that the inclusion of trip weight
information, representing the distance traveled, influences the scaling
relationship between weighted visits and degree (arrivals). This leads to
a notable alteration in the shape of the visit distribution, which remains
scale-free but exhibits a distinct power-law coefficient.

As consequence, a very important analysis of the mobility network,
is to study how the trip costs affect the topology of network. The
number of trip arrivals at the 𝑖th destination can be written as the
in-degree 𝑘𝑖 =

∑

𝑗 𝐴𝑖𝑗 , meanwhile the visit strength of the 𝑖th desti-
nation can be written as 𝜅𝑖 =

∑

𝑗 𝐶𝑖𝑗𝐴𝑖𝑗 where 𝐶𝑖𝑗 is the entry of the
Origin–Destination distance matrix 𝐶. The in-degree and in-strength
distribution have been plotted in Figs. 7(a) and 7(b) respectively, with
a clear scale-free asymptotic behavior but with different power law
coefficients. Such evidence suggests a very interesting aspect of visiting
patterns where trip cost weights have a significant effect of on the
mobility network structure. In particular, the relation between strength
and degree of a location node can be written the average strength of
destinations with degree 𝑘 changes as:

𝜅(𝑘) ∼ 𝑘1+𝛿 (13)

where the exponent 𝛿 represents the rescaling factor and 𝛿 = 0 occurs in
the absence of correlations between the weight of links and the degree
of nodes [85] so that the strength of a node is simply proportional to its
degree and the two quantities provide therefore the same information
on the system. The action of some correlation in the weight can bring
cases where 𝛿 ≠ 0. In such situation such relation induces a change in
the scaling of the degree distribution (i.e. visit distribution) 𝑃 (𝑘) ∼ 𝑘−𝜇0
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Fig. 6. Visit distribution and correlations of the Safegraph Neighbor Patterns mobility network for New York city in the month of November 2019. The complementary cumulative
in-strength distribution function is plotted in (a) of the trip-visit probability density function with a clear scale-free behavior. As for the trip-visit correlations, the network shows
a neutral assortativity (b) and a neutral clustering (c) computed on the normalized version of the OD adjacency matrix.
and the strength distribution (i.e. trip-visit distribution) 𝑃 (𝜅) ∼ 𝜅−𝜇

according to the relation:

𝜇 =
𝜇0 + 𝛿
1 + 𝛿

(14)

so that the visiting distribution can be written as:

𝑃 (𝜅) ∼ 𝜅− 𝜇0+𝛿
1+𝛿 (15)

Let us notice that in the case of 𝛿 = −1, 𝑃 (𝜅) is a Delta distribution
of constant strength. In the case of the data under study, there is
a clear linear relation between strength and degree as in Fig. 7(c),
consequently the strength distribution shows a scale free coefficient
𝑃 (𝜅) ∼ 𝜅−𝜇 different from the one in the degree distribution 𝑃 (𝑘) ∼ 𝑘−𝜇0
consistently to the trasformation in Eq. (14).

The value of the rescaling exponent 𝛿 has been estimated through a
regression analysis which also allows to perform the significance level
for a linear relation between degree and distance-strength. As regarding
with the data used in this study, the weight of a links correspond to
the physical distance between the origin and the destination of the
trip which defines the trip-visit distribution as indicated in Fig. 7.
As reported in the caption, there is a neat change of the slope in
the scale-free distribution, the visit-distribution based on the degree
Fig. 7(a) shows a slower power law coefficient respect to trip-visit
distribution based on node strengths Fig. 7(b). This is due to the
linear relation between the degree and its weighted version through
the origin–destination distances. Let us notice that the weights have an
impact on the degree which is significant in determining a change in
the scaling relation of the distribution. Such result of 𝛿 > 0 suggests that
the strength of nodes grows faster than their degree, in other words, the
trip distances associated to highly visited locations have higher values
than those expected if the trip distances were assigned at random. Such
tendency denotes a strong correlation between the trip weight and the
topological properties in the mobility network, where the higher the
number of visits in a location, the more traffic the location can handle.
As a conclusion, a general scheme arises where the number of visitors
to any destinations decreases as the inverse power law of the product
of their visiting frequency and travel distance, as already suggested
by [22]. On the contrary, random weights would have produced a 𝛿
close to zero, which occurs in the case when link weights are inde-
pendent from the network topology, so that the strength distribution
11
Table 3
In-degree vs. in-strength regression analysis for different trip-weights in November
2019. The slope of linear fit reported is the coefficient 1 + 𝛿. Let us notice in the
scaling relation between distance traveled and attractiveness as land use is ⟨r⟩𝑥 ∼ 𝑥𝜃 ,
where the relation 𝜃 = 𝛼 − 𝛼0 holds.

Distance Travel time Income

𝛿
0.531∗ 0.033∗ 0.017∗

[0.467, 0.595] [0.025, 0.042] [0.010, 0.024]

𝛼0
0.842∗ 0.842∗ 0.842∗

[0.790, 0.894] [0.790, 0.894] [0.790, 0.894]

𝛼
1.322∗ 0.874∗ 0.858∗

[1.223, 1.421] [0.822, 0.932] [0.805, 0.912]

Note for the linear fit the 𝑝-value of the linear regression: ∗p < 0.01. Numbers in square
parenthesis indicates the confidence intervals at a significance level of 99%.

would carry no information than the degree distribution. For a more
detailed estimate of the rescaling exponent 𝛿, a regression analysis is
reported in the first row of Table 3, for different types of trip weights:
distance between origin–destination pairs and travel time to reach
a destination, and the income of travelers. As a additional study to
the linear regression statistics, performing a residual analysis makes it
possible to test the assumption of a linear regression model such as
the errors are independent and normally distributed, as shown in the
Supplementary Materials (SM).

4.3. Attractiveness variable from land-use data

In this section, ultimately, I demonstrate how to infer the scaling
properties mentioned earlier, by directly leveraging the data concerning
the land-use of CBGs as a proxy for the attractiveness of destinations.
Consequently, we can express the visit distribution in terms of land-use,
thereby establishing scaling relations between latent variables and trip
weights.

Regional movement patterns, and consequently travelers’ distri-
bution, can be explained from land use, since purposes of people’s
trips are strongly correlated with the land use of the trip’s origin and
destination [35,36,75,88]. In this section, the investigation on possible
properties of latent variables will be useful to select which kernel
function is suitable to meet the trip mobility network characteristics.
For example, the latent-variable framework can provide an interesting
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Fig. 7. Visit patterns for in-strength defined in terms of distance traveled in trips as visits in one month (November 2019). The log–log linear fitting of degree-strength scatter
plot provides a significant scaling coefficient as 𝜅 ∼ 𝑘1+0.53 in (c), so that the visit distribution asymptotic behavior is 𝑃 (𝑘) ∼ 𝑘−2.2, in (a), meanwhile the trip-visit distribution by
distance weights is 𝑃 (𝜅) ∼ 𝜅−1.8, in (b).
interpretation of the effect of trip distances on the visit distribution,
which can be formalized in terms of the attractiveness latent variable
model. It is out of scope of this work to detect the best combination
of factors which define the attractiveness of locations, however, how
supported by some studies [34,89,90], let us take the non-residential
land-use of census blocks to be the primary cause of travel demand
and so it could be consider a proxy of destination attractiveness 𝑥 in a
multi-purpose travel model.

At this point, it is possible to formulate the observed mobility
network in terms of the latent-variable model so that the scale-free
distribution shown in the real-world trip mobility network can be stated
in terms of the latent variable statistical attributes. In such perspective,
the data from the New York Open Data [91] has been used where the
land use zones is reported as the square feet occupied by building,
parks and areas with a given use of destination (except residential),
see the Supplementary Materials for more details on data used and
correspondent interpretations. Administrative regions are classified by
their physical features and land use which refers to the way in which
land is utilized, developed, and transformed for different purposes such
as residential, commercial, industrial, and agricultural purposes.Land-
use can be seen as a ‘‘ceteris paribus’’ candidate for attractiveness
of locations and in Fig. 8(a), the plot shows the probability density
function of square feet of land-use lots and it shows a scale-free be-
havior with a power law exponent of 2 as plotted in Fig. 8(a). The
same analysis is performed after aggregating tax lots into census block
groups, the land-use areas for non-residential purposes keep the same
12
asymptotic fat-tail distribution with an inverse power law probability
density function 𝜌(𝑥) ∼ 𝑥−𝜂 with 𝜂 ≈ 2 as plotted in Fig. 8(b).

At this point it is possible to investigate the relation between
mobility and land-use data (as attractiveness indicator). First, it is
possible to analyze the relation between the number of arrivals 𝑘
in each destination with the non-residential land-use of that area 𝑥.
Similarly the relation of land-use versus the visits 𝜅 as weighted arrivals
is analyzed as well. So, let us investigate a log–log linear regression
analysis of such variables. The linear fit analysis of the relation 𝑘𝑥 ∼
𝑥𝛼0 reveals an estimated value 𝛼0 ≈ 0.842 as shown in Fig. 9(a) and
linear fit analysis of the relation 𝜅𝑥 ∼ 𝑥𝛼 reveals an estimated value
𝛼 ≈ 1.322 as shown in Fig. 9(b). In Table 3 such estimations for 𝛼0
and 𝛼 are reported for different types of trip weights. By knowing that
𝜅𝑥 = E[𝜅|𝑥] ∝ ⟨r⟩𝑥𝑘𝑥 ∼ 𝑥𝜃+𝛼0 , it is possible estimate the scaling of the
trip size goes as ⟨r⟩𝑥 ∼ 𝑥𝜃 , as confirmed by a direct linear fit analysis
where 𝜃 ≈ 0.48.

Finally, by using the latent variable framework one can recover the
visit distribution as

𝑃 (𝜅) ∼ 𝜅
−(1+ 𝜂−1

𝛼0+𝜃
) (16)

which is the same scale-free distribution directly observed during the
analysis of the origin–destination network. It is worth noticing the
relation between the scaling exponents 𝜃 and 𝛿. It can be easily verified
that the visit distribution in Eq. (15), obtained by distance traveled, and
the visit distribution Eq. (16), obtained by land use hidden variable,
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Fig. 8. Log-binning procedure for the probability density function of square feet for land-use zones as hypothetical index for destination attractiveness. It shows an inverse power
law fat-tail distribution so that the asymptotic behavior the probability density function can be written as 𝜌(𝑥) ∼ 𝑥−2. In the inset the whole distribution is plotted where the data
is fully represented even at a low spatial scale. In (b) the complementary cumulative density function of the land-use square feet aggregated for census block from tax lot data.

Fig. 9. Regression fit between the land-use of census block group and (a) arrivals and (b) visits.
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are the same in-strength pdf so the power law coefficient be 𝜇 =
𝜇0+𝛿
1+𝛿 = 1 + 𝜂−1

𝛼 , where 𝜇0 = 1 + 𝜂−1
𝛼0

and 𝛼 = 𝛼0 + 𝜃. Solving, we find
hat, the following crucial relation holds:

= 𝜃
𝛼0

= 𝛼
𝛼0

− 1 (17)

which can be checked by comparing the values reported in the Table 3
under their relative error margins. In conclusion, the attraction rate
of a location is higher than another destination in the sense that
that destination is able to attract more distant travelers respect to
the second. Such effect reveals the action of human travel demand
on mobility, as formulated in the present paper, in terms of latent
variable network model. The scaling relation between land use versus
both travel distances and visits are power laws, so that the attraction
rate must be of a power law type and the distribution of land use
(i.e.the attractiveness latent variable) has a Pareto-type distribution. So
no other attraction rate is compatible with the observation. Moreover,
since degree correlation are absent, it is plausible that 𝜒(𝑦|𝑥) = 𝜒(𝑦) so
that the kernel function K(𝑥, 𝑦) is a multiplicative separable function.

As a result, we can interpret the findings by stating that the trip
weight decreases with increasing attractiveness, indicating that the
perceived cost of traveling towards more attractive regions diminishes
when the destination itself is more attractive.

4.4. Mobility network evolution

In the previous analysis temporal granularity was at a monthly
scale, i.e. the total number of trips traveled in one month. Moreover,
it is possible to investigate a more granular temporal resolution, and
observing how the counting of new visits changes each hour in a day. I
then compare it with the analytical prescription through the visitation
network model. In particular, I show how the average number of total
visits changes over time during a day, highlighting the contribution of
attractiveness in hourly commuting.

At this purpose, the average-degree of mobility network sheds some
light on the change of aggregated attractiveness in 24 h. I show how
the analytical description of the degree evolution can explain the trend
of total number of arrivals in all the destinations.

In the assumption of infinitely large non-sparse networks, we can
approximate the evolution of the average degree as an Ito stochastic
differential equation related to the master equation Eq. (1) in the
limit of 𝜖 → 1. So, given the density probability function 𝑝𝑥, the
strength of stochastic process is 𝑌𝑡 ∶= E𝑡[𝑘|𝑥] with 𝑌𝑡 ∼ 𝑝(𝑌 , 𝑡) [92,93].
Consequently, the visiting process can be described by an Ito process
in terms of the counting of new visits in location of attractiveness 𝑥 as:
𝑑E𝑡[𝑘|𝑥] = 𝜈𝑥𝑑𝑡 + 𝜎𝑥𝑑𝑊𝑡 where 𝑊𝑡 is a Wiener process and a standard
deviation 𝜎𝑥 =

√

𝜈𝑥. Finally, the total amount of new visits in the
etwork is obtained by 𝑘𝑡 = ∫𝛺𝑥

E𝑡[𝑘|𝑥]𝜌(𝑥)𝑑𝑥, so that the Ito daily
process for the network degree is described by the following stochastic
equation:

𝑑𝑘𝑡 =

(

∫𝛺𝑥

𝜈𝑥𝜌(𝑥)𝑑𝑥

)

𝑑𝑡 +

(

∫𝛺𝑥

𝜎𝑥𝜌(𝑥)𝑑𝑥

)

𝑑𝑊𝑡

= �̄�𝑡𝑑𝑡 + �̄�𝑡𝑑𝑊𝑡 (18)

where �̄�𝑡 is the mean attraction rate and �̄�𝑡 is the mean standard
deviation, and the can change over time during a day. The Eq. (18)
describes the continuous sample path of the transport diffusion degree
process in the visiting network model. In Fig. 10, we observe the typical
progression of total arrivals (cumulative new visits) throughout a day.
Subsequently in Fig. 10(b), I employ the stochastic equation Eq. (18) to
generate simulated real-world data, estimating the mean attraction rate
̄𝑡 to match the observed trend precisely. Notably, there is a discernible
shift in trend around 5–6 pm, coinciding with the time when typical
workflow undergoes inversion, thereby redefining the attractiveness of
14

destination points locations. Although attractiveness has been linked to
a latent variable representing land use, it remains accurate on a broad
temporal scale. However, within a single day, the land use must be ad-
justed by a factor corresponding to the actual perception of willingness
to travel towards those destinations. In this specific scenario, the mean
attractiveness of destination locations starts with a value of �̄�𝑡 ≈ 20
(daytime period) and then it decreases by approximately 80% after late
afternoon. Nonetheless, the mean attractiveness averaged over a month
aligns with what has been inferred in the preceding sections. Finally,
in Fig. 10(c) the evolution of the empirical distribution of total arrivals
obtained from mobile phone data is well approximated by a truncated
power-law distribution.6 The power law part replicates the analytical
results in Eq. (8) with a scale free parameter of 𝜇0 ≈ 2.2 as expected.

t this stage of the research, I lack access to information regarding the
istance traveled at an hourly level since the dataset provides data at a
onthly resolution as for origin–destination pairs, meanwhile it offers

he numbers of stops (arrivals) each hour of the month. So it is not
ossible to estimate the strength distribution at a daily scale but only
t monthly scale as explored in the previous sections.

Another crucial observation must be made here. The specific values
f power-law coefficients (𝜇 and 𝜇0) and scaling factors (𝛿, 𝛼0 and 𝜃) are
haracteristic only of the analyzed time period. What remains universal
re the formulas governing the scaling variables in mobility. Indeed,
comparison of the same dataset from June 2020 reveals different

ower-law coefficient values for degree and strength distributions, yet
he scaling relations persist. The same holds true for the relationship
etween land-use variables and strength degrees; despite varying val-
es, the scaling relations remain intact. The Fig. 11 shows those results,
hich can be interpreted under the light of period analyzed, in fact the
q. (14) confirms the scaling between strength and degree and the role
f trip-cost (i.e. distance traveled) in the network topology. However,
he values of power law coefficients of degree and strength distributions
re not the same as for the month November 2019, even the aggregated
ttractiveness is about 50% respect toe the estimated value in Novem-
er 2019. During June 2020 NY metropolitan area was under one of
he more stringent periods of social distancing restrictions, as in [94],
hat was put in action as mitigation policies for the containment of
ovid19 disease spreading. In the periods of the first part of the year
020, containment measures and isolation responses can be seen as a
hock to human mobility [95–97], the results show how the values
f coefficients and variables change, but the scaling relation remains
nvaried.

In the data analysis section of the paper, empirical evidence guides
he selection of 𝜈𝑥 towards a power-law form for attraction rates and
rip weights. This choice holds true within the temporal and spatial
cale of our analysis. However, finer spatial resolutions, more detailed
raveler preferences, and shorter temporal scales may necessitate ad-
ustments to the model, potentially resulting in different shapes of visit
istributions or the presence of assortativity and transitivity, prompting
onsideration of network correlations. Power-law emergence is antici-
ated at larger spatial scales due to the multiscale nature of transport
etworks, meanwhile, other distributions can emerge as for example at
rban scales where a single transportation mode predominates [98,99].

It is noteworthy that the emergence of power laws in our analysis is
ttributed to the statistical properties of the latent variable, particularly
ts influence on the kernel probability and corresponding attraction
ate. When the land-use distribution follows a power-law pattern and
he probability of selecting destinations is proportional to a power

6 The exponential cut-off is typically due to a lack of statistics or small
amples. As an example, in the case of small population size, we can modify
he Remark 1 replacing the attractiveness distribution to be power law with
xponential cutoff like 𝜌(𝑥) ∼ 𝜌0𝑥−𝜂 𝑒−𝜆𝑥, it is possible to prove, see [84], that

the degree distribution is 𝑃 (𝑘) ∼ 𝑘
𝜂−1
𝛼0

−1 𝑒−𝑐𝜆𝑘1∕𝛼0 where 𝑐 is a constant. So the
arrivals distribution is of a Weibull-type, with (stretched) exponential tail. As
similar discussion can be found in the Supplementary Materials.
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Fig. 10. The analysis entails examining the total number of arrivals per hour for each day throughout November 2019. Cumulative counting occurs within each day, beginning
at 4 a.m. and concluding at 3 a.m. the following day, with the counting process resetting thereafter. Figure (a) illustrates this process for the entire month. In Figure (b), the
average cumulative visit count in a typical day is depicted alongside confidence intervals, followed by the presentation of a stochastic trajectory through the fit of Eq. (18), with
a daytime aggregated attractiveness of estimated as �̄�𝑥 ≈ 20, which then drops by 80% after late afternoon. Lastly, Figure (c) displays the arrival (i.e., degree) distribution across
three distinct times of the day.
of the land-use, the mobility graph remains neutral, resulting in a
scale-free visit distribution. However, various combinations of latent-
variable structures can also lead to similar scale-free distributions.
Alternatively as listed in Appendix C, if the kernel probability K(𝑥, 𝑦)
lacks multiplicative factorization, we may observe both graph correla-
tions and diverse forms of visit distribution, ranging from power laws
with exponential cut-offs to distributions that deviate from power laws
entirely.

5. Economic analysis: mobility network and income elasticity

In this section, I demonstrate the significance of the latent variable
as a key factor justifying the income elasticity of multi-purpose travel
demand across various transportation modes. The visitation model ap-
proach can provide economical interpretations of some empirical urban
scaling evidences [9], where scaling laws are also present in economical
values of each location respect to its attractiveness. A crucial attention
will be focused on the income elasticity of travel demand of each
location can be estimated through land use and the number of visit.

In a economic modeling framework, those latent variables allows
the characterization of travel demand for different areas in the re-
gion, and they can be inferred through the analysis of important
demographic, geographic and economic indicators. As discussed in
literature [34,35,100], many different factors are involved for a place
to be considered as attractive, such as trip purposes, job or leisure op-
portunities, infrastructure facilities, geographical characteristics, urban
zoning planing. Generally, all those physical and human factors can
be captured by land use and travel behavior analysis which are at the
basis of two primary approaches in transportation economics, urban
science and engineering literature. In such literature, in fact, travel is
15
considered to be a derived demand, that it is generated in response to
people satisfying personal needs and desires [4,90,101]. Let us, first,
define the ‘‘benefit’’ that travelers received by visiting a location, and
in particular, the variable 𝐼𝑥 indicates the income level associated to the
visitors who have traveled towards a given location with attractiveness
𝑥 for a job purposes. Census data from Census Bureau surveys [81] have
been used; I extracted the median aggregated household income of a
specific Census Block Group (CBG), assuming that a traveler originating
from that location shares the reported income level. In this way the
benefit can be determined through the strength-by-income variable
𝜅𝑖 which converts a visit into potential economic output through a
conversion factor 𝑖0 that is the traveler’s income per unit of visit time.7
On the other side, let us define the ‘‘cost’’ 𝑄𝑥 faced by travelers to
reach a location as the strength-by-distance variable 𝜅𝑞 taking into
consideration that commuting costs are proportional to distance or
time traveled, and the proportionality conversion factor 𝑐0 is the cost
of transportation per unit of quantity traveled.8 Finally, the relation
between the two variables can be written in terms of the attractiveness

7 The factor 𝑖0 is an average conversion which attributes a benefit-value to
each trip, but this value depends on the distribution among possible trip pur-
poses (as business, consumption, leisure, . . . ) for each traveler by their origin
locations. If origins and destinations are, again, randomly independent 𝑖0 can
be considered a mean-field constant correction factor. Further it can change
over the observation time during which data have been collected. Considering
𝑖0 to be location independent it can be considered a proportionality constant.

8 Quantity can be measures in distance or travel time. A lower 𝑐0 correspond
to a better transportation system. Let us observed that in the case of cities the
transportation costs and distance are well approximated by a linear relation.
However for larger areas, empirical studies [102,103] show that transport cost
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Fig. 11. The scaling analysis entails examining the principal estimates in June 2020. In (a), the empirical survival distribution of arrivals in June 2020 shows a probability
function compatible with 𝑃 (𝑘) ∼ 𝑘𝜇0 with 𝜇0 ≈ 2.50. In (b) the empirical survival distribution of visits (arrivals weighted by distance traveled) in June 2020 shows a probability
function compatible with 𝑃 (𝜅) ∼ 𝜅𝜇 with 𝜇 ≈ 2.25. In (c), the average cumulative visit hourly count in a typical day is depicted alongside confidence intervals, followed by the
presentation of a stochastic trajectory resenting the average degree evolution. The daytime aggregated attractiveness has been estimated as �̄�𝑡 ≈ 10, which then drops by 80% after
late afternoon. Finally, in (c), the log–log linear fitting of degree-strength scatter plot provides a significant scaling coefficient as 𝜅 ∼ 𝑘1+𝛿 with 𝛿 ≈ 0.22. Those estimations confirm
the scaling relation Eq. (14).
variable as:
travelers’ income (𝐼𝑥)
travel quantity (𝑄𝑥)

=
𝑖0E[𝜅𝑖|𝑥]
𝑐0E[𝜅𝑞|𝑥]

∝
𝑖0 𝑥𝛼0+𝜃𝐼

𝑐0 𝑥𝛼0+𝜃𝑄
(19)

where 𝜃𝑄 is the scaling exponent derived from regression slope by
income in Table 3 and the exponent 𝜃 from regression slope by amount
of travel given by distance traveled in the same analysis. The relation
between three variables is represented graphically in Fig. 12(a). At this
point it is possible to write the income elasticity of travel demand which
has the meaning of how sensitive the demand for traveling a certain
distance is to changes in income levels, the direct relation between
the income reward and the quantity of travel demanded for visiting
locations can be derived from Eq. (19) as:

𝑄𝑥 ∼ 𝐼𝜀𝑥 , with 𝜀 =
𝜕𝑄𝑥
𝑄𝑥

𝐼𝑥
𝜕𝐼𝑥

=
𝛼𝑄
𝛼𝐼

=
1 + 𝛿𝑄
1 + 𝛿𝐼

,∀𝑥 ∈ 𝛺𝑥 (20)

where the exponent 𝜀 is the income elasticity as estimated in Fig. 12,
and in the case under study 𝜀 < 1, indicating that distance traveled is
a necessity good, i.e., as income increases, people spend proportionally
less on traveling when the income levels of travelers increase for any

is an increasing and concave function of distance so that 𝑐(r) = 𝑐0r𝑣 with
0 < 𝑣 < 1, since travelers switch to faster transport modes for longer trips.
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transportation mode.9 Such prediction of an income elasticity of about
𝜀 ≈ 0.65 can be compared to results presented in literature reviews of
empirical evidences and meta-analysis studies [39,104–106] and also
discussed with a theoretical interpretations [40,103], where average
income elasticity for aggregated travel demand is estimated to be in
a range values compatible with the elasticity 𝜀 estimated here.10 It is
important to notice that the income elasticity of travel demand can be
influenced by many factors, such as the availability of transportation
options, the price of transportation, and individual preferences. From
a network analysis perspective, it would be convenient to compare the
number of trip arrivals at destinations against the travelers’ income.

9 For any mode and any purpose condition, undistinguished transportation
mode is considered here, so all the possible modes are combined and only the
distance necessary to reach the destination is taken into account.

10 Let us notice that income elasticity shows a large variability in the em-
pirical evidences since distance traveled is not homogeneous across different
sources of income, type of jobs and age [38]. Moreover, travel demand is re-
ported in different units (individual or aggregate distance km/day, travel time,
fuel consumption) and in different behaviors (commuting vs non-commuting,
essential vs non-essential) or travel purposes (business, job, shopping, leisure).
Travel can also vary in terms of different traveling modes according to
transportation infrastructure. Moreover the estimations reported can even
change over the years.
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Fig. 12. Using the dataset, for New York in 2019, in (a) a 3D scatter plot shows the relation among attractiveness 𝑥 as land-use, the income level of visitors and travel demand
as distance traveled for each visit. The projection planes show three 2D scatter plots for pairs of the previous variables. In particular, the Q-I plane shows the projected regression
analysis an elasticity of 𝜀 ≃ 0.76 consistently with the theoretical prediction from Eq. (20) and from Eq. (20) where the income 𝐼𝑥 ∼ 𝑘1+𝛿𝐼 ∕𝛼0𝑥 . This indicates that a 10 per cent
increase in income leads to about 6.5 percent increase in distance traveled or, conversely, a 10 percent increase in the demand of travel distance requires an increase of the
income by about 15.4 percent.
Using Eqs. (19) and (20), and visit elasticity of travel demand 𝜀′ can
be defined through:

𝑄𝑥 ∼ 𝑘𝜀
′
𝑥 where 𝜀′ =

(

1 +
𝜃𝐼
𝛼0

)

𝜀 = (1 + 𝛿𝐼 )𝜀 (21)

where the income scales as 𝐼𝑥 ∼ 𝑘1+𝜃𝐼 ∕𝛼0𝑥 respect to the number of
trip arrivals. The visit elasticity of travel demand is a measure of how
sensitive the number of trips to a certain destination is to changes in key
travel attributes, such as fare level, service quality, journey time com-
ponents, income and car ownership, and price of competing modes. The
previous scaling relations of income elasticity, it is possible to range
from the microeconomics perspective of transport economics to the
macroeconomic outputs such as employment and the economic growth.
For example, during a period of an economic growth (recession) where
incomes are rising (falling) the distribution and the magnitudes of
attractiveness can change and then modify the mobility pattern which,
in its turn, has an impact on the global economic performance as well.

6. Conclusions and perspectives

In conclusion, the study presents a data-driven model for human
mobility network based on an origin–destination structure, which
17
serves as the foundation for understanding mobility visitation flows.
The model utilizes latent variables associated with each location,
representing attractiveness and productiveness, to capture the intrin-
sic characteristics of destinations and origins. The contributions of
this research are twofold. Firstly, it provides a theoretical framework
that describes and reproduces a visit generation stochastic process
through the use of integral–differential equation for the evolution of
the visit probability density and degree correlations in a trip mobil-
ity network. Consequently, analytical, numerical, and computational
solutions are provided for important network characteristics, such as
the strength distribution, assortativity, and clustering coefficient. A
collateral impact of the visit generation model in travel dynamics is
the introduction of a mathematical formalism of compound renewal
processes commonly used in financial and actuarial science literature.
Such stochastic models in a network perspective are useful for cap-
turing the randomness and dependence between the arrival times and
event sizes, providing a flexible framework for modeling and analyzing
various mobility dynamics and financial and actuarial risks as well.
The second contribution of this research has to do with the empirical
analysis of real world phenomena. By analyzing origin–destination
data, the study reveals the presence of scale-free behaviors in visit
frequencies and identifies correlations between visits and trip costs.
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The research also explores the statistical characteristics that latent
variables should have to reproduce the observed patterns in the trip
mobility network. Essentially, given the model’s assumptions validated
by empirical analysis, I anticipate observing inverse power law shapes
in both the degree arrival distribution, characterized by coefficient
𝜇0, and the strength visit distribution, characterized by coefficient 𝜇.
Specifically, the degree distribution follows 𝑃 (𝑘) ∼ 𝑘−𝜇0 , while the
strength distribution follows 𝑃 (𝜅) ∼ 𝜅−𝜇0 . Furthermore, the topological
relationship between node degree and strength conforms to the scaling
relation 𝜅 = 𝑘1+𝛿 . An important topological scaling relation emerges,
expressed as 𝜇 = 𝜇0+𝛿

1+𝛿 . Leveraging our latent variable framework, we
an link the topological factor 𝛿 with the visitation process mechanism,

given by 𝛿 = 𝜃
𝛼0

, where 𝛼0 represents the coefficient of attraction rate
and 𝜃 represents the coefficient of trip cost dependence on attractive-
ness. The network visitation model presented in the article generalizes
some aspects of traditional mobility models, particularly their ability to
maintain accuracy and relevance across different spatial and temporal
scales. However, the principal advantage of the mobility network model
lies in its parameter selection through temporal network analysis,
utilizing measures such as centrality, correlations, and clustering. In
some cases, the mobility network model may align more closely with
popular mobility models, but in other cases, none of these models may
be suitable for describing mobility flows, such as when dealing with
degree correlations in the graph. In this situation, the mobility network
model can still provide a description of commuting flows.

Moreover, the model permits to disentangle the effect of attrac-
tiveness (as land-use), population, trip costs and economic features of
travelers on the visit dynamics in a mobility network. Clear scaling
laws emerges between latent variables and travel demand. So, the
model points out the effect of income on travel behavior depends
strictly from the latent-variables that, therefore, can be considered as
decision variable from a economic policy viewpoint. The possibility
that human mobility belongs to the class of scale-free networks has
impacted on the economic, engineering and mathematical communities
in the multidisciplinary field of sustainable urban transportation, smart
cities and world trade webs. As future outlooks, from a modeling
side, the mathematical formalism discussed in the paper could also be
extended to more general mobility graphs by considering more granular
interactions on a time interval much shorter than the one used in
the data explored here. For example, one can investigate more on the
distribution of inter-arrival times of new trips to be non-Poissonian,
and the trip size are events with intensity that does not have finite
moments (Levy-jumps). Additionally, I have depicted the visitation
process as cumulative counting of new visits, without accounting for
link destruction in network dynamics due to the need for understanding
visit duration mechanisms. A potential model extension will involve
analyzing dwell times spent at each location during a visit.

Another upcoming study will focus on assessing emission mobility
reductions for sustainable city planning. This approach aims to inform
decisions regarding the optimal allocation of economically attractive
urban areas based on transportation mode and land-use policies, while
simultaneously minimizing pollutant emissions and the impact of mo-
bility trips between origins and destinations. Furthermore, a broader
panel analysis across other regions is necessary to enhance the ro-
bustness and validity of the model. Ultimately, this study illuminates
potential applications in urban, transportation, and environmental eco-
nomics. The focus of the research outlined in the paper can be seen as
an activity-based modeling approach, which can more closely replicate
actual traveler decisions and thus may provide better forecasts of future
travel patterns. The research outcome of such an approach can have
important implications for real-world issues. For example, the attrac-
tiveness of urban areas, such as land use, is shaped by factors like urban
planning, policy regulations, and the economic dynamics of firm allo-
cations and aggregations, see [9,75]. In particular, the findings in the
present paper can help enhance the use of land-use zoning as a policy
method to classify land and restrict its development. Future research in
18
urban planning policies could focus on mixed-use development, blend-
ing residential, commercial, cultural, institutional, or entertainment
uses into one space, in line with the scaling relations outlined in the
present article. Spatial planning and territorial governance are crucial
for sustainable land use by assessing the quality and characteristics
of different locations relative to competing objectives and interests.
As discussed in [107–109], for example, urban form can result from
historical evolution or policy outcomes: compact urbanization often
stems from containment policies directing development inward through
regeneration, infill, or redevelopment. Polycentric urbanization is pur-
sued by spatial planning policies like transit-oriented development,
while diffuse urban form often results from policies encouraging private
car use and homeownership. These insights provide valuable guidance
to policymakers and urban planners, facilitating the understanding
and prediction of mobility patterns for informed decision-making and
sustainable development.
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ppendix A

.1. Proof of Proposition 1

roof. Let us notice that the attraction rate 𝜈𝑥 is transition rate of new
isits per unit of time interval, as the chance of having a new arrival in a
estination of type 𝑥 originated from any location, so that the attraction

rate is the mean intensity as in [10,11,49,84]:

𝜈𝑥 = ∫𝛺𝑦

𝑑V𝑥 = ∫𝛺𝑦

K(𝑥, 𝑦)𝑑𝜇𝑦(𝑦) = ∫𝛺𝑦

K(𝑥, 𝑦)𝜙(𝑦)𝑑𝑦 (A.1)

he master equation for the evolution of the conditional probabilities
𝑥(𝜅, 𝑛) for locations with attractiveness 𝑥, where the step size is the
orrespondent 𝛥𝜅 = r which represents the weight of each link i.e. the
ecision heuristic variable to move in the selected destination. It can
e written as an integro-differential Kolmogorov–Feller equation:

(𝜅, 𝑡 + 𝜏|𝑥) = (1 − 𝜈𝑥)𝑝(𝜅, 𝑡|𝑥) +
𝜅
𝜈𝑥𝑝(𝜅 − r, 𝑡|𝑥)𝜚𝑥(r)𝑑r
∫0
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If we also assume that 𝑝𝑥 is slow, so that it changes only slightly during
his time step 𝜏 = 𝛥𝑡 and redefine 𝜈𝑥 ∶= 𝜈𝑥∕𝜏, then we can write the

continuum master equation like:

𝜕
𝜕𝑡
𝑝𝑥(𝜅, 𝑡) = �̇�𝑥(𝜅, 𝑡) = ∫

𝜅

0
𝜈𝑥𝜚𝑥(r) [𝑝𝑥(𝜅 − r, 𝑡) − 𝑝𝑥(𝜅, 𝑡)]𝑑r (A.2)

and 𝜚𝑥(r) is the distribution of the trip distances covered to reach
destination blocks of attractiveness 𝑥. At this point let us apply the
Laplace transformation in the variable 𝜅 so L{𝑝(𝑘, 𝑡)} ≡ �̂�(𝑠, 𝑡) and the
master equation transforms as:
̇̂𝑝(𝑠, 𝑡) = 𝜈𝑥�̂�𝑥(𝑠)�̂�𝑥(𝑠, 𝑡) − 𝜈𝑥�̂�𝑥(𝑠, 𝑡) = 𝜈𝑥

(

1 − �̂�𝑥(𝑠)
)

�̂�𝑥(𝑠, 𝑡)

where the convolution product has been used. The solution can be
written as:

̂(𝑠, 𝑡) = 𝑐𝑒−𝜈𝑥(1−�̂�𝑥(𝑠))𝑡 (A.3)

with the initial condition �̂�(𝑠, 0) = L{𝛿(𝑘)} = 𝑒0 = 1 so that 𝑐 = 1.
One can notice that the characteristic function is equivalent to the
Laplace transform as expressed before. It is possible to write the Laplace
transform of the jump distribution 𝜚𝑥(r) in terms of its moments as:

̂𝑥(𝑠) =
∞
∑

𝑛=0
(−1)𝑛 𝑠

𝑛

𝑛!
E(𝜅𝑛) (A.4)

If one assumes that 𝜚(r) is a peaked distribution, following the central
imit theorem rationale, one can assume it is described by the first two
finite) moments so that the solution in Eq. (A.3) can be approximately:

̂(𝑠, 𝑡) ≈ 𝑒−𝜈𝑥𝑡⟨r⟩𝑥𝑠+
1
2 𝜈𝑥𝑡⟨r

2
⟩𝑥𝑠2 (A.5)

its inverse Laplace transform can be considered [112] the case asymp-
totic case of 𝑠 ≪ ⟨r⟩𝑥

⟨r2⟩𝑥
of the truncated normal distribution as stated in

he Eq. (2)
For the second point, the visit (in-strength) distribution of the

obility network is expressed as a compound probability distribution
hat results from assuming that a random variable 𝜅 is distributed

according to some parametrized distribution with the latent parameter
𝑥 distributed according to some attractiveness distribution [113,114].
So, the (unconditional) visiting in-strength distribution results from
marginalizing the conditional distribution 𝑝(𝑘, 𝑡|𝑥) of the non-negative
eal-valued random variable 𝑥. So, the probability density function of
he visiting distribution is given by the following the mixture density:

(𝜅, 𝑡) = E [𝑝(𝜅, 𝑡|𝑥)] = ∫𝛺𝑥

𝑝(𝜅, 𝑡|𝑥)𝑑𝜇𝑥(𝑥) = ∫𝛺𝑥

𝑝(𝜅, 𝑡|𝑥)𝜌(𝑥)𝑑𝑥 (A.6)

Here, 𝑝(𝜅|𝑥, 𝑡) is the distribution of 𝜅 when we know 𝑥 at time 𝑡,
in which the relation between 𝜅 and 𝑥 can be seen as deterministic,
i.e. 𝜅 = 𝐹 (𝑥, 𝑡) = E𝑡[𝜅|𝑥] = 𝜈𝑥⟨r⟩𝑥𝑡, defining the distribution by its ex-
pected degree value through the moment-generating function from the
Laplace transform above. So, 𝜅 can only be single value, whose distribu-
tion is represented by dirac-delta functions 𝛿(𝜅−𝐹 (𝑥, 𝑡)). Consequently,
the empirical visiting density probability function can be written as:

𝑃 (𝜅, 𝑡) ∼ ∫𝛺𝑥

𝛿(𝜅 − 𝐹 (𝑥, 𝑡))𝜌(𝑥)𝑑𝑥 = ∫𝛺𝑥

𝛿(𝜅 − 𝜈𝑥⟨r⟩𝑥𝑡)𝜌(𝑥)𝑑𝑥 (A.7)

which consists in approximating the visiting probability density by
means of a Dirac mixture [115,116], where 𝜌(𝑥) is the attractiveness
probability density. Such procedure is equivalent to a change of vari-
able respect to the deterministic one-to-one function in the static model
as in [16]. At this point we use the property: 𝛿(𝑧(𝑥)) =

∑𝑚
𝑖=1

𝛿(𝑥−𝑥(𝑖)0 )
|𝜕𝑧(𝑥)∕𝜕𝑥|

here 𝑥(𝑖)0 are the m-roots of 𝑧(𝑥) = 0 where in the transport model
𝑧(𝑥) = 𝜅−𝜈𝑥⟨r⟩𝑥𝑡 where 𝑧 is a continuously differentiable function with
𝑧′ nowhere zero. So:

𝑃 (𝜅, 𝑡) ∼
𝑚
∑

𝑖=1

|

|

|

𝜕𝑧(𝑥)
𝜕𝑥

|

|

|

−1

𝑥(𝑖)0 (𝜅) ∫ 𝛿
(

𝑥 − 𝑥(𝑖)0 (𝜅)
)

𝜌(𝑥)𝑑𝑥 ∼
𝑚
∑

𝑖=1

|

|

|

𝜕𝑧(𝑥)
𝜕𝑥

|

|

|

−1

𝑥(𝑖)0 (𝜅)
𝜌
(

𝑥(𝑖)0 (𝜅)
)

which represent a general formula for the tail behavior of the degree
distribution for a mobility network with a generic attraction rate
𝜈 . □
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𝑥

A.2. Proof of Proposition 2

Proof. The conditional origin–destination probability is the conditional
probability that a destination block of attractiveness 𝑥 is connected to
an origin block of population 𝑦 is:

𝜒(𝑦|𝑥) =
𝜙(𝑦)K(𝑥, 𝑦)

∫ 𝜙(𝑦)K(𝑥, 𝑦)𝑑𝑦
=

𝜕V𝑥(𝑥, 𝑦)
𝜕𝑦

1
𝜈𝑥(𝑥, 𝑦)

= 𝜕
𝜕𝑦

logV𝑥(𝑥, 𝑦) (A.8)

where V𝑥 is the primitive function of the attraction rate 𝜈𝑥. Io order
to write the explicit expression of the origin–destination correlation it
is necessary to know the pairing rule, for example through the con-
nection kernel K(𝑥, 𝑦) so that 𝜈𝑥 = 𝜈0 ∫𝛺𝑦

K(𝑥, 𝑦)𝜙(𝑦)𝑑𝑦, or imagining a
eneric primitive function for the attraction rate. So the conditional
rigin–destination probability is an important indicator for correla-
ions between origins and destinations in the degree-distribution of the
isiting mobility network. The conditional average-nearest-neighbor’s
n-degree for destinations of attractiveness 𝑥 can be written for directed
ultigraph in a continuous limit as in [16,84]:

𝑛𝑛(𝑥) = ∫ E[𝜅|𝑦]𝜒(𝑦|𝑥)𝑑𝑦 (A.9)

here in the mobility model the conditional expected strength is
[𝜅|𝑦] ∝ 𝜈𝑦𝑡. Since, for the markovian degree property, the degree two
oint correlation can be fully determined by the conditional probability
(𝜅′

|𝜅), the average degree of neighbors of an in-degree 𝜅 destination
s known to be calculated as [48,59]:

𝑛𝑛(𝜅, 𝑡) = 1 + 1
𝑃 (𝜅, 𝑡) ∫

𝑝(𝜅, 𝑡|𝑥)𝜌(𝑥)𝑘𝑛𝑛(𝑥)𝑑𝑥

= 1 + 𝑡
𝑃 (𝜅, 𝑡) ∬

𝜈𝑦𝜒(𝑦|𝑥)𝑝(𝜅, 𝑡|𝑥)𝜌(𝑥)𝑑𝑦𝑑𝑥

hich is an in-out (origin–destination) assortativity measure, which is
ndependent of 𝜅 for 𝜒(𝑦|𝑥) = 𝜒(𝑦) as in the case of multiplicative
eparable linking function K(𝑥, 𝑦). Let us notice that since the network
s directed, other than weighted, one could define, similarly, other
hree average nearest neighbor’s degree functions: destination–origin,
rigin–origin and destination–destination.

The clustering coefficient of a destination with attractiveness 𝑥 can
e interpreted as the probability that two randomly chosen edges from
are origin-neighbors. The clustering of a destination of degree one or

ero is defined as zero. In the space of latent variables, consider a desti-
ation 𝑖 of attractiveness 𝑥𝑖 and population 𝑦𝑖, which is connected with
robability 𝑝(𝑦𝑗 , 𝑦𝑘|𝑥𝑖) through trips originated from two other locations
and 𝑘 which have attractiveness 𝑥𝑗 and 𝑥𝑘 and population 𝑦𝑗 and 𝑦𝑘

espectively. Since the network is markovian at the latent variable level,
(𝑦𝑗 , 𝑦𝑘|𝑥𝑖) = 𝑝(𝑦𝑗 |𝑥𝑖)𝑝(𝑦𝑘|𝑥𝑖). Thus, similarly to the definition in [48,70]
ogether with modifications [60,86] for the directed and weighted case,
he local origins-destination clustering for locations of attractiveness 𝑥𝑖
an be written as:

(𝑥𝑖) =
∑

𝑗,𝑘
𝑝
(

(𝑥𝑗 , 𝑦𝑗 ), (𝑥𝑘, 𝑦𝑘)
)

𝑝(𝑦𝑗 , 𝑦𝑘|𝑥𝑖)

=

∑

𝑗,𝑘
1
2

(

K(𝑥𝑗 , 𝑦𝑘) +K(𝑥𝑘, 𝑦𝑗 )
)

K(𝑥𝑖, 𝑦𝑗 )K(𝑥𝑖, 𝑦𝑘)
∑

𝑗,𝑘 K(𝑥𝑖, 𝑦𝑗 )K(𝑥𝑖, 𝑦𝑘)

where 𝑝
(

(𝑥𝑗 , 𝑦𝑗 ), (𝑥𝑘, 𝑦𝑘)
)

is the probability that the two origin nodes are
connected one to the other in both directions. Now, in the asymptotic
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continuous regime the clustering coefficient can be rewritten:

𝑐(𝑥) = 𝑀 ⨌
1
2 (K(𝑥′, 𝑦′′) +K(𝑥′′, 𝑦′))K(𝑥, 𝑦′)K(𝑥, 𝑦′′) 𝜌(𝑥′)𝜌(𝑥′′)𝜙(𝑦′)

𝜙(𝑦′′)𝑑𝑥′𝑑𝑥′′𝑑𝑦′𝑑𝑦′′

where 𝑀 = (∫ K(𝑥, 𝑦′)𝜙(𝑦′)𝑑𝑦′ ∫ K(𝑥, 𝑦′′)𝜙(𝑦′′)𝑑𝑦′′)−1, so it is possible
to write:

𝑐(𝑥) = ∭ 𝜒(𝑦′|𝑥)K(𝑥′, 𝑦′′)𝜒(𝑦′′|𝑥)𝜌(𝑥′)𝑑𝑥′𝑑𝑦′𝑑𝑦′′

= 1
2𝜈0 ∬

(

𝜈𝑦′ + 𝜈𝑦′′
)

𝜒(𝑦′|𝑥)𝜒(𝑦′′|𝑥)𝑑𝑦′𝑑𝑦′′

knowing that 𝜈𝑦 = 𝜈0 ∫𝛺𝑥
K(𝑥, 𝑦)𝜌(𝑥)𝑑𝑥 and the definition of 𝜒(𝑦|𝑥). Let

us notice that for independent origins and destinations then 𝑐(𝑥) = 𝑐0 =
𝑐𝑜𝑛𝑠𝑡. Moreover in the case of clustering coefficient in a multigraph
one can calculate the number of triangles repeated 𝜅 times, which in a
markovian graph can be approximated on average as 𝑐𝑡(𝑥) = 𝑡𝑐(𝑥), since
t each time step a possible link is considered as a bernoullian trail, so
hat the observed number of links in 𝑡 trials follows a binomial distri-
ution and so the expected value is 𝑡K(𝑥, 𝑦). Consequently, since the
lustering coefficient has values in [0, 1], we normalize the adjacency
atrix respect to 𝑡, so that the average local clustering coefficient of a
ode with strength 𝜅, denoted by 𝑐(𝜅), [48,58,59,117] is given by:

𝑐(𝜅, 𝑡) = 1
𝑡𝑃 (𝜅, 𝑡) ∫

𝑝(𝜅, 𝑡|𝑥)𝑐𝑡(𝑥)𝜌(𝑥)𝑑𝑥 = 1
𝑃 (𝜅, 𝑡) ∫

𝑝(𝜅, 𝑡|𝑥)𝑐(𝑥)𝜌(𝑥)𝑑𝑥

hich represents the local in-clustering spectrum for destination lo-
ations and it is independent of 𝜅 for 𝜒(𝑦|𝑥) = 𝜒(𝑥) as in the case
f multiplicative separable linking function K(𝑥, 𝑦), where 𝑃 (𝜅, 𝑡) rep-

resents the in-strength distribution. Let us notice that in the case of
the clustering coefficient the adjacency matrix and the latent variables
are needed to be normalized in order to transform a multigraph in a
weighted graph and from there a clustering coefficient no larger than
1 is guaranteed. □

A.3. Proof of Remark 3

Proof. The equations for the average in-strength of nearest neighbors
and the in-clustering coefficient can be derived directly from Proposi-
tion 2 after some algebraic manipulations considering the production
rate 𝜈𝑦 and the conditional probability 𝜒(𝑦|𝑥) are independent from 𝑥
s, in the case when the attraction and production rates are recovered
rom a linking function that is multiplicative separable, i.e. K(𝑥, 𝑦) =
(𝑥)ℎ(𝑦). In fact, when origins and destinations are independent, that
s 𝜒(𝑦|𝑥) = 𝜒(𝑦), then the average-nearest-neighbor’s strength function
𝑛𝑛(𝜅, 𝑡) = 1 + 𝑡 ∫ 𝜈𝑦𝜒(𝑦)𝑑𝑦 which is a constant over the strength
egrees 𝜅 and where 𝐸[𝑔(𝑥)] and 𝐸[ℎ(𝑦)] are the expectation values
f the function 𝑔(𝑥) and ℎ(𝑦) under the circumstances they have finite

values, which occurs even for fat-tail distributions in a finite set for
the latent variables [84]. In the case of infinite moments then the
equation above represents a unreliable estimation but still shows the
neutral assortativity of the graph. As regard with the clustering coeffi-
cient, the result in (12) is straightforward by using the multiplicative
separable linking function as above, with the only difference that it
has been normalized in order to provide a weighted matrix with link
weights not larger that one. Another approaches for the estimates of the
assortativity and clustering coefficient can be derived in terms of the
strength degrees of the nodes as provided in [48,57,58] with proper
modifications for directed weighted graph, see [84,118,119]. Their
expected values for 𝑘𝑛𝑛(𝜅) and 𝑐(𝜅) are analytically known in literature
for neutral networks, i.e. no degree correlations, as derived in terms of
degrees the expected average in-strength of nearest neighbors can be
written:

𝑘𝑛𝑛(𝜅𝑖𝑛) =
∑

𝜅𝑜𝑢𝑡

𝜅𝑜𝑢𝑡𝑃 (𝜅𝑜𝑢𝑡|𝜅𝑖𝑛) =
∑

𝜅𝑜𝑢𝑡

𝜅𝑜𝑢𝑡
𝜅𝑜𝑢𝑡𝑃 (𝜅𝑜𝑢𝑡)

⟨𝜅𝑜𝑢𝑡⟩
= ⟨𝜅𝑜𝑢𝑡⟩2

⟨𝜅𝑜𝑢𝑡⟩
= ⟨𝑘𝑛𝑛⟩

= E[𝑘(𝑢)𝑛𝑛 ]
20
where in the absence of correlations 𝑃 (𝜅𝑜𝑢𝑡|𝜅𝑖𝑛) = 𝑘𝑜𝑢𝑡𝑃 (𝜅𝑜𝑢𝑡)∕⟨𝜅𝑖𝑛⟩ has
been used. In the case of clustering coefficient, after normalization of
the multigraph, the in-clustering coefficient can be written as in [58,
120]:

𝑐(𝜅) =
∑

𝜅′𝑜𝑢𝑡 ,𝜅
′′
𝑜𝑢𝑡

(𝜅′
𝑜𝑢𝑡 − 1)(𝜅′′

𝑜𝑢𝑡 − 1)
𝑡𝑁𝜅′′

𝑜𝑢𝑡𝑃 (𝜅
′′
𝑜𝑢𝑡)

𝑃 (𝜅′′
𝑜𝑢𝑡|𝜅

′
𝑜𝑢𝑡)𝑃 (𝜅

′′
𝑜𝑢𝑡|𝜅𝑖𝑛)𝑃 (𝜅

′
𝑜𝑢𝑡|𝜅𝑖𝑛)

=
⟨𝜅𝑖𝑛⟩3

𝑡𝑁𝜅2
𝑖𝑛𝑃 2(𝜅𝑖𝑛)

∑

𝜅′𝑜𝑢𝑡 ,𝜅
′′
𝑜𝑢𝑡

(𝜅′
𝑜𝑢𝑡 − 1)(𝜅′′

𝑜𝑢𝑡 − 1)𝑃 (𝜅′′
𝑜𝑢𝑡, 𝜅

′
𝑜𝑢𝑡)𝑃 (𝜅

′′
𝑜𝑢𝑡, 𝜅𝑖𝑛)𝑃 (𝜅

′
𝑜𝑢𝑡, 𝜅𝑖𝑛)

𝜅′
𝑜𝑢𝑡𝜅

′′
𝑜𝑢𝑡𝑃 (𝜅

′
𝑜𝑢𝑡)𝑃 (𝜅

′′
𝑜𝑢𝑡)

That in the case of uncorrelated networks:

𝑐(𝜅) =
⟨𝜅𝑖𝑛⟩3

𝑡𝑁𝜅2
𝑖𝑛𝑃 2(𝜅𝑖𝑛)

∑

𝜅′
𝑜𝑢𝑡 ,𝜅

′′
𝑜𝑢𝑡

(𝜅′
𝑜𝑢𝑡 − 1)(𝜅′′

𝑜𝑢𝑡 − 1)
𝜅′
𝑜𝑢𝑡𝜅

′′
𝑜𝑢𝑡𝑃 (𝜅

′
𝑜𝑢𝑡)𝑃 (𝜅

′′
𝑜𝑢𝑡)

⋅

⋅
𝑘′′𝑜𝑢𝑡𝑃 (𝑘

′′
𝑜𝑢𝑡)

⟨𝑘′′𝑜𝑢𝑡⟩
𝑘′𝑜𝑢𝑡𝑃 (𝑘

′
𝑜𝑢𝑡)

⟨𝑘′𝑜𝑢𝑡⟩

⋅
𝑘′′𝑜𝑢𝑡𝑃 (𝑘

′′
𝑜𝑢𝑡)

⟨𝑘′′𝑜𝑢𝑡⟩
𝑘𝑖𝑛𝑃 (𝑘𝑖𝑛)
⟨𝑘𝑖𝑛⟩

⋅
𝑘′𝑜𝑢𝑡𝑃 (𝑘

′
𝑜𝑢𝑡)

⟨𝑘′𝑜𝑢𝑡⟩
𝑘𝑖𝑛𝑃 (𝑘𝑖𝑛)
⟨𝑘𝑖𝑛⟩

=
⟨𝜅𝑖𝑛⟩

𝑡𝑁⟨𝜅𝑜𝑢𝑡⟩4
∑

𝜅′′
𝑜𝑢𝑡

(𝜅′′
𝑜𝑢𝑡 − 1)𝜅′′

𝑜𝑢𝑡𝑃 (𝜅
′′
𝑜𝑢𝑡)

∑

𝜅′
𝑜𝑢𝑡

(𝜅′
𝑜𝑢𝑡 − 1)𝜅′

𝑜𝑢𝑡𝑃 (𝜅
′
𝑜𝑢𝑡) = ⟨𝑐⟩ = E[𝑐(𝑢)] □

Appendix B. Inhomogeneous graph compound processes

The visit generation process of the temporal random graph is
demonstrated to be equivalently formalized in terms of a mixture of
compound Poisson counting processes, commonly used in financial and
actuarial science literature [121,122]. In the following appendix, the
visit generation process of the trip mobility network will be re-framed
in terms of a mixture of many compound Poisson counting processes,
as follows:

Proposition 3. The probability distribution of the visit generation process
can be restate as a mixture of compound counting Poisson processes.

◦ Let us define the evolution of the trip arrival process looking at the
generation of new visits as a counting stochastic process {C𝑥(𝑡), 𝑡 ≥ 0},
defined on the probability space (R,B(R), 𝜇𝑥), for all the locations of
attractiveness 𝑥 where C𝑥(𝑡) represents the number of visits which have
arrived between time 0 and 𝑡 at the destination nodes of attractiveness
𝑥, and let the attraction rate 𝜈𝑥 = Prob{C𝑥(𝑡 + 𝜏) = 𝑘|C𝑥(𝑡) =
𝑘 − 1} be the probability (per unit of infinitesimal time 𝜏) that a
destination of attractiveness 𝑥 increase its visits from 𝑘−1 to 𝑘. Then,
let Z𝑘 be a sequence of independent, identically distributed square-
integrable random variables, which represent jumps as trip-costs of the
trip arrivals and they are distributed as a common random variable
r𝑥 with cumulative distribution function 𝐹Z (r𝑥).

Then, the conditional visit probability density function 𝑝𝑥(𝑘, 𝑡) can be derived
by a continuous-time stochastic process with jumps. In particular:

1 The compound Poisson process {𝑌𝑥(𝑡) ∶ 𝑡 > 0} is continuous-time
stochastic process, adapted to a filtration F𝑡, with random jumps of
intensity 𝜈𝑥, defined by:

𝑌𝑥(𝑡) =
C𝑥(𝑡)
∑

𝑘=1
Z𝑘 (B.1)

Consequently, it turns out that the probability density function can
be explicitly written for a compound Poisson process as 𝑝(𝜅, 𝑡|𝑥) =
𝑓𝑌𝑥(𝑡)(𝜅, 𝑡|𝑥) and the cumulative distribution function is given by:

𝐹𝑌𝑥(𝑡)(𝜅, 𝑡|𝑥) = 𝑒−𝜈𝑥𝑡
∞
∑

𝑛=0

(𝜈𝑥𝑡)𝑛

𝑛!
𝐹 ∗𝑛
𝑌𝑛,𝑥

(𝜅|𝑥) (B.2)

where 𝐹 ∗𝑛
𝑌𝑛,𝑥

is the n-fold convolution of 𝐹Z (r). Moreover, the charac-
teristic function and the first two central moments of 𝑌𝑥(𝑡) are:

E[𝑒𝑖𝑠𝑌𝑥(𝑡)] = exp{𝜈𝑥𝑡(E[𝑒𝑖𝑠Z − 1])}

E[𝑌𝑥(𝑡)] = E[C𝑥(𝑡)]E[Z] = E𝑡[𝜅|𝑥] = 𝜈𝑥⟨r⟩𝑥𝑡

V𝑎𝑟[𝑌 (𝑡)] = V𝑎𝑟[C (𝑡)]E[Z2] = 𝜈 ⟨r2⟩ 𝑡
𝑥 𝑥 𝑥 𝑥
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2 The visit distribution is the mixture of stochastic Poisson distributions
𝑝𝑥(𝜅, 𝑡) [123] i.e. the conditional visit probability density function
where the intensity of the (simple) counting process, 𝜈𝑥, is a random
variable with a probability density function 𝜌(𝑥). The number of
locations with visit strength 𝜅, which we denote by 𝑁𝜅 satisfies,
see [11,124]

𝑁𝜅∕𝑛
P
←←←←←←←→ 𝑓𝜅 ≡ E𝑥

[

𝐹 ′
𝑌𝑥(𝑡)

(𝜅, 𝑡|𝑥)
]

(B.3)

where
P
←←←←←←←→ denotes convergence in probability. We recognize the limiting

distribution {𝑓𝑘} as a so-called mixed Poisson distribution with mixing
distribution 𝜇𝑥(𝑥).

Proof. The proof is recovered from [52,53,125]. In particular, a
compound Poisson counting process is equivalent to a Levy process
and its realizations are piecewise constant cadlag functions. As a con-
sequence of the above results, the compound Poisson process enjoys
all the properties of Levy processes, including the Markov property.
Compound Poisson processes are commonly used in insurance to model
the number of claims and the size of each claim. Insurance companies
can use this model to estimate their expected losses and set their
premiums accordingly. □

Moreover, in finance, Compound Poisson processes can be used to
model stock prices, where the arrival times of price changes follow
a Poisson process and the size of each change is a random variable.
Finally, in risk management, Compound Poisson processes can be used
to model risk in various industries, such as energy trading, where the
arrival times of price changes and the size of each change are both
uncertain.

Appendix C. From kernel functions to visit distributions and cor-
relations

For a given connection kernel K(𝑥, 𝑦) it is possible to associate the
attraction rate 𝜈𝑥 that can be normalized in order to define a transition
probability as 𝜈𝑥 = ∫ K(𝑥,𝑦)𝜙(𝑦)𝑑𝑦

𝑁 ∬ K(𝑥,𝑦)𝜌(𝑥)𝜙(𝑦)𝑑𝑥𝑑𝑦 where the denominator is the

total degree of the network of size 𝑁 . as shown in Table C.4, by using
the asymptotic approach for the visiting distribution. First, it is clear
how for a completely multiplicatively separable kernel K(𝑥, 𝑦) (⋅M ⋅)
the rate only depend on the attractiveness and the origin–destination
correlation is independent from the attractiveness variable 𝑥. Secondly,
for a completely additively separable kernel K(𝑥, 𝑦) ( ⋅A⋅) the attraction
rate does depend also on generation function for the population vari-
able 𝑦. Consequently te origin–destination correlation does depend on
both 𝑥 and 𝑦. Furthermore, four particular cases of additively and multi-
plicatively separable kernels are presented with correspondent visiting
distribution and origin–destination correlations. Ultimately, three cases
are presented where the connection kernel is neither additively nor
multiplicatively separable. In particular the last examples are different
threshold-logistic kernels that can be approximated by simple attraction
rates and so obtaining a straightforward expression for the visiting
distribution and origin–destination correlation. Some derivations are
presented in the Supplementary Material.

Appendix D. Interpretation of collective human mobility models

Gravity model. The gravity model [25,72] assumes that the interac-
tion between two locations is directly proportional to their masses
(e.g., population size) and inversely proportional to the distance be-
tween them. The gravity model can be interpreted in terms of the
visitation model through the following a mean field approximation:

K(𝑥𝑖, 𝑦𝑗 ) =
𝑥𝑎𝑖 𝑦

𝑏
𝑗
⟶ K(𝑥, 𝑦) =

𝑥𝑎𝑦𝑏
21

𝑑𝑥𝑖𝑦𝑗 𝑑(𝑥, 𝑦)
so that gravity model estimates the travel probability from origins of
type 𝑦 to destinations of attractiveness 𝑥. Consequently, the attraction
rate in the visitation model can be written:

𝜈𝑥 = 𝜈0 ∫ K(𝑥, 𝑦)𝜙(𝑦)𝑑𝑦 = 𝜈0 ∫
𝑥𝑎𝑦𝑏

𝑑(𝑥, 𝑦)
𝜙(𝑦)𝑑𝑦

We assume an homogeneous resident population over the region and
isotropic direction of origin–destination flows.11 The distance can be
pproximately written as 𝑑(𝑥, 𝑦) ≃ ⟨𝑑⟩𝑥 + 𝑑𝑜(𝑦), where ⟨𝑑⟩𝑥 is the
ean distance respect to center of population of origins of type 𝑦 and
𝑜(𝑦) is the distance of such center of mass from the center of the
verall residential populations. If the center of residential population
s independent from 𝑦, one can reasonably say 𝑑𝑜(𝑦) ≈ 0. At this point,
he attraction rate can be written as:

𝑥 = 𝜈0 ∫
𝑥𝑎𝑦𝑏

⟨𝑑⟩𝑥 + 𝑑𝑜(𝑦)
𝜙(𝑦)𝑑𝑦 = 𝜈0 ∫ 𝑥𝑎𝑦𝑏

(

1
⟨𝑑⟩𝑥

−
𝑑𝑜(𝑦)
⟨𝑑⟩2𝑥

)

𝜙(𝑦)𝑑𝑦

∼ 𝜈0E[𝑦𝑏]
𝑥𝑎

⟨𝑑⟩𝑥
(D.1)

Let us notice that the rate for gravity model in Eq. (D.1) is inter-
preted in terms of visitation model where the trip-cost is ⟨r⟩𝑥 = 1∕⟨𝑑⟩𝑥
which explains as the distance traveled is related to attractiveness of the
destination location. In this circumstances, the gravity model produce
neutral correlation networks. Let us notice that, however, the functional
form of the distance 𝑑(𝑥, 𝑦) in general depends on the spatial geometry
of the region. In fact, if asymmetry (inhomogeneous resident population
and anisotropic movements) is present, the rate 𝜈𝑥 could generally
depend on both latent variables, consequently the mobility networks
can show degree correlations since it is straightforward to see that
𝜒(𝑦|𝑥) = 𝜒(𝑦).

Intervening opportunity model. Intervening opportunities models posit
that mobility flow depends on the number of potential destinations
between locations. In the intervening opportunities approach the prob-
ability of commuting between an origin with feature 𝑦 and a destination
of attractiveness 𝑥 in the Schneider’s version [24] is:

K(𝑥, 𝑦) = 𝑒−𝛾⟨𝑠𝑥𝑦⟩ − 𝑒−𝛾(⟨𝑠𝑥𝑦⟩−𝑥) = 1 − 𝑒−𝛾𝑥

𝑒𝛾⟨𝑠𝑥𝑦⟩

given that there are 𝑠𝑥𝑦 is the number of opportunities (approximated
y the population in this case) in a circle of radius 𝑑𝑥𝑦 centered in the
rigin location (excluding the source and destination). The parameter
can be seen as a constant probability of accepting an opportunity

estination. In the case that the number of opportunities depend on
ow far the origins are from destinations ⟨𝑠𝑥𝑦⟩ ∼ 𝑑(𝑥, 𝑦), [30,72], the
ttraction rate becomes:

𝑥 = 𝜈0 ∫ K(𝑥, 𝑦)𝜙(𝑦)𝑑𝑦 ≈ 𝜈0 ∫
1 − 𝑒−𝛾𝑥

𝑒𝛾𝑑(𝑥,𝑦)
𝜙(𝑦)𝑑𝑦

oreover, in the case of homogeneous opportunities and isotropic
ovements 𝑑(𝑥, 𝑦) ≈ ⟨𝑑⟩𝑥, and the attraction rate simplifies as:

𝑥 ∼ 𝜈0(1 − 𝑒−𝛾𝑥)𝑒−𝛾⟨𝑑⟩𝑥

hich, in an homogeneous case, the attraction rate is of the exponential
orm, with neutral graph correlations.

11 Defining 𝑑(𝑥, 𝑦) the distance between origins of feature 𝑦 and destinations
of feature 𝑥, isotropy guarantees that 𝑑(𝑥, 𝑦) ≃ ⟨𝑑⟩𝑥 + 𝑑𝑜(𝑦), i.e. where ⟨𝑑⟩𝑥
s the mean distance between the destination of attractiveness 𝑥 and the
enter of mass of all the origins with 𝑦, and 𝑑𝑜(𝑦) is the distance between

the center of mass of population-type 𝑦 and the region centroid. Homogeneity
of locations of different origin-types 𝑦, guarantees that 𝑑𝑜(𝑦) is independent

from the destination’s attractiveness 𝑥.
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Table C.4
The relation between different connection kernels and attraction rates gives different visiting distributions in the asymptotic regime (𝑛 → +∞).
The expressions are given as asymptotic approximations of tail distributions where 𝜈0 is a proper normalization factor. The attractiveness
distribution is 𝜌(𝑥) and the population distribution 𝜙(𝑦) where �̄�(𝑦) is its inverse cumulative distribution function.

𝐾(𝑥, 𝑦) 𝜈𝑥 𝑥0 𝑃 (𝑘, 𝑛) 𝜒(𝑦|𝑥)

⋅M ⋅ 𝑔(𝑥) ⋅ ℎ(𝑦) 1
𝑁E[𝑔(𝑥)] 𝑔(𝑥) 𝑔−1

(

𝑘
𝜈0𝑛

) 𝑛−1

𝛼𝜈0𝑥0
𝜌(𝑥0)

ℎ(𝑦)
E[ℎ(𝑦)]𝜙(𝑦)

⋅A⋅ 𝑔(𝑥) + ℎ(𝑦)
1+ 1

E[ℎ(𝑦)] 𝑔(𝑥)

𝑁
(

1+ E[𝑔(𝑥)]
E[ℎ(𝑦)]

) 𝑔−1
(

𝑘
𝜈0𝑛

− E[ℎ(𝑦)]
)

∕∕ 𝑔(𝑥)+ℎ(𝑦)
𝑔(𝑥)+E[ℎ(𝑦)]𝜙(𝑦)

⋅1⋅ 𝑓0 𝜈0 1
(𝑛𝜈0)𝑘

𝑘!
𝑒−𝑛𝜈0 𝜙(𝑦)

⋅2⋅ 𝑥𝛼𝑦𝛽 𝜈0𝑥𝛼
(

𝑘
𝜈0𝑛

)
1
𝛼 𝑘

1
𝛼
−1𝑛−

1
𝛼

𝛼𝜈
1− 1

𝛼
0

𝜌(𝑥0)
𝑦𝛽

E[𝑦𝛽 ]𝜙(𝑦)

⋅3⋅ 𝑒𝛼𝑥+𝛽𝑦 𝜈0𝑒𝛼𝑥
1
𝛼
log 𝑘

𝜈0𝑛
𝑘−1

𝛼𝜈0
𝜌(𝑥0)

𝑒𝛽𝑦

E[𝑒𝛽𝑦 ]𝜙(𝑦)

⋅4⋅ 𝑥𝛼 + 𝑦𝛽 𝜈0𝑥𝛼 + 𝜈0E[𝑦𝛽 ]
(

𝑘
𝜈0𝑛

− E[𝑦𝛽 ]
)

1
𝛼 𝑛−1

𝛼𝜈0𝑥𝛼−10

𝜌(𝑥0)
𝑥𝛼+𝑦𝛽

𝑥𝛼+E[𝑦𝛽 ]𝜙(𝑦)

⋅5⋅ 𝛩(𝑥𝛼 + 𝑦𝛽 − 𝐶) 𝜈0�̄�
[

(𝐶 − 𝑥𝛼 )1∕𝛽
]

(

𝐶 − �̄�−1
[

𝑘
𝜈0𝑛

]𝛽
)

1
𝛽 𝑛−1

𝜈0�̄�′
[

(𝐶 − 𝑥𝛼𝑜 )1∕𝛽
] 𝜌(𝑥0)

𝛩(𝑥𝛼+𝑦𝛽−𝐶)
�̄�[(𝐶−𝑥𝛼 )1∕𝛽 ]

𝜙(𝑦)

⋅6⋅ 𝑎𝑥𝑦
1+𝑎𝑥𝑦

a 𝜈0𝑥(1 − 𝑎𝑥E[𝑦]) {1 , 2𝑎E[𝑦]
𝜈0

𝑘
𝑛

}
𝑛−1

∑

𝑖 𝜌(𝑥
(𝑖)
0 )

𝜈0
1−𝑎𝑥𝑦

1−𝑎𝑥E[𝑦] 𝑦𝜙(𝑦)

⋅7 ⋅ 1
1+𝑒−(𝑥+𝑦+𝑏)

b 𝜈0
(

1 − E[𝑒−𝑦 ]
𝑒𝑏

𝑒−𝑥
)

− log
(

𝑒𝑏

E[𝑒−𝑦 ] (1 −
𝑘
𝜈0𝑛

)
) 𝑛−1

𝜈0
(

1 − 𝑘
𝜈0𝑛

) 𝜌(𝑥0)
𝑒(𝑥+𝑏)−𝑒−𝑦

𝑒(𝑥+𝑏)−E[𝑒−𝑦 ]𝜙(𝑦)

⋅R⋅ 𝑥𝑦
𝑐2
(1 − 𝑥

𝑐
) 𝜈0𝑥(1 − 𝑐𝑥) {1 , 2𝑐𝑘

𝜈0𝑛
}

𝑛−1
∑

𝑖 𝜌(𝑥
(𝑖)
0 )

𝜈0
a 𝑎 ≪ 1

max{𝑥𝑦}
.

b 𝑏 ≫ min{𝑥 + 𝑦}.
adiation model. The radiation model [26,72] can be embedded in
he trip-mobility network model by considering the travel probability
ernel as:

(𝑥, 𝑦) =
𝑥𝑦

(𝑦 + ⟨𝑠𝑥𝑦⟩)(𝑦 + ⟨𝑠𝑥𝑦⟩ + 𝑥)
=

𝑥𝑦
(𝑦 + ⟨𝑠𝑥𝑦⟩)2(1 +

𝑥
𝑦+⟨𝑠𝑥𝑦⟩

)

By following [72], for a region dense of opportunities among two lo-
cations and under homogeneous population assumption 𝑥, 𝑦 ≪ ⟨𝑠𝑥𝑦⟩ ∼
⟨𝑑⟩𝑥, the attraction rate can be written as:

𝜈𝑥 ∼ 𝜈0 ∫ K(𝑥, 𝑦)𝜌(𝑦)𝑑𝑦 ∼ 𝜈0
𝑥

⟨𝑑⟩2𝑥

(

1 − 𝑥
⟨𝑑⟩𝑥

)

Another extreme condition is the case of an opportunity-sparse
region so that ⟨𝑠𝑥𝑦⟩ ≈ 0, and the attraction rate becomes K(𝑥, 𝑦) ≈ 𝑥

𝑥+𝑦 ,
o that the attraction rate is not trivial and the network correlations are
ot neutral.

mpedance model. According to the impedance model [73], the number
f trips flow from origin location of feature 𝑦 to destination with at-
ractiveness 𝑥 can be formulated, in the continuous mean-field version,
s:

(𝑥, 𝑦) =
𝑥 + 𝑦
𝑑(𝑥, 𝑦)

and it can be seen that the attraction rate can be written as 𝜈𝑥 =
𝜈0𝑥∕⟨𝑑⟩𝑥 + 𝜈0E[𝑦]∕⟨𝑑⟩𝑥 and the graph correlations show up as showed
in Appendix C.

Other models also engage with the discourse on the universality of
scaling relations in visitation patterns, a topic recently emphasized in
numerous studies such as [3]. These models suggest that the number
of visitors to any given location decreases inversely with the square of
the product of their visit frequency and travel distance. In contrast, the
model presented here does not focus on individual mobility behavior,
hence it does not account for recurring movements with varying visit
frequencies as explored in studies like [1,20,99]. Essentially, this model
operates as a macroscopic network model of mobility, where the units
represent locations and the links represent travelers.

Appendix E. Supplementary data

Supplementary material related to this article can be found online
22

at https://doi.org/10.1016/j.chaos.2024.115175.
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