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Abstract

We reconsider the computation of banana integrals at different loops, by working in the configuration 
space, in any dimension. We show how the 2-loop banana integral can be computed directly from the 
configuration space representation, without the need to resort to differential equations, and we include 
the analytic extension of the diagram in the space of complex masses. We also determine explicitly the ε
expansion of the two loop banana integrals, for d = j − 2ε, j = 2, 3, 4.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

Ultraviolet divergences are an unavoidable crucial feature of Quantum Field theory (QFT). 
While infrared divergences, appearing in the presence of massless fields or in collinear beams 
of particles at high energies, can be cured by means of physical considerations [7–9], ultraviolet 
divergences are more deeply related to the mathematical structure underlying the construction 
of the theory. They proliferate in perturbative formulations, requiring regularization at high 
momenta of the Feynman integrals and successive renormalization. When renormalization is 
controlled by a finite number of conditions, then fixing a finite number of external parameters, 
possibly as functions of the energy scale, the theory is renormalizable. One of the most spectac-
ular successes of QFT is the Standard Model of Particles, which, however, is not yet the final 
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theory since it does not incorporate the gravitational field (in its full quantum formulation) and is 
not free from problems (neutrino masses, quantization of the charges, g−2 for the muon, etc.). In 
the absence of a full nonperturbative formulation, the comparison of the very high-precision ex-
periments performed nowadays requires to be able computing perturbative calculations at higher 
orders and expressing the results in the most possible compact and simple form. Several efforts 
are done in this direction in recent years. A possibility is to reformulate the perturbative QFT 
in terms of positive Grassmannian geometry in a complexified momentum space. This strategy 
has led to the notion of Amplituhedron and its generalizations [10–12], and has the advantage 
of potentially reducing the sum of the so-called kilo-Feynman to just the sum of few integrals. 
This line of research is developing rapidly and recently it has been shown that one of its realiza-
tions allows controlling ultraviolet and infrared divergences simultaneously [13]. However, these 
methods do not apply in general yet but only work with particular theories.

Several other approaches are instead devoted to making the calculation of “traditional” Feyn-
man integrals more efficient. One of these is the method of integration by parts, used to relate 
generic Feynman integrals of a given type to a small number of simpler integrals, called Master 
Integrals, explicitly known or easier to be computed analytically or numerically [14,15]. With 
the same method, one can compute differential equations for the Master Integrals, to be solved 
with specific boundary conditions.

Another closely related method is inspired by certain cohomological techniques originally 
developed in order for a deeper understanding of hypergeometric integrals, see for example 
[16–19]. The main idea is to interpret Feynman integrals as period integrals of some forms repre-
senting cohomological classes of a suitable twisted-cohomology. In this way, the set of Feynman 
integrals acquires a structure of linear space, endowed with a scalar product, given by the inter-
section product of the twisted cohomology [20,25–28]. Using this strategy is, therefore, easier 
to individuate a “basis” of master integrals, and then project any other integral in the same co-
homology on the basis, or determine a Picard-Fuchs equation for the basis itself, by means of 
projections defined by the intersection product. Even this line of research is fast growing and has 
already originated several developments and applications [21–24,29–32].

The same strategy applies not only to Feynman integrals but also to more general integrals 
involving special functions, typically appearing in Quantum Mechanics or in Statistical Physics 
[33]. This suggests that the generic Feynman integrals can be tackled also in other representa-
tions rather than in the usual momentum space representation. An extended analysis including 
motivations for preferring the x-space to the momentum space can be found in [6].1 For ex-
ample, this appears evident when looking for a relationship between Feynman integrals and the 
geometry of certain Calabi-Yau manifolds. In [34], the 3-bananas integral in two dimensions 
is written in the configuration space representation, therefore as an integral of the product of 
Macdonald functions, and specialized to the case of equal masses (normalized to 1) to find a 

differential Picard-Fuchs equation (w.r.t. t = √
K

2
, K being the total momentum entering the 

banana diagram) whose solutions are used to compute the integral and then related to the motivic 
cohomology of a suitable K3 surface. In [35] this is generalized to the case of any �-banana inte-
grals, still in two dimensions and equal masses, again starting from the representation in terms of 
Bessel functions. They are related to the motivic cohomology of specific Calabi-Yau manifolds. 
In [36], the same strategy, once again in two spacetime dimensions, is extended to other classes 
of integrals. Banana integrals at any loop with all equal masses are studied in [37].

1 We thank Alexei Morozov for putting this paper to our attention.
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A review of the connection between vacuum banana integrals and integrals of products of 
Macdonald’s functions can be found in [1]. In the context of conformal field theory, scalar 3-
point functions are given by an integral of three Macdonald functions, determined in terms of 
Appell F4 functions in [2].

In the present paper, we consider banana integrals up to two-loop order, with arbitrary masses, 
but with vanishing entering momentum. In [47] the two-loop banana integral for arbitrary masses 
and dimensions is explicitly solved by passing through the solutions of differential equations 
obtained from the momentum space representation of the integral. The solution is then used to 
compute the effective potential for the Standard Model of Particles up to two loops. It is clear that 
for more than two loops, the banana integrals are no more sufficient for computing the effective 
potential. However, our aim here is not to compute the effective potential at higher loops but 
rather to show the unexpected efficiency of working in the configuration space representation, in 
order to compute Feynman integrals or in finding differential equations they have to solve. The 
0-momentum banana integrals thus allow us to compare our results with the ones in [47]. It is 
worth mentioning that the x-space representation of Feynman integrals has already been used 
in literature for different aims than the present one. For example, in [38–43] it played a crucial 
role in the determination of certain identities relating all equal masses d = 2 sunrise integrals to 
modular integrals. In that case, the restriction to equal masses is crucial in order to factorize out 
the mass dependence and then map the problem to one of analytic number theory. However, we 
are treating the general case where all the involved masses are not necessarily equal, and in this 
case, it is not possible to obtain such a reduction. After putting d = 2 and all masses equal to 
1 we do not get directly the same relations as in [38–43] but other equivalent expressions. Our 
results might also be used to attempt a generalization of their formulas to different values of the 
dimension d . We leave this analysis for further research. On the other hand, it is interesting to 
notice that in that papers the differential equations are solved with methods avoiding the inversion 
of the Wronskian.2 This also happens for all methods we used in the present paper.

In section 2, we will warm up by computing the 1-loop banana integral (the bubble integral), 
so reproducing the well-known standard result.

In section 3, we show how the 2-loop banana integral can be computed directly from the 
configuration space representation, which is the integral of a product of Macdonald functions, 
without the need to resort to differential equations.

In Section 4, we determine the analytic extension of the diagram in the space of complex 
masses.

In Section 5, we provide very explicit formulas for the two-loop banana integral in dimension 
2, 3 and 4.

In section 6, we recall the standard strategy of finding Picard-Fuchs equation for Feynman 
integrals, by reproducing the same equations used in [47] for the 2-loop banana integral.

In Section 7 we then show that the same equations are nothing but a manifestation of certain 
standard recursive relations among Macdonald functions, and the associated Bessel-type second-
order differential equation.

2 We acknowledge an anonymous referee for bringing this issue to our attention.
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2. The bubble and its momenta

As a starter let us compute the bubble in x-space. In Euclidean Minkowski space the 
Schwinger function of a massive scalar field is proportional to a Macdonald function:

Gd
m(x) = 1

(2π)d

∫
e−ipx

p2 + m2 dp = 1

(2π)
d
2

( r

m

)1− d
2
Kd

2 −1 (mr) , r =
√

x2, (2.1)

where m is the mass of the field. In x-space the bubble diagram is represented by the following 
integral:

∫
Gm1(x)Gm2(x)dx = (m1m2)

d
2 −1

2d−1π
d
2 �

(
d
2

)
∞∫

0

Kd
2 −1 (m1r)Kd

2 −1 (m2r) rdr (2.2)

= �
(
1 − d

2

)
(m1m2)

d
2 −1

2dπ
d
2

∞∫
0

(
I d

2 −1 (m1r) − I1− d
2
(m1r)

)
Kd

2 −1 (m2r) rdr; (2.3)

in the last elementary but important step we used the identity

Kν(z) = �(1 − ν)�(ν)

2
(I−ν(z) − Iν(z)). (2.4)

The integral at the r.h.s. of (2.2) always converges at infinity. On the other hand, since in an angle 
containing the positive real semiaxis in the complex z-plane

Iν(z) ∼ ez

√
2πz

, Kν(z) ∼ e−z

√
2π

z
, (2.5)

the integrals at the r.h.s. of Eq. (2.3) converge provided 0 < m1 < m2.
By using the series representation

Iν(z) =
∞∑

n=0

1

n!�(n + ν + 1)

( z

2

)2n+ν

(2.6)

we may prove right away the well-known general formula

∞∫
0

Iν (ar)Kρ (br) rdr =
∞∑

n=0

(a/2)2n+ν

n!�(n + ν + 1)

∞∫
0

r1+2n+νKρ (br) dr

=
aν�

(
ν+ρ

2 + 1
)
�

(
ν+ρ

2 − 1
)

2F1

(
ν+ρ

2 + 1,
ν−ρ

2 + 1;ν + 1; a2

b2

)
bν+2�(ν + 1)

. (2.7)

In the special case of interest to Quantum Field Theory ρ = d/2 − 1 and ν = ±(d/2 − 1); the 
above formula immediately reduces to the textbook answer for the bubble:∫

Gm1(x)Gm2(x)dx = �
(
1 − d

2

)
(4π)

d
2

md−2
2 − md−2

1

m2
1 − m2

2

. (2.8)

With the same simple steps, we may quickly find the “moments” of the bubble as follows:
4
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Ik(m1,m2, d) = 2π
d
2

�
(

d
2

)
∞∫

0

rkGm1(r)Gm2(r) rd−1dr =

=
�

(
k
2 + 1

)
md−k−4

1 �
( 4−d+k

2

)
2F1

(
k+2

2 , 4−d+k
2 ; 4−d

2 ; m2
2

m2
1

)

2d−k−1π
d
2 (d − 2)

+

+
m−k−2

1 md−2
2 �

(
1 − d

2

)
�

(
k
2 + 1

)
�

(
d+k

2

)
2F1

(
k+2

2 , d+k
2 ; d

2 ; m2
2

m2
1

)

2d−kπ
d
2 �

(
d
2

) . (2.9)

The unpleasant feature of the above formula is that the symmetry in the exchange of the masses 
m1 and m2 is not manifest.

Always with the aim of explaining our methods in the simplest example, an explicitly sym-
metric formula is provided by the use of the Kallen-Lehmann representation (or linearization); 
we recall it for the reader’s convenience:

Gm1(x)Gm2(x) =
∞∫

0

ρ(s,m1,m2)G√
s(x) ds (2.10)

where

ρ(s,m1,m2) =
(
(s − (m1 + m2)

2)(s − (m1 − m2)
2)

) d−3
2

22d−3π
d−1

2 �
(

d−1
2

)
s

d−2
2

θ((s − (m1 + m2)
2). (2.11)

It follows that

Ik(m1,m2, d) = 2π
d
2

�
(

d
2

)
∞∫

0

∞∫
0

rkρ(s,m1,m2)G√
s(r) rd−1drds

=
�

(
k
2 + 1

)
�

( 4−d+k
2

)
2F1

(
3−d

2 , 4−d+k
2 ;3 − d; 4m1m2

(m1+m2)
2

)
2d−k−1π

d
2 (d − 2) (m1 + m2)4−d+k

+

+
md−2

1 md−2
2 �

(
1 − d

2

)
�

(
k
2 + 1

)
�

(
d+k

2

)
2F1

(
d−1

2 , d+k
2 ;d − 1; 4m1m2

(m1+m2)
2

)
2d−kπ

d
2 �

(
d
2

)
(m1 + m2)d+k

. (2.12)

Comparing Eqs. (2.9) and (2.12) we deduce as a bonus the following remarkable identity: for 
a > b(

a

a + b

)d+k

2F1

(
d − 1

2
,
d + k

2
;d − 1; 4ab

(a + b)2

)
= 2F1

(
2 + k

2
,
d + k

2
; d

2
; b2

a2

)
.

(2.13)

3. Two loops: the watermelon

In the previous simple example, we displayed the main ingredients of the calculation of a 
loop diagram in x-space: the identity (2.4), the series expansion (2.6), and the Kallen-Lehmann 
representation (2.10). We now exploit the same tools to compute the harder two-loop watermelon:
5
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I (m1,m2,m3, d) =
∫

Gm1Gm2Gm3(x)dx = 2π
d
2

�
(

d
2

) ∫
Gm1Gm2Gm3(r)r

d−1dr

= 2 (m1m2m3)
d
2 −1

2
3d
2 πd�

(
d
2

)
∞∫

0

r2− d
2 Kd

2 −1 (m1r)Kd
2 −1 (m2r)Kd

2 −1 (m3r) dr = (3.1)

= �
(
1 − d

2

)2
�

(
d
2

)2

4

∑
ε,ε′=±

εε′Rεε′(m1,m2,m3 d) (3.2)

where

Rεε′(m1,m2,m3 d) =
∞∫

0

r2− d
2 I

ε( d
2 −1) (m1r) I

ε′( d
2 −1) (m2r)Kd

2 −1 (m3r) dr. (3.3)

I (m1, m2, m3, d) actually depends on the squared masses.
The integral at the r.h.s. of Eq. (3.1) always converges at infinity; it converges at r = 0 in the 

strip


 = {d ∈C : 0 < Red < 3}; (3.4)

it makes sense and defines a holomorphic function of the complex masses m1, m2, m3, provided 
that Remj > 0 for j = 1, 2, 3. The function I (m1, m2, m3, d) at the l.h.s. coincides with the 
integral at the r.h.s. when the integral converges and is defined by analytic continuation otherwise.

On the other hand, the four integrals at the r.h.s. of (3.3) converge at infinity only if 
Rem3 > Rem1 + Rem2. Using Eq. (2.6) Bailey [48] proved in 1936 the following two ele-
mentary identifications3:

∞∫
0

rλ−1Iμ (ar) Iν (br)Kρ (cr) dr =

=
∞∑

n=0

2λ−2aμbν�
(

λ+μ+ν+ρ
2 + n

)
�

(
λ+μ+ν−ρ

2 + n
)

cλ+μ+ν�(μ + 1)�(n + 1)�(n + ν + 1)
×

× 2F1

(
λ + μ + ν + ρ

2
+ n,

λ + μ + ν − ρ

2
+ n;μ + 1; a2

c2

)
b2n

c2n
= (3.7)

=
2λ−2aμbν�

(
λ+μ+ν+ρ

2

)
�

(
λ+μ+ν−ρ

2

)
F4

(
λ+μ+ν+ρ

2 ,
λ+μ+ν−ρ

2 ;μ + 1, ν + 1; a2

c2 , b2

c2

)
cλ+μ+ν �(μ + 1)�(ν + 1)

(3.8)

3 We recall for the reader’s convenience the definition of the Appell series of the first and of the fourth type

F1(a, b1, b2; c;x, y) =
∞∑

m,n=0

(a)m+n(b1)m(b2)n

(c)m+n m!n! xmyn = �(c)

�(a)�(c − a)

1∫
0

dt

t

ta(1 − t)c−a−1

(1 − xt)b1 (1 − yt)b2
(3.5)

F4(a, b; c1, c2;x, y) =
∞∑

m,n=0

(a)m+n(b)m+n

(c1)m(c2)n m!n! xmyn (3.6)
6
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valid for Re(λ + μ + ν) > | Reρ| and Re(c ± a ± b) > 0.

4. First derivation

When m3 > m1 +m2, Eq. (3.8) allows the identification of the watermelon with a sum of four 
Appell functions F4:

I (m1,m2,m3, d) = (4π)1−dm2d−6
3

�(2 − d)

2 sin
(

πd
2

)F4

(
3 − d,2 − d

2
,2 − d

2
,2 − d

2
,
m2

1

m2
3

,
m2

2

m2
3

)

+ (4π)−dmd−2
1 md−2

2 m−2
3 �

(
1 − d

2

)2

F4

(
1,

d

2
,
d

2
,
d

2
,
m2

1

m2
3

,
m2

2

m2
3

)

− (4π)−dmd−2
1 md−4

3 �

(
1 − d

2

)2

F4

(
1,2 − d

2
,
d

2
,2 − d

2
,

m2
1

m2
3

,
m2

2

m2
3

)

− (4π)−dmd−2
2 md−4

3 �

(
1 − d

2

)2

F4

(
1,2 − d

2
,2 − d

2
,
d

2
,

m2
1

m2
3

,
m2

2

m2
3

)
.

(4.1)

The above Appell functions may be reduced to the standard hypergeometric function by easy 
manipulations4 and there follows a simple symmetric formula for the watermelon:

4 Let us for instance exhibit the few self-explanatory simple steps to compute the first term:

R++(m1,m2,m3, d) =
∞∫

0

r
2− d

2 I d
2 −1 (m1r) I d

2 −1 (m2r)K d
2 −1 (m3r) dr

=
∞∑

n=0

21− d
2 m

d
2 −1
1 m

d
2 −1
2 2F1

(
n + 1, d

2 + n; d
2 ; m2

1
m2

3

)

c
d
2 +1

�
(

d
2

) m2n
2

m2n
3

=
∞∑

n=0

21− d
2 m

d
2 −1
1 m

d
2 −1
2 2F1

(
n + 1,−n; d

2 ; m2
1

m2
1−m2

3

)

m
d
2 +1
3 �

(
d
2

) m2n
2

m2n
3

(
1 − m2

1

m2
3

)−n−1

= 21− d
2 m

d
2 −1
1 m

d
2 −1
2

m
d
2 +1
3

∞∑
n=0

n∑
k=0

�(k − n)�(k + n + 1)

(
m2

1
m2

1−m2
3

)k (
m2
m3

)2n
(

m2
3

m2
3−m2

1

)n+1

�(k + 1)�(−n)�(n + 1)�
(

d
2 + k

)

=
∞∑

k=0

∞∑
n=k

21− d
2 m

d
2 −1
1 m

d
2 −1
2

m
d
2 +1
3

m2n
2

m2n
3

(
m2

3

m2
3 − m2

1

)n+1

(
m2

1
m2

3−m2
1

)k

�(k + 1)�
(

d
2 + k

) �(k + n + 1)

�(−k + n + 1)

=
(

m1m2

2m3

) d
2 −1

2F1

⎛
⎝ 1

2 ,1; d
2 ; 4m2

1m2
2(

m2
3−m2

1−m2
2

)2

⎞
⎠

�
(

d
2

)(
m2

3 − m2
1 − m2

2

) . (4.2)

The other terms are evaluated in a similar way.
7
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I (m1,m2,m3, d) = �(2 − d) (S(m1,m2,m3))
d
2 − 3

2

22d−1πd−1 sin
(

πd
2

)

+ (m1m2)
d−2

4dπd−2 sin2 (
πd
2

)
�

(
d
2

)2

2F1

(
1
2 ,1; d

2 ; 4m2
1m

2
2(

m2
3−m2

1−m2
2

)2

)
(
m2

3 − m2
1 − m2

2

)

+ (m3m1)
d−2

4dπd−2 sin2 (
πd
2

)
�

(
d
2

)2

2F1

(
1
2 ,1; d

2 ; 4m2
3m

2
1(

m2
2−m2

3−m2
1

)2

)
(
m2

2 − m2
3 − m2

1

)

+ (m2m3)
d−2

4dπd−2 sin2 (
πd
2

)
�

(
d
2

)2

2F1

(
1
2 ,1; d

2 ; 4m2
2m

2
3(

m2
1−m2

2−m2
3

)2

)
(
m2

1 − m2
2 − m2

3

) (4.3)

where

S(m1,m2,m3) = m4
1 + m4

2 + m4
3 − 2m2

1m
2
2 − 2m2

1m
2
3 − 2m2

2m
2
3 (4.4)

is the Symanzik polynomial.
The above formula is valid when one of the masses is bigger than the sum of the other two; 

this happens if and only if the Symanzik polynomial is positive:

0 <
4m2

i m
2
j(

m2
k − m2

i − m2
j

)2 = 1 − S(m1,m2,m3)(
m2

k − m2
i − m2

j

)2 < 1, i �= j �= k. (4.5)

The condition S(m1, m2, m3) > 0, in turn, implies that all the arguments of the hypergeomet-
ric functions on the r.h.s. of Eq. (4.3) are in the domain of convergence of the corresponding 
hypergeometric series and Eq. (4.3) can be taken at face value.

The Symanzik polynomial is positive in the particular case when one of the three masses is 
zero; in this case, the above formula simplifies to

I (m1,m2,0, d) =
�(2 − d)

((
m2

1 − m2
2

)2
) d−3

2

22d−1πd−1 sin
(

πd
2

) −
(m1m2)

d−2
2F1

(
1
2 ,1; d

2 ; 4m2
1m

2
2(

m2
1+m2

2

)2

)

4dπd−2
(
m2

1 + m2
2

)
sin2 (

πd
2

)
�

(
d
2

)2 .

(4.6)

Note also that a direct calculation would give an unsymmetrical result:

I (m1,m2,0, d) =
�(2 − d)

((
m2

1 − m2
2

)2
) d−3

2

22d−1πd−1 sin
(

πd
2

) −
�

(
1 − d

2

)
2F1

(
1,2 − d

2 ; d
2 ; m2

2
m2

1

)
4dπd−1m2

1(m1m2)2−d sin
(

πd
2

)
�

(
d
2

) .

(4.7)

Comparing the above equations we deduce the remarkable identity5

5 This can be obtained from [50], by equating (15.3.16) to (15.3.17) and using

a = 1, b = d

2
− 1

2
, z = 4m1m2

(m1 + m2)2
. (4.8)
8
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(
1 + m2

2

m2
1

)
2F1

(
1,2 − d

2
; d

2
; m2

2

m2
1

)
= 2F1

(
1

2
,1; d

2
; 4m2

1m
2
2(

m2
1 + m2

2

)2

)
(4.9)

valid at face value for m2 < m1. This formula allows us to compare (4.3) with the results in 
[3], see formulas (4.24) and (4.25). Starting from (3.1), after reversing the sign of all Bessel K
indices in the integral and multiplying by an appropriate power of the product of the masses, it 
reduces to (4.24) in [3]. After using (4.9) we then get (4.3).6

When one of the masses is equal to the sum of the other two, then the Symanzik polynomial 
vanishes: all the arguments of the hypergeometric functions at the r.h.s. become equal to one 
while the argument of the last term vanishes. We will compute the corresponding diagram below 
in Eq. (4.19).

When the Symanzik polynomial is negative, or equivalently when each of the three masses 
is smaller than the sum of the other two (i.e. when m1, m2, and m3 are the sides of a triangle), 
none of the integrals at the r.h.s. of (3.3) converge but a minor modification allows us to compute 
directly the diagram also in this circumstance. Suppose indeed that m1 < m2 + m3. Then

I (m1,m2,m3, d) =
∑

ε=± ε
∫ ∞

0 r2− d
2 I

ε( d
2 −1) (m1r)Kd

2 −1 (m2r)Kd
2 −1 (m3r) dr

2
3d
2 −1 (m1m2m3)

1− d
2 πd−1 sin

(
πd
2

)
�

(
d
2

) (4.10)

and now both the integrals at the r.h.s. of (4.10) converge splendidly at infinity.
We now may insert in Eq. (4.10) the series expansion (2.6), compute the integral using the 

formula for the moments (2.9), and sum the resulting series following the same steps used to 
derive Eq. (4.2). This will produce the formula to be used when the Symanzik polynomial is 
negative. An alternative way makes use of the analyticity properties of the watermelon diagram 
in the three complex masses and is explained in the following Section 4.1.7

4.1. Analytic continuation

At first, we exploit the well-known hypergeometric identity

2F1 (α,β;γ ; z) =
�(γ )�(β − α) 2F1

(
α,α − γ + 1;α − β + 1; 1

z

)
�(β)�(γ − α)

(−z)−α+

+
�(γ )�(α − β) 2F1

(
β,β − γ + 1;−α + β + 1; 1

z

)
�(α)�(γ − β)

(−z)−β, | arg(−z)| < π

(4.11)

to remodel our formula (4.3) in a way that may be used directly. Let us, therefore, consider 
complex masses ζ1, ζ2, ζ3 such that none of the arguments of the hypergeometric functions at the 
r.h.s. of Eq. (4.3) is real. The identity (4.11) has the virtue of disentangling the real and imaginary 
parts of the various contributions in the limit when the arguments become real: for instance, we 
have

6 We thank Paul McFadden, Adam Bzowski, and Kostas Skenderis for pointing out these facts to us.
7 As pointed out to us by P. McFadden, A. Bzowski, and K. Skenderis, the problem of analytically continuing in the 

masses also appears in the context of extracting flat-space scattering amplitudes from CFT correlators as discussed in [4]
and [5]. For this, one needs to analytically continue triple-K integrals to unphysical configurations where the sum of the 
momentum magnitudes vanishes.
9
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R++(ζ1, ζ2, ζ3) =
(ζ1ζ2)

d
2 −3 (−ζ 2

1 − ζ 2
2 + ζ 2

3

)
2F1

(
1,2 − d

2 ; 3
2 ;

(−ζ 2
1 −ζ 2

2 +ζ 2
3

)2

4ζ 2
1 ζ 2

2

)

2
d
2 ζ

d
2 −1

3 �
(

d
2 − 1

) +

+ 22−d
√

π (2ζ1ζ2ζ3)
1− d

2 (−S(ζ1, ζ2, ζ3))
d
2 − 3

2

�
(

d−1
2

) (−ζ 2
1 − ζ 2

2 + ζ 2
3

) √
−(−ζ 2

1 − ζ 2
2 + ζ 2

3

)2
,

(4.12)

and so on. Suppose then that S(m1, m2, m3) < 0. There are three possibilities:

1. The triangle is obtuse: the square of one of the masses is bigger than the sum of the squares 
of the other two, say m2

3 > m2
1 + m2

2.
2. The triangle is acute-angled: no choice of the masses verifies the above inequality.
3. The triangle is right, say m2

3 = m2
1 + m2

2.

1. Suppose that m2
3 > m2

1 + m2
2 and let ζ3 = m3 + iε; it is easily verified that

Im(−
(
m2

1 − m2
2 − ζ 2

3

)2
) < 0, Im(−

(
−m2

1 + m2
2 − ζ 2

3

)2
) < 0,

Im(−
(
−m2

1 − m2
2 + ζ 2

3

)2
) < 0, ImS > 0, (4.13)

and therefore

Im(R++ − R+− − R−+ + R−−) = −i
22−d

√
π (2m1m2m3)

1− d
2 (−S(m1,m2,m3))

d
2 − 3

2

�
(

d−1
2

)
+2i

22−d
√

π (2m1m2m3)
1− d

2 (−S(m1,m2,m3))
d−3

2

�
(

d−1
2

)
−i

22−d
√

π (2m1m2ζ3)
1−d

2 (−S(m1,m2,m3))
d−3

2 sin
(

d−3
2 π

)
cos

(
πd
2

)
�

(
d−1

2

) = 0. (4.14)

2. Suppose that m2
i < m2

j + m2
k for every i �= j �= k and let ζ1 = m1 + iε: we have

Im(−
(
ζ 2

1 − m2
2 − m2

3

)2
) > 0, Im(−

(
−ζ 2

1 + m2
2 − m2

3

)2
) < 0,

Im(−
(
−ζ 2

1 − m2
2 + m2

3

)2
) < 0, ImS < 0. (4.15)

Again Im(R++ − R+− − R−+ + R−−) = 0. In both cases, the imaginary part of the sum of the 
various terms vanishes. This implies that it vanishes also in the limiting case m2

3 = m2
1 + m2

2. 
Then, for S(m1, m2, m3) < 0, the final result may be rewritten as follows:

I (m1,m2,m3, d) = −21−2dπ1−d�(2 − d)(−S(m1,m2,m3))
d−3

2

+ (m1m2)
d−4

(
m2

1 + m2
2 − m2

3

)
2F1

(
1,2 − d

2 ; 3
2 ;M2

123

)
4dπd−2(cos(πd) − 1)�

(
d
2 − 1

)
�

(
d
2

)
+ (m2m3)

d−4
(−m2

1 + m2
2 + m2

3

)
2F1

(
1,2 − d

2 ; 3
2 ;M2

231

)
4dπd−2(cos(πd) − 1)�

(
d − 1

)
�

(
d
)

2 2

10
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+ (m1m3)
d−4

(
m2

1 − m2
2 + m2

3

)
2F1

(
1,2 − d

2 ; 3
2 ;M2

312

)
4dπd−2(cos(πd) − 1)�

(
d
2 − 1

)
�

(
d
2

) .

(4.16)

where we defined

Mijk =
(

m2
i + m2

j − m2
k

2mimj

)
(4.17)

In the special important case where the three particles have the same mass the above formula 
reduces to

I (m,m,m,d)=
3
2�

(
1 − d

2

)
�

(
2 − d

2

)(
2F1

(
1,2 − d

2 ; 3
2 ; 1

4

) − 3
d−5

2 �
(

3
2 − d

2

)√
π

2d−3�
(

2− d
2

)
)

(4π)d
m2(d−3).

(4.18)

By invoking the analyticity properties of the diagram in the complex masses we also are able to 
evaluate the watermelon in the limiting case S = 0, when one mass is equal to the sum of the 
other two:

I (m1,m2,m1 + m2, d)=�
(
1 − d

2

)
�

(
2 − d

2

) (
(m1 + m2)

d−3
(
m3

2m
d
1 + m3

1m
d
2

)) − md
1md

2

22dπd(m1m2)3(d − 3)
.

(4.19)

5. Evaluation near integer dimensions

We will now consider the expansion in ε near ε ∼ 0, for

d = D − 2ε.

It is convenient to distinguish the dimensions according with their parity.

5.1. Odd dimensions

The odd-dimensional case is the easiest because only the first line in formula (4.16) has a 
(simple) pole at ε = 0 due to the pole in the Gamma function

�(1 − 2k − 2ε) = − 1

(2k − 1)!
(

1

2ε
+ ψ(2k)

)
+ O(ε), (5.1)

where ψ is the logarithmic derivative of the gamma function. Therefore

I (m1,m2,m3,2k + 1) =
(

1

2ε
ψ(2k) − 1

2
log

−S(m1,m2,m3)

16π2

)
(−S(m1,m2,m3))

k−1

2(4π)2k(2k − 1)!

− (m1m2)
2k−3(m2

1 + m2
2 − m2

3)2F1(1, 3
2 − k; 3

2 ;M2
123)

32(4π)2k−1�(k − 1/2)�(k + 1/2)

− (m2m3)
2k−3(m2

2 + m2
3 − m2

1)2F1(1, 3
2 − k; 3

2 ;M2
231)

2k−1
32(4π) �(k − 1/2)�(k + 1/2)

11
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− (m3m1)
2k−3(m2

3 + m2
1 − m2

2)2F1(1, 3
2 − k; 3

2 ;M2
312)

32(4π)2k−1�(k − 1/2)�(k + 1/2)

+ O(ε).

(5.2)

The hypergeometric functions appear in the form

2F1

(
1,

3

2
− k; 3

2
; z2

)
= 1

2

1∫
0

dt√
1 − t

(1 − z2t)k− 3
2 , (5.3)

and can be expressed in terms of elementary functions. For example for k = 1 (i.e. D = 3) we 
have

I (m1,m2,m3,3 − 2ε) = 1

32π2

1

2ε
+ 1

32π2

(
1 − γ − 1

2
log

−S(m1,m2,m3)

16π2

)

− tanh−1 (M123) + tanh−1 (M213) + tanh−1 (M312)

32π2 + O(ε). (5.4)

5.2. Even dimensions. Case D = 2

5.2.1. Triangular case
We single out at first the case d = 2 which is non singular and start discussing the triangular 

configuration where S < 0. A Laurent series expansion of Eq. (4.16) shows that the coefficient 
of the possible diverging term vanishes thanks to the remarkable identity

arcsin (M123) + arcsin (M312) + arcsin (M231) = π

2
; (5.5)

Equation (5.5) becomes obvious by using the identity

arcsinMijk = θijk = −i log

(
1

2mimj

√−S + iMijk

)
(5.6)

A simple calculation shows that(
1

2m1m2

√−S + iM123

)(
1

2m2m3

√−S + iM231

)(
1

2m3m1

√−S + iM312

)
=

= exp(iθ123 + iθ231 + iθ312) = exp

(
iπ

2

)
. (5.7)

Therefore, the final result is completely fixed and there is no arbitrary regulatory mass float-
ing around. The zero-th order term of the Laurent series expansion includes a derivative of the 
hypergeometric function w.r.t. the parameter b:

I (m1,m2,m3,2) = F(m1,m2,m3) + F(m3,m1,m2) + F(m2,m3,m1) (5.8)

where

F(m1,m2,m3) = M123 2Ḟ1
(
1,1, 3

2 ,M2
123

)
16π2m1m2

+
log

(−S(m1,m2,m3)
2m1m2m3

)
48π

√−S(m1,m2,m3)
+

+
γ (π − 6 arcsin (M123)) − 6 log

(
m1m2
2m3

)
arcsin (M123)

48π2
√−S(m1,m2,m3)

(5.9)
12
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and we introduced the notation

2Ḟ1 (a, x; c; z) = ∂

∂b
2F1 (a, b; c; z)|b=x = −

1∫
0

ta−1�(c)(1 − t)−a+c−1 log(1 − tz)

�(a)�(c − a)(1 − tz)x
.

(5.10)

A formula for Ḟ1
(
1,1; 3

2 ; z) in terms of the Euler-Spence dilogarithm function Li2 may be ob-

tained by changing the integration variable t for u =
√

z(1−t)
1−z

and then by factorizing (1 + u2) =
(1 + iu)(1 − iu) whenever it appears. The final result is

Ḟ1

(
1,1; 3

2
; z

)
= − log

(
2
√

1 − z
)

√
(1 − z)z

1

2i

(
log

(
1 + i

√
z

1 − z

)
− log

(
1 − i

√
z

1 − z

))

+ 1√
(1 − z)z

1

2i

(
Li2

(
1

2
+ i

2

√
z

1 − z

)
− Li2

(
1

2
− i

2

√
z

1 − z

))
.

(5.11)

Note that in the second line the imaginary part of Li2 show up only when z real and such that 
0 ≤ z < 1. This happens exclusively in the triangular case.

Inserting the above formula into Eq. (5.8) we get

I (m1,m2,m3,2) = G(m1,m2,m3) + G(m3,m1,m2) + G(m2,m3,m1) (5.12)

where

G(m1,m2,m3) =
iLi2

(
1
2 − i

(
m2

1+m2
2−m2

3

)
2
√−S

)
− iLi2

(
1
2 + i

(
m2

1+m2
2−m2

3

)
2
√−S

)
16π2

√−S

−
i log(2m3) log

(√−S+i
(
m2

1+m2
2−m2

3

)
2m1m2

)
8π2

√−S
+

log
( √−S

2m1m2m3

)
48π

√−S
. (5.13)

Once more, only in the triangular case there appears the imaginary part of the Euler-Spence 
dilogarithm Li2; in this case the first line can be expressed in terms of the Bloch-Wigner8 function 
D. By using Eq. (5.6) and by taking the cyclic sum we get

I (m1,m2,m3,2) = 1

8π2
√−S

D

(√−S + i(m2
1 + m2

2 − m2
3)

2
√−S

)
+ cyc{1,2,3}. (5.15)

It is interesting to compare our result to formula (3.10) of [46]. Before doing this, it is worth 
noticing that such formula is correct as such only when the � appearing there is negative, namely, 
in the triangular case; when z is real, one must replace the Bloch-Wigner function D in formula 
(3.10) of [46] with the second line of their formula (A.1).

8 For general complex z the definition of the Bloch-Wigner function D(z) is

D(z) = Im Li2(z) + arg(1 − z) log |z|, (5.14)

D(z) and has a number of interesting properties [45,46].
13
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To make the comparison it is also necessary to remove a typo in formula (3.10) of [46], the 
correct coefficient being 4iπ2μ2. With this in mind, we get the interesting formula

2D

(
i
√−S + m2

1 − m2
2 + m2

3

2m2
1

)
=D

(√−S + i(m2
1 + m2

2 − m2
3)

2
√−S

)

+D

(√−S + i(m2
1 − m2

2 + m2
3)

2
√−S

)

+D

(√−S + i(−m2
1 + m2

2 + m2
3)

2
√−S

)
. (5.16)

The r.h.s. is a manifestly symmetric function of the masses. The above relation may be rewritten 
as a four term identity satisfied by the Bloch-Wigner function:

2D

(
2x + i

2(x + y)

)
= 2D

(
2y + i

2(x + y)

)

= D

(
1

2
+ ix

)
+ D

(
1

2
+ iy

)
+ D

(
1

2
+ i(1 − 4xy)

4(x + y)

)
, (5.17)

valid for x and y real. Indeed, this identity can be obtained from the Kummer formula (2) in [45], 
by replacing

z = 1 − z2

1 − z1 − z2
, (5.18)

where z1 = 1
2 + ix, z2 = 1

2 + iy. Then, Kummer’s formula gives

2D

(
2y + i

2(x + y)

)
= D

(
−1 − z1

z1

)
+ D

(
−1 − z2

z2

)
+ D

(
z1z2

z1 + z2

)
. (5.19)

By using the identity ([45], (3))

D(w) = D

(
−1 − w

w

)
, (5.20)

we get (5.17).

5.2.2. Non-triangular case
Here S > 0 and the starting point is Eq. (4.3); we suppose that m3 > m1 + m2. There might 

exist first and second order poles in the result but, again, their coefficients vanish. The zero-th 
order term of the Laurent series around D = 2 now is given by

I (m1,m2,m3,2) =
log(m1m2)

(
log

(
m1m2
16π2

)
+ 2γ

)
8π2

√
S

−
log(m1m3)

(
log

(
m1m3
16π2

)
+ 2γ

)
8π2

√
S

−
log(m2m3)

(
log

(
m2m3
16π2

)
+ 2γ

)
8π2

√
S

+ 1

48
√

S
+ log(S)(log(S) + 4γ − 4 log(4π))

32π2
√

S
+

−
2F

′′
1

(
1
2 ,1,1,

4m2
1m

2
2(

m2
1+m2

2−m2
3

)2

)
+ 4

(
log

(
m1m2

4π

) + γ
)

2F
′
1

(
1
2 ,1,1,

4m2
1m

2
2(

m2
1+m2

2−m2
3

)2

)
32π2

(
m2 + m2 − m2

)

1 2 3

14
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−
2F

′′
1

(
1
2 ,1,1,

4m2
1m

2
2(

m2
1−m2

2+m2
3

)2

)
+ 4

(
log

(
m1m3

4π

) + γ
)

2F
′
1

(
1
2 ,1,1,

4m2
1m

2
3(

m2
1−m2

2−m2
3

)2

)
32π2

(
m2

1 − m2
2 + m2

3

)

−
2F

′′
1

(
1
2 ,1,1,

4m2
2m

2
3(−m2

1+m2
2+m2

3

)2

)
+ 4

(
log

(
m1m2

4π

) + γ
)

2F
′
1

(
1
2 ,1,1,

4m2
1m

2
2(−m2

1+m2
2+m2

3

)2

)
32π2

(−m2
1 + m2

2 + m2
3

)
(5.21)

where

2F
′
1 (a, b;x; z) = ∂

∂c
2F1 (a, b; c; z)|c=x , 2F

′′
1 (a, b;x; z) = ∂2

∂c2 2F1 (a, b; c; z)|c=x

(5.22)

For (a, b, c) = ( 1
2 , 1, 1) they can be computed as follows. First, we use the Kummer relation and 

assume9 0 ≤ z < 1/2 to write

2F1

(
1

2
,1;x; z

)
= 1√

1 − z 2
F1

(
1

2
, x − 1;x;− z

1 − z

)

= 1√
1 − z

�(x)√
π�

(
x − 1

2

)
1∫

0

dt√
t

(1 − t)x− 3
2(

1 + z
1−z

t
)x−1 . (5.23)

Taking the derivative w.r.t. x in x = 1 gives

2F
′
1

(
1

2
,1;1; z

)
= − 1√

1 − z

1

π

1∫
0

dt
1√

t (1 − t)
log

(
1 + z

1 − z
t

)
. (5.24)

After the first change of variable t = s2 one can then rewrite the logarithm as a sum of two 
logarithms with argument linear in s. We are then left with the sum of two integrals in which we 
take the changes u = √

1 − s2 − is and v = √
1 − s2 + is. After simple manipulations, one gets 

that the sum of the integrals can be recast in an integral on the unit circle around the origin of the 
complex plane. Using the residue theorem gives

2F
′
1

(
1

2
,1;1; z

)
= − 2√

1 − z
log

(
1

2
+ 1

2

1√
1 − z

)
. (5.25)

Similar manipulation can be used for the second derivative, giving

2F
′′
1

(
1

2
,1;1; z

)
= − π2

3

1√
1 − z

+ 8 log 2√
1 − z

log

(
2

z
(z − 1 + √

1 − z)

)

+ 2√
1 − z

(
Li2

(
1

2
+ 1

2

1√
1 − z

)
− Li2

(
1

2
− 1

2

1√
1 − z

))

+ 2√
1 − z

log

(
1

2
+ 1

2

1√
1 − z

)
log

(
− 4z

1 − z

)
. (5.26)

9 at the end, this condition can be relaxed by analytic continuation.
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One sees that, for 0 < z < 1 the argument of the logarithm in the second term at the RHS is nega-
tive and the argument of the first dilogarithm is greater than one. However, proceeding carefully, 
one sees that the two imaginary parts arising from those terms compensate each other and the 
formula stays real as the LHS is real. Actually the above equation can be rewritten10 in a form 
which is free of the above shortcomings:

2F
′′
1

(
1

2
,1;1; z

)
= 2√

1 − z

(
log2

(
1

2
+ 1

2

1√
1 − z

)
− 2Li2

(
1

2
− 1

2

1√
1 − z

))
. (5.30)

By inserting Eqs. (5.25) and (5.30) in (5.21) one gets an expression for the non-triangular 
case. The final result is not particularly illuminating and we do not write it down explicitly.

However, there is an important point to be mentioned here. From (5.26), we see that in the 
final formula the Euler-Spence dilogarithms are evaluated at different real points. The Bloch-
Wigner function, which is defined as the imaginary part of the dilogarithm plus a correction, 
does not appear in the non-triangular case (and in general for complex masses). The expression 
(3.10) in [46] thus contains the D(z) function exclusively in the triangular case. We can further 
notice that the two cases (triangular and non) are related by analytic continuation in the complex 
plane, while the Bloch-Wigner dilogarithm is not analytic in the complex plane, and, as such, not 
particularly relevant for quantum field theory.

5.3. Even dimensions: D = 4

Here we discuss only the triangular case S < 0. For general even D, beyond the first-order pole 
from the first line, we have also in general second-order pole contribution from the remaining 
lines, since cos(πd) − 1 = −2 sin2(πε). We limit the discussion to D = 4 which is obviously the 
physically relevant one but has all the features of general case.

A Laurent expansion gives

I (m1,m2,m3,4 + (d − 4)) = −m2
1 + m2

2 + m2
3

128π4(d − 4)2 +

+
(
3 − 2γ + log

(
16π2

)) (
m2

1 + m2
2 + m2

3

)
256π4(d − 4)

− m2
1 log(m1) + m2

2 log(m2) + m2
3 log(m3)

64π4(d − 4)

+
√−S

(
log

(
− S

16π2

)
+ 2γ − 3

)
512π3

−
((

m2
1+m2

2−m2
3

)(
2F̈1

(
1,0, 3

2 ,M2
123

)+
(

2−2 log

(
m2

1m
2
2

16π2

)
−4γ

)
2Ḟ1

(
1,0, 3

2 ,M2
123

))
1024π4

10 This can be made by using the identities

Li2(z) =π2

6
− Li2(1 − z) − log z log(1 − z), (5.27)

log

(
− 4z

1 − z

)
= log

(
1

2
− 1

2

1√
1 − z

)
+ log

(
1

2
+ 1

2

1√
1 − z

)
+ 4 log 2, (5.28)

log

(
2

z
(z − 1 + √

1 − z)

)
= − log

(
1

2
+ 1

2

1√
1 − z

)
. (5.29)
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+ cyclic

)

− 1

512π4

(
(m2

1 + m2
2 + m2

3)

(
1 + π2

6

)
− 2

(
m2

1Lm1 + m2
2Lm2 + m2

3Lm3

)
+ m2

1L
2
m1

+ m2
2L

2
m2

+ m2
3L

2
m3

+ (m2
1 + m2

2 − m2
3)Lm1Lm2

+ (m2
1 − m2

2 + m2
3)Lm1Lm3 + (m2

1 + m2
2 − m2

3)Lm2Lm3

)
, (5.31)

where

La := log
a2

4π
+ γ.

Now, by using steps similar to those sketched in the two-dimensional case we get:

2Ḟ1

(
1,0; 3

2
; z

)
= 2 − 2

√
1 − z

z
arctan

√
z

1 − z
(5.32)

2F̈1

(
1,0; 3

2
; z

)
= 4i

√
1 − z

z

⎛
⎜⎝Li2

⎛
⎜⎝1 + i

√
1−z
z

1 − i

√
1−z
z

⎞
⎟⎠ + π2

12
− arctan2

√
z

1 − z

⎞
⎟⎠

+ 4

√
1 − z

z
arctan

√
z

1 − z
(log(4 − 4z) − 2) + 8. (5.33)

In the triangular case z ∈ (0, 1) and we can write

1 + i

√
1−z
z

1 − i

√
1−z
z

= e2iψ , ψ = arctan

√
1 − z

z
= π

2
− arctan

√
z

1 − z
.

The RHS of Eq. (5.33) is therefore real, as it can be checked by using the identity

Li2(e
ix) = π2

6
− π

2
x + 1

4
x2 + iCl2(x), (5.34)

valid for x ∈ (−π, π), where Cl2 is the Clausen function defined by

Cl2(x) =
∞∑

n=1

sin(nx)

n2 = −
x∫

0

log

∣∣∣∣2 sin
t

2

∣∣∣∣dt. (5.35)

More specifically, we can write

2Ḟ1

(
1,0; 3

2
; (a2 + b2 − c2)2

4a2b2

)
= 2 + i

√−S

a2 + b2 − c2 log

√−S + i(a2 + b2 − c2)√−S − i(a2 + b2 − c2)
(5.36)

2F̈1

(
1,0; 3

2
; (a2 + b2 − c2)2

4a2b2

)
= 4i

√−S

a2 + b2 − c2

(
Li2

(
a2 + b2 − c2 + i

√−S

a2 + b2 − c2 − i
√−S

)

+π2

12
+ 1

4
log2

√−S + i(a2 + b2 − c2)√−S − i(a2 + b2 − c2)

)
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− 2i
√−S

a2 + b2 − c2 log

√−S + i(a2 + b2 − c2)√−S − i(a2 + b2 − c2)

(
log

−S

a2b2 − 2

)
+ 8.

(5.37)

Replaced in I (m1, m2, m3, 4 + (d − 4)) it gives

I (m1,m2,m3,4 + (d − 4)) = −m2
1 + m2

2 + m2
3

128π4(d − 4)2 +

+ 3
(
m2

1 + m2
2 + m2

3

) − 2(m2
1Lm1 + m2

2Lm2 + m2
3Lm3)

256π4(d − 4)

− 1

512π4

(
(m2

1 + m2
2 + m2

3)

(
7 + π2

6

)
− 6

(
m2

1Lm1 + m2
2Lm2 + m2

3Lm3

)
+ m2

1L
2
m1

+ m2
2L

2
m2

+ m2
3L

2
m3

+ (m2
1 + m2

2 − m2
3)Lm1Lm2

+ (m2
1 − m2

2 + m2
3)Lm1Lm3 + (m2

1 + m2
2 − m2

3)Lm2Lm3

)

− i
√−S

256π4

[
Li2

(
m2

1 + m2
2 − m2

3 + i
√−S

m2
1 + m2

2 − m2
3 − i

√−S

)

+π2

12
+ 1

4
log2

√−S + i(m2
1 + m2

2 − m2
3)√−S − i(m2

1 + m2
2 − m2

3)
+ cyc{1,2,3}

]
. (5.38)

By using the above relation with the Clausen function, with ψ ≡ π
2 − θijk , after introducing the 

Lobachevsky function

L(θ) = −
θ∫

0

dx log | cosx|, (5.39)

so that

L(θijk) = θijk log 2 − 1

2
Cl2(π − 2θijk), (5.40)

and finally using (5.7), we get

i

[
Li2

(
m2

1 + m2
2 − m2

3 + i
√−S

m2
1 + m2

2 − m2
3 − i

√−S

)
+ π2

12
+ 1

4
log2

√−S + i(m2
1 + m2

2 − m2
3)√−S − i(m2

1 + m2
2 − m2

3)

+ cyc{1,2,3}
]

= − (Cl2(π − 2θ123) + Cl2(π − 2θ231) + Cl2(π − 2θ312))

=
(
L(θ123) + L(θ231) + L(θ312) − π

2
log 2

)
. (5.41)

Therefore,

I (m1,m2,m3,4 + (d − 4)) = −m2
1 + m2

2 + m2
3

128π4(d − 4)2 +

+ 3
(
m2

1 + m2
2 + m2

3

) − 2(m2
1Lm1 + m2

2Lm2 + m2
3Lm3)

256π4(d − 4)

− 1
4

(
(m2

1 + m2
2 + m2

3)

(
7 + π2 )

− 6
(
m2

1Lm1 + m2
2Lm2 + m2

3Lm3

)

512π 6
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+ m2
1L

2
m1

+ m2
2L

2
m2

+ m2
3L

2
m3

+ (m2
1 + m2

2 − m2
3)Lm1Lm2

+ (m2
1 − m2

2 + m2
3)Lm1Lm3 + (m2

1 + m2
2 − m2

3)Lm2Lm3

)

+
√−S

128π4

(
L(θ123) + L(θ231) + L(θ312) − π

2
log 2

)
. (5.42)

This coincides with formula (4.20) in [47].

5.4. The 1-loop sunset

A little adaption of the above results provides a formula for the sunset at 1-loop: this is nothing 
but the Fourier transform of the product of two Schwinger functions

Sun(k,m2,m3, d) =
∫

eikxGm2(x)Gm3(x)dx =

= 1

(2π)
d
2

(
k

m2m3

)1− d
2
∫

r2− d
2 Jd

2 −1 (kr)Kd
2 −1 (m2r)Kd

2 −1 (m3r) dr.

(5.43)

By using Eqs. (4.2) we immediately get

Sun =
md−2

3 2F1

(
1
2 ,1; d

2 ;− 4m2
3k

2(−m2
2+m2

3−k2
)2

)

2dπ
d
2 −1 sin

(
πd
2

)
�

(
d
2

) (
m2

2 − m2
3 + k2

) −
md−2

2 2F1

(
1
2 ,1; d

2 ;− 4m2
2k

2(
m2

2−m2
3−k2

)2

)

2dπ
d
2 −1 sin

(
πd
2

)
�

(
d
2

) (
m2

2 − m2
3 − k2

)
(5.44)

valid for values of k small enough. In the limit where the two masses are equal the above formula 
reduces to

Sun(k,m,m,d) =
2md−2�

(
1 − d

2

)
2F1

(
1
2 ,1; d

2 ;− 4m2

k2

)
2dπ

d
2 k2

. (5.45)

Similarly, by using Eqs. (4.12) and similar, we get

Sun = −
(d − 2)�

(
1 − d

2

) (−m2
2 + m2

3 + k2
)

2F1

(
1,2 − d

2 ; 3
2 ;−

(
m2

2−m2
3−k2

)2

4m2
2k

2

)

2d+2π
d
2 m4−d

2 k2

−
(d − 2)�

(
1 − d

2

) (
m2

2 − m2
3 + k2

)
2F1

(
1,2 − d

2 ; 3
2 ;−

(
m2

2−m2
3+k2

)2

4m2
3k

2

)

2d+2π
d
2 m4−d

3 k2
(5.46)

valid for values of k large enough. In the limit where the two masses are equal the above formula 
reduces to

Sun(k,m,m,d) =
(
4m2 + k2

)2
2F1

(
1,2 − d

2 ;− 1
2 ;− k2

4m2

)
+ 4(d − 6)m2k2 − 16m4

2dπ
d
2 −1(d − 5)(d − 3) sin

(
πd
2

)
�

(
d
2 − 1

)
m4−dk4

.

(5.47)
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5.5. Three loops: an example

Here the general task would be to compute

I (m1,m2,m3,m4, d) =
∫

Gm1(x)Gm2(x)Gm3(x)Gm4(x)dx

= ωd

(2π)2d

(
1

m1m2m3m4

)1− d
2

K(m1,m2,m3,m4d) (5.48)

where

K(m1,m2,m3,m4, d) =
∞∫

0

r3−dKd
2 −1 (m1r)Kd

2 −1 (m2r)Kd
2 −1 (m3r)Kd

2 −1 (m4r) dr

(5.49)

The same methods applied before allow to derive formulae in special cases. For instance

K(m,m,M,M,d) =
∞∫

0

r3−dKd
2 −1 (mr)Kd

2 −1 (mr)Kd
2 −1 (Mr)Kd

2 −1 (Mr)dr =

−
π3/22d−6m2d−6M2−d�

(
4 − 3d

2

)
�(3 − d)�

(
d
2 − 1

)
2F1

(
4 − 3d

2 , 3−d
2 ; 7

2 − d; M2

m2

)
sin

(
πd
2

)
�

( 7
2 − d

)
−

π22−dmd−4�
(
1 − d

2

)
3F2

(
1
2 ,1,3 − d; 5

2 − d
2 , d

2 ; M2

m2

)
(d − 3) sin2 (

πd
2

)
�

(
d
2 − 1

)
+

π2−d−1Md−2�
(
1 − d

2

)
�

(
2 − d

2

)
3F2

(
1,2 − d

2 , d
2 − 1

2 ; 3
2 , d − 1; M2

m2

)
m2 sin

(
πd
2

) (5.50)

The most interesting case M = m follows.

6. PDE’s for banana integrals: a summary

Here we reconsider the method of PDEs applied to banana integrals in x-space.
The usual way to tackle the calculation of Feynman’s diagrams is to start from their momen-

tum space representations. For the watermelon, this is

F(u, v, z, d) = 1

(2π)3d

∫
e−ikx

k2 + u

e−iqx

q2 + v

e−ipx

p2 + z
dkdqdpdx (6.1)

= 1

(2π)2d

∫
dqdk

(k2 + u)(q2 + v)((q + k)2 + z)
= I (

√
u,

√
v,

√
z, d). (6.2)

The trick to deduce a partial differential equation (PDE) for F(u, v, z, d) makes use of Stokes’ 
theorem as, for instance, in the following example:

0 = 1

(2π)2d

∫
dqdk

∂

∂kμ

kμ

(k2 + u)(q2 + v)((q + k)2 + z)

=F(d − 3) − 2u
∂F

∂u
− (u − v + z)

∂F

∂z
− J (u, v, z), (6.3)
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where

J (u, v, z) = −
�

(
1 − d

2

)
�

(
2 − d

2

)(
u

d
2 −1 − v

d
2 −1

)
z

d
2 −2

(4π)d
(6.4)

satisfies the identity

J (u, v, z)z + J (z,u, v)v + J (v, z,u)u = 0. (6.5)

Interchanging u and v in Eq. (6.3) we get a second independent equation:

F(d − 3) − 2v
∂F

∂v
− (v − u + z)

∂F

∂z
− J (u, v, z) = 0. (6.6)

By summing and subtracting Eqs. (6.3) and (6.6) they are replaced by11

u
∂F

∂u
− v

∂F

∂v
+ (u − v)

∂F

∂z
+ J (u, v, z) = 0, (6.8)

(d − 3)F − u
∂F

∂u
− v

∂F

∂v
− z

∂F

∂z
= 0. (6.9)

A third independent equation may be obtained by interchanging the roles of v and z in Eq. (6.8)

u
∂F

∂u
− z

∂F

∂z
+ (u − z)

∂F

∂v
+ J (u, z, v) = 0. (6.10)

The remaining equation obtained by interchanging u and z is not independent of the other two; 
however, the sum of the three equations obtained in this way coincide with the symmetric equa-
tion solved in [47] to derive a formula for the watermelon:

(u − v)
∂F

∂z
+ (v − z)

∂F

∂u
+ (z − u)

∂F

∂v
+ J (u, v, z) + J (z,u, v) + J (v, z,u) = 0. (6.11)

Because of their independence and their linearity, Eqs. (6.8), (6.9) and (6.10) may be used to 
disentangle the partial derivatives of F :

∂F

∂u
= (d − 3)(u − v − z)F (u, v, z) + 2J (u, v, z)z + J (v, z,u)(u − v + z)

u2 + v2 + z2 − 2uv − 2uz − 2vz
; (6.12)

the other derivatives ∂F/∂v and ∂F/∂z are obtained by cyclic permutations of the variables u, v
and z.

For example, the derivative of the watermelon w.r.t. say m2
1 takes the following form:

∂I

∂m2
1

=I (m1,m2,m3)
∂ logS

d−3
2

∂m2
1

+ �
(
1 − d

2

)
�

(
2 − d

2

)
(4π)d

×

×2m4
1m

d
2md

3 − md
1m2

2m
d
3

(
m2

1 + m2
2 − m2

3

) − md
1md

2m2
3

(
m2

1 − m2
2 + m2

3

)
m4

1m
2
2m

2
3 S(m1,m2,m3)

. (6.13)

11 Eqs (6.8) and (6.9) follow directly from the vanishing of the integrals∫
dqdk

(
∂

∂kμ

kμ

(k2 + u)(q2 + v)((q + k)2 + z)
± ∂

∂qμ

qμ

(k2 + u)(q2 + v)((q + k)2 + z)

)
= 0 (6.7)
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Another noticeable symmetric equation where the Symanzik polynomial explicitly appears:

∂F

∂u
+ ∂F

∂v
+ ∂F

∂z
= − (d − 3)(u + v + z)F (u, v, z)

u2 + v2 + z2 − 2uv − 2uz − 2vz
+

+J (u, v, z)(v − u) + J (v, z,u)(z − v) + J (z,u, v)(u − z)

u2 + v2 + z2 − 2uv − 2uz − 2vz
. (6.14)

The conclusion is that the set of equations (6.6), (6.8), and (6.10) fully characterizes the banana 
integral we are analyzing; eq. (6.6) is just reflecting the homogeneity of the integral. This is due 
to the fact that the set of equations obtained by differentiating the integral w.r.t. the masses is a 
D-module of dimension 3.

The D-module for the two-loop banana integral (or the sunrise) is well-known as well as the 
equations discussed in the present section. They are equivalent to the equations obtained in [44]
or the ones of [47]. Then, one usually looks for a Gröbner basis of the module; here we do not, 
since we are investigating a way to determine an optimal expression for the explicit solution of 
the integral rather than a way for constructing a basis for such equations. In passing we remark 
that the equations exhibited in [47] look to us more advantageous than the ones in [44] since 
they lead directly to an expression of the two-loop banana integral manifestly symmetric in the 
masses; this simplifies the task of the analytic continuation to the physical range of interest. 
While the analysis in [44] is complete from the point of view of characterizing and determining 
a set of Master Integrals, it would make the derivations of the results of [47] much harder.

7. PDE’s for loop diagrams: a fresh look in position space

In this section we propose a way to derive convenient equations suitable for providing explicit 
solutions of the banana integrals with arbitrary masses and dimensions. We do this directly in 
x-space. The main idea is that in order to look for more symmetric representations of the integral 
one should look for symmetric expressions of the nonhomogeneous terms. Inspired by [47], we 
look for a way to reproduce their equations for the two-loop banana integral, in a manner that 
can be extended to higher loop cases.

Let us focus again on Eq. (6.3). A useful modification is to apply Stokes’ trick to the r.h.s. of 
Eq. (6.1) as follows:

1

(2π)3d

∫
∂

∂kμ

kμe−ikx

k2 + u

e−iqx

q2 + v

e−ipx

p2 + z
dkdqdpdx = 0. (7.1)

At this point we may perform first the integration over the k variable (and leave the integration 
over x at the last step): formally we get

1

(2π)d

∫
∂

∂kμ

kμe−ikx

k2 + m2 dk = (d − 2)Gd
m(x) − 2m2∂m2G

d
m(x) − 2πr2Gd+2

m (x) = 0. (7.2)

In terms of MacDonald functions the above identity is indeed well-known (Eq. (7.6)) and it 
amounts to

m
d
2 r2− d

2 K− d
2
(mr) − (d − 2)m

d
2 −1r1− d

2 K1− d
2
(mr) − m

d
2 r2− d

2 K2− d
2
(mr) = 0. (7.3)

The conclusion is summarized in the following

Lemma 7.1. The partial differential equation (6.3) is equivalent to the recurrence relation (7.3)
among Macdonald functions.
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The point that we want to make now is that indeed all the PDEs described in Sect. 6 arise from 
the modified Bessel equation and the known recursion relations for the Macdonald functions.12

Before proceeding it is worthwhile to stress that our method might work also in curved space-
times where a global linear momentum space is not available; furthermore, it may also be used 
to obtain rapidly new equations also in flat space as we will do at the end of this chapter.

Let us start by exhibiting a few basic formulae.

∂Gd
m(r)

∂m2 = − 1

2(2π)
d
2

( r

m

) 4−d
2

Kd−4
2

(mr) = − 1

4π
Gd−2

m (r), (7.8)

where we used both (7.5) and (7.6). Similarly

∂Gd
m(r)

∂r
= − 1

(2π)
d
2

m
d
2 r1− d

2 Kd
2
(mr) = −2πr Gd+2(r). (7.9)

Together they give

∂r∂m2G
d
m(r) = r

2
Gd

m(r). (7.10)

Furthermore

∂2Gd
m(r)

∂r2 = m2Gd
m(r) + 2π(d − 1)Gd+2

m (r). (7.11)

Finally, it is useful to rewrite also the recurrence (7.7) in terms of the Schwinger functions:

(d − 2)Gd
m(r) − 2πr2Gd+2

m (r) + m2

2π
Gd−2

m (r) = 0. (7.12)

Now let us proceed with the derivation of two other PDEs by working only in x-space. Using 
Eqs. (7.8), (7.9) and (7.12) we get (the argument r in G is omitted):

m2
1

∂I

∂m2
1

= −m2
1ωd

4π

∞∫
0

rd−1Gd−2
m1

Gd
m2

Gd
m3

dr

= ωd

2
(d − 2)

∞∫
0

rd−1Gd
m1

Gd
m2

Gd
m3

dr − πωd

∞∫
0

rd+1Gd+2
m1

Gd
m2

Gd
m3

dr

=
(

d

2
− 1

)
I + ωd

2

∞∫
0

rd(∂rG
d
m1

)Gd
m2

Gd
m3

dr. (7.13)

12 We list them here for reference [49]:

z2∂2
z Kν(z) + z∂zKν(z) −

(
z2 + ν2

)
Kν(z) = 0, (7.4)

2∂zKν(z) + Kν−1(z) + Kν+1(z) = 0, (7.5)

Kν−1(z) − Kν+1(z) + 2νz−1Kν(z) = 0, (7.6)

∂r (r
νKν(mr)) + mrνKν−1(mr) = 0. (7.7)
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Symmetrization in the masses gives

(
m2

1∂m2
1
+ m2

2∂m2
2
+ m2

3∂m2
3

)
I = 3

(
d

2
− 1

)
I + ωd

2

∞∫
0

rd∂r

(
Gd

m1
Gd

m2
Gd

m3

)
dr. (7.14)

When 0 < Re(d) < 3 the boundary term obtained by partial integration vanishes and we recover 
Eq. (6.9):(

m2
1∂m2

1
+ m2

2∂m2
2
+ m2

3∂m2
3

)
I = (d − 3)I. (7.15)

Finally, the analyticity properties of the function I (m1, m2, m3, d) guarantee that Eq. (7.15)
holds without restriction on the dimension d .

In the following example, the role of boundary terms at r = 0 may be better appreciated. By 
interchanging the role of m1 and m2 in Eq. (7.13) we get

(
m2

1∂m2
1
− m2

2∂m2
2

)
I = ωd

2

∞∫
0

rdGd
m3

(
Gd

m2
∂rG

d
m1

− Gd
m1

∂rG
d
m2

)
dr

= ωd∂m2
3

∞∫
0

rd−1∂rG
d
m3

(
Gd

m2
∂rG

d
m1

− Gd
m1

∂rG
d
m2

)
dr

= b.t. − ωd∂m2
3

∞∫
0

(d − 1)rd−2Gd
m3

(
Gd

m2
∂rG

d
m1

− Gd
m1

∂rG
d
m2

)
dr

−ωd∂m2
3

∞∫
0

rd−1Gd
m3

(
Gd

m2
∂2
r Gd

m1
− Gd

m1
∂2
r Gd

m2

)
dr. (7.16)

A comment is in order concerning the second step, where we used Eq. (7.10): in that equation, 
the derivative w.r.t. m2 cancels a term that close to r = 0 behaves differently than at the l.h.s.; 
when the derivative is taken outside the integral the convergence of the latter gets worst and it 
only works for 0 < Re(d) < 2. In the third step, we integrated by parts denoting by b.t . the 
boundary terms. By inserting Eq. (7.9) in the first line and Eq. (7.11) in the second we get the 
following equation:(

m2
1∂m2

1
− m2

2∂m2
2

)
I =b.t. − (m2

1 − m2
2)∂m2

3
I. (7.17)

There remains the evaluation of the boundary terms. For 0 < Re(d) < 2 the leading terms of the 
Schwinger function at r ∼ 0 are

Gd
m(r) � �

(
1 − d

2

)
(4π)

d
2

md−2 + �
(

d
2 − 1

)
4π

d
2

r2−d , ∂rG
d
m(r) � −�

(
d
2

)
2π

d
2

r1−d (7.18)

so that

b.t. =ωd∂m2
3

∞∫
0

d

dr

[
rd−1Gd

m3

(
Gd

m2

d

dr
Gd

m1
− Gd

m1

d

dr
Gd

m2

)]
dr

=ωd lim
[
rd−1∂m2G

d
m3

(
Gd

m1
∂rG

d
m2

− Gd
m2

∂rG
d
m1

)]

r→0 3
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= − ∂Gd
m3

∂m2
3

(0)
(
Gd

m1
(0) − Gd

m2
(0)

)
= −J (m2

1,m
2
2,m

2
3). (7.19)

All in all, we recover Eq. (6.8):(
m2

1∂m2
1
− m2

2∂m2
2

)
I + (m2

1 − m2
2)∂m2

3
I + J (m2

1,m
2
2,m

2
3) = 0. (7.20)

8. Conclusions and perspectives

By considering the explicit example of zero-momentum banana integrals with arbitrary 
masses and in any dimensions, we have investigated the potentiality of using the configuration 
space representation to compute the Feynman integrals. In particular, we studied very explicitly 
the case of two loops. After expressing the banana integral as an integral of the product of three 
Macdonald functions, we have used two strategies in order to compute them. On one hand, by 
means of certain Bailey’s formulas known in the mathematical literature, we have expressed the 
banana integral as a combination of F4 Apple’s functions. On the other hand, we have shown 
that quite simple manipulations of the series expansion of the modified Bessel functions it is 
possible to rewrite the banana integral as a combination of (much simpler) 2F1 hypergeometric 
functions, manifestly symmetric in the masses, a result directly comparable to the one in [47] but 
obtained in an elementary way, without recurring to the solution of differential equations. More-
over, we studied the analytic extension of such solutions thus providing the necessary formula 
for all possible physical cases. Interestingly, by comparing the two different expressions, we get 
an interesting relation between certain combinations of F4 Appel’s functions and corresponding 
combinations of Gauss’ hypergeometric functions.

We have then investigated the Picard-Fuchs equations associated with the banana integrals 
by showing that they can be obtained in a quite elementary way from the configuration space 
representation: they are simply a direct consequence of the standard recursive relations satisfied 
by the modified Bessel functions and the modified Bessel equation.

There are several possible perspectives we want to consider for future work. First, it could be 
interesting to generalize our construction to the case of non-zero external momentum, for appli-
cations to scattering theory. Another possibility is to consider more general zero momentum loop 
integrals as, e.g., the ones necessary to compute the 3-loops effective potential for the standard 
model. Further, by combining with the methods in [35,36], it may be that one can identify a more 
general relation with cohomological structures and with the intersection theory methods.

Finally, and perhaps more interesting for justifying the configuration space representation, is 
to try applying the same philosophy to the case of quantum field theory on a curved background, 
where the momentum representation is not available. Some of these topics are under considera-
tion for further work.
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Appendix A. Another formula for the watermelon and a corollary

Another interesting formula for the two-loop watermelon which involves only one Appell 
function F1, may be obtained by using the Kallen-Lehmann representation:

I (m1,m2,m3, d) =
∫

dx

∞∫
0

ρ(s,m1,m2)Gm3(x)G√
s(x)ds

=
∞∫

(m2+m3)
2

(√
s

2−d

m2−d
1

− 1

)(
s − (m2 − m3)

2
) d−3

2
(
s − (m2 + m3)

2
) d−3

2

22d−1πd−1 sin
(

πd
2

) (
s − m2

3

)
�(d − 1)

ds = (A.1)

= −
(
(m1 − m2)

2 − m2
3

) d−3
2

(
(m1 + m2)

2 − m2
3

) d−3
2

22d−1πd−2 sin
(

πd
2

)
sin(πd)�(d − 1)

+

−
md−2

1 md−2
2 �

(
1 − d

2

)
2F1

(
1, d−1

2 ;d − 1; 4m1m2
(m1+m2)

2−m2
3

)
4dπd−1 sin

(
πd
2

)
�

(
d
2

) (
(m1 + m2)2 − m2

3

) +

+
md−2

3 �
(
2 − d

2

)
(m1 + m2)

d−4F1

(
2 − d

2 ; 3−d
2 ,1; 3

2 ; (m1−m2)
2

(m1+m2)
2 ,

m2
3

(m1+m2)
2

)
23d−4πd−1 sin

(
πd
2

)
�

(
d
2

) . (A.2)

The above formula is valid when m2
3 < m2

1 + m2
2.

By comparing Eqs. (4.3) and (A.2) we obtain a far from obvious summation formula for the 
Appell series F1 appearing in Eq. (A.2):

Lemma A.1.

F1

(
4 − d

2
; 3 − d

2
,1; 3

2
; (a − b)2

(a + b)2 ,
c2

(a + b)2

)
=

=
2d−4�

(
1 − d

2

)
ad−2bd−2c2−d(a + b)4−d

2F1

(
1, d−1

2 ;d − 1; 4ab
(a+b)2−c2

)
�

(
2 − d

2

) (
(a + b)2 − c2

) +

−
2d−4π bd−2(a + b)4−d

2F1

(
1
2 ,1; d

2 ; 4b2c2(−a2+b2+c2
)2

)
sin

(
πd

)
�

(
2 − d

)
�

(
d
) (−a2 + b2 + c2

) +

2 2 2
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−
2d−4π ad−2(a + b)4−d

2F1

(
1
2 ,1; d

2 ; 4a2c2(
a2−b2+c2

)2

)
sin

(
πd
2

)
�

(
2 − d

2

)
�

(
d
2

) (
a2 − b2 + c2

) +

−
2d−4π ad−2bd−2c2−d(a + b)4−d

2F1

(
1
2 ,1; d

2 ; 4a2b2(
a2+b2−c2

)2

)
sin

(
πd
2

)
�

(
2 − d

2

)
�

(
d
2

) (
a2 + b2 − c2

) . (A.3)

Explicit nontrivial formulae for the Appell functions are rare; it is another good point of our 
method its ability to produce such formulae.

Similarly, by comparing Eqs (4.1) and (4.3) we get three more summation formulae for the 
Appell series F4:

F4

(
3 − d,2 − d

2
,2 − d

2
,2 − d

2
,
a2

c2 ,
b2

c2

)

= c6−2d
(
a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2

) d−3
2

F4

(
1,2 − d

2
,2 − d

2
,
d

2
,
a2

c2 ,
b2

c2

)
= − c2

a2 − b2 − c2 2F1

(
1

2
,1; d

2
; 4b2c2(−a2 + b2 + c2

)2

)

F4

(
1,

d

2
,
d

2
,
d

2
,
a2

c2 ,
b2

c2

)
= − c2

a2 + b2 − c2 2F1

(
1

2
,1; d

2
; 4a2b2(

a2 + b2 − c2
)2

)
(A.4)
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