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Abstract. We study solutions of the generalized porous medium equation on infinite graphs.
For nonnegative or nonpositive integrable data, we prove the existence and uniqueness of mild
solutions on any graph. For changing sign integrable data, we show existence and uniqueness
under extra assumptions such as local finiteness or a uniform lower bound on the node measure.

1. Introduction

Our model formal equation is the following:

GPME ∂tu(t, x) + ∆Φu(t, x) = f(t, x) for every (t, x) ∈ (a, b)×X.

This equation is called the generalized porous medium equation (GPME) or filtration equation
whenever ∆ is the Laplace operator and Φ is the canonical extension to a function space of
a map ϕ : R → R such that ϕ is strictly monotone increasing, ϕ(R) = R and ϕ(0) = 0. If
ϕ(s) = sm := s|s|m−1, then the above equation is known as the porous medium equation (PME)
when m > 1 and the fast diffusion equation (FDE) when 0 < m < 1. Clearly, when m = 1 and
f ≡ 0 we recover the classic heat equation.

The GPME has a long story and we invite the interested reader to look at the seminal book
by J. L. Vázquez [70] for a detailed and exhaustive account. In recent years, research interest
about properties of solutions of the GPME has focused on the Riemannian setting as can be seen
by the increasing number of related works, see, for example, [7, 8, 18, 26, 27, 28, 29, 30, 31, 32,
33, 34, 56, 57, 69] and references therein for an overview of the most significant developments.

In contrast, in the graph setting there are still relatively few results for the GPME. This
is despite the fact that, on the one hand, the GPME is being used as a model equation for
several real-world phenomena (e.g., the flow of gas through a porous medium, water infiltration
or population dynamics) and, on the other hand, graphs are ubiquitous in many applied fields:
in physics [62], biology [50, 51, 66], image and signal processing [19, 64, 68], engineering [17],
etc.

To make our setting more precise, let us fix a graph G = (X,w, κ, µ) where X is a countable
node set, w : X × X → [0,∞) is a symmetric map with zero diagonal, κ : X → [0,∞) is a
possibly nontrivial killing term and µ : X → (0,∞) is a strictly positive node measure on X.
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For notational convenience, let us fix a = 0 and b = T ∈ (0,∞]. We will focus our attention
on the following Cauchy problem posed on G:

Cauchy-GPME

{
∂tu(t, x) + ∆Φu(t, x) = f(t, x) for every (t, x) ∈ (0, T )×X,

limt→0+ u(t, x) = u0(x) for every x ∈ X

where f : (0, T )×X → R and u0 : X → R are generic functions at the moment. In this setting,
∆ represents the (formal) graph Laplacian operator defined by the formula

∆u(x) :=
1

µ(x)

∑
y∈X

w(x, y) (u(x)− u(y)) +
κ(x)

µ(x)
u(x).

The GPME on graphs belongs to the broader class of nonlinear diffusion equations with non-
constant diffusion since the edge-weight function w(·, ·) can be seen as a counterpart of the
nonconstant diffusion coefficients {ai,j(x)}di,j=1 which characterize the second-order differential

operator
∑d

i=1 ∂i

(
ai,j(x)

∑d
j=1 ∂ju(x)

)
acting on smooth functions on Rd.

We now give a brief overview of some recent results concerning nonlinear equations in the
graph setting. For the counterpart of the Kazdan-Warner equation, see [24, 45, 55]. Concerning
the existence and uniqueness of solutions for reaction-diffusion type equations on the lattice
Z, see [65, 67]. For the Yamabe and other equations, see [23, 25, 54]. For parabolic equations
involving the p-Laplacian, see [40, 61]. Finally, we mention some results concerning the existence
and nonexistence of global nonnegative solutions of an abstract semilinear heat equation given
in [52, 53, 73] which were recently extended to a general setting in [49].

With reference to the PME in the discrete setting, we highlight [20] where the authors study
the (finite) discrete analogue of the Wasserstein gradient flow structure for the PME in Rn.
Concerning the existence and uniqueness of solutions of the Cauchy-GPME to the best of our
knowledge there is an almost complete lack of a systematic treatment even in the case of finite
graphs with one notable exception: In [61, Corollary 5.4], exploiting an interesting link between
the PME and the p-heat equation (which is well-known in R, see, e.g., [70, Section 3.4.3]), it is
shown that if G is an infinite tree, uniformly locally finite with µ ≡ 1, then there exists a unique
solution of the Cauchy-GPME for ϕ(s) = s|s|m−1 for any u0 ∈ ℓ2(X,µ) and f ≡ 0. For more
details and the definition of solutions in that setting we invite the interested reader to look at
the mentioned paper.

Our approach is different. The main goal of this article is to prove existence and uniqueness
results for classes of solutions of the Cauchy-GPME problem under the weakest possible hy-
potheses on the graph G, on the initial datum u0 and on the forcing term f . To achieve this, we
will borrow techniques from the theory of semigroups on Banach spaces and, as it will become
clear later, ℓ1(X,µ) will turn out to be the ideal space for our considerations.

We will consider three classes of solutions: mild (Definition 3.3), strong (Definition 3.4) and
classic (Definition 3.5) which are characterized by an increasing “regularity.” In particular,
mild solutions u are limits of ϵ-approximations uϵ that satisfy the Cauchy-GPME for a time
discretization well-adapted to f . If the operator L := ∆Φ is m-accretive, then it is possible
to immediately infer the existence and uniqueness of mild solutions for the Cauchy-GPME
problem by appealing to well-known results, see [4, 6, 15]. Thus, the bulk of our work consists
of establishing the m-accretivity of (a restriction of) the operator L on an appropriate Banach
space.
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Accretivity of an operator L with respect to a norm ∥ · ∥ on a real Banach space E = (E, ∥ · ∥)
means that

∥(u− v) + λ (Lu− Lv)∥ ≥ ∥u− v∥
for every u, v ∈ dom (L) ⊆ E and for every λ > 0. Furthermore, m-accretivity means that L is
accretive and id+λL is surjective for every λ > 0. We note that accretivity implies that id+λL
is injective, thus, m-accretivity gives that id+λL is bijective. For a more detailed introduction
to the concepts of accretivity and m-accretivity, see Subsection 2.3.

As can be seen directly, the accretivity property depends on both the operator L and on the
underlying Banach space. For example, the graph Laplacian ∆ on ℓp(X,µ) is m-accretive on
any finite graph for p ∈ [1,∞), see Proposition 2.5. On the other hand, the nonlinear operator
L can fail to be accretive with respect to the ℓ2-norm, see Example 2.3. What is crucial for our
analysis is that the restriction of L to a suitable dense subset of ℓ1(X,µ) will be shown to be
accretive for any graph. For m-accretivity to hold some additional hypothesis are required as
will be discussed in what follows. We note that there is a parallel development concerning the
surjectivity of the formal graph Laplacian ∆ which is always surjective on infinite, locally finite
graphs but not necessarily surjective in the not locally finite case, see [11, 47].

For a complete introduction to the notation we refer to Section 2. We denote by ℓ1,+(X,µ)
and ℓ1,−(X,µ) the cones of nonnegative and nonpositive integrable functions, respectively, and
by L the operator

L : dom (L) ⊆ ℓ1 (X,µ) → ℓ1 (X,µ) ,

dom (L) :=
{
u ∈ ℓ1 (X,µ) | Φu ∈ dom (∆) ,∆Φu ∈ ℓ1 (X,µ)

}
whose action is given by

Lu := ∆Φu.

For a subset Ω ⊆ dom (L), we write L|Ω for the restriction of L to Ω.
We now state the main results, whose proofs can be found in Section 4.1. The first main

result discusses the accretivity and m-accretivity of L.

Theorem 1. Let G = (X,w, κ, µ) be a graph. Then, there exists a dense subset Ω ⊆ dom(L)
such that L|Ω is accretive. Moreover, for every λ > 0 and for every g ∈ ℓ1,±(X,µ) there exists

a unique u ∈ ℓ1,±(X,µ) ∩ Ω such that

(id+λL)u = g.

If one of the following extra hypotheses holds:

(H1) G is locally finite;
(H2) infx∈X µ(x) > 0;

(H3) supx∈X

∑
y∈X w(x,y)

µ(x) <∞ and Φ
(
ℓ1(X,µ)

)
⊆ ℓ1(X,µ);

then id+λL restricted to Ω is also surjective. In particular, L|Ω is m-accretive. Moreover, in
all cases, the solution u satisfies the contractivity estimate

||u|| ≤ ||g||.

The second main result uses general theory along with the m-accretivity established in the
first result to yield existence and uniqueness of mild solutions for the Cauchy-GPME. For this,
we consider two cases, namely, when the initial data is nonnegative or nonpositive and when
the initial data changes sign. In the second case, we need to add one of the extra hypotheses



4 DAVIDE BIANCHI, ALBERTO G. SETTI, AND RADOS LAW K. WOJCIECHOWSKI

appearing in the first result above to guarantee existence. For the definitions of the various
types of solutions for the Cauchy-GPME and the connections between them, see Section 3.

Theorem 2. Let G = (X,w, κ, µ) be a graph. Let

i) u0 ∈ ℓ1(X,µ);
ii) f ∈ L1

loc

(
[0, T ]; ℓ1 (X,µ)

)
.

If one of the following additional conditions holds:

a) u0, f(t) ≥ 0 (or ≤ 0) for all t ≥ 0;
b) u0 or f(t) changes sign and at least one of (H1), (H2) or (H3) is satisfied;

then there exists a unique mild solution u of the Cauchy-GPME.
Furthermore, u(t) ∈ ℓ1(X,µ) for all t ∈ [0, T ] and for every ϵ > 0 there exists a continuous

function δ : [0,∞) → [0,∞) such that δ(0) = 0 and if uϵ is an ϵ-approximate solution of the
Cauchy-GPME, then

(1.1) ∥u(t)− uϵ(t)∥ ≤ δ(ϵ) for t ∈ [0, T − ϵ].

Moreover, for any pair (u0, f), (û0, f̂), the corresponding mild solutions u, û ∈ C
(
[0, T ]; ℓ1 (X,µ)

)
satisfy

(1.2) ∥u(t2)− û(t2)∥ ≤ ∥u(t1)− û(t1)∥+
∫ t2

t1

∥∥∥f(s)− f̂(s)
∥∥∥ ds, ∀ 0 ≤ t1 < t2 ≤ T.

Finally, under hypothesis a), u(t) ≥ 0 (or ≤ 0) for every t ≥ 0.

The paper is organized in the following way:

• In Section 2 we present the main definitions and describe the tools that we will use.
• In Section 3 we introduce the abstract Cauchy problem along with a classification of
types of solutions.

• Section 4 is the core of the paper: We present the proofs of Theorem 1 and Theorem 2
with an introductory part about the main issues to be addressed. As a concluding
application, in Corollary 4.2 we prescribe some hypotheses on the graph that guarantee
that a mild solution is indeed a classic solution.

Since the proofs involved in Section 4 are technical and rely on several auxiliary results, we
collect them in Appendix A and Appendix B.

2. Preliminaries

In this section we collect background material for the graph setting and the main mathematical
tools that we will use in our proofs.

2.1. Notation. Given a set X and a real function space F ⊆ {u : X → R}, we denote by
id: F → F the identity operator. If ϕ : dom (ϕ) ⊆ R → R is a function, then we denote by the
capital letter Φ the canonical extension of ϕ to F, that is, the operator Φ: dom (Φ) ⊆ F → F
given by

dom (Φ) := {u ∈ F | u(x) ∈ dom (ϕ) ∀x ∈ X} ,
Φu(x) := ϕ(u(x)).

Given a pair of real-valued functions u and v on X, we write u ≥ v if u(x) ≥ v(x) for every
x ∈ X. All other ordering symbols are defined accordingly.



THE GENERALIZED POROUS MEDIUM EQUATION ON GRAPHS 5

Given a real Banach space E = (E, ∥ · ∥), consider an E-valued function f : [0, T ] ⊂ R → E,
t 7→ f(t) ∈ E. Such a function f is called simple if f is of the form

f(t) =
n∑
k=1

ek1Ik(t), ek ∈ E,

where Ik are Lebesgue measurable subsets of [0, T ] and 1Ik is the indicator function of Ik. The
integral of an E-valued simple function is defined by∫ T

0
f(t) dt :=

n∑
k=1

ekm (Ik) ,

where m(·) is the Lebesgue measure on [0, T ]. A function f is (strongly) measurable if there
exists a sequence {fn}n∈N of simple functions such that fn(t) → f(t) in norm for almost every
(a.e.) t in [0, T ].

A strongly measurable function f is Bochner integrable if there exists a sequence of simple
functions such that fn → f pointwise a.e. in [0, T ] and

lim
n→∞

∫ T

0
∥fn(t)− f(t)∥ dt = 0,

or equivalently, by a theorem of Bochner, if and only if
∫ T

0 ∥f(t)∥ dt < ∞. The integral of f is
then defined by ∫ T

0
f(t) dt = lim

n→∞

∫ T

0
fn(t) dt.

We denote the space of Bochner integrable functions from [0, T ] to E by

L1([0, T ];E) :=

{
f : [0, T ] → E measurable |

∫ T

0
∥f(t)∥ dt <∞

}
.

In the same fashion, if T = ∞, we denote by L1
loc([0, T ];E) the space of E-valued functions that

are locally Bochner integrable, that is, f ∈ L1
loc([0, T ];E) if and only if f ∈ L1([0, a];E) for every

a ∈ (0,∞). Clearly, if T <∞, then L1
loc([0, T ];E) = L1([0, T ];E).

A function f ∈ L1
loc([0, T ];E) is weakly differentiable with weak derivative g ∈ L1

loc([0, T ];E)
if ∫ T

0
f(t)η′(t) dt = −

∫ T

0
g(t)η(t) dt, ∀ η ∈ C∞

c (0, T ),

where the integrals are understood in the Bochner sense. The first Sobolev space for locally
Bochner integrable functions is defined as

W 1,1
loc ([0, T ];E) :=

{
f ∈ L1

loc([0, T ];E) | f is weakly differentiable
}
.

Let us point out that f ∈W 1,1
loc ([0, T ];E) if and only if

f(t) = e0 +

∫ t

0
g(s) ds.

Moreover, f is absolutely continuous and a.e. differentiable in [0, T ] with f ′(t) = g(t).
For a review of integration and weak derivatives of vector-valued functions, see, for example,

[74, Chapter 5, Sections 4 and 5] and [10, Chapter 1, Section 4.5].
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Given an operator L : dom(L) ⊆ E → E and a subset Ω ⊆ dom(L), then the restriction of L
to Ω is the operator L|Ω : dom(L|Ω) ⊆ E → E such that

dom(L|Ω) = Ω, L|Ωu = Lu ∀u ∈ Ω.

As a final piece of notation we mention that if E ⊂ {u : X → R}, then we write f(t, x) to
indicate the value of f(t) ∈ E at x ∈ X.

2.2. The graph setting. For a detailed introduction to the graph setting as presented here,
see [44]. We begin with the definition of a graph.

Definition 2.1 (Graph). A graph is a quadruple G = (X,w, κ, µ) given by

• a countable set of nodes X;
• a nonnegative edge-weight function w : X ×X → [0,∞);
• a nonnegative killing term κ : X → [0,∞);
• a positive node measure µ : X → (0,∞)

where the edge-weight function w satisfies:

(A1) Symmetry: w(x, y) = w(y, x) for every x, y ∈ X;
(A2) No loops: w(x, x) = 0 for every x ∈ X;
(A3) Finite sum:

∑
y∈X w(x, y) <∞ for every x ∈ X.

If the cardinality of the node set is finite, i.e., |X| < ∞, then G is called a finite graph,
otherwise, G is called an infinite graph. The non-zero values w(x, y) of the edge-weight function
w are called weights associated with the edge {x, y}. In this case we will write x ∼ y meaning
that x is connected to y. On the other hand, if w(x, y) = 0, then we will write x ≁ y meaning
that x and y are not connected by an edge. A walk is a (possibly infinite) sequence of nodes
{xi}i≥0 such that xi ∼ xi+1. A path is a walk with no repeated nodes. A graph is connected if
there is a finite walk connecting every pair of nodes, that is, for any pair of nodes x, y there is
a finite walk such that x = x0 ∼ x1 ∼ · · · ∼ xn = y. Moreover, we will say that a subset A ⊆ X
is connected if for every pair of nodes x, y ∈ A there exists a finite walk connecting x and y all
of whose nodes are in A. A subset A ⊆ X is a connected component of X if A is maximal with
respect to inclusion.

A graph is said to be locally finite if for every x ∈ X there are at most a finite number of
nodes y such that w(x, y) ̸= 0. We define the degree deg and weighted degree Deg of a node x as

deg(x) :=
∑
y∈X

w(x, y) + κ(x) and Deg(x) :=
deg(x)

µ(x)
.

Clearly, by (A3), deg(x) and Deg(x) are finite for every x ∈ X. Observe that, if κ ≡ 0 and
w(x, y) ∈ {0, 1}, then deg corresponds to the standard definition in the literature on finite graphs
(e.g., [21]).

The set of real-valued functions on X is denoted by C(X) and Cc(X) denotes the set of
functions on X with finite support. As usual, for p ∈ [1,∞] we define the ℓp(X,µ) subspaces as

ℓp(X,µ) :=

{{
u ∈ C(X) |

∑
x∈X |u(x)|pµ(x) <∞

}
for p ∈ [1,∞),

{u ∈ C(X) | supx∈X |u(x)| <∞} for p = ∞
with their norms

∥u∥p :=

{(∑
x∈X |u(x)|pµ(x)

)1/p
for p ∈ [1,∞),

supx∈X |u(x)| for p = ∞
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and with the standard remark that the ℓ2-norm is induced by the inner product

⟨u, v⟩ℓ2 :=
∑
x∈X

u(x)v(x)µ(x)

making ℓ2(X,µ) into a Hilbert space. In general, we will use the convention ∥ · ∥ := ∥ · ∥1 since
we will work almost always with the ℓ1-norm. However, in case of possible ambiguity in the
text, we will specify the norm. In addition to the previous standard definitions, we introduce
the following restrictions to the nonnegative/nonpositive cones:

ℓ1,+ (X,µ) := ℓ1 (X,µ) ∩ {u ∈ C(X) | u ≥ 0} , ℓ1,− (X,µ) := −ℓ1,+ (X,µ) .

We now define the formal graph Laplacian ∆: dom (∆) ⊆ C(X) → C(X) associated to the
graph G = (X,w, κ, µ) by

(2.1a) dom (∆) := {u ∈ C(X) |
∑
y∈X

w(x, y)|u(y)| <∞ ∀x ∈ X},

∆u(x) :=
1

µ(x)

∑
y∈X

w(x, y) (u(x)− u(y)) +
κ(x)

µ(x)
u(x)(2.1b)

= Deg(x)u(x)− 1

µ(x)

∑
y∈X

w(x, y)u(y).

Remark 1. We observe that if u ≥ 0, then ∆u(x) is always defined as an extended real-valued
function taking values in [−∞,∞). Furthermore, if u ≥ 0, then u ∈ dom (∆) if and only if
|∆u(x)| < ∞ for every x ∈ X if and only if ∆u(x) > −∞ for every x ∈ X if and only if∑

y∈X w(x, y)u(y) > −∞ for every x ∈ X.

As we will see in the upcoming sections, it will be useful to deal with subgraphs of a graph.
We start by discussing the notion of the interior and two notions of boundary for a subset of
the node set. Given a graph G = (X,w, κ, µ) and a subset A ⊂ X, then

Å := {x ∈ A | x ≁ y for every y ∈ X \A}

is called the interior of A and the elements of Å are called interior nodes of A. On other hand,
the sets of nodes

∂̊A := {x ∈ A | x ∼ y for some y ∈ X \A} ,
•
∂A := {y ∈ X \A | y ∼ x for some x ∈ A}

are called the interior boundary and the exterior boundary of A, respectively. Although these
notions are rather standard in the graph setting, we illustrate the definitions with an example
in Figure 1.

We next introduce the concept of an induced subgraph.

Definition 2.2 (Induced subgraph). We say that a graph F = (A,w′, κ′, µ′) is an induced
subgraph of G, and we write F ⊂ G, if

• A ⊂ X;
• w′ ≡ w|A×A;

• κ′(x) = κ(x) for every x ∈ Å;
• µ′ ≡ µ|A



8 DAVIDE BIANCHI, ALBERTO G. SETTI, AND RADOS LAW K. WOJCIECHOWSKI

where w|A×A and µ|A denote the restrictions of w and µ to the sets A× A and A, respectively.
We call G the host graph or the supergraph. The corresponding formal graph Laplacian for a
subgraph F is defined according to (2.1a) and (2.1b) where the quadruple (X,w, κ, µ) is replaced

by (A,w′, κ′, µ′). Observe that we do not require that κ′ ≡ κ on ∂̊A. Different choices of κ′

on ∂̊A will produce different subgraphs. We say that F is the canonical induced subgraph if
κ′ = κ|A.

Remark 2. Our notion of induced subgraph is intrinsically related to the killing term κ′. If we
do not consider any κ, then the definition of induced subgraph is equivalent to the classical one,
see for example [21, Definition 2.2].

Of particular interest is the killing term κdir that arises from “Dirichlet boundary conditions.”

Definition 2.3 (Dirichlet subgraph). An induced subgraph

Gdir :=
(
A,w|A×A, κdir, µ|A

)
⊂ G

is called a Dirichlet subgraph if

(2.2)

{
κdir(x) := κ|A(x) + bdir(x),

bdir(x) :=
∑

y∈
•
∂A
w(x, y) =

∑
y ̸∈Aw(x, y).

We note that bdir : A→ R is finite because of (A3). We call bdir the boundary (Dirichlet) weight-

function and κdir the Dirichlet killing term. Clearly, bdir(x) = 0 for every x ∈ Å. We will denote
by ∆dir the graph Laplacian of Gdir in order to distinguish it from the graph Laplacian of G.

x8

x6 x5

x7 x9

x4

x3x0

x1 x2

x8

x6 x5

x7 x9

x4

x3x0

x1 x2

Figure 1. Example of a connected graph G = (X,w, κ, µ) (in the left picture)
with X = {xi | i = 0, . . . , 9} and a proper subset A = {x4, x5, x6, x7, x8, x9}. A
black line between two nodes xi, xj ∈ X means that xi ∼ xj . In the right picture,

the interior Å = {x5, x6, x8} is colored in green while the interior boundary

∂̊A = {x4, x7, x9} is colored in light green. The nodes in the exterior boundary
•
∂A = {x0, x3} ⊆ X \A are colored in light gray.
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x8

x6 x5

x7 x9

x4

x3x0

x1 x2

x8

x6 x5

x7 x9

x4

x3x0

x1 x2

bdir

bdir bdir

bdir

Figure 2. Continuation of the example in Figure 1. The left picture gives
a canonical induced subgraph F ⊂ G: In general, F is not “affected” by the
complementary set X \ A since the weights of the edges lying in X \ A do not
influence the graph F . The right picture gives instead a Dirichlet subgraph Gdir:
Due to the presence of the Dirichlet weight function bdir the subgraph Gdir is still
affected by the complementary set X \A.

The Dirichlet killing term describes the edge deficiency of nodes in Gdir compared to the
same nodes in G, see Figure 2. The name “Dirichlet” in the above definition comes from the
following observation, see, for example, [43, pg. 197 and Proposition 2.4] and [44, Proposition
2.23]: Let i : C(A) ↪→ C(X) be the canonical embedding and π : C(X) → C(A) be the canonical
projection, i.e.,

(2.3) iv(x) =

{
v(x) if x ∈ A,

0 if x ∈ X \A,
πu = u|A.

Under some mild assumptions, it is almost straightforward to prove, see Lemma A.1, that

• ∆dirv(x) = ∆iv(x) for v ∈ dom(∆dir) and x ∈ A;
• ∆u(x) = ∆dirπu(x) for u ∈ dom (∆) ∩ {u ∈ C(X) | u ≡ 0 on X \A} and x ∈ A.

Therefore, the Dirichlet graph Laplacian ∆dir can be viewed as the restriction of ∆ having
imposed Dirichlet conditions on the exterior boundary of A.

2.3. m-accretive operators. In preparation for Section 4, we introduce here the fundamen-
tal tools that will play a major role in the proofs of existence and uniqueness of solutions to
the Cauchy-GPME in the discrete setting. We begin by giving two equivalent definitions of
accretivity. As a reference for this topic, see for example [16].

Definition 2.4 (Accretive and m-accretive operators). If E = (E, ∥ · ∥) is a real Banach space
and L : dom(L) ⊆ E → E is a (not necessarily linear) operator, then L is said to be accretive if
L satisfies one of the following equivalent conditions:

(i) ∥(u− v) + λ (Lu− Lv)∥ ≥ ∥u− v∥ for every u, v ∈ dom (L) and for every λ > 0.
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(ii) ⟨Lu− Lv, u− v⟩+ ≥ 0 for every u, v ∈ dom (L) where for z, k ∈ E

⟨z, k⟩+ := ∥k∥ lim
λ→0+

λ−1 (∥k + λz∥ − ∥k∥) .

Concerning the well-posedness of condition (ii) and its application to ℓp-spaces, see Remark 3
below. An accretive operator L is called m-accretive if id+λL is surjective for every λ > 0.

Accretive operators are called monotone operators in the Hilbert space setting. Accretivity
is a way to extend the property of monotonicity of real-valued functions of a real variable to
spaces with a more complex structure. This follows by the trivial observation that a map
f : dom(f) ⊆ R → R is monotone (increasing) if and only if (f(s1)− f(s2)) (s1 − s2) ≥ 0 for all
s1, s2 ∈ dom(f).

Let us highlight that m-accretivity is related to the self-adjointness of linear operators in the
Hilbert case setting. Indeed, a linear operator L on a Hilbert space is self-adjoint and nonnegative
if and only if L is symmetric, closed and m-accretive (by the Minty theorem, m-accretive and
maximal monotone are equivalent properties in Hilbert spaces), see [42, Problem V.3.32]. In this
context, we note that there has been recent interest in the graph setting concerning the essential
self-adjointness of the formal Laplacian and related operators restricted to finitely supported
functions, see, for example, [35, 36, 41, 43, 58, 59, 60, 63, 72]. Concerning the m-accretivity of
the graph Laplacian we also highlight a couple of recent results: The first is obtained in [59],
where the authors establish the m-accretivity on ℓp(X,µ) for 1 ≤ p < ∞ in the more general
setting of Hermitian vector bundles, under some hypotheses on the graph. The second result is
obtained in [2] where the authors prove a criterion for the m-accretivity of a graph Laplacian
(not necessarily self-adjoint) on directed graphs in the Hilbert case.

Remark 3. Let us observe that condition (ii) in Definition 2.4 is well-posed. First of all, for
λ > 0

−∥z∥ ≤ ∥k + λz∥ − ∥k∥
λ

≤ ∥z∥.

Then we observe that, for every 0 < s < λ,

∥k + sz∥ − ∥k∥ =
∥∥∥(1− s

λ

)
k +

s

λ
(k + λz)

∥∥∥− ∥k∥ ≤
(
1− s

λ

)
∥k∥+ s

λ
∥k + λz∥ − ∥k∥

=
s

λ
(∥k + λz∥ − ∥k∥) ,

i.e., the map λ 7→ λ−1 (∥k + λz∥ − ∥k∥) is monotone increasing in λ > 0. Therefore,

lim
λ→0+

λ−1 (∥k + λz∥ − ∥k∥)

exists and belongs to [−∥z∥, ∥z∥].
Now, let us fix E = ℓp(X,µ) with p ∈ [1,∞). By the convexity of the map t 7→ |t|p, for every

λ ∈ (0, 1] we get

|k ± λz|p − |k|p

λ
=

|(1− λ)k + λ(k ± z)|p − |k|p

λ
≤ |k ± z|p − |k|p

and

|k|p − |k − λz|p ≤ |k + λz|p − |k|p
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where the second inequality can be easily derived by |f +g|p ≤ 2p−1(|f |p+ |g|p) with f := k−λz
and g := k + λz. Combining these inequalities gives

|k|p − |k − z|p ≤ |k|p − |k − λz|p

λ
≤ |k + λz|p − |k|p

λ
≤ |k + z|p − |k|p ∀λ ∈ (0, 1],

that is, λ−1||k + λz|p − |k|p| is dominated by an integrable function. Then, by the mean value
theorem and dominated convergence, for every p ≥ 1 (and ∥k∥p ̸= 0) we get

lim
λ→0+

λ−1 (∥k + λz∥p − ∥k∥p) = lim
λ→0+

λ−1
(
(∥k + λz∥pp)1/p − (∥k∥pp)1/p

)
=

1

p
(∥k∥pp)

1
p
−1

lim
λ→0+

∑
x∈X

|k(x) + λz(x)|p − |k(x)|p

λ
µ(x)

=


∥k∥1−p

p
∑

x∈X z(x)|k(x)|p−1 sgn(k(x))µ(x) for p > 1,∑
x∈X :
k(x)=0

|z(x)|µ(x) +
∑

x∈X :
k(x)̸=0

z(x) sgn(k(x))µ(x) for p = 1

where

(2.4) sgn(s) :=


1 if s > 0,

0 if s = 0,

−1 if s < 0.

Summarizing, for E = ℓp(X,µ) with p ∈ [1,∞),

(2.5) ⟨z, k⟩+ =


∥k∥2−p

p
∑
x∈X

z(x)k(x)|k(x)|p−2µ(x) if p > 1,

∥k∥1

 ∑
x∈X :
k(x)=0

|z(x)|µ(x) +
∑

x∈X :
k(x)̸=0

z(x) sgn(k(x))µ(x)

 if p = 1.

A simple example of an m-accretive operator is the graph Laplacian on finite graphs with
respect to the ℓp-norm. This result should be well-known but for completeness we give a proof
in the following proposition.

Proposition 2.5. Let G be a finite graph. Then, the graph Laplacian ∆ on ℓp(X,µ) is m-
accretive for p ≥ 1. In particular,

∥(id+λ∆)u∥p ≥ ∥u∥p for every u ∈ C(X), λ > 0.

Proof. Fix p ∈ (1,∞). Applying the linearity of ∆ and (2.5) of Remark 3, ∆ is accretive if and
only if

∥u∥2−p
p

∑
x∈X

∆u(x)u(x)|u(x)|p−2µ(x) ≥ 0.
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Using the fact that the sum is finite, we have∑
x∈X

∆u(x)u(x)|u(x)|p−2µ(x)

=
∑
x∈X

u(x)|u(x)|p−2
∑
y∈X

w(x, y)(u(x)− u(y)) +
∑
x∈X

κ(x)|u(x)|p

≥
∑
x∈X

∑
y∈X

w(x, y)(|u(x)|p − u(y)u(x)|u(x)|p−2)

≥ 1

2

∑
x,y∈X

w(x, y)(|u(x)|p + |u(y)|p − |u(x)|p−1|u(y)| − |u(x)||u(y)|p−1).

The conclusion now follows from the following inequality

ap + bp − ap−1b− abp−1 ≥ 0 ∀ a, b ≥ 0, ∀ p ∈ (1,∞)

which can be established by elementary calculus as we now show. The inequality holds for a = 0
or b = 0, so assuming that b > 0, dividing through by bp and setting t := a/b, it is equivalent to
prove that

β(t) := tp + 1− tp−1 − t ≥ 0 for t ≥ 0.

Note that β(0) = 1 and β(t) → ∞ as t→ ∞. We have

β′(t) = ptp−1 − (p− 1)tp−2 − 1

and thus
β′(t) < 0 for all t small, β′(1) = 0, β′(t) → ∞ as t→ ∞.

Moreover,

β′′(t) = p(p− 1)tp−2 − (p− 1)(p− 2)tp−3 = p(p− 1)tp−3

(
t− p− 2

p

)
.

Thus, if 1 < p ≤ 2, then β′′ ≥ 0 and β′ is increasing. If p > 2, then

β′′(t) < 0 for t <
p− 2

p
< 1, β′′(t) ≥ 0 for t ≥ p− 2

p
.

Hence, β′ is decreasing until (p− 2)/p and increasing afterwards. In any case, β′(t) < 0 for t < 1
and β′(t) > 0 for t > 1, so

min
t>0

β(t) = β(1) = 0.

By the equivalence between (ii) and (i) of Definition 2.4, we then have

∥(id+λ∆)u∥p ≥ ∥u∥p for every u ∈ C(X), λ > 0.

We conclude the lemma for p ∈ (1,∞) by noticing that id+λ∆ injective and C(X) finite imply
that id+λ∆ surjective by linearity. The case p = 1 is addressed in the more general case of
Corollary B.3 in Appendix B. □

As a final comment, we observe that if two operators are accretive on a given Banach space,
this will not automatically imply that the composition (if defined) of the two operators is accre-
tive. See the following simple example.

Example. Consider the finite birth-death chain G = (X,w, κ, µ) (see Figure 3) with

• X = {x1, x2, x3, x4};
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x1 x2 x3 x4
w(x3, x4)w(x2, x3)w(x1, x2)

Figure 3. Visual representation of the graph G of the Example 2.3.

• w(xi, xj) = 1 if and only if |i− j| = 1 and zero otherwise;
• κ ≡ 0;
• µ ≡ 1.

Define now ϕ : R → R by ϕ(s) := s|s|3. Since ϕ is monotone, thanks to Remark 3, Φ,
the canonical extension of ϕ to ℓ2(X,µ), is accretive. Consider now the graph Laplacian
∆: ℓ2 (X,µ) → ℓ2 (X,µ) associated to G which in this case acts as

∆u(xi) =


u(x1)− u(x2) if i = 1,

2u(xi)− u(xi−1)− u(xi+1) if i = 2, 3,

u(x4)− u(x3) if i = 4.

By Proposition 2.5, ∆ is accretive.
On the other hand, the operator L := ∆Φ is not accretive. Indeed, a computation shows that

if u and v are defined by

u(xi) =


3, for i = 1,

4, for i = 2,

0 otherwise,

v(xi) =

{
3, for i = 2,

0 otherwise,

then
⟨Lu− Lv, u− v⟩ℓ2 = −13 < 0

and therefore L is not accretive as claimed.

As it is shown in Corollary B.3, the operator L = ∆Φ is accretive on ℓ1(X,µ) for every finite
graph. This result and the above example show that accretivity is a property related not only
to the action of the operator but to the norm on the underlying space as well.

3. The Cauchy model problem

Let f : (0, T ) × X → R and u0 : X → R. Given a graph G, let us consider the following
Cauchy problem for the generalized porous medium equation (GPME) (or filtration equation):

Problem:

Cauchy-GPME

{
∂tu(t, x) + ∆Φu(t, x) = f(t, x) for every (t, x) ∈ (0, T )×X,

limt→0+ u(t, x) = u0(x) for every x ∈ X

where Φ: C(X) → C(X) is the canonical extension of a function ϕ : R → R such that ϕ is
strictly monotone increasing, ϕ(R) = R and ϕ(0) = 0. If ϕ(s) = sm := s|s|m−1, then we will
call the above equation the porous medium equation (PME) when m > 1 and the fast diffusion
equation (FDE) when 0 < m < 1. Clearly, when m = 1 and f ≡ 0 we recover the classic heat
equation. The function f is called the forcing term. For notational convenience, we specify
the time interval (0, T ) but everything we will say can be generalized to any (not necessarily
bounded above) interval (a, b) ⊂ R.
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The “+” sign in our equation comes from the fact that we are considering the formal graph
Laplacian which corresponds to minus the second derivative in the Euclidean case.

We now introduce the various classes of solutions for the Cauchy-GPME problem in order of
increasing regularity. The weakest notion of solution is obtained by means of a discretization and
approximation procedure in the time variable. More precisely, we first need to discretize the time
interval (0, T ) with respect to the forcing term f such that the corresponding time-discretization
fn of f is “close”to f in a way that will be made clear next.

Definition 3.1 (ϵ-discretization). Given a time interval [0, T ] with T < ∞ and a forcing term
f ∈ L1([0, T ]; ℓ1 (X,µ)), we define a partition of the time interval

Tn := {{tk}nk=0 | 0 = t0 < t1 < . . . < tn ≤ T}

and a time-discretization fn of f

fn :=
{
{fk}nk=1 | fk ∈ ℓ1(X,µ), fk(x) := f(tk, x)

}
.

Having fixed ϵ > 0, we call Dϵ := (Tn,fn) an ϵ-discretization of ([0, T ]; f) if

• tk − tk−1 ≤ ϵ for every k = 1, . . . , n and T − tn ≤ ϵ;

•
∑n

k=1

∫ tk
tk−1

∥f(t)− fk∥ dt ≤ ϵ.

Remark 4. Definition 3.1 is well-posed. If f ∈ L1([0, T ]; ℓ1 (X,µ)), then for every ϵ > 0 there
exists an ϵ-discretization Dϵ of ([0, T ]; f), see [22, Lemma 4.1].

Now, given an ϵ-discretization Dϵ, consider the following system of difference equations which
arises from an implicit Euler-discretization of the Cauchy-GPME:

(3.1)
uk − uk−1

λk
+∆Φuk = fk, λk := tk − tk−1 and k = 1, . . . , n

with u0 given. Writing L = ∆Φ, we then require that every uk belongs to

dom(L) =
{
u ∈ ℓ1 (X,µ) | Φu ∈ dom (∆) ,∆Φu ∈ ℓ1 (X,µ)

}
.

Definition 3.2 (ϵ-approximate solution). If the system (3.1) admits a solution uϵ = {uk}nk=1
such that uk ∈ dom(L) for every k = 1, . . . , n, then we define uϵ as the piecewise constant
function

(3.2) uϵ(t) :=

{∑n
k=1 uk1(tk−1,tk](t) for t ∈ (0, tn],

u0 for t = 0

and we call uϵ an ϵ-approximate solution of the Cauchy-GPME (subordinate to Dϵ).

We then have the following definition of a mild solution which first appeared as a formal
definition in [14]. It can be viewed as a uniform limit of “numerical approximations” to solutions
of the Cauchy-GPME obtained by the system of difference equations (3.1).

Definition 3.3 (Mild solution). If T < +∞, we say that u : [0, T ] → ℓ1 (X,µ) is a mild solution
of the Cauchy-GPME problem if u ∈ C

(
[0, T ]; ℓ1 (X,µ)

)
and u is obtained as a uniform limit of

ϵ-approximate solutions. Namely, for every ϵ > 0 there exists an ϵ-discretization Dϵ of ([0, T ]; f),
as in Definition 3.1, and an ϵ-approximate solution uϵ subordinate to Dϵ, as in (3.2), such that

∥u(t)− uϵ(t)∥ < ϵ for every t ∈ [0, tn] ⊆ [0, T ].
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If T = +∞, then we say that u is a mild solution of the Cauchy-GPME if the restriction of u
to each compact subinterval [0, a] ⊂ [0,+∞) is a mild solution of the Cauchy-GPME on [0, a].

We next introduce two further classes of solutions, namely, strong and classic solutions. Fol-
lowing the definitions, we will discuss the relationship between these notions.

Definition 3.4 (Strong solution). We say that u : [0, T ] → ℓ1 (X,µ) is a strong solution of the
Cauchy-GPME problem if

• u(t) ∈ dom(L) for every t ∈ [0, T ];

• u ∈ C
(
[0, T ]; ℓ1 (X,µ)

)
∩W 1,1

loc ((0, T ); ℓ
1 (X,µ));

• ∂tu(t, x) + ∆Φu(t, x) = f(t, x) for almost every t ∈ (0, T );
• u(0) = u0.

Definition 3.5 (Classic solution). We say that u : [0, T ] → ℓ1 (X,µ) is a classic solution of the
Cauchy-GPME problem if

• u(t) ∈ dom(L) for every t ∈ [0, T ];
• u ∈ C

(
[0, T ]; ℓ1 (X,µ)

)
∩ C1

(
(0, T ); ℓ1 (X,µ)

)
;

• ∂tu(t, x) + ∆Φu(t, x) = f(t, x) for every t ∈ (0, T );
• u(0) = u0.

In the literature, mild solutions are also known by other names: they are called limit solutions
in [48] and weak solutions in [46]. In [5], P. Bénilan and H. Brézis introduced the definition of
faible (i.e., weak) solutions of the abstract Cauchy problem

(3.3)

{
∂tu(t) +Au(t) = f(t) for t ∈ (0, T ),

u(0) = u0

as a uniform limit of strong solutions un of (3.3) with f replaced by fn where fn → f in
L1([0, T ];E).

Clearly, a classic solution is a strong solution. The fact that a strong solution is a mild solution
assuming that f ∈ L1

loc([0, T ]; ℓ
1 (X,µ)) is a standard result, e.g. [6, Theorem 1.4]. Therefore,

assuming f is strongly measurable and locally Bochner integrable, we have compatibility of the
three different definitions in the sense that classic solution ⇒ strong solution ⇒ mild solution
in order of descending “regularity.” As a final remark, we observe that a mild solution may
not be differentiable and does not necessarily satisfy the Cauchy-GPME in a pointwise sense.
Nonetheless, this notion is known as the most natural one of the generalized notions of solutions
of (3.3).

4. Existence and uniqueness of mild solutions

The theory of nonlinear operators on Banach spaces is well-established. We refer the interested
reader to [48, Chapter 3], [3, Chapter 4] or [1, Appendix A] and references therein for well-
organized summaries of all of the main results.

If the operator L = ∆Φ is accretive and such that for every ϵ > 0 there exists an ϵ-approximate
solution as in Definition 3.2, then it is possible to infer the existence and uniqueness of mild
solutions for the Cauchy-GPME, relying on some consequences of a result due to P. Bénilan,
see [4] and [6, Theorem 3.3], which is an extension of the famous Crandall-Liggett theorem,
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see [15]. The main idea is the following: Given u0 ∈ ℓ1 (X,µ) and an ϵ-discretization Dϵ as in
Definition 3.1, then solving system (3.1) means solving the equation

(id+λk∆Φ)uk = uk−1 + λkfk

with

uk ∈ ℓ1 (X,µ) , Φuk ∈ dom(∆), ∆Φuk ∈ ℓ1(X,µ)

for every k = 1, . . . , n where λk > 0 and fk ∈ ℓ1 (X,µ). This is doable, in particular, if

(4.1) (id+λ∆Φ)u = g

is solvable for any g ∈ ℓ1(X,µ), λ > 0 and the solution u ∈ ℓ1(X,µ) is such that Φu ∈ dom(∆)
and ∆Φu ∈ ℓ1(X,µ). Therefore, if L is m-accretive, then we would get existence and uniqueness
of mild solutions in one step.

For example, in Euclidean case, when X = Ω is a bounded domain in Rn, then the accretivity
property holds for L := ∆Φ defined on

dom (L) :=
{
u ∈ L1 (Ω) | Φ(u) ∈W 1,1

0 (Ω),∆Φu ∈ L1(Ω)
}

where the Laplace operator ∆ is understood in the sense of distributions. The difficult part is
to prove the m-accretivity, i.e., to prove that for every g ∈ L1(Ω) there exists u ∈ dom (L) that
is a solution for equation (4.1) for any λ > 0. To circumvent the direct approach, it is common
to switch to an equivalent formulation, namely, having defined v := Φu and u = Ψv = Φ−1v,
the question is whether the equation

(Ψ + λ∆)v = g

admits a solution v in {
v ∈W 1,1

0 (Ω) | ∆v ∈ L1(Ω)
}
.

The positive answer to this question in the Euclidean case was given by H. Brézis and W.
Strauss in [9]. In particular, the trick of this approach is to relate the m-accretive property of
the nonlinear operator L to suitable properties of the linear operator ∆ which is easier to handle.

The main issue in the discrete setting is to prove existence of solutions under minimal as-
sumptions on the underlying graph G. Indeed, while the accretivity of L can be established for
any finite graph, see Corollary B.3 in Appendix B, the accretivity of L can be a tricky property
to prove for more general graphs. Moreover, the hypothesis required to make use of the result in
[9], which are satisfied by the Euclidean Laplacian ∆ over bounded domains Ω, are, in general,
not satisfied by the graph Laplacian. Consequently, we are forced to step back and to prove
“by hand” the existence of ϵ-approximate solutions uϵ(t) for every ϵ > 0 with the property that
uϵ(t) belongs to a dense subset of dom(L) where L is accretive.

The idea is to find a solution u to (id+λ∆Φ)u = g by building u as a limit of a sequence
{Ψvn} where the vn are solutions of (Ψ + λ∆n)vn = gn on suitable restrictions of the graph G
to finite subgraphs. In particular, we will see that this can be achieved by decomposing G as an
infinite ascending chain {Gdir,n}∞n=1 of finite connected Dirichlet subgraphs.

After this introduction, we are now ready to prove our main results. In Theorem 1 we will
prove the accretivity of the operator L on a suitable dense subset of dom(L) and the surjectivity
of id+λL on the non-negative/positive cones of ℓ1(X,µ) and, under three different additional
hypotheses, on the entire space ℓ1(X,µ). In Theorem 2 we will then establish the existence and
uniqueness of mild solutions for the Cauchy-GPME problem. As a concluding application, in
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Corollary 4.2, we prescribe some hypotheses on the graph that guarantee that a mild solution
is indeed a classic solution.

4.1. Proofs of the main theorems. Let us recall that L is the operator

L : dom (L) ⊆ ℓ1 (X,µ) → ℓ1 (X,µ) ,

dom (L) =
{
u ∈ ℓ1 (X,µ) | Φu ∈ dom (∆) , ∆Φu ∈ ℓ1 (X,µ)

}
whose action is given by

Lu = ∆Φu,

and that for a subset Ω ⊆ dom (L), we write L|Ω for the restriction of L to Ω. The extra
hypotheses listed in Theorem 1 are

(H1) G is locally finite;
(H2) infx∈X µ(x) > 0;

(H3) supx∈X

∑
y∈X w(x,y)

µ(x) <∞ and Φ(ℓ1(X,µ)) ⊆ ℓ1(X,µ).

Proof of Theorem 1. We divide the proof into several steps. From Steps 0 to IV we will
assume thatG is connected. To help orient the reader, we first give a brief outline of the structure
of the proof: In Step 0, we will introduce a sequence of operators Ln : Cc(X) → ℓ1(X,µ) and
discuss that for every graph G there exists a dense subset Ω ⊆ dom(L) where L is accretive.
Later, we will show that all solutions of the equation (id+λL)u = g that we construct along the
way belong to Ω. In Step I, assuming that G is finite, we will prove that id+λL is surjective
and preserves nonnegativity/nonpositivity and also give an upper bound of the norm of the
solutions with respect to g. This step plays a crucial role in proving the surjectivity of id+λL in
the infinite case where we will approximate the graph G by an ascending chain of finite Dirichlet
subgraphs. In Step II, given λ > 0 and g ∈ ℓ1(X,µ), we will show that there exists a sequence
of compactly supported functions un and u ∈ ℓ1(X,µ) such that limn→∞ ∥un − u∥ = 0 and
limn→∞ ∥(in,∞ idn πn + λLn)un − g∥ = 0. Using this construction, in Step III we will show
that u solves (id+λL)u = g for every g ∈ ℓ1,±(X,µ) and that u ∈ Ω. In Step IV-H1,-H2,-H3
we will prove that u solves (id+λL)u = g for every g ∈ ℓ1(X,µ) and that u ∈ Ω under any one
of the three different assumptions (H1), (H2) and (H3). Finally, in Step V we remove the
assumption of connectedness that we used while proving Steps 0 to IV.

Step 0 (When G is connected, there exists a dense subset Ω of dom(L) where L|Ω is accretive):
This is exactly the content of Lemma B.8 in Appendix B. To help orient the reader, we recall
here the notations involved and the definition of Ω. If G is finite, then Ω = dom(L) = C(X).
If G is infinite, we take an exhaustion {Xn}∞n=1 of X, i.e., a sequence of subsets Xn of X such
that Xn ⊆ Xn+1 and X = ∪∞

n=1Xn, where we assume that each Xn is additionally finite, along
with the canonical embedding in,∞ and the canonical projection πn for each Xn:

in,∞ : C(Xn) → C(X) in,∞u(x) :=

{
u(x) if x ∈ Xn,

0 if x ∈ X \Xn;

πn : C(X) → C(Xn) πnu(x) := u(x) for every x ∈ Xn.

At this point, the exhaustion {Xn}∞n=1 can be arbitrary but should consist of finite sets. We
then define the operators Ln as in Definition B.1, namely,

Ln : dom (Ln) ⊆ ℓ1 (X,µ) → ℓ1 (X,µ)
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with

dom (Ln) := Cc(X), Lnu := in,∞∆dir,nΦπnu

where ∆dir,n is the graph Laplacian associated to the Dirichlet subgraph Gdir,n ⊆ G on the node
set Xn. Then, the set Ω is defined as

Ω := {u ∈ dom(L) | ∃ {un}n s.t. suppun ⊆ Xn, lim
n→∞

∥un − u∥ = 0, lim
n→∞

∥Lnun − Lu∥ = 0}

where suppun denotes the support of the function un. We have Ω = dom(L) = ℓ1(X,µ) by
Lemma B.7 and that L|Ω is accretive by Lemma B.8.

Step I (WhenG is finite and connected, id+λL is bijective and preserves nonnegativity/nonpositivity):
Assume that G is finite and connected, i.e., |X| = n. In this case,

dom(∆) = C(X) ≃ Rn, ℓ1 (X,µ) = (C(X), ∥ · ∥) with ∥u∥ =
∑
x∈X

|u(x)|µ(x).

Fix now λ > 0. Writing ψ := ϕ−1 and v := Φu, we can rewrite equation

(4.2) (id+λ∆Φ)u = g

in the equivalent form

(4.3) (Ψ + λ∆)v = g.

Clearly, ψ is strictly monotone increasing, ψ(R) = R and ψ(0) = 0.
Let us enumerate the nodes of X, that is, we write X = {x1, x2, . . . , xn}. Owing to the

isomorphism between C(X) and Rn, we identify n-dimensional vectors and real-valued functions
onX in the standard way, that is, given v ∈ C(X) we associate to v the vector v = (v1, . . . , vn) :=
(v(x1), . . . , v(xn)) and vice-versa. Define M : Rn → Rn by

Mv := (Ψ + λ∆)v.

Let us observe that:

i) (Ψv)i = ψ(vi) for every i = 1, . . . , n where ψ : R → R is surjective and strictly monotone
increasing;

ii) For every λ > 0, λ∆ is a diagonally dominant matrix (e.g., [39, Definition 6.1.9]), i.e.,

(λ∆)i,i =
λ

µ(xi)

κ(xi) + n∑
j=1
j ̸=i

w(xi, xj)

 ≥ λ

µ(xi)

n∑
j=1
j ̸=i

w(xi, xj) =
n∑
j=1
j ̸=i

∣∣∣(λ∆)i,j

∣∣∣ , ∀ i = 1, . . . , n.

Therefore, by [71, Theorem 1], for every g ∈ Rn there exists a unique solution v to the equation

Mv = g.

We now show that the norm of the solution is bounded above by the norm of g. Let v be the
solution of (4.3) with right-hand side g. Since ψ is strictly monotone increasing and ψ(0) = 0,
we get

sgn (v(x)) = sgn (Ψv(x)) .
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By Proposition B.2, and recalling that v = Φu, i.e., u = Ψv, it follows that∑
x∈X

∆v(x) sgn (Ψv(x))µ(x) =
∑
x∈X :
u(x)̸=0

∆Φu(x) sgn (u(x))µ(x) ≥ 0.

Therefore, we conclude

∥u∥ = ∥Ψv∥ =
∑
x∈X

|Ψv(x)|µ(x)(4.4)

=
∑
x∈X

Ψv(x) sgn (Ψv(x))µ(x)

=
∑
x∈X

g(x) sgn (Ψv(x))µ(x)− λ
∑
x∈X

∆v(x) sgn (Ψv(x))µ(x)

≤
∑
x∈X

g(x) sgn (Ψv(x))µ(x)

≤ ∥g∥.

By Case 2) of Theorem A.2, if g ≥ 0, then v ≥ 0, and if g ≤ 0, then v ≤ 0. Consequently,
u = Ψv has the same sign as g. Therefore, if G is finite we can conclude that for every
g ∈ ℓ1,±(X,µ), the unique solution u of (4.2) belongs to ℓ1,±(X,µ) and satisfies ∥u∥ ≤ ∥g∥.

Step II (Constructing a solution when G is infinite and connected): We want to show that if G
is infinite and connected, then for every fixed λ > 0 and g ∈ ℓ1(X,µ) there exists u ∈ ℓ1(X,µ)
and a sequence {un}n such that

(4.5a) suppun ⊆ Xn;

(4.5b) lim
n→∞

∥un − u∥ = 0;

(4.5c) lim
n→∞

∥ (in,∞ idn πn + λLn)un − g∥ = 0

where idn is the identity operator on C(Xn). We divide this step into two sub-steps consisting
of the cases when g is nonnegative (or nonpositive) and then general g.

Step II-1 (g ∈ ℓ1,±(X,µ)): Assume that g ∈ ℓ1,+(X,µ). By Lemma A.4, we can choose the
exhaustion {Xn}∞n=1 with the following additional properties:

(4.6) Xn ⊂ Xn+1, X =
∞⋃
n=1

Xn

and such that the set

(4.7) {x ∈ Xn | x ∼ y for some y ∈ Xn+1 \Xn}
is not empty for all n. For each n, we define the subgraph

(4.8) Gdir,n = (Xn, wn, κdir,n, µn) ⊂ G

as a Dirichlet subgraph of G, see Definition 2.3. That is,

• wn ≡ w|Xn×Xn
;

• µn ≡ µ|Xn
;
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• for every x ∈ Xn, bdir,n(x) =
∑

y∈
•
∂Xn

w(x, y);

• for every x ∈ Xn, κdir,n(x) = κ|Xn
(x) + bdir,n(x).

If we define

∂̊Xn,n+1 := {x ∈ Xn | ∃y ∈ Xn+1 \Xn such that x ∼ y},
•
∂Xn,n+1 := {y ∈ Xn+1 \Xn | ∃x ∈ Xn such that x ∼ y}

which are not empty by construction and

b′dir,n(x) =
∑

y∈
•
∂Xn,n+1

w(x, y)

then, for every x ∈ Xn, it holds that

κdir,n(x) = κ|Xn
(x) + bdir,n(x)

= κ|Xn
(x) +

∑
y∈

•
∂Xn

w(x, y)

= κ|Xn+1
(x) +

∑
y∈X\Xn

w(x, y)

= κ|Xn+1
(x) +

∑
y∈X\Xn+1

w(x, y) +
∑

y∈Xn+1\Xn

w(x, y)

= κ|Xn+1
(x) +

∑
y∈

•
∂Xn+1

w(x, y) +
∑

y∈
•
∂Xn,n+1

w(x, y)

= κ|Xn+1
(x) + bdir,n+1(x) + b′dir,n(x)

= κdir,n+1(x) + b′dir,n(x).

So, the collection {Gdir,n}n∈N is a sequence of connected finite Dirichlet subgraphs such that
each subgraph Gdir,n is a Dirichlet subgraph of Gdir,n+1, that is,

Gdir,1 ⊂ . . . ⊂ Gdir,n ⊂ Gdir,n+1 ⊂ . . . ⊂ G.

Denoting by

in : C(Xn) ↪→ C(Xn+1), in,∞ : C(Xn) ↪→ C(X), πn : C(X) → C(Xn)

the canonical embeddings and projections, respectively, define

gn := πng where g ∈ ℓ1,+(X,µ).

From Step I, for every n ∈ N there exist v̂n ∈ C(Xn) such that v̂n ≥ 0 and

(4.9) (Ψ + λ∆dir,n)v̂n = gn.

Setting

qn(x) := (Ψ + λ∆dir,n+1)inv̂n(x) ∈ C(Xn+1)

by Lemma A.1, and the fact that every Gdir,n is a Dirichlet subgraph of Gdir,n+1, we have

(Ψ + λ∆dir,n+1)inv̂n(x) = (Ψ + λ∆dir,n)v̂n(x) ∀x ∈ Xn
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and

qn(x) =


gn(x) if x ∈ Xn,

− λ
µ(x)

∑
y∈Xn

w(x, y)v̂n(y) if x ∈
•
∂Xn,n+1,

0 if x ∈ Xn+1 \ (Xn ∪
•
∂Xn,n+1).

Since 0 ≤ v̂n and 0 ≤ gn+1, it follows that qn(x) ≤ gn+1(x) for every x ∈ Xn+1 \ Xn. In
particular, from the fact that gn+1(x) = gn(x) for every x ∈ Xn, we get qn ≤ gn+1. By Corollary
A.3, we have inv̂n ≤ v̂n+1, and by the fact that ψ is monotone increasing and ψ(0) = 0, we have

Ψinv̂n ≤ Ψv̂n+1 and Ψinv̂n(x) = inΨv̂n(x) =

{
ψ(v̂n(x)) if x ∈ Xn,

0 if x ∈ Xn+1 \Xn.

Therefore, inΨv̂n ≤ Ψv̂n+1. In particular, we get

in,∞v̂n(x) = in+1,∞inv̂n(x) ≤ in+1,∞v̂n+1(x),(4.10)

in,∞Ψv̂n(x) = in+1,∞inΨv̂n(x) ≤ in+1,∞Ψv̂n+1(x)(4.11)

for every x ∈ X. Moreover, writing ûn(x) = ψ (v̂n(x)) ≥ 0 for every x ∈ Xn and indicating by
∥ · ∥n the restriction of ∥ · ∥ to C(Xn) from (4.4) we have

0 ≤ ûn(x)µ(x) ≤
∑
x∈Xn

ûn(x)µ(x)

= ∥ûn∥n ≤ ∥gn∥n ≤ ∥g∥,
that is, for every fixed x, ûn(x) is bounded uniformly in n. In particular, writing

vn := in,∞v̂n ∈ Cc(X) and un := in,∞ûn ∈ Cc(X)

it follows that

(4.12) Ψvn(x) = un(x) ∈
[
0,

∥g∥
µ(x)

]
.

Consequently, by (4.11) and (4.12), for every fixed x ∈ X we have a sequence

(4.13) {un(x)}n := {Ψvn(x)}n
that is monotonic and bounded. We can then define u, v ∈ C(X) such that

u(x) := lim
n→∞

un(x) for x ∈ X,(4.14)

v := Φu.(4.15)

Notice that, by construction, x ∈ Xn eventually so that un(x) = ûn(x) eventually. In partic-
ular, by the continuity of ϕ and the fact that ψ = ϕ−1

v(x) = lim
n→∞

vn(x)

and the limit is monotone. Moreover, un satisfies (4.5a), i.e., suppun ⊆ Xn for every n and

(idn+λ∆dir,nΦ)πnun = gn.

Therefore,

(in,∞ idn πn + λLn)un = (in,∞ idn πn + λin,∞∆dir,nΦπn)un

= in,∞(idn+λ∆dir,nΦ)πnun

= in,∞gn.
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In particular, since g ∈ ℓ1(X,µ),

lim
n→∞

∥ (in,∞ idn πn + Ln)un − g∥ = 0,

which is exactly (4.5c).
Let ∥ · ∥n be the restriction of ∥ · ∥ to C(Xn). Since every Xn is finite, from (4.4) in Step I

we obtain
∥Ψv̂n∥n ≤ ∥gn∥n

and, consequently, by Fatou’s lemma

∥u∥ ≤ lim inf
n→∞

∥un∥ = lim inf
n→∞

∥Ψvn∥ = lim inf
n→∞

∥Ψv̂n∥n ≤ lim inf
n→∞

∥gn∥n = ∥g∥.(4.16)

In particular, u = Ψv is in ℓ1,+(X,µ). Finally, by dominated convergence, we get (4.5b), i.e.,
limn→∞ ∥un − u∥ = 0.

Step II-2 (g ∈ ℓ1(X,µ)): Using the same notation as in Step II-1, we define for g ∈ ℓ1(X,µ)

gn := πng, g+
n := max{0, gn}, g−n := min{0, gn}.

From Step I there exist v̂n, v̂
+
n , v̂

−
n ∈ C(Xn) that satisfy

(4.17)


(Ψ + λ∆dir,n)v̂n = gn,

(Ψ + λ∆dir,n)v̂
+
n = g+

n ,

(Ψ + λ∆dir,n)v̂
−
n = g−n .

Define

(4.18) ûn := Ψv̂n, un := in,∞ûn.

Clearly, un satisfies (4.5a) and, by construction,

(idn+λ∆dir,nΦ)πnun = gn.

Therefore,

(in,∞ idn πn + λLn)un = (in,∞ idn πn + λin,∞∆dir,nΦπn)un

= in,∞(idn+λ∆dir,nΦ)πnun

= in,∞gn,

that is,
lim
n→∞

∥ (in,∞ idn πn + λLn)un − g∥ = 0,

which is exactly (4.5c).
Define now

û+
n := Ψv̂+

n , u+
n := in,∞û

+
n , u+ := lim

n→∞
u+
n .

In particular, u+ ∈ ℓ1(X,µ) is the monotone limit solution of (4.2) obtained in (4.13) and (4.14)
of Step II-1. In the same way, define û−n , u

−
n and u−. Finally, define

v+ := Φu+, v− := Φu−

as in (4.15) of Step II-1. Let us observe that, by the definitions (4.17)-(4.18) and Corollary A.3,
and monotone limits, it holds that

un(x) = ûn(x) ≤ û+
n (x) ≤ u+(x) if x ∈ Xn,

un(x) = 0 ≤ u+(x) if x /∈ Xn,
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and

u−(x) ≤ û−n (x) ≤ ûn(x) = un(x) if x ∈ Xn,

u−(x) ≤ 0 = un(x) if x /∈ Xn.

In particular,

u−(x) ≤ un(x) ≤ u+(x), ∀x ∈ X, n ∈ N,

that is, for every fixed x ∈ X the sequence un(x) is uniformly bounded in n with

(4.19) |un(x)| ≤ cx := max
{
|u−(x)|, |u+(x)|

}
<∞ ∀n ∈ N.

Therefore, by passing to a subsequence using a diagonal sequence argument, the limit functions

u(x) := lim
n→∞

un(x) = lim
n→∞

Ψvn(x),

v := Φu

exist and are well-defined on X. By the same arguments in (4.16), it follows that

(4.20) ∥u∥ ≤ ∥g∥ and u = Ψv ∈ ℓ1(X,µ).

Moreover, from the previous Step II-1 we know that u+, u− ∈ ℓ1(X,µ) and then from (4.19)
it follows that |un| is bounded above by an integrable function. By dominated convergence, we
get (4.5b), i.e., limn→∞ ∥un − u∥ = 0.

Step III (When G is infinite and connected, id+λL|Ω maps bijectively onto ℓ1,±(X,µ)): We

want to show that the function u ∈ ℓ1±(X,µ) that we constructed in Step II-1 as limit of a
sequence of finitely supported functions {un}n is a solution of (4.2) which belongs to Ω. In order
to do so, it remains to show that:

(4.21a) u ∈ dom(L);

(4.21b) (id+λL)u = g;

(4.21c) lim
n→∞

∥Lnun − Lu∥ = 0.

Let us now highlight that vn = Φun ∈ Cc(X) ⊆ dom (∆) for every n, that is, ∆vn is well-
defined. Since, for every x ∈ X,∑

y∈X
lim
n→∞

w(x, y)vn(y) = lim
n→∞

∑
y∈X

w(x, y)vn(y)
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by (4.10) and monotone convergence, and recalling that every Gdir,n is a Dirichlet subgraph of
G for every n ∈ N, by Lemma A.1 we get

Ψv(x) +
λ

µ(x)

deg(x)v(x)− ∑
y∈X

w(x, y)v(y)


= lim

n→∞

Ψvn(x) +
λ

µ(x)

deg(x)vn(x)− ∑
y∈X

w(x, y)vn(y)


= lim

n→∞
(Ψ + λ∆)vn(x)

= lim
n→∞

(Ψ + λ∆dir,n) v̂n(x)

= lim
n→∞

gn(x) = g(x).(4.22)

Notice that along the way we used the fact that ψ is continuous. Moreover, by Remark 1, we
observe that v ∈ dom (∆), that is, Φu ∈ dom (∆) and

(Ψ + λ∆)v(x) = g(x),

namely, v is a nonnegative solution of (4.3) and thus u is a nonnegative solution of (4.21b).
By the fact that λ∆Φu = g − u and g, u ∈ ℓ1(X,µ), we obtain ∆Φu ∈ ℓ1(X,µ). We can then

conclude that u ∈ dom (L), i.e., (4.21a). Let us prove (4.21c): By the fact that λLu = g − u we
obtain

∥Lnun − Lu∥ ≤ 1

λ
(∥(in,∞ idn πn + λLn)un − g∥+ ∥in,∞ idn πnun − u∥)

=
1

λ
(∥(in,∞ idn πn + λLn)un − g∥+ ∥un − u∥)(4.23)

and we conclude (4.21c) by using (4.5b) and (4.5c).
In particular, we have shown that for every λ > 0 and g ∈ ℓ1,+(X,µ) there exists a unique

u ∈ Ω ∩ ℓ1,+(X,µ) such that (id+λL)u = g, and ∥u∥ ≤ ∥g∥. If g ∈ ℓ1,−(X,µ), then the
arguments of the proof are completely symmetric and the (nonpositive) solution u can be built
as monotone decreasing limit.

Step IV (When G is infinite, connected and satisfies assumptions (H1), (H2) or (H3), then
id+λL|Ω maps bijectively onto ℓ1(X,µ)): The statement follows immediately by the same ar-
guments in Step III if we can show that u ∈ dom(L) and

(id+λL)u = g.

We divide this step into three sub-steps.

Step IV-H1 (G is locally finite): Let us highlight that dom(∆) = C(X) because of the local
finiteness of G so that vn, v ∈ dom (∆), that is, ∆vn and ∆v = ∆Φu are well-defined. Further-
more, by the local finiteness of G, for every fixed x there exists a finite number of nodes y ∈ X
such that w(x, y) ̸= 0. By Lemma A.5, we can assume moreover that the sequence {Xn}∞n=1 in
addition to (4.6) and (4.7) also satisfies

X̊n ⊂ X̊n+1 and

∞⋃
n=1

X̊n = X.
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Let N = N(x) be such that x ∈ X̊n for every n ≥ N . As a consequence, for every fixed x ∈ X,
the series are in fact finite sums and, passing to the limit, we get

lim
n→∞

∑
y∈X

w(x, y)|vn(y)| = lim
n→∞

∑
y∈XN

w(x, y)|vn(y)|

=
∑
y∈X

lim
n→∞

w(x, y)|vn(y)|.

Therefore, by the above considerations, we have

(Ψ + λ∆)v(x) = lim
n→∞

(Ψ + λ∆) vn(x)

= lim
n→∞

(Ψ + λ∆dir,n) v̂n(x)

= lim
n→∞

gn(x) = g(x)

where the second equality follows from Lemma A.1 (and the fact that every Gdir,n is a Dirichlet
subgraph of G for every n ∈ N).

Since λ∆Φu = g − u, we get ∆Φu ∈ ℓ1(X,µ), i.e., u ∈ dom(L). By the same arguments
as in Step III, see (4.23), we can check that u ∈ Ω. By the accretivity of L|Ω we obtain the

uniqueness of u. In particular, we have proven that for every λ > 0 and g ∈ ℓ1(X,µ) there exists
a unique u ∈ Ω such that (id+λL)u = g, and ∥u∥ ≤ ∥g∥.

Step IV-H2 (infx∈X µ(x) > 0): Once we show that for every fixed x ∈ X

(4.24)
∑
y∈X

lim
n→∞

w(x, y)|vn(y)| = lim
n→∞

∑
y∈X

w(x, y)|vn(y)| <∞,

that is, v ∈ dom(∆) and limn→∞∆vn(x) = ∆ (limn→∞ vn) (x) by dominated convergence, then
we can conclude the proof as in the final part of Step IV-H1. Indeed, one of the main issues
in the previous steps was to show that the solution v of equation (4.3) belongs to dom(∆) so
that (Ψ + λ∆) v is well-defined. If this is established, we can apply the same arguments as in
(4.22). However, here (4.24) is immediate: By the uniformly lower boundedness of the measure
µ it follows that ℓ1(X,µ) ⊆ ℓ∞(X,µ) and, since Ψv = u ∈ ℓ1(X,µ), we get v ∈ ℓ∞(X,µ) by the
surjectivity of ψ. So, v ∈ dom(∆) and (4.24) follows.

Step IV-H3 (supx∈X

∑
y∈X w(x,y)

µ(x) ≤ c <∞ and Φ(ℓ1) ⊆ ℓ1): The reasoning of the previous step

applies here as well. By (4.20) we have u ∈ ℓ1(X,µ) and from the hypothesis on Φ it follows
that v = Φu ∈ ℓ1(X,µ). Therefore,∑

y∈X
w(x, y)|v(y)| =

∑
y∈X

w(x, y)

µ(y)
|v(y)|µ(y) ≤

∑
y∈X

sup
z

∑
x∈X w(x, z)

µ(z)
|v(y)|µ(y) ≤ c∥v∥ <∞.

Thus, v ∈ dom(∆) and (4.24) holds.

Step V (Constructing a solution when G is not connected): Assume now that G is not connected

and write X as a disjoint union of connected components, that is, X =
⊔K
k=1 Yk where Yk are

connected components of X and K ∈ N ∪ {∞}.
We first observe that, if u ∈ dom(∆) and x ∈ Yk, then ∆u(x) = ∆kπku(x) where ∆k is the for-

mal graph Laplacian associated to the canonical induced subgraph Gk = (Yk, w|Yk×Yk , κ|Yk , µ|Yk)
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and πk is the projection onto C(Yk). We then write Lk : dom(Lk) ⊆ ℓ1(Yk, µ|Yk) → ℓ1(Yk, µ|Yk)
where

dom(Lk) := {v ∈ ℓ1(Yk, µ|Yk) | Φv ∈ dom(∆k), ∆kΦv ∈ ℓ1(Yk, µ|Yk)},
Lkv := ∆kΦv.

Notice that if u ∈ dom(L), then πku ∈ dom(Lk) for every k and Lu(x) = Lkπku(x) for every
x ∈ Yk.

Now, for every Yk, we fix an exhaustion {Yk,n}n as in Lemma A.4 and define the set Ωk
associated to the subgraph Gk and {Yk,n}n as in Definition B.5. As we already know from Step
0, Lk is accretive on Ωk.

We next define

Ω := {u ∈ dom(L) | ∃ {uk}k s.t. uk ∈ Ωk for k = 1, . . . ,K, πku = uk}.
By Lemma B.6, Cc(X) ⊆ dom(L). Furthermore, by Lemma B.7, for every u ∈ Cc(X), uk :=

πku ∈ Cc(Yk) ⊆ Ωk. It follows that Cc(X) ⊆ Ω and, in particular, Ω = dom(L) = ℓ1(X,µ). It
is not difficult to show that L is accretive on Ω, as each Lk is accretive on Ωk. Indeed, for every
u, v ∈ Ω

∥(u− v) + λ (Lu− Lv)∥ =
K∑
k=1

∥(πku− πkv) + λ (Lkπku− Lπkv)∥Yk

=
K∑
k=1

∥(uk − vk) + λ (Lkuk − Lkvk)∥Yk

≥
K∑
k=1

∥uk − vk∥Yk = ∥u− v∥.

Finally, fix g ∈ ℓ1(X,µ) and λ > 0. Clearly, if g ∈ ℓ1,±(X,µ), then πkg ∈ ℓ1,±(Yk, µ|Yk) for
every k and, if G satisfies one of the assumptions (H1), (H2) or (H3), then Gk satisfies the
same property for every k. Therefore, for every k, let uk ∈ C(Yk) be the unique function in Ωk
which solves

(idk+λ∆kΦ)uk = πkg

as constructed in Steps I to IV above.
Now, define

u(x) := uk(x) if x ∈ Yk.

The function u has the following properties:

i) Φu ∈ dom(∆) since Φuk ∈ dom(∆k) for every k;
ii) u solves (id+λ∆Φ)u = g.

Moreover, by (4.20)
K∑
k=1

∥uk∥Yk ≤
K∑
k=1

∥πkg∥Yk = ∥g∥

and thus ∥u∥ ≤ ∥g∥. Therefore, u ∈ ℓ1(X,µ) and ∆Φu = g − u ∈ ℓ1(X,µ), that is, u ∈ dom(L).
In particular, u ∈ Ω.

This completes the proof of Theorem 1. □
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Remark 5. As the proof shows, the conclusion of Step V follows under the weaker assumption
that at least one of the conditions g ≥ 0, g ≤ 0, (H1), (H2) or (H3) in the statement of
Theorem 1 holds in each connected component Yk of X, not necessarily the same condition for
different Yk.

Using the constructions carried out in the proof of Theorem 1, we can now prove the existence
and uniqueness of solutions for the Cauchy-GPME.

Proof of Theorem 2. From the definition of mild solutions, Definition 3.3, without loss of gen-
erality we can suppose that T <∞. Then, since f ∈ L1

loc

(
[0, T ]; ℓ1 (X,µ)

)
= L1

(
[0, T ]; ℓ1 (X,µ)

)
,

there exists an ϵ-discretization Dϵ of ([0, T ]; f) for every ϵ > 0. Let us observe that solving (3.1),
i.e.,

uk − uk−1

λk
+∆Φuk = fk, λk := tk − tk−1

for k = 1, . . . , n means to solve at each step the equation

(id+λk∆Φ)uk = uk−1 + λkfk

in such a way that

uk ∈ ℓ1 (X,µ) , Φuk ∈ dom(∆), ∆Φuk ∈ ℓ1(X,µ)

where λk > 0 and fk ∈ ℓ1 (X,µ). Therefore, given u0 and {fk}nk=1, the solution {uk}nk=1 (if any)
of (3.1) is computed recursively starting from

(4.25) (id+λ1∆Φ)u1 = u0 + λ1f1.

If u0, f1 ∈ ℓ1(X,µ) are nonnegative (nonpositive), then g := u0 + λ1f1 ∈ ℓ1,±(X,µ) and by
Theorem 1 there exists a unique nonnegative (nonpositive) solution u1 ∈ Ω of (4.25). Iterating
the procedure, each uk−1 + λkfk ∈ ℓ1,±(X,µ). Therefore, for every ϵ > 0 there exists an ϵ-
approximate solution uϵ of the Cauchy-GPME (see (3.2)), such that uϵ(t) ≥ 0 and uϵ(t) ∈ Ω for

every t ∈ (0, T ]. In Theorem 1 we also proved that L|Ω is accretive and Ω = dom(L) = ℓ1(X,µ)
by Lemma B.7.

Therefore, summarizing, we have that:

1) By hypotheses a), i), and ii) we have u0 ≥ 0, u0 ∈ ℓ1(X,µ) = dom
(
L|Ω

)
= Ω, and

f ∈ L1
(
[0, T ]; ℓ1 (X,µ)

)
, respectively;

2) L|Ω is accretive;
3) For every u0 ≥ 0 and f(t) ≥ 0, there exists an ϵ-approximate solution uϵ such that

uϵ(t) ≥ 0 and uϵ(t) ∈ dom
(
L|Ω

)
= Ω for every t ∈ (0, T ].

Then, by standard results (see [6, Theorem 3.3] or [3, Theorem 4.1]), there exists a unique mild
solution u of the Cauchy-GPME which satisfies (1.1). Since the limit is uniform and uϵ(t) ≥ 0,
then u(t) ≥ 0 and u(t) ∈ ℓ1(X,µ) for every t ∈ [0, T ]. The validity of (1.2) is again standard, see
[3, Theorem 4.1]. If u0 ≤ 0 and f(t) ≤ 0, then we get the same results in a completely analogous
way.

Under the extra hypothesis (H1), (H2) or (H3) in Theorem 1 we have established the m-
accretivity of L|Ω which implies the existence of ϵ-approximate solutions for every ϵ as above.
Therefore, under the hypotheses i), ii) and b), there exists a unique mild solution u of the
Cauchy-GPME which satisfies (1.1) and (1.2), see [3, Corollary 4.1]. □

We now recall the following general result see, e.g., [13, Proposition 3] or [6, Theorem 1.6].
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Proposition 4.1. Let f ∈ L1
loc([0, T ] ; ℓ

1 (X,µ)). Let dom(L) be closed and let L be continuous
on dom(L). If u is a mild solution on (0, T ), then u is a strong solution and u satisfies for every
0 < t < T

u(t) = u(0)−
∫ t

0
Lu(s)ds+

∫ t

0
f(s)ds.

Moreover, if f ∈ C([0, T ] ; ℓ1 (X,µ)), then u is a classic solution.

We now provide a direct application of the proposition above to the graph setting.

Corollary 4.2. Let G = (X,w, κ, µ) be a graph. If

(i) supx∈X Deg(x) <∞;
(ii) Φ: ℓ1(X,µ) → ℓ1(X,µ) is continuous;

then dom(L) = ℓ1(X,µ) and L is continuous. In particular, the conclusions of Proposition 4.1
hold.

Proof. Let u ∈ ℓ1(X,µ). By (ii) we have that Φu ∈ ℓ1(X,µ) and then by (i)∑
y∈X

w(x, y)|ϕ(u(y))| ≤ c1

∑
y∈X

|ϕ(u(y))|µ(y) <∞

for some c1 > 0, that is, Φu ∈ dom (∆) ∩ ℓ1(X,µ). Let us recall from [38, Theorem 9.2] or [44,
Theorem 2.15] that the formal graph Laplacian ∆ is bounded on ℓ1(X,µ) (indeed, on ℓp(X,µ)
for all p ∈ [1,∞]) if and only if (i) holds. Therefore,

∥∆Φu∥ ≤ c2∥Φu∥ <∞

for some c2 > 0, namely, ∆Φu ∈ ℓ1(X,µ) and dom(L) = ℓ1(X,µ). Therefore, by (ii), L is
continuous as the composition of continuous operators is continuous. □

Remark 6. Observe that, if G is finite, then both hypotheses (i) and (ii) in Corollary 4.2 are
trivially satisfied and if f is continuous, then the Cauchy-GPME always has a unique classic
solution for any ϕ.

About hypothesis (ii), if G is not finite, one condition that ensures the continuity of Φ is if
ϕ is Lipschitz continuous with uniform Lipschitz constant. Another sufficient condition for the
continuity of the operator Φ on ℓ1(X,µ) is that µ is bounded away from zero, i.e., assumption
(H2) and that ϕ is uniformly Lipschitz on every interval [−R,R]. This is for instance the case
of the PME where ϕ(s) = s|s|m−1 with m > 1.

To prove these statements, recall first that we are assuming Φ(ℓ1(X,µ)) ⊆ ℓ1(X,µ) and that
if infx∈X µ(x) ≥ c > 0, then ℓ1(X,µ) ⊆ ℓ∞(X,µ) and ∥u∥∞ ≤ c−1∥u∥1 for every u ∈ ℓ1(X,µ).
Therefore, if ∥un − u∥1 → 0 then |un − u| is uniformly bounded. In particular, there exists
R > 0 such that un(x), u(x) ∈ [−R,R] for every x ∈ X and for every n ∈ N. Consequently,
|ϕ(un(x))−ϕ(u(x))| ≤ LR|un(x)−u(x)| where LR is the Lipschitz constant of ϕ on [−R,R] and
then ∥Φun − Φu∥1 → 0.

Appendix A. Auxiliary results

In this appendix we collect several results which are used in various parts of the paper. The
first result concerns the relationship between the Dirichlet Laplacian and restrictions of the
formal Laplacian. For related material, see [43, 44].
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Lemma A.1. Let G = (X,w, k, µ) be a graph, let A be a subset of X such that
•
∂A ̸= ∅ and let

Gdir = (A,w|A×A, kdir, µ|A) be the Dirichlet subgraph associated to A. Define

∆|A : dom
(
∆|A

)
⊆ C(X) → C(A)

with

dom
(
∆|A

)
:=

u ∈ C(X) | u ≡ 0 on X \A,
∑
y∈A

w(x, y) |u(y)| <∞ ∀x ∈ A

 ,

∆|Au(x) := ∆u(x) for every x ∈ A.

Then, we have the following commutative diagrams

D1 :

dom (∆dir) dom
(
∆|A

)
C(A)

∆dir

i

∆|A
D2 :

dom
(
∆|A

)
dom (∆dir)

C(A)
∆|A

π

∆dir

where i and π are the canonical embedding and the canonical projection, respectively, as defined
in (2.3). In particular, we have ∆dir ≡ ∆|Ai, ∆dirπ ≡ ∆|A and

∆dirv(x) = ∆iv(x) ∀v ∈ dom(∆dir) ⊆ C(A), ∀x ∈ A,

∆dirπu(x) = ∆u(x) ∀u ∈ dom
(
∆|A

)
⊆ C(X), ∀x ∈ A.

If every node in
•
∂A is connected to a finite number of nodes in A, then

dom
(
∆|A

)
= dom (∆) ∩ {u ∈ C(X) | u ≡ 0 on X \A}

and ∆|Au can be uniquely extended to X for every u ∈ dom
(
∆|A

)
in such a way that

∆|Au(x) = ∆u(x) ∀x ∈ X,

that is, ∆|A is the restriction of ∆ to the set of functions which vanish on X \A.

Proof. Clearly, ∆|A is well-defined and

dom
(
∆|A

)
⊇ dom (∆) ∩ {u ∈ C(X) | u ≡ 0 on X \A} .

If every node in
•
∂A is connected to a finite number of nodes in A, then for every u ∈ dom

(
∆|A

)
and x ∈ X \A ∑

y∈X
w(x, y) |u(y)| =

∑
y∈∂̊A

w(x, y) |u(y)| <∞.

Therefore,
dom

(
∆|A

)
⊆ dom (∆) ∩ {u ∈ C(X) | u ≡ 0 on X \A}

so that the two domains are equal as claimed. Furthermore, for every u ∈ dom
(
∆|A

)
, we can

uniquely extend ∆|Au to X \A so as to satisfy ∆|Au = ∆u by defining

∆|Au(x) = − 1

µ(x)

∑
y∈∂̊A

w(x, y)u(y) for x ∈ X \A.

Observe now that

dom
(
∆|Ai

)
=

{
v ∈ C(A) | iv ∈ dom

(
∆|A

)}
⊆ C(A)
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and if v ∈ C(A), then∑
y∈X

w(x, y) |iv(y)| =
∑
y∈A

w(x, y) |v(y)| for every x ∈ A.

Therefore, it is immediate to check that dom (∆dir) = dom
(
∆|Ai

)
.

Finally, if v ∈ dom (∆dir), then for every x ∈ A we have

∆dirv(x) =
1

µ|A(x)

∑
y∈A

w|A×A(x, y) (v(x)− v(y)) +
κdir(x)

µ|A(x)
v(x)

=
1

µ|A(x)

∑
y∈A

w|A×A(x, y) (v(x)− v(y)) +
κ|A(x) + bdir(x)

µ|A(x)
v(x)

=
1

µ(x)

∑
y∈A

w(x, y) (v(x)− v(y)) +

∑
y∈

•
∂A
w(x, y)

µ(x)
v(x) +

κ(x)

µ(x)
v(x)

=
1

µ(x)

∑
y∈X

w(x, y) (iv(x)− iv(y)) +
κ(x)

µ(x)
iv(x)

= ∆iv(x).

This concludes the proof of diagram D1. The proof of diagram D2 is basically the same following
suitable modifications. □

The next theorem is a comparison principle for a nonlinear operator. This result generalizes
[12, Theorem 2, Section 23.1] and [43, Theorem 8 and Proposition 3.1], see also the proof of
Theorem 1.3.1 in [72]. In particular, we relax the assumptions on the function u by letting it
not attain a minimum or maximum on X if the graph G does not have any infinite paths. We
recall that for us a path is a walk without any repeated nodes.

Theorem A.2 (Comparison principle). Let G = (X,w, κ, µ) be a connected graph. Let λ > 0
and v ∈ dom (∆). Assuming that ψ : R → R is strictly monotone increasing and ψ(0) ≤ 0 we
consider three cases:

Case 1) There exists x0 ∈ X such that u attains a minimum at x0, i.e.,

v(x0) = inf
x∈X

{v(x)} > −∞.

Case 2) G does not contain any infinite path.
Case 3) G has an infinite path and for every infinite path {xn} we have

∑
xn
µ(xn) = ∞ and

there exists p > 0 such that
∑

xn
|v(xn)|pµ(xn) <∞ .

In all the three cases, if (Ψ + λ∆) v ≥ 0, then v ≥ 0.

Assuming instead ψ(0) ≥ 0 and substituting v(x0) = supx∈X{v(x)} < ∞ for v(x0) =
infx∈X{v(x)} > −∞ in Case 1, if (Ψ + λ∆) v ≤ 0, then v ≤ 0. Moreover, in any case, if
v(x) = 0 for some x ∈ X, then v ≡ 0.

Proof. Let v ∈ dom (∆) be such that (Ψ + λ∆) v ≥ 0 for ψ(0) ≤ 0 strictly monotone increasing.
If v ≥ 0, then there is nothing to prove. Hence, we assume that there exists x0 ∈ X such that
v(x0) < 0. We will show that this leads to a contradiction in all three cases.
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Since ψ(0) ≤ 0 and ψ is strictly monotone increasing,

(A.1) ψ(v(x0)) + λ
κ(x0)

µ(x0)
v(x0) < 0.

Furthermore, as (Ψ + λ∆) v(x0) ≥ 0,

(A.2) 0 ≤ ψ(v(x0)) +
λ

µ(x0)

∑
y∈X

w(x0, y) (v(x0)− v(y)) + λ
κ(x0)

µ(x0)
v(x0).

Combining the above inequalities (A.1) and (A.2), we get

0 < −
[
ψ(v(x0)) + λ

κ(x0)

µ(x0)
v(x0)

]
≤ λ

µ(x0)

∑
y∈X

w(x0, y) (v(x0)− v(y))

and because w(·, ·) ≥ 0 and G is connected, there exists y = x1 ∼ x0 such that v(x1) < v(x0).
In particular, v(x1) < 0.

Hence, we see that every node where v is negative is connected to a node where v is strictly
smaller. This is the basic observation that will be used in all three cases.

Case 1) From the discussion above, it is clear that v cannot achieve a negative minimum.

Case 2) Iterating the procedure above, we find a sequence of distinct nodes {xk}nk=0 such that
x0 ∼ x1 ∼ · · · ∼ xn and

v(xn) < v(xn−1) < . . . < v(x0) < 0.

Since G does not have any infinite path this sequence must end which leads to a contradiction.

Case 3) In this case, we can obtain an infinite sequence {v(xn)}n such that {xn}n is an infinite
path and

. . . < v(xn) < v(xn−1) < . . . < v(x0) < 0.

It follows that |v(xn)| > |v(x0)| > 0, for every n, and therefore∑
n

|v(xn)|pµ(xn) > |v(x0)|p
∑
n

µ(xn) = ∞

for every p > 0 which gives a contradiction.

Hence, we have established that v ≥ 0 in all three cases. Now, if there exists x0 ∈ X such
that v(x0) = 0, then

0 ≤ Ψv(x0) + λ∆v(x0) = − λ

µ(x0)

∑
y∈X

w(x0, y)v(y) ≤ 0

and thus v(y) = 0 for all y ∼ x0. Using induction and the assumption that G is connected we
get v ≡ 0.

The proof that (Ψ + λ∆) v ≤ 0 implies v ≤ 0 when ψ(0) ≥ 0 is completely analogous. □

Remark 7. The above proof also shows that if v satisfies (Ψ + λ∆) v ≥ 0, on any connected
graph, ψ(0) ≤ 0 and minx∈X v(x) ≤ 0, then v ≡ 0.
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Remark 8. A closer look at the proof shows that the conclusion of the theorem also holds for
the operator

σΨ+ λ∆

where σ ∈ C(X) is positive.

Corollary A.3. With the hypotheses of Theorem A.2, let ψ(0) = 0 for ψ : R → R is strictly
monotone increasing. Let v1, v2 be solutions of

(Ψ + λ∆) vk = gk, λ > 0 and gk ∈ C(X) for k = 1, 2.

If g1 ≥ g2, then v1 ≥ v2.

Proof. Notice that, since ψ is strictly increasing and ψ(0) = 0, there exists a positive function
σ ∈ C(X) such that

ψ(v1(x))− ψ(v2(x)) = σ(x)ψ(v1(x)− v2(x))

for all x ∈ X. Indeed, we can define

σ(x) =

{
1 if v1(x) = v2(x)
ψ(v1(x))−ψ(v2(x))
ψ(v1(x)−v2(x)) otherwise.

It follows that v1 − v2 satisfies

σΨ(v1 − v2) + λ∆(v1 − v2) = g1 − g2 ≥ 0 on X

and the conclusion follows from Remark 8. □

Remark 9. As in Remark 7, the proof shows that if vk satisfy (Ψ + λ∆) vk = gk, g1 ≥ g2 and
minx∈X{v1(x)− v2(x)} ≤ 0, then v1 ≡ v2 and g1 ≡ g2 on X

Finally, in the following two lemmas we discuss how to exhaust the graph via finite subgraphs
which are nested and such that each subgraph is connected to the next subgraph. We note that
as we do not assume local finiteness, we have to take a little bit of care in how we choose the
exhaustion. Although this should certainly be well-known, for the convenience of the reader we
include a short proof.

Let d denote the combinatorial graph metric, that is, the least number of edges in a path
connecting two nodes. Fix a node x1 ∈ X and let Sr = Sr(x1) denote the sphere of radius
r = 0, 1, 2, . . . about x0, that is,

Sr = {x ∈ X | d(x, x0) = r}.

For x ∈ Sr, we call y ∈ X a forward neighbor of x if y ∼ x and y ∈ Sr+1. We will denote the set
of forward neighbors of x via N+(x), i.e.,

N+(x) = {y ∼ x | d(y, x0) = d(x, x0) + 1}.

We now use the set of forward neighbors to inductively create our exhaustion sequence.

Lemma A.4. Let G = (X,w, κ, µ) be a connected and infinite graph. Then there exists a
sequence of connected and finite induced subgraphs Gn = (Xn, wn, κn, µn) with Xn ⊂ Xn+1,⋃∞
n=1Xn = X and

{x ∈ Xn | x ∼ y for some y ∈ Xn+1 \Xn} ≠ ∅
for all n ∈ N0.
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Figure 4. Exhaustion of a locally finite graph G by a chain of Dirichlet sub-
graphs {Gdir,n}n. The figure is read from left to right, from top to bottom. The
chain {Gdir,n}n is built starting from an inner node x0 by applying the recursive
procedure described in the proof of Lemma A.5. At each step n = 1, 2, 3, . . ., the
interior nodes in X̊n are green while the inner boundary nodes in ∂̊Xn are light

green. The nodes belonging to the exterior boundary
•
∂Xn ⊆ X \Xn are colored

in light gray. We can visually see how every subgraph Gdir,n is still “chained”
to the supergraph G by the Dirichlet killing term κdir,n which is depicted by red
rings and red dashed lines. In particular, each Gdir,n is a Dirichlet subgraph of
Gdir,n+1.

Proof. We arrange the forward neighbors of each node in a sequence. Let X1 = {x0}. For
X2 choose the first forward neighbor of x0 and add it to X0, that is, X2 = {x0, x1} where
N+(x0) = {x1, x2, . . . }. We note that N+(x0) ̸= ∅ as the graph is infinite and connected.
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Now, proceed inductively as follows: Given Xn let Xn+1 consist of Xn and, for every node
x in Xn we add to Xn the first forward neighbor in N+(x) which is not included in Xn to get
Xn+1. Let Gn denote the induced subgraph.

As we only add at most a single forward neighbor for each node at every step, it follows that
eachXn is finite with |Xn| ≤ 2n. It is clear by construction thatGn is connected. Furthermore, as
the graph is infinite and connected, it follows that {x ∈ Xn | x ∼ y for some y ∈ Xn+1 \Xn} ≠ ∅
for each n ∈ N. Finally, to show that the union of the Xn is the entire node set, let x ∈ X.
Then, x ∈ Sr for some r which means that there exists a sequence {yk}rk=0 with y0 = x0, yr = x
and yk ∈ Sk such that yk+1 ∈ N+(yk). As each node yk will then be included in some set of the
exhaustion Xn, it follows that x ∈

⋃∞
n=1Xn. This completes the proof. □

In the locally finite case, the above can be simplified by just using balls for our exhaustion
sets. See Figure 4 for a visual representation. In this case, it is also possible to exhaust in such
a way that we have an inclusion between the interiors of the exhaustion sets.

Lemma A.5. Let G = (X,w, κ, µ) be connected, infinite and locally finite. Then there exists

a sequence of connected and finite induced subgraphs Gn = (Xn, wn, κn, µn) with X̊n ⊂ X̊n+1,

Xn ⊂ Xn+1,
⋃∞
n=1 X̊n = X and

{x ∈ Xn | x ∼ y for some y ∈ Xn+1 \Xn} ≠ ∅

for all n ∈ N.

Proof. We modify the construction of the previous lemma: We take X1 = {x0} and, having
constructed Xn, we add to it all forward neighbors of nodes in Xn to get Xn+1. Thus, Xn+1 =
Bn(x0) = {x | d(x, x0) ≤ n}. Since the graph is locally finite and connected it is clear that
∪nXn = X and, since G is infinite, for every n at least one node in Xn has a forward neighbor
so that

{x ∈ Xn | x ∼ y for some y ∈ Xn+1 \Xn} ≠ ∅.
Finally, since a node xn in Xn has no forward neighbors if and only if it belong to X̊n is follows
that X̊n ⊂ X̊n+1. □

Appendix B. Accretivity

In this appendix we prove that there exists a dense subset Ω of dom(L) where L is accretive.
This subset is of particular importance because every solution that is constructed while carrying
out the proof of Theorem 1 belongs to Ω.

From now on, if G is infinite, then we fix an exhaustion {Xn}∞n=1 of X, i.e., a sequence of
subsets Xn of X such that Xn ⊆ Xn+1 and X = ∪∞

n=1Xn, where we additionally assume that
eachXn is finite. We denote by in,∞ the canonical embedding and by πn the canonical projection
for each Xn:

in,∞ : C(Xn) → C(X) in,∞u(x) :=

{
u(x) if x ∈ Xn,

0 if x ∈ X \Xn;

πn : C(X) → C(Xn) πnu(x) := u(x) for every x ∈ Xn.

We remark that, for the purpose of the results collected here, the exhaustion {Xn}∞n=1 is not
required to satisfy any additional properties other than that each Xn is finite.
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We recall that on a graph G = (X,w, κ, µ) the operator L : dom (L) ⊆ ℓ1 (X,µ) → ℓ1 (X,µ)
is given by

dom (L) :=
{
u ∈ ℓ1 (X,µ) | Φu ∈ dom (∆) ,∆Φu ∈ ℓ1 (X,µ)

}
Lu := ∆Φu.

For a subset Ω ⊆ dom (L), we write L|Ω for the restriction of L to Ω.
We first introduce a sequence of operators Ln whose purpose is to ‘nicely approximate’ the

operator L.

Definition B.1 (The operators Ln). Let G = (X,w, κ, µ) be a graph. We define

Ln : dom (Ln) ⊆ ℓ1 (X,µ) → ℓ1 (X,µ)

by

dom (Ln) := Cc(X), Lnu := in,∞∆dir,nΦπnu

where ∆dir,n is the graph Laplacian associated to the Dirichlet subgraph Gdir,n ⊆ G on the node
set Xn.

We are going to prove that Ln is accretive for every n. This result will be a consequence of
the next proposition for finite graphs.

Proposition B.2. Let G = (X,w, κ, µ) be a finite graph. Then,∑
x∈X :

u(x)̸=v(x)

(∆Φu(x)−∆Φv(x)) sgn(u(x)− v(x))µ(x) ≥ 0 ∀ u, v ∈ C(X).

Proof. Define h := Φu− Φv ∈ C(X). Since ϕ is strictly monotone increasing and ϕ(0) = 0

(B.1) sgn(u(x)− v(x)) = sgn(ϕ(u(x))− ϕ(v(x))) = sgn(h(x))

and, therefore,

(B.2) (ϕ(u(x))− ϕ(v(x))) sgn(u(x)− v(x)) = h(x) sgn(h(x)) = |h(x)| ≥ 0 ∀x ∈ X.

By the linearity of ∆ and (B.1) we get∑
x∈X :

u(x)̸=v(x)

(∆Φu(x)−∆Φv(x)) sgn(u(x)− v(x))µ(x) =
∑
x∈X

∆h(x) sgn(h(x))µ(x).

Since G is finite, from the Green’s identity, see [37, 44], we get∑
x∈X

∆h(x) sgn(h(x))µ(x) =
1

2

∑
x,y∈X

w(x, y) (sgn(h(x))− sgn(h(y))) (h(x)− h(y))

+
∑
x∈X

κ(x)h(x) sgn(h(x)).

Combining the above identity with (B.2), we obtain∑
x∈X

∆h(x) sgn(h(x))µ(x) ≥ 1

2

∑
x,y∈X

w(x, y) (sgn(h(x))− sgn(h(y))) (h(x)− h(y)) .

Setting, for ease of notation,

Γ(x, y) := w(x, y) (sgn(h(x))− sgn(h(y))) (h(x)− h(y))
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we have:

i) If sgn(h(x)) = 0, then Γ(x, y) = w(x, y)|h(y)| ≥ 0;
ii) If sgn(h(y)) = 0, then Γ(x, y) = w(x, y)|h(x)| ≥ 0;
iii) If sgn(h(x)) = sgn(h(y)), then Γ(x, y) = 0;
iv) If sgn(h(y)) = − sgn(h(x)), then Γ(x, y) = 2w(x, y) (|h(x)|+ |h(y)|) ≥ 0.

We obtain Γ(x, y) ≥ 0 for every x, y ∈ X and the required conclusion follows. □

We next show that L is accretive on finite graphs.

Corollary B.3. Let G = (X,w, κ, µ) be a finite graph. Then, L is accretive.

Proof. By condition (ii) in Definition 2.4, an operator L is accretive if ⟨Lu−Lv, u− v⟩+ ≥ 0 for
every u, v ∈ dom (L). From (2.5) in Remark 3, in the case of the ℓ1-norm we have

⟨z, k⟩+ = ∥k∥1

 ∑
x∈X :
k(x)=0

|z(x)|µ(x) +
∑
x∈X :
k(x) ̸=0

z(x) sgn(k(x))µ(x)


≥ ∥k∥1

∑
x∈X :
k(x) ̸=0

z(x) sgn(k(x))µ(x) ∀ z, k ∈ ℓ1(X,µ).

Therefore, to prove that L is accretive on ℓ1(X,µ), it is sufficient to prove that

(B.3)
∑
x∈X :

u(x) ̸=v(x)

(Lu(x)− Lv(x)) sgn(u(x)− v(x))µ(x) ≥ 0 ∀ u, v ∈ dom(L),

that is, ∑
x∈X :

u(x)̸=v(x)

(∆Φu(x)−∆Φv(x)) sgn(u(x)− v(x))µ(x) ≥ 0 ∀ u, v ∈ C(X).

Since G is finite, we conclude the proof by Proposition B.2. □

We next establish that the operators Ln are accretive.

Corollary B.4. Let G = (X,w, κ, µ) be a graph. Then, Ln is accretive for every n.

Proof. By (B.3) in Corollary B.3, it suffices to show that∑
x∈X :

u(x)̸=v(x)

(Lnu(x)− Lnv(x)) sgn(u(x)− v(x))µ(x) ≥ 0 ∀ u, v ∈ dom(Ln),

that is,∑
x∈X :

u(x) ̸=v(x)

(in,∞∆dir,nΦπnu(x)− in,∞∆dir,nΦπnv(x)) sgn(u(x)− v(x))µ(x) ≥ 0 ∀ u, v ∈ Cc(X).

Let us observe that the left-hand side of the above is equal to∑
x∈Xn :

πnu(x)̸=πnv(x)

(∆dir,nΦπnu(x)−∆dir,nΦπnv(x)) sgn(πnu(x)− πnv(x))µ(x).
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Since πnu,πnv ∈ C(Xn) and ∆dir,n is the graph Laplacian associated to the finite graph Gdir,n

with node set Xn, by Proposition B.2 we conclude that Ln is accretive. □

The sequence of operators Ln defines a subset Ω of dom(L). As we will see below, Ω is dense
in dom(L) and L restricted to Ω is accretive. Let us introduce the following notation for the
support of a function: Given u ∈ C(X) we let

suppu := {x ∈ X | u(x) ̸= 0}.
We start by defining the subset of the domain of interest.

Definition B.5 (The set Ω). Let G = (X,w, κ, µ) be a graph. We define Ω ⊆ dom(L) by letting

Ω := dom(L) = C(X)

if G is finite and

Ω := {u ∈ dom(L) | ∃ {un}n s.t. suppun ⊆ Xn, lim
n→∞

∥un − u∥ = 0, lim
n→∞

∥Lnun − Lu∥ = 0}

if G is infinite.

While the definition of Ω depends on the choice of the exhaustion, this set always contains all
finitely supported functions as will be shown in Lemma B.7. In order to establish this, we first
prove that the finitely supported functions are contained in the domain of L.

Lemma B.6. Let G = (X,w, κ, µ) be a graph. Then, Cc(X) ⊆ dom(L).

Proof. Let u ∈ Cc(X). Then, u(x) =
∑n

j=1 αjδxj (x) where αj ∈ R and

δxj (x) =

{
1 if x = xj ,

0 otherwise.

Therefore, by linearity, ∆(Cc(X)) ⊆ ℓ1(X,µ) if and only if ∆δz ∈ ℓ1(X,µ) for every z ∈ X. Fix
z ∈ X and observe that∑

x∈X
|∆δz(x)|µ(x) ≤

∑
x∈X

Deg(x)δz(x)µ(x) +
∑
x∈X

∑
y∈X

w(x, y)|δz(y)|

= Deg(z)µ(z) +
∑
x∈X

w(x, z) <∞

so that ∆(Cc(X)) ⊆ ℓ1(X,µ). Since Φu ∈ Cc(X) for every u ∈ Cc(X), it follows that Φu ∈
dom(∆) and ∆Φu ∈ ℓ1(X,µ), that is, u ∈ dom(L). □

We now show that the set Ω contains the finitely supported functions.

Lemma B.7. Let G = (X,w, κ, µ) be a graph. Then, Cc(X) ⊆ Ω. In particular,

Ω = dom(L) = ℓ1(X,µ).

Proof. Let us fix u ∈ Cc(X). From Lemma B.6, we know that u ∈ dom(L). Define

un(x) := in,∞πnu(x) =

{
u(x) if x ∈ Xn,

0 otherwise.

Clearly, suppun ⊆ Xn and limn→∞ ∥un − u∥ = 0. Since, u ∈ Cc(X), there exists an N > 0 such
that u(x) = 0 for every x ∈ X \XN . In particular, Φun(x) = 0 for every x ∈ X \Xn, n ≥ N
and Φun = Φu for every n ≥ N .
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By Lemma A.1, we have Φun ∈ dom(∆|Xn
) for every n ≥ N and then

∆dir,nπnΦun(x) = ∆Φun(x) = ∆Φu(x) ∀ x ∈ Xn, n ≥ N,

that is,
∆dir,nπnΦun = πn∆Φu ∀ n ≥ N.

Therefore, using the trivial fact that Φπn = πnΦ,

Lnun = in,∞∆dir,nΦπnun = in,∞∆dir,nπnΦun = in,∞πn∆Φu = in,∞πnLu, ∀ n ≥ N

and, since Lu ∈ ℓ1(X,µ), it follows that limn→∞ ∥Lnun−Lu∥ = 0 by dominated convergence. □

To conclude this appendix, we prove that L|Ω is accretive.

Lemma B.8. Let G = (X,w, κ, µ) be a graph. Then, L|Ω is accretive.

Proof. If G is finite, then Ω = dom(L) and L is accretive by Corollary B.3. If G is infinite, let
u, v ∈ Ω. Then, by the definition of Ω, there exists {un}n, {vn}n such that

lim
n→∞

∥un − u∥ = lim
n→∞

∥vn − v∥ = 0, lim
n→∞

∥Lnun − Lu∥ = lim
n→∞

∥Lnvn − Lv∥ = 0.

By the accretivity of Ln established in Corollary B.4 above, it follows readily that

∥(u− v) + λ (Lu− Lv)∥ = lim
n→∞

∥(un − vn) + λ (Lnun − Lnvn)∥ ≥ lim
n→∞

∥un − vn∥ = ∥u− v∥.

This completes the proof. □

Remark 10. One might be tempted to identify Ω with

Ω′ = {u ∈ dom(L) | ∃ {un}n s.t. un ∈ Cc(X), lim
n→∞

∥un − u∥ = 0, lim
n→∞

∥Lminun − Lu∥ = 0}

where Lmin is the minimal operator, that is, Lmin := L|Cc(X). It is possible to show that L is
accretive on Ω′ but unfortunately Ω is not equal to Ω′. In particular, the solutions that are
constructed in the proof of Theorem 1 may not belong to Ω′. The main problem is that

|(id+λLmin)un(x)− g(x)| =

{
0 if x ∈ Xn,∑

y∈Xn
w(x, y)un(y) + g(x) if x ∈ X \Xn

and then ∥(id+λLmin)un− g∥ does not necessarily tend to 0. As a consequence, we cannot infer
that limn→∞ ∥Lminun − Lu∥ = 0.
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