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Abstract
In this work, we focus on a fractional differential equation in Riesz form
discretized by a polynomial B-spline collocation method. For an arbitrary poly-
nomial degree p, we show that the resulting coefficient matrices possess a
Toeplitz-like structure. We investigate their spectral properties via their symbol
and we prove that, like for second order differential problems, the given matri-
ces are ill-conditioned both in the low and high frequencies for large p. More
precisely, in the fractional scenario the symbol vanishes at 0 with order 𝛼, the
fractional derivative order that ranges from 1 to 2, and it decays exponentially
to zero at 𝜋 for increasing p at a rate that becomes faster as 𝛼 approaches 1.
This translates into a mitigated conditioning in the low frequencies and into
a deterioration in the high frequencies when compared to second order prob-
lems. Furthermore, the derivation of the symbol reveals another similarity of
our problem with a classical diffusion problem. Since the entries of the coeffi-
cient matrices are defined as evaluations of fractional derivatives of the B-spline
basis at the collocation points, we are able to express the central entries of the
coefficient matrix as inner products of two fractional derivatives of cardinal
B-splines. Finally, we perform a numerical study of the approximation behavior
of polynomial B-spline collocation. This study suggests that, in line with non-
fractional diffusion problems, the approximation order for smooth solutions in
the fractional case is p + 2 − 𝛼 for even p, and p + 1 − 𝛼 for odd p.

K E Y W O R D S

B-spline collocation, fractional operators, isogeometric analysis, spectral distribution, Toeplitz
matrices

1 INTRODUCTION

Fractional diffusion equations (FDEs) generalize classical partial differential equations (PDEs). Their recent success is due
to the nonlocal behavior of fractional operators resulting in an appropriate modeling of anomalous diffusion phenomena
that appear in several applicative fields, like imaging or electrophysiology.1,2 In particular, a standard diffusion equation
can be “fractionalized”, either by replacing the derivative in time with a fractional one whose fractional order ranges from
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0 to 1, or by introducing a fractional derivative in space with order between 1 and 2. The two approaches can also be
combined and lead to similar computational issues.

The improved physical description of the considered phenomenon obtained by “fractionalizing” the derivatives,
however, translates into a more challenging numerical treatment of the corresponding discretized problems. Indeed,
the evaluation/approximation of a fractional operator is numerically more expensive (and often less stable). More-
over, even when standard local discretization methods are adopted, the nonlocality of the fractional operators causes
an absence of sparsity in the discretization matrices. This makes FDEs computationally more demanding than
PDEs.

Various numerical discretization methods for FDE problems (e.g., finite differences, finite volumes, finite elements,
spectral methods) can be found in the literature. We refer the reader to References 3-10 and references therein. In
the case of regular spatial domain subdivisions, the discretization matrices inherit a Toeplitz-like structure from the
space-invariant property of the underlying operators that can be exploited for the design of ad hoc iterative schemes of
multigrid and preconditioned Krylov type (see, e.g., References 11-16). In the context of finite difference/volume dis-
cretizations, we mention the structure preserving preconditioning and the algebraic multigrid methods presented in
References 11 and 12. Both strategies are based on the spectral analysis of the coefficient matrices via their symbol, a
function that provides an approximation of their eigenvalues/singular values.

A similar symbol-based approach has also been successfully utilized in the context of isogeometric analysis (IgA)
using polynomial B-splines for the discretization of integer order differential problems; see, for example, References 17-19.
In these papers, the spectral information provided by the symbol has been leveraged for the design of effective precon-
ditioners and fast multigrid/multi-iterative solvers20 whose convergence speed is robust with respect to the mesh size
and the spline degree. In the context of IgA, alternative iterative techniques have also been developed; see, for example,
References 21 and 22.

The present work aims at uncovering the structure and studying the symbol of the discretization matrices obtained by
IgA collocation for FDE problems. As a first step towards the spectral treatment of general differential problems involving
fractional diffusion operators, we consider here the following fractional diffusion boundary value problem with absorbing
boundary conditions:

{ d𝛼u(x)
d|x|𝛼 = s(x), x ∈ Ω,

u(x) = 0, x ∈ R ⧵Ω,
(1)

where Ω ∶= (0, 1), 𝛼 ∈ (1, 2), and

d𝛼u(x)
d|x|𝛼 ∶= 1

2 cos(𝜋𝛼∕2)
(RL

0 D𝛼

x u(x) + RL
x D𝛼

1 u(x)
)

is the so-called Riesz fractional operator, while RL
0 D𝛼

x u(x), RL
x D𝛼

1 u(x) are the left and right Riemann-Liouville frac-
tional derivatives of u (see Section 2.1 for their definition). More precisely, we are interested in a polynomial B-spline
collocation-based discretization of (1) where the so-called Greville abscissae are chosen as collocation points.

Collocation methods are widely utilized in the numerical discretization of differential problems thanks to their
computational simplicity with respect to other methods like Galerkin-based schemes. In particular, collocation meth-
ods with polynomial splines were applied to fractional problems for the first time in Reference 23 and further
developed in Reference 24. Polynomial B-spline bases have been used for solving time-fractional problems in Ref-
erence 25 and space-fractional problems in References 26 and 27. Among nonpolynomial spline collocation meth-
ods for fractional problems, we mention Reference 28 in which the authors explore the application of fractional
B-splines.

Our choice of classical polynomial B-splines is motivated by the fact that, contrarily to their fractional counterpart,
they have compact support and naturally fulfill boundary and/or initial conditions. Furthermore, they possess good
approximation properties. Seminal results concerning the structure of the quadratic spline collocation matrices can be
found in Reference 29. Therein, the authors recognize the Toeplitz-like structure of the coefficient matrices and use a
classical circulant preconditioner to solve the corresponding linear systems by means of Krylov methods.

To the best of our knowledge, this is the first time that the structure and the spectral properties of polynomial B-spline
collocation matrices are investigated for an arbitrary polynomial degree p. We show that the coefficient matrices retain
the Toeplitz-like structure and we study their spectral properties via their symbol. It turns out that the symbol:
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(a) only vanishes at 0 where it has a zero of order 𝛼;
(b) presents an exponential decay to zero at 𝜋 for increasing p, a so-called numerical zero, that becomes faster as 𝛼

approaches 1;
(c) is bounded from below in the proximity of 𝜋 by a positive function independent of 𝛼.

This translates into a mitigated conditioning in the low frequencies and into a deterioration in the high frequencies
when compared to second order problems (see Reference 30). The symbol, and so the (asymptotic) spectral properties of
the involved matrices, do not change if reaction and/or advection terms are added to (1).

As a side result of the symbol computation, we propose a new way of expressing both left and right fractional
derivatives of a cardinal B-spline as inner products of two fractional derivatives of cardinal B-splines.

Furthermore, we provide a numerical study of the approximation behavior of polynomial B-spline collocation for an
arbitrary degree p. It turns out that the approximation order for smooth solutions is p + 2 − 𝛼 for even p, and p + 1 − 𝛼
for odd p. This is in agreement with the approximation results known for standard (nonfractional) diffusion problems.31

We refer the reader to References 6,32,33 for a smoothness analysis of the solution in (weighted) Sobolev spaces.
The paper is organized as follows. Section 2 is devoted to notations, definitions, and preliminary results. In Section 3 we

present a new way of writing the fractional derivative of a cardinal B-spline. In Section 4 we describe the IgA collocation
approximation of the problem reported in (1), while in Sections 5 and 6 we perform a detailed spectral analysis of the
resulting coefficient matrices. We validate our theoretical spectral findings with a selection of numerical experiments in
Section 7 and we do a numerical study of the approximation order of the polynomial B-spline collocation method as well.
We end with some concluding remarks in Section 8.

2 PRELIMINARIES

In this section, we collect some preliminary tools on fractional derivatives, spectral analysis, and IgA discretizations.
Firstly, we give two definitions of fractional derivatives (Section 2.1). Secondly, after introducing the definition of spectral
distribution of general matrix-sequences, we summarize the essentials of Toeplitz sequences (Section 2.2). Finally, we
recall the definition of B-splines and cardinal B-splines (Section 2.3).

2.1 Fractional derivatives

A common definition of fractional derivatives is given by the Riemann–Liouville formula. For a given function u with
absolutely continuous (m − 1)th derivative on [a, b], the left and right Riemann-Liouville fractional derivatives of order
𝛼 are defined by

RL
a D𝛼

x u(x) ∶= 1
Γ(m − 𝛼)

dm

dxm∫
x

a
(x − y)m−𝛼−1u(y) dy,

RL
x D𝛼

b u(x) ∶= (−1)m

Γ(m − 𝛼)
dm

dxm∫
b

x
(y − x)m−𝛼−1u(y) dy,

with m the integer such that m − 1 ≤ 𝛼 < m and Γ the Euler gamma function. Note that the left fractional derivative of
the function u computed at x depends on all function values to the left of x, while the right fractional derivative depends
on the ones to the right.

Another common definition of fractional derivative was proposed by Caputo:

C
a D𝛼

x u(x) ∶= 1
Γ(m − 𝛼)∫

x

a
(x − y)m−𝛼−1u(m)(y) dy,

C
x D𝛼

b u(x) ∶= (−1)m

Γ(m − 𝛼)∫
b

x
(y − x)m−𝛼−1u(m)(y) dy.

(2)

Note that (2) requires the mth derivative of u to be absolutely integrable. Higher regularity of the solution is typically
imposed in time rather than in space. As a consequence, the Caputo formulation is mainly used for fractional derivatives
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in time, while Riemann–Liouville’s is preferred for fractional derivatives in space. The use of Caputo’s derivative provides
some advantages in the treatment of boundary conditions when applying the Laplace transform method (see chapter 2.8
in Reference 34).

The Riemann–Liouville derivatives are related to the Caputo ones as follows:

RL
a D𝛼

x u(x) = C
a D𝛼

x u(x) +
m−1∑
k=0

(x − a)k−𝛼

Γ(k − 𝛼 + 1)
u(k)(a+),

RL
x D𝛼

b u(x) = C
x D𝛼

b u(x) +
m−1∑
k=0

(−1)k(b − x)k−𝛼

Γ(k − 𝛼 + 1)
u(k)(b−),

(3)

and the two coincide if u satisfies homogeneous conditions, that is, u(k)(a+) = u(k)(b−) = 0 for k = 0, … ,m − 1, where
u(k)(a+) and u(k)(b−) denote the right- and left-sided limits of u(k)(x) at a and b, respectively.

Remark 1. Throughout the paper, whenever we write RL
a D𝛼

x u(𝜉) or RL
x D𝛼

b u(𝜉) for a fixed 𝜉 we mean RL
a D𝛼

x u(x) or RL
x D𝛼

b u(x),
where x = 𝜉, respectively.

2.2 Spectral tools

We begin with the formal definition of spectral distribution in the sense of the eigenvalues for a general matrix-sequence.

Definition 1. Let f ∶ G → C be a measurable function, defined on a measurable set G ⊂ Rk with k ≥ 1 and Lebesgue
measure 0 < 𝜇k(G) <∞. Let 0(C) be the set of continuous functions with compact support over C, and let An be a matrix
of size dn with eigenvalues 𝜆j(An), j = 1, … , dn. The matrix-sequence {An}n (with dn < dn+1) is distributed as the pair
(f ,G) in the sense of the eigenvalues, denoted by

{An}n ∼𝜆 (f ,G),

if the following limit relation holds for all F ∈ 0(C):

lim
n→∞

1
dn

dn∑
j=1

F(𝜆j(An)) =
1

𝜇k(G) ∫G
F(f (t)) dt. (4)

We say that f is the (spectral) symbol of the matrix-sequence {An}n.

Remark 2. Throughout the paper, when it is not of crucial importance to know what is the domain of f , we replace the
notation {An}n ∼𝜆 (f ,G) with {An}n ∼𝜆 f .

Remark 3. When f is continuous, an informal interpretation of the limit relation (4) is that when the matrix-size is suffi-
ciently large, the eigenvalues of An can be approximated by a sampling of f on a uniform equispaced grid of the domain
G, possibly up to few outliers.

For a given matrix X ∈ Cm×m, let us denote by ||X||1,∗ the trace norm defined by ||X||1,∗ ∶= ∑m
j=1𝜎j(X), where 𝜎j(X) are

the m singular values of X .
The following result allows us to determine the spectral distribution of a Hermitian matrix-sequence plus a correction

(see Reference 35 (corollary 4.1) and also Reference 36 for an extension).

Theorem 1. Let {Xn}n and {Yn}n be two matrix-sequences, with Xn,Yn ∈ Cdn×dn , and assume that

(a) Xn is Hermitian for all n and {Xn}n ∼𝜆 f ;
(b) ||Xn||2, ||Yn||2 ≤ C for all n with C a constant independent of dn and with || ⋅ ||2 the spectral norm;
(c) ||Yn||1,∗ = o(dn) as n →∞.

Then, {Xn + Yn}n ∼𝜆 f .

We now recall the definition of Toeplitz sequences generated by univariate functions in L1([−𝜋, 𝜋]).
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Definition 2. Let f ∈ L1([−𝜋, 𝜋]) and let fk be its Fourier coefficients,

fk ∶=
1

2𝜋∫
𝜋

−𝜋
f (𝜃)e−i(k𝜃) d𝜃, k ∈ Z. (5)

The nth Toeplitz matrix associated with f is the n × n matrix defined by

Tn(f ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f0 f−1 · · · · · · f−(n−1)

f1 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ f−1

fn−1 · · · · · · f1 f0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ C

n×n
. (6)

The matrix-sequence {Tn(f )}n is called the Toeplitz sequence generated by f .

For real-valued Toeplitz matrix-sequences, the following theorem holds (see, e.g., Reference 37).

Theorem 2. Let f ∈ L1([𝜋, 𝜋]) be a real-valued function. Then,

{Tn(f )}n ∼𝜆 (f , [−𝜋, 𝜋]).

2.3 B-splines and cardinal B-splines

For p ≥ 0 and n ≥ 1, consider the following uniform open knot sequence corresponding to a uniform mesh of [0, 1],
consisting of n intervals:

𝜉1 = · · · = 𝜉p+1 ∶= 0 < 𝜉p+2 < · · · < 𝜉p+n < 1 =∶ 𝜉p+n+1 = · · · = 𝜉2p+n+1,

where
𝜉i+p+1 ∶=

i
n
, i = 0, … ,n.

This knot sequence allows us to define n + p B-splines of degree p.

Definition 3. The B-splines of degree p over a uniform mesh of [0, 1], consisting of n intervals, are denoted by

Np
i ∶ [0, 1] → R, i = 1, … ,n + p,

and defined recursively as follows: for 1 ≤ i ≤ n + 2p,

N0
i (x) ∶=

{
1, x ∈ [𝜉i, 𝜉i+1),
0, otherwise;

for 1 ≤ k ≤ p and 1 ≤ i ≤ n + 2p − k,

Nk
i (x) ∶=

x − 𝜉i

𝜉i+k − 𝜉i
Nk−1

i (x) + 𝜉i+k+1 − x
𝜉i+k+1 − 𝜉i+1

Nk−1
i+1 (x),

where a fraction with zero denominator is assumed to be zero.

It is well known that the B-splines Np
i , i = 1, … ,n + p, are linearly independent and they enjoy the following list of

properties (see, e.g., References 38 and 39).

• Local support:

supp(Np
i ) = [𝜉i, 𝜉i+p+1], i = 1, … ,n + p; (7)
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6 of 23 MAZZA et al.

• Smoothness:

Np
i ∈ p−1(0, 1), i = 1, … ,n + p;

• Differentiation:

(
Np

i (x)
)′ = p

(
Np−1

i (x)
𝜉i+p − 𝜉i

−
Np−1

i+1 (x)
𝜉i+p+1 − 𝜉i+1

)
, i = 1, … ,n + p, p ≥ 1; (8)

• Non-negative partition of unity:

Np
i (x) ≥ 0, i = 1, … ,n + p,

n+p∑
i=1

Np
i (x) = 1;

• Vanishing at the boundary:

Np
i (0) = Np

i (1) = 0, i = 2, … ,n + p − 1; (9)

• Bound for the second derivatives:

|(Np
i (x))

′′| ≤ 4p(p − 1)n2
, x ∈ (0, 1) a.e. (10)

We also add a property concerning fractional derivatives, which follows from (3) and (8)–(9).

• The Riemann–Liouville and the Caputo derivatives of interior B-splines coincide:

RL
0 D𝛼

x Np
i =

C
0 D𝛼

x Np
i

RL
x D𝛼

1 Np
i =

C
x D𝛼

1 Np
i

, i = m + 1, … ,n + p −m.

From now onwards, we will denote the left and right Riemann–Liouville derivatives simply by 0D𝛼

x and xD𝛼

1 . In view
of the last B-spline property, these also stand for the left and right Caputo derivatives in case of interior B-splines.

The B-splines Np
i , i = p + 1, … ,n, are uniformly shifted and scaled versions of a single shape function, the so-called

cardinal B-spline 𝜙p ∶ R → R,

𝜙0(t) ∶=

{
1, t ∈ [0, 1),
0, otherwise,

(12)

and

𝜙p(t) ∶=
t
p
𝜙p−1(t) +

p + 1 − t
p

𝜙p−1(t − 1), p ≥ 1. (13)

More precisely, we have

Np
i (x) = 𝜙p(nx − i + p + 1), i = p + 1, … ,n,

and (
Np

i (x)
)′ = n𝜙′p(nx − i + p + 1), i = p + 1, … ,n.

The cardinal B-spline 𝜙p belongs to p−1(R) and is supported on the interval [0, p + 1]. It is a symmetric function with
respect to p+1

2
, the midpoint of its support. The left Caputo derivative of 𝜙p has the following explicit expression (see

formula (47) in Reference 25):

0D𝛼

t 𝜙p(t) =
1

Γ(p − 𝛼 + 1)

p+1∑
j=0
(−1)j

(
p + 1

j

)
(t − j)p−𝛼+ , 0 ≤ 𝛼 < p, (14)
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MAZZA et al. 7 of 23

where (⋅)q+ ∶= (max{0, ⋅})q is the truncated power function of degree q. Note that the function in (14) is a fractional
spline, that is, a spline with fractional degree.40 For other common properties of cardinal B-splines, we refer the reader to
Reference 39 and references therein.

3 FRACTIONAL DERIVATIVES OF CARDINAL B-SPLINES

The aim of this section is to write the fractional derivative of a cardinal B-spline as the inner product of fractional deriva-
tives of cardinal B-splines (see Theorem 3). This result will be used in Section 5 to derive an explicit expression of the
symbol of the coefficient matrices of interest.

All the results in this section refer to fractional derivatives on the half-axes. More precisely, for a given compactly
supported function u with absolutely continuous (m − 1)th derivative on R, we consider

−∞D𝛼

x u(x) ∶= 1
Γ(m − 𝛼)

dm

dxm∫
x

−∞
(x − y)m−𝛼−1u(y) dy,

xD𝛼

+∞u(x) ∶= (−1)m

Γ(m − 𝛼)
dm

dxm∫
+∞

x
(y − x)m−𝛼−1u(y) dy,

(15)

with m the integer such that m − 1 ≤ 𝛼 < m. For functions u that are solutions of problem (1) and m = 2, these derivatives
reduce to 0D𝛼

x u(x) and xD𝛼

1 u(x) since the adopted boundary conditions ensure u to be identically zero on R ⧵ (0, 1).
Let ̂f denote the Fourier transform of f ∈ L1(R) ∩ L2(R), that is,

̂f (𝜃) ∶= ∫
R

f (x)e−i𝜃x dx.

We start with a lemma addressing the Fourier transform of the derivatives in (15) for cardinal B-splines.

Lemma 1. Let 𝜙p be the cardinal B-spline as defined in (12)–(13). Then, for 0 ≤ 𝛼 < p we have

̂−∞D𝛼

x𝜙p(𝜃) = (i𝜃)𝛼
(

1 − e−i𝜃

i𝜃

)p+1

, (16)

and

̂xD𝛼

+∞𝜙p(𝜃) = (−i𝜃)𝛼
(

1 − e−i𝜃

i𝜃

)p+1

. (17)

Proof. From Reference 34 we know that

̂−∞D𝛼

x f (𝜃) = (i𝜃)𝛼 ̂f (𝜃), ̂xD𝛼

+∞f (𝜃) = (−i𝜃)𝛼 ̂f (𝜃),

and from References 41 and 39,

𝜙p(𝜃) =
(

1 − e−i𝜃

i𝜃

)p+1

.

Combining these results immediately gives (16) and (17). ▪

We are now ready for the main result of this section. In the following 𝛼1, 𝛼2 stand for real numbers.

Theorem 3. Let 𝜙p be the cardinal B-spline as defined in (12)–(13). Then, for 0 ≤ 𝛼1 < p1 and 0 ≤ 𝛼2 < p2 we have

∫
R

−∞D𝛼1
x 𝜑p1(x) xD𝛼2

+∞𝜑p2(x + k) dx = −∞D𝛼1+𝛼2
x 𝜑p1+p2+1(p2 + 1 − k), (18)

∫
R

xD𝛼1
+∞𝜑p1(x) −∞D𝛼2

x 𝜑p2(x + k) dx = xD𝛼1+𝛼2
+∞ 𝜑p1+p2+1(p2 + 1 − k). (19)
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8 of 23 MAZZA et al.

Proof. We first recall the Parseval identity for Fourier transforms, that is,

∫
R

𝜑(x)𝜓(x) dx = 1
2𝜋 ∫R

�̂�(𝜃)�̂�(𝜃) d𝜃, 𝜑, 𝜓 ∈ L2(R),

and the translation property of the Fourier transform, that is,

̂
𝜓(⋅ + k)(𝜃) = �̂�(𝜃) eik𝜃

, 𝜓 ∈ L1(R), k ∈ R.

Moreover, we recall that (i𝜃)𝛼1(−i𝜃)𝛼2 = (i𝜃)𝛼1+𝛼2 .
Starting from the above equalities, and using Lemma 1, we get

∫
R

−∞D𝛼1
x 𝜙p1(x) xD𝛼2

+∞𝜙p2(x + k) dx = 1
2𝜋 ∫R

̂
−∞D𝛼1

x 𝜙p1(𝜃)
̂

xD𝛼2
+∞𝜙p2(𝜃)eik𝜃 d𝜃

= 1
2𝜋 ∫R

(i𝜃)𝛼1+𝛼2

(
1 − e−i𝜃

i𝜃

)p1+1(ei𝜃 − 1
i𝜃

)p2+1

e−ik𝜃 d𝜃

= 1
2𝜋 ∫R

(i𝜃)𝛼1+𝛼2

(
1 − e−i𝜃

i𝜃

)p1+p2+2

ei(p2+1−k)𝜃 d𝜃.

By taking the inverse Fourier transform of the right-hand side we arrive at (18). The proof of (19) is analogous. ▪

Remark 4. Theorem 3 is a generalization of a known explicit formula for inner products of integer derivatives of cardinal
B-splines (see Reference 42 and also References 39 and 43).

4 IGA COLLOCATION DISCRETIZATION OF THE FRACTIONAL RIESZ
OPERATOR

From now onwards, we assume that 𝛼 is fixed in the open interval (1, 2). Let be a finite dimensional vector space of
sufficiently smooth functions defined on the closure of Ω and vanishing at its boundary, and let N ∶= dim(). Applying
the collocation method to (1) means looking for a function u ∈ such that

d𝛼u (xi)
d|x|𝛼 = s(xi), i = 1, … ,N, (20)

with xi ∈ Ω, the so-called collocation points. Given a basis {𝜑j ∶ j = 1, … ,N} of  , problem (20) can be rewritten in
matrix form as follows:

Acolu = bcol,

with

Acol ∶=
[

1
2 cos(𝜋𝛼∕2)

(0D𝛼

x + xD𝛼

1)𝜑j(xi)
]N

i,j=1
, bcol ∶= [s(xi)]Ni=1,

and u ∶= [u1, … ,uN]T such that u (x) =
∑N

j=1uj𝜑j(x). In this paper, we choose as the space of splines of degree p ≥ 2
that vanish at the boundary, and the collocation points as the Greville abscissae. More precisely, we take

• the approximation space as the space spanned by the B-splines of degree p ≥ 2 that are zero at the boundary (see (9)),
that is,

S
p
n ∶= span{Np

i ∶ i = 2, … ,n + p − 1}; (21)

• the collocation points as the Greville abscissae corresponding to the B-splines in (21), that is,

𝜂i ∶=
𝜉i+1 + · · · + 𝜉i+p

p
, i = 2, … ,n + p − 1.
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MAZZA et al. 9 of 23

Thus (20) translates into the following linear system

Ap,𝛼
n un = bn, (22)

where

Ap,𝛼
n ∶= 1

2 cos(𝜋𝛼∕2)
(AL

n + AR
n), bn ∶= [s(𝜂i+1)]n+p−2

i=1 ,

with

AL
n ∶=

[
0D𝛼

x Np
j+1(𝜂i+1)

]n+p−2

i,j=1
, AR

n ∶=
[

xD𝛼

1 Np
j+1(𝜂i+1)

]n+p−2

i,j=1
, (23)

and un ∶= [u1, … ,un+p−2]T , the vector of the coefficients of u with respect to the B-spline basis functions in the space
S

p
n.

In order to assemble the matrices AL
n and AR

n , we need to compute the left and right fractional derivatives of any
B-spline. By using (14), for the B-splines Np

i corresponding to the indices i = p + 1, … ,n, we have

0D𝛼

x Np
i (x) = n𝛼0D𝛼

nx𝜙p(nx − i + p + 1)

= n𝛼
Γ(p − 𝛼 + 1)

p+1∑
j=0
(−1)j

(
p + 1

j

)
(nx − i + p + 1 − j)p−𝛼+ .

Thanks to this relation, and recalling that the Greville abscissae for i = p + 1, … ,n reduce to

𝜂i =
i
n
−

p + 1
2n

, i = p + 1, … ,n,

or equivalently,

n𝜂i + p + 1 = i +
p + 1

2
, i = p + 1, … ,n,

we can immediately recognize that the central part of the matrix AL
n corresponding to the indices p + 1, … ,n has a

Toeplitz structure. In other words, we have

AL
n = n𝛼(TL

n + RL
n),

where

TL
n ∶=

[
0D𝛼

nx𝜙p

(
p + 1

2
+ i − j

)]n+p−2

i,j=1
,

and RL
n is a matrix whose rank is bounded by 4(p − 1). A similar reasoning can be applied to the matrix AR

n , and we have

AR
n = n𝛼(TR

n + RR
n),

where

TR
n ∶=

[
nxD𝛼

n𝜙p

(
p + 1

2
+ i − j

)]n+p−2

i,j=1
,

and RR
n is a matrix whose rank is bounded by 4(p − 1). As a consequence, the coefficient matrix Ap,𝛼

n inherits the Toeplitz
plus rank correction structure and can be written as follows:

Ap,𝛼
n = 1

2 cos(𝜋𝛼∕2)
(AL

n + AR
n) = n𝛼(Tp,𝛼

n + Rp,𝛼
n ), (24)
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10 of 23 MAZZA et al.

with

Tp,𝛼
n ∶= 1

2 cos(𝜋𝛼∕2)
(TL

n + TR
n ), Rp,𝛼

n ∶= 1
2 cos(𝜋𝛼∕2)

(RL
n + RR

n). (25)

In Section 6 we will show that the symbol of {n−𝛼Ap,𝛼
n }n coincides with the symbol of {Tp,𝛼

n }n, denoted by f p,𝛼 , but first
we discuss some properties of this function in the next section.

5 PROPERTIES OF THE FUNCTION f p,𝜶

We start with a theorem that provides an explicit expression of the generating function f p,𝛼 of the Toeplitz matrix Tp,𝛼
n and

whose proof uses the results obtained in Section 3.

Theorem 4. Let 𝛼 ∈ (1, 2) and let Tp,𝛼
n be defined as in (25). Then, Tp,𝛼

n = Tn+p−2(f p,𝛼) with

f p,𝛼(𝜃) =
∑
l∈Z

|𝜃 + 2l𝜋|𝛼( sin(𝜃∕2 + l𝜋)
𝜃∕2 + l𝜋

)p+1

. (26)

Proof. From its construction it is clear that Tp,𝛼
n is a Toeplitz matrix of dimension n + p − 2. According to the definition

in (6), the entries fk of this matrix are given by

fk =
1

2 cos(𝜋𝛼∕2)

(
−∞D𝛼

x𝜙p

(
p + 1

2
− k

)
+ xD𝛼

+∞𝜙p

(
p + 1

2
− k

))
.

We differentiate the cases of odd and even degree p. We start by proving the expression (26) of the generating function
f p,𝛼 for p = 2q + 1. Using Theorem 3 (and its proof) with 𝛼 = 𝛼1 + 𝛼2 and q = p1 = p2, we have

2 cos(𝜋𝛼∕2)fk =−∞D𝛼

x𝜙2q+1(q + 1 − k) + xD𝛼

+∞𝜙2q+1(q + 1 − k)

= 1
2𝜋 ∫R

[
(i𝜃)𝛼 + (−i𝜃)𝛼

](1 − e−i𝜃

i𝜃

)q+1(ei𝜃 − 1
i𝜃

)q+1

e−ik𝜃 d𝜃

= 1
2𝜋 ∫R

2|𝜃|𝛼 cos(𝜋𝛼∕2)
||||1 − e−i𝜃

𝜃

||||
2q+2

e−ik𝜃 d𝜃.

Set

w(𝜃) ∶= |𝜃|𝛼||||1 − e−i𝜃

𝜃

||||
2q+2

= |𝜃|𝛼( sin(𝜃∕2)
𝜃∕2

)2q+2

.

Then,

fk =
1

2𝜋 ∫R

w(𝜃)e−ik𝜃 d𝜃 =
∑
l∈Z

1
2𝜋∫

(2l+1)𝜋

(2l−1)𝜋
w(𝜃)e−ik𝜃 d𝜃

=
∑
l∈Z

1
2𝜋∫

𝜋

−𝜋
w(𝜃 + 2l𝜋)e−ik𝜃 d𝜃 = 1

2𝜋∫
𝜋

−𝜋

[∑
l∈Z

w(𝜃 + 2l𝜋)

]
e−ik𝜃 d𝜃.

The expression (26) of the generating function f p,𝛼 follows from (5) for p = 2q + 1.
Now we consider even degree p = 2q. Using again Theorem 3 (and its proof) with 𝛼 = 𝛼1 + 𝛼2 and q = p1 + 1 = p2, we

have

2 cos(𝜋𝛼∕2)fk = −∞D𝛼

x𝜙2q(q + 1 − k − 1∕2) + xD𝛼

+∞𝜙2q(q + 1 − k − 1∕2)

= 1
2𝜋 ∫R

[
(i𝜃)𝛼 + (−i𝜃)𝛼

](1 − e−i𝜃

i𝜃

)q(ei𝜃 − 1
i𝜃

)q+1

e−i(k+1∕2)𝜃 d𝜃

= 1
2𝜋 ∫R

2|𝜃|𝛼 cos(𝜋𝛼∕2)
||||1 − e−i𝜃

𝜃

||||
2q (ei𝜃∕2 − e−i𝜃∕2

i𝜃

)
e−ik𝜃 d𝜃.
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MAZZA et al. 11 of 23

Here,

w(𝜃) ∶= |𝜃|𝛼||||1 − e−i𝜃

𝜃

||||
2q (ei𝜃∕2 − e−i𝜃∕2

i𝜃

)
= |𝜃|𝛼( sin(𝜃∕2)

𝜃∕2

)2q+1

.

Following then a similar argument as in the odd degree case, we arrive at the expression (26) of the generating function
f p,𝛼 for p = 2q. ▪

Remark 5. The proof of Theorem 4 remains valid for 𝛼 ∈ [0, 1) ∪ (1, 2].

Starting from (26) and applying the same line of arguments as in the proofs of lemmas 3.4 and 3.6 in Reference 30, we
obtain the following results for f p,𝛼(𝜃).

Theorem 5. Let f p,𝛼 be as in (26) and 𝜃 ∈ [0, 𝜋]. Then, f p,𝛼(𝜃) = f p,𝛼(−𝜃), and for p > 𝛼,

|𝜃|𝛼( sin(𝜃∕2)
𝜃∕2

)p+1

≤ f p,𝛼(𝜃) ≤ |𝜃|𝛼( sin(𝜃∕2)
𝜃∕2

)p+1

+ Cp,𝛼(sin(𝜃∕2))p+1
, (27)

where Cp,𝛼 is a constant depending on p and 𝛼. Moreover,

f p,𝛼(𝜋)
max𝜃 f p,𝛼(𝜃)

≤ f p,𝛼(𝜋)
f p,𝛼(𝜋∕2)

≤ 2
2𝛼+1−p

2 . (28)

From the bounds in (27) we can immediately deduce the vanishing properties of f p,𝛼 .

Corollary 1. Let f p,𝛼 be as in (26). Then, f p,𝛼 is non-negative for 𝜃 ∈ [−𝜋, 𝜋], and it only vanishes at 𝜃 = 0 where it has a
zero of order 𝛼.

Let ̃f p,𝛼 ∶= f p,𝛼∕max𝜃 f p,𝛼(𝜃) be the normalized version of f p,𝛼 . The inequality in (28) shows that ̃f p,𝛼(𝜃) converges
exponentially to zero at 𝜃 = ±𝜋 for increasing p. Hence, we say that f p,𝛼 has a numerical zero at ±𝜋 for large p.

Remark 6. The upper bound in (28) depends not only on p but also on 𝛼. In this view, the decay at ±𝜋 of ̃f p,𝛼 is expected
to become faster as 𝛼 approaches 1.

In the following propositions we bound f p,𝛼(𝜃) in terms of f p,0(𝜃) and f p,2(𝜃) for high enough values of |𝜃|. We recall
from section 3 in Reference 30 that f p,0 is a positive trigonometric polynomial and f p,2 a non-negative one.

Proposition 1. For p odd, we have

f p,0(𝜃) ≤ f p,𝛼(𝜃) ≤ f p,2(𝜃), |𝜃| ∈ [1, 𝜋]. (29)
Proof. Since

1 = |𝜃 + 2l𝜋|0 ≤ |𝜃 + 2l𝜋|𝛼 ≤ |𝜃 + 2l𝜋|2, l ∈ Z, |𝜃| ≥ 1,

and
(

sin(𝜃∕2 + l𝜋)
𝜃∕2 + l𝜋

)2q+2

≥ 0, l ∈ Z,

it is clear from the definition of f p,𝛼 in (26) that (29) holds for p = 2q + 1. ▪

Proposition 2. For p even and p > 𝛼, we have

f p,0(𝜃) ≤ f p,𝛼(𝜃), |𝜃| ∈ [a, 𝜋], (30)

where

a ∶=
(
𝜋

4

48

)1∕𝛼

.
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12 of 23 MAZZA et al.

Proof. Let p = 2q > 𝛼 and 𝜃 ∈ [−𝜋, 𝜋]. It is easy to check that

f p,𝛼(𝜃) = |𝜃|𝛼( sin(𝜃∕2)
𝜃∕2

)p+1

+ (2 sin(𝜃∕2))p+1rp,𝛼(𝜃),

where

rp,𝛼(𝜃) ∶=
∞∑

k=1
(−1)k

[
1

(2k𝜋 + 𝜃)p+1−𝛼 −
1

(2k𝜋 − 𝜃)p+1−𝛼

]
.

With the same line of arguments as in the proof of lemma A.2 in Reference 30 we deduce that rp,𝛼(𝜃) is a strictly increasing
function, which implies that rp,𝛼(𝜋) ≥ rp,𝛼(𝜃) > rp,𝛼(0) = 0 for 𝜃 ∈ (0, 𝜋]. Moreover, from the same lemma we know

rp,0(𝜃) ≤
(
𝜋

4

48
− 1

)
1

𝜋
p+1 , 𝜃 ∈ [0, 𝜋].

From the above bounds we get

f p,𝛼(𝜃) − f p,0(𝜃) = (|𝜃|𝛼 − 1)
(

sin(𝜃∕2)
𝜃∕2

)p+1

+ (2 sin(𝜃∕2))p+1(rp,𝛼(𝜃) − rp,0(𝜃))

≥ (2 sin(𝜃∕2))p+1
[|𝜃|𝛼 − 1

𝜃
p+1 −

(
𝜋

4

48
− 1

)
1

𝜋
p+1

]

≥
(

2 sin(𝜃∕2)
𝜋

)p+1 [|𝜃|𝛼 − 1 −
(
𝜋

4

48
− 1

)]
,

for 𝜃 ∈ [1, 𝜋]. Hence,

f p,𝛼(𝜃) − f p,0(𝜃) ≥ 0, 𝜃 ≥
(
𝜋

4

48

)1∕𝛼

,

and the symmetry property of f p,𝛼 (see Theorem 5) concludes the proof. ▪

In our final proposition we explicitly state that f p,𝛼 is the symbol of the matrix-sequence {Tp,𝛼
n }n.

Proposition 3. The Toeplitz matrix Tp,𝛼
n defined in (25) is symmetric and

{Tp,𝛼
n }n ∼𝜆 (f p,𝛼

, [−𝜋, 𝜋]), (31)

where f p,𝛼 is given in (26).

Proof. From Theorem 5 we know that f p,𝛼 is an even real-valued function, so the matrix Tp,𝛼
n = Tn+p−2(f p,𝛼) is symmetric.

The spectral distribution of {Tp,𝛼
n }n = {Tn+p−2(f p,𝛼)}n follows from Theorem 2. ▪

We end this section by summarizing all the discussed properties of the symbol f p,𝛼 and highlighting what is their
role in the design of an ad hoc solver for a linear system associated with Tp,𝛼

n (see Remark 7). We have shown that f p,𝛼 is
equipped with the following three properties:

(a) it vanishes at 0 with order 𝛼 (Corollary 1);
(b) it presents an exponential decay to zero at 𝜋 for increasing p that becomes faster as 𝛼 approaches 1 (Theorem 5 and

Remark 6);
(c) it is bounded from below in the proximity of 𝜋 by f p,0 (Propositions 1 and 2).

Properties (a)–(b) give us a clear picture of what are the conditioning peculiarities of the matrix Tp,𝛼
n . Specifically,

they say that Tp,𝛼
n is poorly conditioned both in the low frequencies (with a conditioning that grows as n𝛼) and in the
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MAZZA et al. 13 of 23

high frequencies (with a deterioration that is driven by both p and 𝛼). Moreover, property (c) “isolates” the source of
ill-conditioning in the high frequencies induced by p, meaning the symbol behaves like f p,0 in the proximity of 𝜋, with
f p,0 a positive function well-separated from zero.

Remark 7. Based on what has been done in References 11,12,17,18, all this knowledge can be used for the design of an
ad hoc solver for a linear system associated with Tp,𝛼

n . For instance, from (a) we can infer that a multigrid method with a
standard choice of both prolongator and restrictor is able to cope with the standard ill-conditioning in the low frequency
subspace, while from (c) we get hints on how to define a smoother that works in the subspace of high frequencies where
there exists the ill-conditioning induced by p.

6 SPECTRAL SYMBOL OF {n−𝜶Ap,𝜶
n }n

This section is devoted to the computation of the symbol of the matrix-sequence {n−𝛼Ap,𝛼
n }n. As we have already antic-

ipated, it turns out that the symbol of {n−𝛼Ap,𝛼
n }n coincides with the symbol of the Toeplitz part {Tp,𝛼

n }n. The spectral
distribution of {n−𝛼Ap,𝛼

n }n is given in Theorem 6. Its proof uses Theorem 1 and needs several preliminary results.
For a given matrix X ∶= [xij]mi,j=1 ∈ Cm×m, we denote by ||X||1 ∶= maxj=1,… ,m

∑m
i=1|xij| and ||X||∞ ∶=

maxi=1,… ,m
∑m

j=1|xij|, the induced 1- and infinity-norm, respectively.

Lemma 2. Let AL
n be defined as in (23). For i, j = 2, … ,n + p − 1 we have

|(AL
n)i−1,j−1| ≤

⎧⎪⎨⎪⎩
0, 𝜂i ≤ 𝜉j,

cL
p,𝛼 n𝛼, 𝜉j < 𝜂i ≤ 𝜉j+p+1 + 1

n
,

cL
p,𝛼 (𝜂i − 𝜉j+p+1)−𝛼, 𝜉j+p+1 + 1

n
< 𝜂i,

(32)

where cL
p,𝛼 is a constant depending on p and 𝛼.

Proof. From the properties of fractional derivatives (2)–(3) and the B-spline properties (7)–(11) it follows that for j = 2,

(AL
n)i−1,1 =

1
Γ(2 − 𝛼)∫

min(𝜂i,𝜉p+3)

0
(𝜂i − y)1−𝛼(Np

2 )
′′(y) dy +

pn
Γ(2 − 𝛼)

(𝜂i)1−𝛼, (33)

and for j = 3, … ,n + p − 1,

(AL
n)i−1,j−1 =

⎧⎪⎨⎪⎩
0, 𝜂i ≤ 𝜉j,

1
Γ(2−𝛼)

∫ min(𝜂i,𝜉j+p+1)
𝜉j

(𝜂i − y)1−𝛼(Np
j )
′′(y) dy, otherwise.

(34)

We remark that 𝜂i ∈ (0, 1), 𝜂i < 𝜂i+1, and 𝜉j+p+1 − 𝜉j ≤ p+1
n

. In the following, we address the three different cases in (32)
separately.

If 𝜂i ≤ 𝜉j, then it is clear that (AL
n)i−1,j−1 = 0 for j = 3, … ,n + p − 1. Note that j = 2 is not involved in this case for any

i because 𝜉2 = 0 < 𝜂i.
If 𝜉j < 𝜂i ≤ 𝜉j+p+1 + 1

n
, then

(𝜂i − y) ≤ p + 2
n

, y ∈ [𝜉j,min(𝜂i, 𝜉j+p+1)].

Using (10), from (34) we get for j = 3, … ,n + p − 1,

|(AL
n)i−1,j−1| ≤ 4p(p − 1)n2

Γ(2 − 𝛼) ∫
min(𝜂i,𝜉j+p+1)

𝜉j

(𝜂i − y)1−𝛼 dy

≤ 4p(p − 1)n2

Γ(3 − 𝛼)

(
p + 2

n

)2−𝛼

.
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14 of 23 MAZZA et al.

When j = 2 we have 𝜉2 = 0 and 1
pn
= 𝜂2 ≤ 𝜂i ≤ 𝜉p+3 + 1

n
≤ 3

n
. Then, we find in a similar way that for j = 2,

|(AL
n)i−1,1| ≤ 4p(p − 1)n2

Γ(3 − 𝛼)

( 3
n

)2−𝛼
+

pn
Γ(2 − 𝛼)

(
1

pn

)1−𝛼

.

We now look at the case 𝜉j+p+1 + 1
n
< 𝜂i. This case can only happen for 2 ≤ j < n because when j ≥ n we have

𝜉j+p+1 = 1 > 𝜂i. Given y ∈ [𝜉j, 𝜉j+p+1], we consider the Taylor expansion of (𝜂i − y)1−𝛼 at 𝜉j, producing

(𝜂i − y)1−𝛼 = (𝜂i − 𝜉j)1−𝛼 − (1 − 𝛼)(𝜂i − 𝜔i,j(y))−𝛼(y − 𝜉j), (35)

for some 𝜔i,j(y) ∈ (𝜉j, 𝜉j+p+1). Substituting (35) in (34) results in

|(AL
n)i−1,j−1| ≤ 1

Γ(2 − 𝛼)

|||||(𝜂i − 𝜉j)1−𝛼∫
𝜉j+p+1

𝜉j

(Np
j )
′′(y) dy

|||||
+ 𝛼 − 1
Γ(2 − 𝛼)∫

𝜉j+p+1

𝜉j

(𝜂i − 𝜔i,j(y))−𝛼(y − 𝜉j)|(Np
j )
′′(y)| dy.

Observe that (Np
j )
′(𝜉j) = (Np

j )
′(𝜉j+p+1) = 0 for 3 ≤ j ≤ n + p − 2, and (𝜂i − 𝜔i,j(y)) > (𝜂i − 𝜉j+p+1). Then, recalling the bound

in (10), we obtain for j = 3, … ,n − 1,

|(AL
n)i−1,j−1| ≤ 1

Γ(2 − 𝛼)
|||(𝜂i − 𝜉j)1−𝛼((Np

j )
′(𝜉j+p+1) − (Np

j )
′(𝜉j))

|||
+ 𝛼 − 1
Γ(2 − 𝛼)

4p(p − 1)n2∫
𝜉j+p+1

𝜉j

(y − 𝜉j) dy (𝜂i − 𝜉j+p+1)−𝛼

≤ 𝛼 − 1
Γ(2 − 𝛼)

2p(p − 1)n2
(

p + 1
n

)2

(𝜂i − 𝜉j+p+1)−𝛼.

Substituting (35) in (33) and observing that (Np
2 )
′(0) = np, (Np

2 )
′(𝜉p+3) = 0, we find with a similar argument that for j = 2,

|(AL
n)i−1,1| ≤ 1

Γ(2 − 𝛼)
|||(𝜂i)1−𝛼((Np

2 )
′(𝜉p+3) − (Np

2 )
′(0)) + np(𝜂i)1−𝛼

|||
+ 𝛼 − 1
Γ(2 − 𝛼)

4p(p − 1)n2∫
𝜉p+3

0
y dy (𝜂i − 𝜉p+3)−𝛼

≤ 𝛼 − 1
Γ(2 − 𝛼)

2p(p − 1)n2
( 2

n

)2
(𝜂i − 𝜉p+3)−𝛼.

This concludes the proof. ▪

Lemma 3. Let AL
n be defined as in (23). We have

||n−𝛼AL
n||q ≤ CL

p,𝛼 , q ∈ {1, 2,∞},

where CL
p,𝛼 is a constant depending on p and 𝛼.

Proof. We first consider the infinity-norm

||n−𝛼AL
n||∞ = n−𝛼 max

i=2… ,n+p−1

n+p−1∑
j=2

|(AL
n)i−1,j−1|.

The entries |(AL
n)i−1,j−1|, i, j = 2, … n + p − 1, can be bounded thanks to the results of Lemma 2. We observe that for any

fixed i,
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MAZZA et al. 15 of 23

• the number of indices in {j ∶ 𝜉j < 𝜂i ≤ 𝜉j+p+1 + 1
n
} is bounded by p + 2;

• for j = n, … ,n + p − 1 we have 𝜉j+p+1 = 1, thus either 𝜂i ≤ 𝜉j or 𝜉j < 𝜂i ≤ 𝜉j+p+1 + 1
n

;

• if 𝜂i > 𝜉j+p+1 + 1
n

, then 2 ≤ j ≤ n − 1 and

𝜂i − 𝜉j+p+1 = 𝜂i −
j
n
≥ 𝓁i,j

n
,

where 𝓁i,j ∶= ⌊n𝜂i − j⌋. Note that 𝓁i,j ≥ 1 and 𝓁i,j = 𝓁i,j+1 + 1, so

∑
j∶ 𝜂i>𝜉j+p+1+

1
n

(𝓁i,j)−𝛼 ≤
∞∑
𝓁=1
𝓁−𝛼 = 𝜁(𝛼),

with 𝜁(𝛼) the Riemann zeta function evaluated at 𝛼. The series
∑∞
𝓁=1𝓁

−𝛼 is convergent for 𝛼 ∈ (1, 2).

As a consequence, taking into account Lemma 2, for any fixed i we have

n−𝛼
n+p−1∑

j=2
|(AL

n)i−1,j−1| ≤ n−𝛼
⎡⎢⎢⎣

∑
j∶ 𝜉j<𝜂i≤𝜉j+p+1+

1
n

|(AL
n)i−1,j−1| + ∑

j∶ 𝜂i>𝜉j+p+1+
1
n

|(AL
n)i−1,j−1|⎤⎥⎥⎦

≤ n−𝛼 cL
p,𝛼

⎡⎢⎢⎣(p + 2)n𝛼 +
∑

j∶ 𝜂i>𝜉j+p+1+
1
n

(
𝓁i,j

n

)−𝛼⎤⎥⎥⎦
≤ cL

p,𝛼[p + 2 + 𝜁(𝛼)].

The bound for the 1-norm

||n−𝛼AL
n||1 = n−𝛼 max

j=2… ,n+p−1

n+p−1∑
i=2

|(AL
n)i−1,j−1|

can be shown with a similar line of arguments, by observing that for any fixed j,

• the number of indices in {i ∶ 𝜉j < 𝜂i ≤ 𝜉j+p+1 + 1
n
} is bounded by 2p;

• if 𝜂i > 𝜉j+p+1 + 1
n

, then

𝜂i − 𝜉j+p+1 ≥ 𝓁i,j

n
,

where 𝓁i,j ∶= ⌊n(𝜂i − 𝜉j+p+1)⌋. Note that 𝓁i,j ≥ 1 for all i and 𝓁i+1,j = 𝓁i,j + 1 for p + 1 ≤ i ≤ n − 1, so

∑
i∶ 𝜂i>𝜉j+p+1+

1
n

(𝓁i,j)−𝛼 ≤ 2(p − 1) +
∞∑
𝓁=1
𝓁−𝛼 = 2(p − 1) + 𝜁(𝛼).

Finally, the bound for the spectral norm follows from the inequality

||n−𝛼AL
n||2 ≤√||n−𝛼AL

n||∞||n−𝛼AL
n||1

and the above results for the infinity-norm and 1-norm. ▪

A similar reasoning to the one adopted in the previous lemmas brings us to the following result.
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16 of 23 MAZZA et al.

Lemma 4. Let AR
n be defined as in (23). We have

||n−𝛼AR
n||q ≤ CR

p,𝛼 , q ∈ {1, 2,∞},

where CR
p,𝛼 is a constant depending on p and 𝛼.

In the next lemma we provide bounds for some norms of the matrix Rp,𝛼
n .

Lemma 5. Let Rp,𝛼
n be defined as in (25). We have

||Rp,𝛼
n ||2, ||Rp,𝛼

n ||1,∗ ≤ ̃Cp,𝛼 ,

where ̃Cp,𝛼 is a constant depending on p and 𝛼.

Proof. The relation in (24) implies

||Rp,𝛼
n ||2 = ||n−𝛼Ap,𝛼

n − Tp,𝛼
n ||2 ≤ ||n−𝛼Ap,𝛼

n ||2 + ||Tp,𝛼
n ||2,

and we recall from Section 5 that

||Tp,𝛼
n ||2 = ||Tn+p−2(f p,𝛼)||2 ≤ ||f p,𝛼||∞ < +∞.

Then, by Lemmas 3–4 and (24), we arrive at

||Rp,𝛼
n ||2 ≤ 1

2 cos(𝜋𝛼∕2)
(CL

p,𝛼 + CR
p,𝛼) + ||f p,𝛼||∞.

In addition, ||Rp,𝛼
n ||1,∗ ≤ rank(Rp,𝛼

n )||Rp,𝛼
n ||2 and rank(Rp,𝛼

n ) ≤ 4(p − 1). This completes the proof. ▪

We are now in a position to discuss the spectral distribution of {n−𝛼Ap,𝛼
n }n.

Theorem 6. Given {n−𝛼Ap,𝛼
n }n with Ap,𝛼

n as in (24), we have

{n−𝛼Ap,𝛼
n }n ∼𝜆 (f p,𝛼

, [−𝜋, 𝜋]), (36)

where f p,𝛼 is given in (26).

Proof. We prove this result by applying Theorem 1 with Xn = Tp,𝛼
n and Yn = Rp,𝛼

n . We first note that, because of Proposi-
tion 3, condition (a) of Theorem 1 is satisfied. The other conditions hold by Lemmas 3–4 with q = 2 and by Lemma 5. ▪

Remark 8. Thanks to Theorem 6, the matrices n−𝛼Ap,𝛼
n and Tp,𝛼

n are asymptotically spectrally equivalent, possibly up to
few outliers. As a consequence, the arguments given in Remark 7 apply unchanged when the aim is solving a linear
system whose coefficient matrix is n−𝛼Ap,𝛼

n instead of Tp,𝛼
n .

Remark 9. Let Ap,𝛼,𝛾,𝜌
n be the coefficient matrix corresponding to the B-spline collocation discretization of the

advection-diffusion-reaction problem

{ d𝛼u(x)
d|x|𝛼 + 𝛾u′(x) + 𝜌u(x) = s(x), x ∈ Ω,

u(x) = 0, x ∈ R ⧵Ω,

with 𝜌 > 0 and 𝛾 ∈ R. From Theorem 6, in combination with Theorem 1 and lemma 4.1 in Reference 30, we immediately
deduce that

{n−𝛼Ap,𝛼,𝛾,𝜌
n }n ∼𝜆 (f p,𝛼

, [−𝜋, 𝜋]).
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MAZZA et al. 17 of 23

7 NUMERICAL EXPERIMENTS

In the following, we verify the spectral results obtained in Sections 5 and 6 through several numerical experiments. We
also provide a numerical study of the approximation behavior of the proposed polynomial B-spline collocation method
for an arbitrary degree p.

Let us start by illustrating that

• the symbol f p,𝛼 only vanishes at 0, where it has a zero of order 𝛼, and it presents an exponential decay to zero at 𝜋 for
increasing p;

• the symbol f p,𝛼 satisfies the bounds in (29) for odd p, and the bound in (30) for even p;
• relations (31) and (36) hold.

Note that it suffices to consider the interval [0, 𝜋] due to the symmetry of f p,𝛼 ; see Theorem 5.
Figure 1 shows that, independently of p, the normalized symbol ̃f p,𝛼 ∶= f p,𝛼∕max𝜃 f p,𝛼(𝜃) only vanishes at 0 and the

order of such zero increases up to 2 as 𝛼 tends to 2. On the other hand, it presents a decay at 𝜋 as p increases. We observe
that such decay becomes faster when 𝛼 decreases to 1, in accordance with Remark 6.

In Figure 2 we show that, varying 𝛼 ∈ {1.2, 1.3, 1.5, 1.8}, the bounds in (29) hold for p = 3, and the one in (30) holds
for p = 4. Observe that, despite the fact that relation (30) is only theoretically proven to be true for all 𝜃 ∈ [a, 𝜋], a =(
𝜋

4

48

)1∕𝛼
> 1, it actually holds for all 𝜃 ∈ [1, 𝜋].

In order to numerically verify that relations (31) and (36) hold, for fixed n, p, we define the following equispaced grid
on [0, 𝜋]:

𝛤 ∶=
{
𝜃k ∶=

k𝜋
n + p − 2

∶ k = 1, … ,n + p − 2
}
.

Then, we compare the sampling of f p,𝛼 on 𝛤 with the eigenvalues of both Tp,𝛼
n and n−𝛼Ap,𝛼

n . Both eigenvalues and sam-
pling values have been ordered in ascending way. In all the numerical experiments, the entries of the coefficient matrix

(a) (b)

(c) (d)

F I G U R E 1 (a–d) Plot of ̃f p,𝛼 ∶= f p,𝛼∕max
𝜃

f p,𝛼(𝜃) for p = 3, 4, 5, 6. In all cases 𝛼 ∈ {1.2, 1.5, 1.8, 2}
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18 of 23 MAZZA et al.

(a) (b)

F I G U R E 2 (a) Check of the bound in (29) which is valid for odd p (p = 3), and (b) check of the bound in (30) which is valid for even p
(p = 4). In both cases 𝛼 ∈ {1.2, 1.3, 1.5, 1.8}

(a) (b)

(c) (d)

F I G U R E 3 Comparison of the eigenvalues of (a,c) Tp,𝛼
n and (b,d) n−𝛼Ap,𝛼

n (o) with a uniform sampling of f p,𝛼 on 𝛤 (∗), ordered in
ascending way, for (a,b) 𝛼 = 1.2 and (c,d) 𝛼 = 1.8. In all cases n = 63, p = 3

Ap,𝛼
n have been computed using the Gauss–Jacobi-type quadrature rules introduced in Reference 44. In Figure 3 we fix

p = 3, n = 63 and vary 𝛼 ∈ {1.2, 1.8}. For both Tp,𝛼
n and n−𝛼Ap,𝛼

n we experience a very good matching, which is in accor-
dance with Proposition 3 and Theorem 6. However, we observe that in the case of n−𝛼Ap,𝛼

n there are few large eigenvalues
that do not behave like the symbol; these are outliers. Their number seems to depend only on p and increases in the
same way as it has been observed for similar discretizations for integer-order PDEs (see, e.g., Reference 31). As a fur-
ther confirmation of Proposition 3 and Theorem 6, we obtained similar results also for p = 4, n = 62, and 𝛼 ∈ {1.2, 1.8};
see Figure 4.

We end this section by checking how the approximation order of the considered polynomial B-spline collocation
method behaves with respect to p for smooth solutions of problem (1). More precisely, in Tables 1–2 we fix the source
function s(x) such that the exact solution of (1) is given by
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MAZZA et al. 19 of 23

(a) (b)

(c) (d)

F I G U R E 4 Comparison of the eigenvalues of (a,c) Tp,𝛼
n and (b,d) n−𝛼Ap,𝛼

n (o) with a uniform sampling of f p,𝛼 on 𝛤 (∗), ordered in
ascending way, for (a,b) 𝛼 = 1.2 and (c,d) 𝛼 = 1.8. In all cases n = 62, p = 4

T A B L E 1 Errors and convergence orders of the proposed B-spline collocation method for problem (1) when u(x) = x3(1 − x)3

p = 2 p = 3 p = 4 p = 5
𝜶 n Error Order Error Order Error Order Error Order
1.2 4 1.3146e−03 1.1197e−03 2.6802e−04 4.8556e−05

8 1.5675e−04 3.07 9.8810e−05 3.50 1.0317e−05 4.70 3.4230e−06 3.83
16 2.4941e−05 2.65 1.5622e−05 2.66 4.1887e−07 4.62 1.3853e−07 4.63
32 3.5227e−06 2.82 2.4433e−06 2.68 1.6226e−08 4.69 5.1403e−09 4.75
64 5.0507e−07 2.80 3.6711e−07 2.73 5.9986e−10 4.76 2.1670e−10 4.57
128 7.2190e−08 2.81 5.3421e−08 2.78 5.9102e−11 3.34 7.0806e−09 –
256 1.0343e−08 2.80 7.7127e−09 2.79 3.3823e−09 – 2.1054e−07 –

≈2.8 ≈2.8 ≈4.8 ≈4.8

1.5 4 1.6170e−03 1.8701e−03 3.4358e−04 8.0567e−05
8 1.7117e−04 3.24 2.0365e−04 3.20 1.9552e−05 4.14 7.4745e−06 3.43
16 3.1719e−05 2.43 2.8530e−05 2.84 1.0245e−06 4.25 3.7577e−07 4.31
32 5.8828e−06 2.43 5.7869e−06 2.30 4.9498e−08 4.37 1.7183e−08 4.45
64 1.0458e−06 2.49 1.0661e−06 2.44 2.2995e−09 4.43 8.0703e−10 4.41
128 1.8532e−07 2.50 1.9080e−07 2.48 8.5791e−11 4.74 2.0718e−09 –
256 3.2838e−08 2.50 3.3858e−08 2.49 9.2926e−10 – 4.5542e−08 –

≈2.5 ≈2.5 ≈4.5 ≈4.5

1.8 4 1.9908e−03 3.1774e−03 4.3396e−04 1.3425e−04
8 2.5091e−04 2.99 4.4181e−04 2.85 3.6073e−05 3.59 1.5905e−05 3.08
16 4.2953e−05 2.55 6.8611e−05 2.69 2.4045e−06 3.91 9.8386e−07 4.01
32 9.3400e−06 2.20 1.3336e−05 2.36 1.4401e−07 4.06 5.5249e−08 4.15
64 2.0702e−06 2.17 3.0292e−06 2.14 8.2251e−09 4.13 3.0499e−09 4.18
128 4.5230e−07 2.19 6.6739e−07 2.18 4.7779e−10 4.11 1.4620e−09 –
256 9.8595e−08 2.20 1.4568e−07 2.20 1.7086e−09 – 1.0996e−07 –

≈2.2 ≈2.2 ≈4.2 ≈4.2
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T A B L E 2 Errors and convergence orders of the proposed B-spline collocation method for problem (1) when u(x) = sin(𝜋x2)

p = 2 p = 3 p = 4 p = 5

𝜶 n Error Order Error Order Error Order Error Order

1.2 4 4.0099e−02 1.5948e−02 6.1393e−03 1.9341e−03

8 8.4523e−03 2.25 4.6043e−03 1.79 2.5317e−04 4.60 1.0271e−04 4.23

16 1.1497e−03 2.88 7.8372e−04 2.55 7.9503e−06 4.99 2.5175e−06 5.35

32 1.6423e−04 2.81 1.1786e−04 2.73 2.5619e−07 4.96 7.1641e−08 5.14

64 2.3468e−05 2.81 1.7096e−05 2.79 9.5594e−09 4.74 1.0289e−08 2.80

128 3.3396e−06 2.81 2.4609e−06 2.80 8.2740e−09 – 1.2761e−06 –

256 4.7709e−07 2.81 3.5206e−07 2.81 1.6119e−07 – 1.9015e−05 –

≈2.8 ≈2.8 ≈ 4.8 ≈4.8

1.5 4 4.2457e−02 2.4735e−02 7.7604e−03 2.6753e−03

8 1.0378e−02 2.03 7.9809e−03 1.63 4.3612e−04 4.15 1.9027e−04 3.81

16 1.7932e−03 2.53 1.7304e−03 2.21 1.7374e−05 4.65 6.3744e−06 4.90

32 3.1466e−04 2.51 3.1905e−04 2.44 7.0999e−07 4.61 2.2599e−07 4.82

64 5.5887e−05 2.49 5.7202e−05 2.48 2.9859e−08 4.57 7.5065e−09 4.91

128 9.8690e−06 2.50 1.0148e−05 2.49 5.0068e−09 2.58 5.3934e−07 –

256 1.7449e−06 2.50 1.7943e−06 2.50 1.2097e−07 – 1.3493e−06 –

≈2.5 ≈2.5 ≈4.5 ≈4.5

1.8 4 4.2801e−02 3.8129e−02 9.6792e−03 3.8393e−03

8 1.2259e−02 1.80 1.4094e−02 1.44 7.5244e−04 3.69 3.6381e−04 3.40

16 2.7540e−03 2.15 3.8466e−03 1.87 3.9382e−05 4.26 1.6023e−05 4.50

32 6.0215e−04 2.19 8.8181e−04 2.13 2.0021e−06 4.30 7.1827e−07 4.48

64 1.3172e−04 2.19 1.9414e−04 2.18 1.0435e−07 4.26 3.2796e−08 4.45

128 2.8698e−05 2.20 4.2383e−05 2.20 2.5013e−09 5.38 1.8390e−07 –

256 6.2494e−06 2.20 9.2301e−06 2.20 6.3463e−08 – 2.1447e−05 –

≈2.2 ≈2.2 ≈4.2 ≈4.2

• u(x) = x3(1 − x)3, and
• u(x) = sin(𝜋x2),

respectively. Then, by doubling n repeatedly, we show the infinity-norm of the corresponding errors and the con-
vergence orders for varying p and 𝛼. The infinity-norm of the error is computed by taking the maximum value of
the error sampled in 1024 points uniformly distributed over [0, 1]. In the case of standard (nonfractional) diffusion
problems, we know that the approximation order for smooth solutions is p for even p, and p − 1 for odd p; see
Reference 31. In the fractional case, we observe a dependency of the approximation order on 𝛼 that seems to vary
as p + 2 − 𝛼 for even p, and as p + 1 − 𝛼 for odd p. We also observe a stagnation in the convergence for p = 4, 5;
this is due to numerical issues in the difficult computation of the entries of the matrix Ap,𝛼

n and the right-hand
side bn in (22).

8 CONCLUSION AND FUTURE PERSPECTIVE

We focused on a fractional differential equation in Riesz form discretized by a polynomial B-spline collocation method
and we showed that, for an arbitrary degree p, the resulting coefficient matrices possess a Toeplitz-like structure. We
computed and analyzed the corresponding spectral symbol. In particular, we proved that the symbol vanishes at 0 with
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order 𝛼, the fractional derivative order that ranges from 1 to 2, and it presents an exponential decay to zero at 𝜋 for
increasing p that becomes faster as 𝛼 approaches 1. This translates into a mitigated conditioning in the low frequencies
and into a deterioration in the high frequencies when compared to second order problems. Moreover, we showed that
the behavior of the symbol at 𝜋 is well captured by the symbol corresponding to 𝛼 = 0, which is a positive trigonometric
polynomial.

As a side result of the symbol computation, we ended up with a new way to express the central entries of the coefficient
matrix as inner products of two fractional derivatives of cardinal B-splines.

In addition, we performed a numerical study of the approximation behavior of polynomial B-spline colloca-
tion. This study suggests that the approximation order for smooth solutions in the fractional case is p + 2 − 𝛼 for
even p, and p + 1 − 𝛼 for odd p, which is in line with approximation results known for standard (nonfractional)
diffusion problems.31 For large p and fine meshes, however, numerical issues were observed and require further
examination.

The investigation presented here is intended as a first step towards the use of collocation methods based on high-order
polynomial B-splines for FDE problems. In particular, (locally) nonuniform knot sequences could be considered to
improve accuracy for nonsmooth solutions. In this perspective, B-spline collocation methods are a problem-independent
tool to face FDE problems and offer an appealing alternative to state-of-the-art methods such as the elegant colloca-
tion/Galerkin spectral methods for approximating the solution of (1) obtained by exploiting the connection between
Jacobi polynomials and pseudo eigenfunctions of the Riesz fractional operator; see References 6 and 10 and references
therein.

The spectral analysis in the present work will provide a strong guidance for forthcoming research. Indeed, the result
in Theorem 6 is a key ingredient for studying the symbol of matrices arising from B-spline collocation methods for more
general FDE problems. In particular, additional reaction and advection terms do not modify the symbol of the corre-
sponding matrices; see Remark 9. Furthermore, FDE problems involving nonconstant coefficients can be addressed by
applying the framework of GLT (Generalized locally Toeplitz) sequences.35

Following the results in References 11,12,17,18, all the information provided by the symbol can be leveraged
for the design of effective preconditioners and fast multigrid/multi-iterative solvers20 whose convergence speed is
robust with respect to the mesh size and the spline degree as well as the fractional derivative order; see also
Remarks 7 and 8.
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