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CHASING MAXIMAL PRO-p GALOIS GROUPS

VIA 1-CYCLOTOMICITY

CLAUDIO QUADRELLI

Abstract. Let p be a prime. We prove that certain amalgamated free pro-p

products of Demushkin groups with pro-p-cyclic amalgam cannot give rise to a

1-cyclotomic oriented pro-p group, and thus do not occur as maximal pro-p Galois

groups of fields containing a root of 1 of order p. We show that other cohomologi-

cal obstructions which are used to detect pro-p groups that are not maximal pro-p

Galois groups — the quadraticity of Z/pZ-cohomology and the vanishing of Massey

products — fail with the above pro-p groups. Finally, we prove that the Minač-

Tân pro-p group cannot give rise to a 1-cyclotomic oriented pro-p group, and we

conjecture that every 1-cyclotomic oriented pro-p group satisfy the strong n-Massey

vanishing property for n > 2.

1. Introduction

Let p be a prime number, and let 1 + pZp denote the pro-p group of principal units

of the ring of p-adic integers Zp — namely, 1 + pZp = {1 + pλ | λ ∈ Zp}. An oriented

pro-p group is a pair (G, θ) consisting of a pro-p group G and a morphism of pro-p

groups θ : G→ 1 + pZp, called an orientation of G (see [30]; oriented pro-p groups were

introduced by I. Efrat in [7], with the name “cyclotomic pro-p pairs”). An oriented

pro-p group (G, θ) gives rise to the continuous G-module Zp(θ), which is equal to Zp as

an abelian pro-p group, and which is endowed with the continuous G-action defined by

g · λ = θ(g) · λ for all g ∈ G and λ ∈ Zp(θ).

An oriented pro-p group (G, θ) is said to be Kummerian if the following cohomological

condition is satisfied: for every n ≥ 1 the natural morphism

(1.1) H1(G,Zp(θ)/p
n
Zp(θ)) −→ H1(G,Z/pZ),

induced by the epimorphism of continuous G-modules Zp(θ)/p
n
Zp(θ) ։ Z/p is surjec-

tive (see [11]) — here we consider Z/p as a trivial G-module. Moreover, the oriented

pro-p group (G, θ) is said to be 1-cyclotomic if the above cohomological condition is

satisfied also for every closed subgroup of G — namely, the natural morphism (1.1) is

surjective also with H instead of G, and the restriction θ|H : H → 1 + pZp instead of θ

for all closed subgroups H of G (in [26,27] a 1-cyclotomic oriented pro-p group is called

a “1-smooth” oriented pro-p group). This cohomological condition was considered first

by J. Labute, who showed ante litteram that for every Demushkin group G there exists
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2 CLAUDIO QUADRELLI

precisely one orientation which completes G into a Kummerian oriented pro-p group,

namely, the orientation induced by the dualizing module of G (see [14]).

In case of trivial orientations, 1-cyclotomicity translates into a purely group-theoretical

statement. Namely, an oriented pro-p group (G,1) — where 1 : G → 1 + pZp denotes

the orientation which is constantly equal to 1 — is 1-cyclotomic if, and only if, the

abelianization of every closed subgroup of G is a free abelian pro-p group. Pro-p groups

satisfying this group-theoretic condition are called absolutely torsion-free pro-p groups,

and they were introduced by T. Würfel in [37].

The main goal of this work is to produce new examples of pro-p groups which no

orientations can turn into a 1-cyclotomic oriented pro-p group.

Theorem 1.1. Let G be a pro-p group with pro-p presentation

(1.2) G = 〈 x, y1, . . . , yd1
, z1, . . . , zd2

| r1 = r2 = 1 〉 ,
where d1, d2 are two positive odd integers, and either:

(1.1.a) d1 + d2 ≥ 4 and

r1 = [x, y1][y2, y3] · · · [yd1−1, yd1
],

r2 = [x, z1][z2, z3] · · · [zd2−1, zd2
];

(1.1.b) or p is odd and

r1 = yp1 [y1, x][y2, y3] · · · [yd1−1, yd1
],

r2 = zp1 [z1, x][z2, z3] · · · [zd2−1, zd2
].

Then there are no orientations θ : G→ 1+pZp such that the oriented pro-p group (G, θ)

is 1-cyclotomic.

It is worth underlining that the pro-p groups described in Theorem 1.1 are amal-

gamated free pro-p products of two Demushkin groups — the subgroup generated by

x, y1, . . . , yd1
and the subgroup generated by x, z1, . . . , zd2

—, with pro-p-cyclic amal-

gam, generated by x. Despite Demushkin groups and their free pro-p products are

some of the (extremely few) examples of pro-p groups which are known to give rise to

1-cyclotomic oriented pro-p groups, the presence of a pro-p-cyclic amalgam is enough to

lose 1-cyclotomicity.

Oriented pro-p groups satisfying 1-cyclotomicity have great prominence in Galois

theory. Given a field K, let K̄s and K(p) denote respectively the separable closure

of K, and the compositum of all finite Galois p-extensions of K. The maximal pro-p

Galois group of K, denoted by GK(p), is the maximal pro-p quotient of the absolute

Galois group Gal(K̄s/K) of K, and it coincides with the Galois group of the Galois

extension K(p)/K. Detecting maximal pro-p Galois groups among pro-p groups, are

crucial problems in Galois theory. Already the pursuit of concrete examples of pro-p

groups which do not occur as maximal pro-p Galois groups of fields is already considered

a very remarkable challenge (see [12, § 25.16], and, e.g., [1, 3, 4, 25, 34]).

The maximal pro-p Galois group GK(p) of a field K containing a root of 1 of order p

gives rise to the oriented pro-p group (GK(p), θK), where

θK : GK(p) −→ 1 + pZp
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denotes the pro-p cyclotomic character (see Example 2.4 below). By Kummer theory,

the oriented pro-p group (GK(p), θK) is 1-cyclotomic (see [14, p. 131] and [11, § 4]) —

in case p = 2 we need to assume further that
√
−1 ∈ K. Therefore, a pro-p group

which cannot complete into a 1-cyclotomic oriented pro-p group does not occur as the

maximal pro-p group of a field containing a root of 1 of order p — and hence neither as

the absolute Galois group of any field (see, e.g., [25, Rem. 3.3]). Hence, the following

corollary may be deduced directly from Theorem 1.1.

Corollary 1.2. A pro-p group G as in Theorem 1.1 does not occur as the maximal pro-p

Galois group of any field containing a root of 1 of order p (and also
√
−1 if p = 2).

Hence, G does not occur as the absolute Galois group of any field.

In the recent past, other cohomological properties have been used to study maximal

pro-p Galois groups — and to find examples of pro-p groups which do not occur as

maximal pro-p Galois groups. By the Norm Residue Theorem — proved by M. Rost and

V. Voevodsky, with the contribution by Ch. Weibel, see [13,35] — one knows that if K is

a field containing a root of 1 of order p, the Z/p-cohomology algebra H•(GK(p),Z/pZ),

endowed with the cup-product

` : Hm(GK(p),Z/pZ)×Hn(GK(p),Z/pZ) −→ Hm+n(GK(p),Z/pZ),

is quadratic, i.e., its ring structure is completely determined by the 1st and the 2nd

cohomology groups (see, e.g., [23, § 2]). Moreover, it was shown by E. Matzri that if K

is a field containing a root of 1 of order p, then GK(p) satisfies the triple Massey vanishing

property (see [9] and references therein) — for an overview on Massey products in Galois

cohomology see [20]. These two cohomological properties were used to find examples of

pro-p groups which do not occur as maximal pro-p Galois groups of fields containing a

root of 1 of order p, for example in [4, § 8] and in [20, § 7].

We prove that the pro-p groups described in Theorems 1.1 cannot be ruled out as

maximal pro-p Galois groups employing the above two cohomological obstructions.

Proposition 1.3. Let G be a pro-p group as in Theorem 1.1.

(i) The Z/p-cohomology algebra H•(G,Z/pZ) is quadratic.

(ii) The pro-p group G satisfies the cyclic p-Massey vanishing property — namely,

the p-fold Massey product

〈α, . . . , α
︸ ︷︷ ︸

p times

〉

contains 0 for every α ∈ H1(G,Z/pZ).

(iii.a) If G is as in (1.1.a), then G satisfies the 3- and the strong 4-Massey vanishing

property.

(iii.b) If G is as in (1.1.b) and p > 3 then G satisfies the 3- and the strong 4-Massey

vanishing property.

(We recall the basic notions on Massey products in Galois cohomology in § 6.1 below.)

Hence, Corollary 1.2 provides brand new examples of pro-p groups which do not occur as

maximal pro-p Galois groups of fields containing a root of 1 of order p, and as absolute

Galois groups. Moreover, we remark that the relations which define the pro-p groups

described in Theorem 1.1 are rather “elementary” — just elementary commutators of
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generator times, possibly, the p-power of a generator —, unlike the examples provided

in [1, 4, 20, 25], where the relations involve higher commutators.

Finally, we focus on the Minač-Tân pro-p group, i.e., the pro-p group G with pro-p

presentation

G = 〈 x1, . . . , x5 | [[x1, x2], x3][x4, x5] = 1 〉.
In [20, § 7], J. Minač and N.D. Tân showed that G does not satisfy the 3-Massey

vanishing property, and thus it does not occur as the maximal pro-p Galois group of

any field containing a root of 1 of order p. We prove that G cannot complete into a

1-cyclotomic oriented pro-p group.

Theorem 1.4. Let p be an odd prime. Then there are no orientations turning the

Minač-Tân pro-p group into a 1-cyclotomic oriented pro-p group.

Theorem 1.4 has been proved independently by I. Snopce and P. Zalesskĭı (unpub-

lished). Theorem 1.4 provides a negative answer to the question posed in [30, Rem. 3.7]

— namely, the Minač-Tân pro-p group may be ruled out as a maximal pro-p Galois

group of a field containing a root of 1 of order p (and thus as an absolute Galois group)

in a “Massey-free” way.

Altogether, 1-cyclotomicity of oriented pro-p groups provides a rather powerful tool

studying maximal pro-p Galois groups, and it succeeds in detecting pro-p groups which

are not maximal pro-p Galois groups when other methods fail, as underlined above. We

believe that further investigations in this direction will lead to new obstructions for the

realization of pro-p groups as maximal pro-p Galois group.

Actually, Theorem 1.4, and the main result in [34] (see in particular [34, p. 1907]), may

lead to the suspect that 1-cyclotomicity is a more restrictive condition in comparison

with the vanishing of Massey products. Thus, we formulate the following conjecture.

Conjecture 1.5. Let (G, θ) be an oriented pro-p group, such that Im(θ) ⊆ 1 + 4Z2 if

p = 2. If (G, θ) is 1-cyclotomic, then the pro-p group G satisfies the 3-Massey vanish-

ing property; if moreover G is finitely generated, then G satisfies the strong n-Massey

vanishing property for every n ≥ 3.

After the publication on the arXiv of an earlier version of this paper, A. Merkurjev

and F. Scavia proved the first statement of Conjecture 1.5 — see [17, Thm. 1.3] —;

while, on the other hand, there are 1-cyclotomic oriented pro-2 groups (G, θ) such that

Im(θ) ⊆ 1 + 4Z2, where G is not finitely generated and does not satisfy the strong

4-Massey vanishing property — see [16, Thm. 1.6]. In particular, [17, Thm. 1.3] implies

Theorem 1.4 (see also [17, Rem. 6.3]).
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2. Oriented pro-p groups and cohomology

2.1. Notation and preliminaries. Throughout the paper, every subgroup of a pro-p

group is tacitly assumed to be closed with respect to the pro-p topology. Therefore, sets

of generators of pro-p groups, and presentations, are to be intended in the topological

sense.

Given a pro-p group G, we denote the closed commutator subgroup of G by G′ —

namely, G′ is the closed normal subgroup generated by commutators

[h, g] = h−1 · hg = h−1 · g−1hg, g, h ∈ G.

The Frattini subgroup of G is denoted by Φ(G) — namely, Φ(G) is the closed normal

subgroup generated by G′ and by p-powers gp, g ∈ G (cf., e.g., [5, Prop. 1.13]). A

minimal generating set of G gives rise to a basis of the Z/pZ-vector space G/Φ(G), and

conversely (cf., e.g., [5, Prop. 1.9]).

Finally, we denote the abelianization G/G′ of G by Gab. Throughout the paper, we

will make use of the following straightforward fact.

Fact 2.1. Let G be a finitely generated pro-p group. Then a subset {x1, . . . , xd} of G

is a minimal generating set of G if, and only if, the subset {x1G′, . . . , xdG
′} of Gab is

a minimal generating set of the abelian pro-p group Gab.

2.2. Oriented pro-p groups. Let G be a pro-p group. An orientation θ : G→ 1+pZp

is said to be torsion-free if p is odd, or if p = 2 and Im(θ) ⊆ 1 + 4Z2. Observe that

one may have an oriented pro-p group (G, θ) where G has non-trivial torsion and θ

torsion-free (e.g., if G ≃ Z/p and Im(θ) = {1}).
A morphism of oriented pro-p groups (G1, θ1) → (G2, θ2), is a homomorphism of

pro-p groups φ : G1 → G2 such that θ1 = θ2 ◦ φ (cf. [30, § 3, p. 1888]).

Within the family of oriented pro-p groups one has the following constructions. Let

(G, θ) be an oriented pro-p group.

(a) If N is a normal subgroup of G contained in Ker(θ), one has the oriented pro-

p group (G/N, θ/N ), where θ/N : G/N → 1 + pZp is the orientation such that

θ/N ◦ π = θ, with π : G→ G/N the canonical projection.

(b) If A is an abelian pro-p group (written multiplicatively), one has the oriented

pro-p group A⋊(G, θ) = (A⋊G, θ̃), with action given by gag−1 = aθ(g) for every

g ∈ G, a ∈ A, where the orientation θ̃ : A⋊G → 1 + pZp is the composition of

the canonical projection A⋊G→ G with θ.

2.3. Kummerianity and 1-cyclotomicity. Let (G, θ) be an oriented pro-p group.

Observe that the G-action on the G-module Zp(θ)/pZp(θ) is trivial, as θ(g) ≡ 1 mod p

for all g ∈ G. Thus, Zp(θ)/pZp(θ) is isomorphic to Z/p as a trivial G-module.

An oriented pro-p group (G, θ) comes endowed with the distinguished subgroup

Kθ(G) =
〈

gh · h−θ(g) | g ∈ G, h ∈ Ker(θ)
〉
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(cf. [11, § 3]). The subgroup Kθ(G) is normal in G, and it is contained in both Ker(θ)

and Φ(G). On the other hand, Kθ(G) ⊇ Ker(θ)′, so that Ker(θ)/Kθ(G) is an abelian

pro-p group. Moreover, if θ is a torsion-free orientation, G/Ker(θ) ≃ Im(θ) is torsion-

free, and thus either trivial or isomorphic to Zp. Hence, the epimorphismG։ G/Ker(θ)

splits, and since ghg−1 ≡ hθ(g) mod Kθ(G) for every g ∈ G and h ∈ Ker(θ), one

concludes that
(
G/Kθ(G), θ/Kθ(G)

)
≃ Ker(θ)

Kθ(G)
⋊
(
G/Ker(θ), θ/Ker(θ)

)

(cf., e.g., [31, § 2.2, eq. (2.1)]).

One has the following result relating the subgroup Kθ(G) and the surjectivity of the

maps (1.1) (cf. [11, Thm. 7.1], see also [31, Prop. 2.6]).

Proposition 2.2. Let (G, θ) be an oriented pro-p group with θ a torsion-free orientation.

The following are equivalent.

(i) The natural map

H1(G,Zp(θ)/p
n
Zp(θ)) −→ H1(G,Z/pZ),

is surjective for every positive integer n.

(ii) The quotient Ker(θ)/Kθ(G) is a free abelian pro-p group.

If an oriented pro-p group (G, θ) with torsion-free orientation satisfies the above two

equivalent properties, then it is said to be Kummerian. Moreover, (G, θ) is said to be

1-cyclotomic if (H, θ|H) is Kummerian for every subgroup H ⊆ G.

Remark 2.3. The original definition of 1-cyclotomic oriented pro-p group requires only

that for every open subgroup U of G, the oriented pro-p group (U, θ|U ) is Kummerian

(cf. [30, § 1]). By a continuity argument, this is enough to imply that the oriented pro-p

group (H, θ|H) is Kummerian also for every subgroup H ⊆ G (cf. [30, Cor. 3.2]).

If (G,1) is an oriented pro-p group with 1 : G → 1 + pZp the orientation constantly

equal to 1, then K1(G) = G′, and by Proposition 2.2 (G, θ) is Kummerian if, and only if,

G/G′ = Ker(1)/K1(G) is a free abelian pro-p group (cf. [11, Ex. 3.5–(1)]). Hence, (G,1)

is 1-cyclotomic if, and only if, H/H ′ is a free abelian pro-p group for every subgroup

H ⊆ G, i.e., G is absolutely torsion-free (cf. [26, Rem. 2.3]).

2.4. Examples.

Example 2.4. Let K be a field containing a root of 1 of order p, and also
√
−1 if

p = 2. Then the pro-p cyclotomic character θK of GK(p) — induced by the action of

GK(p) on the roots of 1 of p-power order contained in K(p) — has image contained in

1 + pZp. Observe that Im(θK) = 1 + pfZp, where f ∈ N ∪ {∞} is maximal such that

K contains a root of 1 of order pf (if f = ∞, we set p∞ = 0). In particular, θK is a

torsion-free orientation. The module Zp(θK) is called the 1st Tate twist of Zp (cf., e.g.,

[21, Def. 7.3.6]).

For the convenience of the reader, here we recall J. Labute’s argument to show that the

oriented pro-p group (GK(p), θK) is Kummerian — and thus also 1-cyclotomic, as every

subgroup H ⊆ GK(p) is the maximal pro-p Galois group of an extension of K, with

pro-p cyclotomic character θK|H —, as it is presented in [14, p. 131] (where the module
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Zp(θK) is denoted by I = I(χ′)). For every n ≥ 1 one has an isomorphism of continuous

GK(p)-modules

Zp(θK)/p
n
Zp(θK) ≃ µpn =

{

ζ ∈ K(p) | ζpn

= 1
}

.

Let K× and K(p)× denote the multiplicative groups of units of K and K(p) respectively.

By Hilbert 90, the short exact sequence of continuous GK(p)-modules

(2.1) {1} // µpn // K(p)×
pn

// K(p)× // {1}
induces a commutative diagram

K
×/(K×)p

n
//

πn

��
��

H1(GK(p), µpn)
∼

//

��

H1 (GK(p),Zp(θK)/p
n
Zp(θK))

��

K
×/(K×)p

∼
// H1(GK(p), µp)

∼
// H1 (GK(p),Z/pZ)

where the left-side vertical arrow πn and the central vertical arrow are induced by the

pn−1-th power map pn

: K(p)× → K(p)×, and the right-side vertical arrow is induced

by the epimorphism of continuous GK(p)-modules Zp(θK)/p
n
Zp(θK) ։ Z/pZ. Since the

map πn is surjective, also the other vertical arrows are surjective.

Example 2.5. Let G be a free pro-p group. Then the oriented pro-p group (G, θ) is

1-cyclotomic for any orientation θ : G→ 1 + pZp (cf. [30, § 2.2]).

Example 2.6. Let G be an infinite Demushkin group (cf., e.g., [21, Def. 3.9.9]). By

[14, Thm. 4], G comes endowed with a canonical orientation χ : G → 1 + pZp which

is the only one completing G into a 1-cyclotomic oriented pro-p group. In particular,

if d = dim(H1(G,Z/pZ)) is even (which is always the case if p 6= 2), then G has a

presentation

G =
〈

x1, . . . , xd | xp
f

1 [x1, x2] · · · [xd−1, xd] = 1
〉

,

with f ≥ 1 (f ≥ 2 if p = 2). In this case χ(x2) = (1− pf )−1 and χ(xi) = 1 for i 6= 2.

Example 2.7. Let (G, θ) be an oriented pro-p group, with θ a torsion-free orientation.

The oriented pro-p group (G, θ) is said to be θ-abelian if the subgroup Kθ(G) is trivial

and if Ker(θ) is a free abelian pro-p group — in this case G is a free abelian-by-cyclic

pro-p group, i.e.,

G ≃ Ker(θ) ⋊
G

Ker(θ)

(cf. [31, Rem. 2.2]). In other words, G has a presentation

G =
〈

x0, xi | i ∈ I, xx0

i = x
θ(x0)

−1

i , [xi, xj ] = 1 ∀ i, j ∈ I
〉

,

for some set of indices I, and θ(xi) = 1 for all i ∈ I (cf. [23, Prop. 3.4]). A θ-abelian

oriented pro-p group (G, θ) is Kummerian by Proposition 2.2, as by definition Kθ(G)

is trivial and Ker(θ) is a free abelian pro-p group. Moreover, if H is a subgroup of G,

then one has

H ≃ (H ∩Ker(θ))⋊
H

Ker(θ|H)

(cf. [31, Rem. 2.4]), so that the oriented pro-p group (H, θ|H) is θ|H -abelian, and thus

Kummerian, and consequently (G, θ) is 1-cyclotomic.
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One has the following result to check whether an oriented pro-p group is Kummerian

(cf. [31, Prop. 2.6, Prop. 3.6]).

Proposition 2.8. Let (G, θ) be an oriented pro-p group, with θ a torsion-free orienta-

tion. Then (G, θ) is Kummerian if, and only if, there exists a normal subgroup N of G

such that N ⊆ Ker(θ) ∩ Φ(G), and the quotient (G/N, θ/N ), is a θ/N -abelian oriented

pro-p group. If such a normal subgroup N exists, then N = Kθ(G).

2.5. Kummerianity and 1-cocyles. Let (G, θ) be an oriented pro-p group. Recall

that for n ∈ N∪{∞}, a 1-cocycle c : G→ Zp(θ)/p
n
Zp(θ) is a continuous map satisfying

(2.2) c(gh) = c(g) + θ(g)c(h) for every g, h ∈ G,

where θ(g) denotes the image of θ(g) modulo pn. From (2.2) one deduces

(2.3) c([g, h]) = θ(gh)−1
(

c(g)(1 − θ(h))− c(h)(1 − θ(g))
)

.

For n ∈ N ∪ {∞}, every element of H1(G,Zp(θ)/p
n
Zp(θ)) is represented by a 1-cocycle

c : G→ Zp(θ)/p
n
Zp(θ). The following result is due to J. Labute (cf. [14, Prop. 6]).

Lemma 2.9. Let (G, θ) be a finitely generated oriented pro-p group with torsion-free

orientation, and let X = {x1, . . . , xd} be a minimal generating set of G. The following

are equivalent.

(i) (G, θ) is Kummerian.

(ii) For all n ∈ N∪{∞} and for any sequence λ1, . . . , λd of elements of Zp(θ)/p
n
Zp(θ)

there exists a continuous 1-cocycle G→ Zp(θ)/p
n
Zp(θ) satisfying c(xi) = λi for

all i = 1, . . . , d.

Proposition 2.10. Let G be a finitely generated pro-p group, and let (G, θ) be a Kum-

merian oriented pro-p group with torsion-free orientation. If N is a normal subgroup of

G such that N ⊆ Ker(θ) and the restriction map

res1G,N : H1(G,Z/pZ) −→ H1(N,Z/pZ)G

is surjective, then also (G/N, θ/N ) is Kummerian.

In order to prove Proposition 2.10 we need the following fact, whose proof — rather

straightforward — is left to the reader.

Fact 2.11. Let G be a finitely generated pro-p group, and let (G, θ) be an oriented pro-p

group with torsion-free orientation.

(i) If c : G → Zp(θ)/p
n
Zp(θ) is a continuous 1-cocycle, with n ∈ N ∪ {∞}, then

c−1(0) ∩Ker(θ) is a normal subgroup of G.

(ii) Let N ⊆ G be a normal subgroup satisfying N ⊆ Ker(θ), with canonical projec-

tion π : G→ G/N . For n ∈ N ∪ {∞} one has the following:

(a) a continuous 1-cocycle c : G→ Zp(θ)/p
n
Zp(θ) satisfying c|N ≡ 0 induces a

continuous 1-cocycle c̄ : G/N → Zp(θ/N )/pnZp(θ/N ) such that c = c̄ ◦ π;
(b) a continuous 1-cocycle c̄ : G/N → Zp(θ/N )/pnZp(θ/N ) induces a continuous

1-cocycle c : G→ Zp(θ)/p
n
Zp(θ) satisfying c|N ≡ 0 and c = c̄ ◦ π.
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Proof of Proposition 2.10. Set Ḡ = G/N and θ̄ = θ/N . For every n ≥ 1, the canonical

projection π : G→ Ḡ induces the inflation maps

fn : H
1(Ḡ,Zp(θ̄)/p

n
Zp(θ̄)) −→ H1(G,Zp(θ)/p

n
Zp(θ)),

f : H1(Ḡ,Z/pZ) −→ H1(G,Z/pZ),
(2.4)

which are injective by [21, Prop. 1.6.7]. Also, the epimorphisms (respectively of contin-

uous Ḡ-modules and continuous G-modules) Zp(θ̄)/p
n
Zp(θ̄) → Z/pZ and Zp(θ)/p

n →
Z/pZ induce, respectively, the morphisms

τNn : H1(Ḡ,Zp(θ)/p
n) −→ H1(Ḡ,Z/p),

τn : H
1(G,Zp(θ)/p

n) −→ H1(G,Z/p).
(2.5)

Altogether, by [21, Prop. 1.5.2] one has the commutative diagram

H1
(
Ḡ,Zp(θ̄)/p

n
Zp(θ̄)

) τN
n

//

fn

��

H1(Ḡ,Z/pZ)

f

��

H1 (G,Zp(θ)/p
n
Zp(θ))

τn
// // H1(G,Z/pZ)

Since (G, θ) is Kummerian, τn is surjective for every n ≥ 1. Given β̄ ∈ H1(Ḡ,Z/pZ),

β̄ 6= 0, our goal is to find α ∈ H1(Ḡ,Zp(θ̄)/p
n
Zp(θ̄)) such that β̄ = τNn (α).

Set β = β̄ ◦ π = f(β̄). Then β : G→ Z/p is a non-trivial continuous homomorphism

such that Ker(β) ⊇ N . By hypothesis, the morphism N/Np[G,N ] → G/Φ(G) induced

by the inclusion N →֒ G, and dual to res1G,N , is injective. Thus, one may find a minimal

generating set X of G such that Y = X ∩ N generates N as a normal subgroup of G.

By Lemma 2.9, there exists a continuous 1-cocycle c : G→ Zp(θ)/p
n
Zp(θ) satisfying

c(x) ≡ β(x) mod pZp(θ) for every x ∈ X
— i.e., τn([c]) = β, where [c] ∈ H1(G,Zp(θ)/p

n
Zp(θ)) denotes the cohomology class of c

—, and moreover c(x) = 0 for every x ∈ Y. Therefore, by Fact 2.11–(i), the restriction

c|N : N −→ Zp(θ)/p
n
Zp(θ)

is the map constantly equal to 0. By Fact 2.11–(ii), c induces a continuous 1-cocycle

c̄ : Ḡ −→ Zp(θ̄)/p
n
Zp(θ̄)

such that c̄ ◦ π = c, and [c] = fn([c̄]), where [c̄] ∈ H1(Ḡ,Zp(θ̄)/p
n
Zp(θ̄)) denotes the

cohomology class of c̄. Altogether, one has

f(β̄) = β = τn([c]) = τn ◦ fn([c̄]) = f ◦ τNn ([c̄]).

Since f is injective, one obtains β̄ = τNn ([c̄]). �

Remark 2.12. Proposition 2.10 may be proved also in a purely group-theoretic way,

see [3, Rem. 3.9].

3. The Z/pZ-cohomology of G

The purpose of this section is to prove the first statement of Proposition 1.3, and

more in general to describe the Z/pZ-cohomology algebra H•(G,Z/pZ) with G as in

Theorem 1.1.
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3.1. Degree 1 and 2. Let G be a pro-p group. We set the subgroup G(3) of G as

follows:

G(3) =

{

Gp[G,G′] if p 6= 2,

G4(G′)2[G,G′] if p = 2,

i.e., G(3) is the third term of the p-Zassenhaus filtration of G (cf., e.g., [24, § 3.1]). In

particular, G(3) is a normal subgroup of the Frattini subgroup Φ(G), and the quotient

Φ(G)/G(3) is a p-elementary abelian pro-p group — and thus also a Z/p-vector space.

Recall that the cohomology group H1(G,Z/pZ) is equal to the group of pro-p group

homomorphisms from G to Z/p, namely, one has

(3.1) H1(G,Z/pZ) = Hom(G,Z/pZ) ≃ (G/Φ(G))∗,

where ∗ denotes the Z/p-dual (cf., e.g., [33, Ch. I, § 4.2]). Thus, the dimension of

H1(G,Z/pZ) is equal to the cardinality d(G) of any minimal generating set of G. On

the other hand, the dimension of H2(G,Z/pZ) is equal to the number r(G) of defining

relations of G (cf. [33, Ch. I, § 4.3]). Moreover, if both H1(G,Z/pZ) and H2(G,Z/pZ)

are finite, and if the cup-product yields an epimorphism H1(G,Z/pZ)⊗2 ։ H2(G,Z/pZ),

one has an isomorphism of elementary abelian p-groups

(3.2)
(
Φ(G)/G(3)

)∗ trg
// H2(G,Z/pZ)

(cf. [18, Thm. 7.3]). For further properties of the cohomology of pro-p groups we refer

to [33, Ch. I, § 4] and to [21, Ch. III, § 9].

3.2. Amalgams. Henceforth G will denote a pro-p group as in Theorem 1.1. Set

G1 = 〈 x, y1, . . . , yd1
| xǫp[x, y1] · · · [yd1−1, yd1

] = 1 〉,
G2 = 〈 x, z1, . . . , zd2

| xǫp[x, z1] · · · [zd2−1, zd2
] = 1 〉,

with ǫ = 0, 1 depending on whether we are considering case (1.1.a) or (1.1.b). Then

G1, G2 are Demushkin groups, and G is the amalgamated free pro-p product

(3.3) G = G1 ∐p̂
X G2,

with amalgam the subgroup X ⊆ G1, G2 generated by x. Observe that X ≃ Zp, as X

has infinite index in both G1, G2, and subgroups of infinite index of Demushkin groups

are free pro-p groups (cf. [33, Ch. I, § 4.5, Ex. 5–(b)]). Therefore, the amalgamated free

pro-p product is proper, i.e., G1, G2 ⊆ G (cf. [32]).

3.3. Quadratic cohomology. Let

B = { χ, ϕ1, . . . , ϕd1
, ψ1, . . . , ψd2

}
be the basis of H1(G,Z/pZ) = Hom(G,Z/pZ) dual to X = {x, y1, . . . , zd2

} — i.e.,

χ(w) =

{

1 if w = x

0 if w = yi, zj
and

ϕi(w) =

{

δi,i′ if w = yi′

0 if w = x, zj ,
ψj(w) =

{

δj,j′ if w = zj′

0 if w = x, yi,
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for every 1 ≤ i, i′ ≤ d1 and 1 ≤ j, j′ ≤ d2 (cf. (3.1)). With an abuse of notation, we

may consider the subsets B1 = {χ, ϕ1, . . . , ϕd1
}, B2 = {χ, ψ1, . . . , ψd2

}, and BX = {χ},
as bases of H1(G1,Z/pZ), H

1(G2,Z/pZ), and H1(X,Z/pZ) respectively.

Proposition 3.1. The algebra H•(G,Z/pZ) is quadratic.

Proof. As stated in § 3.2, G = G1 ∐p̂
X G2 is a proper amalgamated free pro-p product.

Since BX ⊆ B1,B2, the restriction maps

res1Gi,X : H1(Gi,Z/pZ) −→ H1(X,Z/pZ), with i = 1, 2,

are surjective. Moreover, H2(X,Z/pZ) = 0, as X ≃ Zp, and thus Ker(res2Gi,X
) =

H2(Gi,Z/pZ) for both i = 1, 2. On the other hand, H1(G1,Z/pZ) and H1(G2,Z/pZ)

are generated by χ ` ϕ1 and χ ` ψ1 respectively, as G1, G2 are Demushkin groups (cf.,

e.g., [21, Prop. 3.9.16]), and thus

Ker(res2Gi,X) = H2(Gi,Z/pZ) = Ker(res1Gi,X) ` H1(Gi,Z/pZ), with i = 1, 2,

as res1G1,X
(ϕ1) = 0 and res1G2,X

(ψ1) = 0. Finally, Demushkin groups are well-known

to yield a quadratic Z/pZ-cohomology algebra, while H•(X,Z/pZ) is obviously qua-

dratic, as X ≃ Zp. Therefore, we may apply [29, Thm. B], so that also H•(G,Z/pZ) is

quadratic. �

We describe now more in detail the structure of H•(X,Z/pZ). By duality — cf.

[18, Thm. 7.3] and (3.2) —, the set {χ ` ϕ1, χ ` ψ1} is a basis of H2(G,Z/pZ), and in

H2(G,Z/pZ) one has the relations

(3.4) χ ` ϕi′ = χ ` ψj′ = ϕi ` ψj = 0

for all 1 ≤ i, i′ ≤ d1 and 1 ≤ j, j′ ≤ d2, with i
′, j′ 6= 1, and

ϕi ` ϕi′ =

{

(−1)ǫχ ` ϕ1 if 2 | i = i′ − 1,

0 otherwise,

ψj ` ψj′ =

{

(−1)ǫχ ` ψ1 if 2 | j = j′ − 1,

0 otherwise

(3.5)

(see also [24, § 3.2]).

Finally, one has an exact sequence

· · · H2(X,Z/pZ)

H3(G,Z/pZ) H3(G1,Z/pZ)⊕H3(G2,Z/pZ) · · ·

(cf. [29, p. 653]). Since H2(X,Z/pZ) = H3(Gi,Z/pZ) = 0 for both i = 1, 2, one has

H3(G,Z/pZ) = 0, and thus by quadraticity also Hn(G,Z/pZ) = 0 for all n ≥ 3.

Remark 3.2. It is well-known that if a pro-p group has non-trivial torsion, then its

n-th Z/p-cohomology group is non trivial for every n > 0; hence, G is torsion-free.
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4. Proof of Theorem 1.1 case (1.1.a)

Let G be a pro-p group as defined in Theorem 1.1, with defining relations as in (1.1.a)

— namely,

G = 〈 x, y1, . . . , yd1
, z1, . . . , zd2

| r1 = r2 = 1 〉,
with d1 + d2 ≥ 4 and

r1 = [x, y1] · · · [yd1−1, yd1
],

r2 = [x, z1] · · · [zd2−1, zd2
].

Without loss of generality, we may assume that d1 ≥ 3.

4.1. Kummerianity. Let G1, G2 be the two Demushkin groups as in § 3.2, with ǫ = 0.

By Example 2.6, if

θ1 : G1 −→ 1 + pZp and θ2 : G2 −→ 1 + pZp

are two torsion-free orientations completing respectively G1 and G2 into Kummerian

oriented pro-p groups, then necessarily θ1(x) = θ1(y1) = . . . = θ1(yd1
) = 1, and analo-

gously θ2(x) = θ2(z1) = . . . = θ1(zd2
) = 1.

Proposition 4.1. Let θ : G→ 1+ pZp be a torsion-free orientation. Then the oriented

pro-p group (G, θ) is Kummerian if, and only if, θ is constantly equal to 1.

Proof. If θ ≡ 1, then (G,1) is Kummerian if, and only if, the abelianization Gab is a

free abelian pro-p group. But this is easily verified, as clearly Gab ≃ Z
d1+d2−1
p .

Conversely, suppose that (G, θ) is Kummerian. Let N1 and N2 denote the normal

subgroups ofG generated as normal subgroups by z1, . . . , zd2
and y1, . . . , yd1

respectively.

ThenG/N1 ≃ G1 andG/N2 ≃ G2. Moreover, Proposition 2.10 implies that (G/Ni, θ/Ni
)

is Kummerian for both i = 1, 2. Since G/Ni ≃ Gi for both i, Example 2.6 and the

argument before the statement of the proposition imply that the torsion-free orientations

θ/N1
and θ/N2

are constantly equal to 1. Hence, also θ is constantly equal to 1, as

θ(w) = θ/N1
(wN1) for every w ∈ G1, and analogously θ(w) = θ/N2

(wN2) for every

w ∈ G2. �

Therefore, if G may complete into a 1-cyclotomic oriented pro-p group, then neces-

sarily G is absolutely torsion-free. In order to prove Theorem 1.1 in case (1.1.a), we

aim at exhibiting an open subgroup H of G, of index p2, whose abelianization Hab has

non-trivial torsion.

4.2. The subgroup U . Set u = yp3 , t0 = z−1
1 y3, and th = t0t

y3

0 · · · ty
h
3

0 for all h =

0, . . . , p− 1. A straightforward computation shows that

(4.1) zh1 = yh3 · (t−1
0 )y

h−1

3 · · · (t−1
0 )y3 · t−1

0 = yh3 t
−1
h−1

for all h = 0, . . . , p− 1.

Let φG : G → Z/p be the homomorphism of pro-p groups defined by φG(y3) =

φG(z1) = 1 and φG(x) = φG(yi) = φG(zj) = 0 for all i = 1, 2, 4, . . . , d1 and j = 2, . . . , d2,

and set U = Ker(φ). Then U is an open subgroup of G of index p, generated as a normal

subgroup by the subset

X = { u, x, t0, yi, zj | i = 1, 2, 4, . . . , d1, j = 2, . . . , d2} ,
and G/U = {U, y3U, . . . , yp−1

3 U}.
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Lemma 4.2. The subset

YU =
{

u, x, y2, th, y
yh
3

i , z
yh
3

j | i = 1, 4, . . . , d1, j = 2, . . . , d2, h = 0, . . . , p− 1
}

of U is a minimal generating set of U as a pro-p group.

Proof. Since U is normally generated by X and G/U = {U, . . . , yp−1
3 U}, U is generated

as a pro-p group by the set {wyh
3 | w ∈ X , h = 0, . . . , p− 1}. Also, U is subject to the

relations

r
yh
3

1 =
[

xy
h
3 , y

yh
3

1

]

· · ·
[

y
yh
3

d1−1, y
yh
3

d1

]

= 1,(4.2)

r
yh
3

2 =
[

xy
h
3 , z

yh
3

1

]

· · ·
[

z
yh
3

d2−1, z
yh
3

d2

]

= 1,(4.3)

with h = 0, . . . , p− 1.

Consider the abelianization Uab. Since the only factor in (4.2) which does not lie in

U ′ is [y
yh
3

2 , y3], the relation (4.2) implies that [y
yh
3

2 , y3] ∈ U ′ as well, and therefore

y
yh
3

2 ≡ y2 mod U ′ for all h = 0, . . . , p− 1.

Analogously, the only factor in (4.3) which does not lie in U ′ is [xy
h
3 , z

yh
3

1 ], so that the

relation (4.2) implies that [xy
h
3 , z

yh
3

1 ] ∈ U ′ as well. Hence, one has

[x, z1] ≡ 1 mod U ′ ⇒ xy3t
−1

0 ≡ x mod U ′

⇒ xy3 ≡ xt0 mod U ′,

[xy3 , zy3

1 ] ≡ 1 mod U ′ ⇒ (xy3)(z
y3
1

) = xy
2
3(t

−1

0
)y3 ≡ xy3 mod U ′

⇒ xy
2
3 ≡ xt1 mod U ′,

and so on. Thus

xy
h
3 ≡ xth−1 mod U ′ for all h = 1, . . . , p− 1.

Altogether, Uab is the free abelian pro-p group generated by the cosets {wU ′ | w ∈ YU},
so that Fact 2.1 yields the claim. �

Now set U1 = G1 ∩ U and U2 = G2 ∩ U . Then U1, U2 are open subgroups of G1, G2

respectively of index p, and thus they are again Demushkin groups, on 2+p(d1−1) and

2 + p(d2 − 1) generators respectively (cf. [6]). In particular, the defining relation of U1

is

(4.4) s1 =

0∏

h=p−1

([

y
yh
3

4 , y
yh
3

5

]

· · ·
[

y
yh
3

d1−1, y
yh
3

d1

] [

xy
h
3 , y

yh
3

1

])

[y2, u] = 1,

while the defining relation of U2 is

s2 =

0∏

h=p−1

([

z
zh
1

2 , z
zh
1

3

]

· · ·
[

z
zh
1

d2−1, z
zh
1

d2

])

[x, zp1 ]

=

0∏

h=p−1

([

z
yh
3 t

−1

h−1

2 , z
yh
3 t

−1

h−1

3

]

· · ·
[

z
yh
3 t

−1

h−1

d2−1 , z
yh
3 t

−1

h−1

d2

])

[x, ut−1
p−1] = 1.

(4.5)
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Also, from the relations (4.4)–(4.5) and from (4.1), one computes

xy3 = xz1t0 = xt0([zd2
, zd2−1] · · · [z3, z2])t0 ,

xy
2
3 = xt1 ([zd2

, zd2−1] · · · )t1
([
zy3

d2
, zy3

d2−1

]
· · ·
)t−1

0
t1
,

xy
3
3 = xt2 ([zd2

, zd2−1] · · · )t2
([
zy3

d2
, zy3

d2−1

]
· · ·
)t−1

0
t2
([

z
y2
3

d2
, z

y2
3

d2−1

]

· · ·
)t−1

1
t2
,

(4.6)

and so on. In fact, the two relations (4.4)–(4.5) — with the xy
h
3 ’s replaced using (4.6)

— are all the defining relations we need to get U , as shown in the following.

Lemma 4.3. The pro-p group U has r(U) = 2 defining relations.

Proof. Since Hn(G,Z/pZ) = 0 for every n ≥ 3 (cf. § 3.3) and [G : U ] = p, one has

Hn(U,Z/pZ) = 0 for every n ≥ 3 as well (cf. [21, Prop. 3.3.5]). Moreover, one has

(4.7) r(U)− d(U) + 1 = p (r(G)− d(G) + 1)

(cf. [21, Prop. 3.3.13]). By definition, r(G) = 2 and d(G) = 1 + d1 + d2, while d(U) =

3 + p(d1 + d2 − 2) by Lemma 4.2. Therefore, from (4.7) one computes r(U) = 2. �

4.3. The subgroup H. Let φU : U → Z/p be the homomorphism of pro-p groups

defined by φU (y1), φU (y
y3

1 ) = −1, and φU (w) = 0 for any other element w of YU , and

put H = Ker(φU ). Then H is an open subgroup of U of index p. Set v = y1. Since

U/H = {H, vH, . . . , vp−1H}, H is the pro-p group (non-minimally) generated by

XH =
{

vp, (vyy3

1 )
vh

, wvh | w ∈ YU , w 6= v, yy3

1 , h = 0, . . . , p− 1
}

,

and subject to the 2p relations sv
h

1 = 1 and sv
h

2 = 1, with h = 0, . . . , p − 1. We claim

that the abelianization Hab yields non-trivial torsion.

Proposition 4.4. The abelian pro-p group Hab is not torsion-free.

Proof. Since all the elements of YU showing up in the last terms of the equalities (4.6)

belong to H , one deduces that xy
h
3 ≡ x mod H ′ for all h = 0, . . . , p− 1.

Now, each factor of s2 — cf. (4.5) — is a commutator of elements of H , and thus

the relations sv
h

2 = 1 yield trivial relations in Hab. On the other hand, every factor of

s1 — cf. (4.4) —, but [x, y1] and [xy3 , yy3

1 ], is a commutator of elements of H . From

(4.4) one obtains

(4.8) [xy3 , yy3

1 ] [x, y1] ≡
[
x, v−1(vyy3

1 )
]
[x, v] ≡ [x, v−1][x, v] ≡ 1 mod H ′,

as vyy3

1 ∈ H . Altogether, Hab is the abelian pro-p group (non-minimally) generated by

the set XHab = {wH ′ | w ∈ XH}, and subject to the p relations
[

xv
h

H ′, v−1H ′
] [

xv
h

H ′, vH ′
]

= H ′, with h = 0, . . . , p− 1,
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as U/H = {H, vH, . . . , vp−1H}. From these relations one deduces the equivalences:

xv
2 ≡ (xv)

2 · x−1 mod H ′ with h = 1,

xv
3 ≡

(

xv
2
)2

· (xv)−1 ≡ (xv)
3 · x−2 mod H ′ with h = 2,

...

xv
p−1 ≡

(

xv
p−2
)2

·
(

xv
p−3
)−1

≡ (xv)
p−1 · x2−p mod H ′ with h = p− 2,

xv
p ≡

(

xv
p−1
)2

·
(

xv
p−2
)−1

≡ (xv)
p · x1−p mod H ′ with h = p− 1.

But xv
p ≡ x mod H ′, as vp ∈ H , and thus from the last of the above equivalences one

obtains

(4.9) x ≡ (xv)px1−p mod H ′ =⇒ (xv)px−p ≡ (xvx−1)p ≡ 1 mod H ′.

Altogether, Hab is the abelian pro-p group minimally generated by

YHab =
{

vpH ′, xH ′, xvH ′, (vyy3

1 )
vh

H ′, wvh

H ′ | h = 0, . . . , p− 1
}

,

where w ∈ YU r {v, yy3

1 , x}, and subject to the relation ((xH ′)−1 · xvH ′)p = H ′ — in

particular, Hab is isomorphic to Z
2+p+p2(d1+d2−2)
p × Z/pZ. �

5. Proof of Theorem 1.1 case (1.1.b)

Let p be an odd prime, and let G be a pro-p group as defined in Theorem 1.1, with

defining relations as in (1.1.b) — namely,

G = 〈 x, y1, . . . , yd1
, z1, . . . , zd2

| r1 = r2 = 1 〉,
with

r1 = yp1 [y1, x] · · · [yd1−1, yd1
],

r2 = zp1 [z1, x] · · · [zd2−1, zd2
].

5.1. Kummerianity. Let G1, G2 be the two Demushkin groups as in § 3.2, with ǫ = 1.

By Example 2.6, if

θ1 : G1 −→ 1 + pZp and θ2 : G2 −→ 1 + pZp

are two torsion-free orientations completing respectively G1 and G2 into Kummerian

oriented pro-p groups, then necessarily θ1(y1) = . . . = θ1(yd1
) = 1, and analogously

θ2(z1) = . . . = θ1(zd2
) = 1, while θ1(x) = θ2(x) = (1− p)−1.

Proposition 5.1. An orientation θ : G → 1 + pZp completes G into a Kummerian

oriented pro-p group (G, θ) if, and only if,

θ(x) = (1− p)−1 and θ(yi) = θ(zj) = 1

for all i = 1, . . . , d1 and j = 1, . . . , d2.
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Proof. Suppose that θ : G → 1 + pZp is the orientation defined as above, and pick

arbitrary p-adic integers λ, λi, λ
′
j ∈ Zp for 1 ≤ i ≤ d1 and 1 ≤ j ≤ d2. The assignment

x 7→ λ, yi 7→ λi and zj 7→ λ′j for every i, j yields a well-defined continuous 1-cocycle

c : G→ Zp(θ), as (2.3) imples that

c(r1) = c(yp1) + c([y1, x]) + c([y2, y3]) + . . .+ c([yd1−1, yd1
])

= p · λ1 + θ(x)−1(λ1(1 − θ(x)) − 0) + 0 + . . .+ 0

= 0

and

c(r2) = c(zp1) + c([z1, x]) + c([z2, z3]) + . . .+ c([zd2−1, zd2
])

= p · λ′1 + θ(x)−1(λ′1(1 − θ(x)) − 0) + 0 + . . .+ 0

= 0

Therefore, (G, θ) is Kummerian by Lemma 2.9.

Conversely, suppose that (G, θ) is Kummerian. Let N1 and N2 denote the normal

subgroups ofG generated as normal subgroups by z1, . . . , zd2
and y1, . . . , yd1

respectively.

ThenG/N1 ≃ G1 andG/N2 ≃ G2. Moreover, Proposition 2.10 implies that (G/Ni, θ/Ni
)

is Kummerian for both i = 1, 2.

Since G/Ni ≃ Gi for both i, Example 2.6 and the argument before the statement

of the proposition imply that θ/N1
(y1N1) = . . . = θ/N1

(yd1
N1) = 1, and analogously

θ/N2
(z1N2) = . . . = θ/N2

(zd2
N2) = 1, while θ/N1

(xN1) = θ/N2
(xN2) = (1 − p)−1.

Hence, θ is as defined above, as θ(w) = θ/N1
(wN1) for every w ∈ G1, and analogously

θ(w) = θ/N2
(wN2) for every w ∈ G2. �

Henceforth, θ : G→ 1 + pZp will denote the orientation as in Proposition 5.1.

5.2. The subgroup H. Let φ1 : G1 → Z/p ⊕ Z/p and φ2 : G2 → Z/p ⊕ Z/p be the

homomorphisms of pro-p groups defined by

φ1(x) = φ2(x) = (1, 0),

φ1(y1) = φ2(z1) = (0, 1),

φ1(yi) = φ2(zj) = (0, 0) for i, j ≥ 2.

(5.1)

Put U1 = Ker(φ1) and U2 = Ker(φ2), and also

t = z−1
1 y1, u = xp, v = yp1 , w = zp1 .

Then U1 is an open normal subgroup of G1 of index p2, and likewise for U2 and G2 —

note that by [6] both U1 and U2 are Demushkin groups.

Finally, put N1 = Ker(θ|U1
), N2 = Ker(θ|U2

), and let T be the subgroup of G

generated by t. Observe that N1 and N2 are free pro-p groups, as they are subgroups

of infinite index of Demushkin groups (cf. [33, Ch. I, § 4.5, Ex. 5–(b)]), while T ≃ Zp

as G is torsion-free (cf. Remark 3.2).

Let H be the subgroup of G generated by U1, U2 and T , and let M be the subgroup

of H generated by N1, N2 and T . Observe that M ⊆ Ker(θ). Our aim is to show that

the oriented pro-p group (H, θ|H) is not Kummerian. For this purpose, we need the

following.

Lemma 5.2. (i) M = N1 ∐N2 ∐ T .
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(ii) M is a normal subgroup of H, and H ≃M ⋊Xp

(iii) One has an isomorphism of p-elementary abelian groups

(5.2)
G

Φ(G)
≃ Xp

Xp2
× N1

Np
1 [N1, U1]

× N2

Np
2 [N2, U2]

× T

T p
.

Proof. Consider the pro-p tree T associated to the amalgamated free pro-p product

(3.3). Namely, T consists of a set vertices V and a set of edges E , where
V = { hG1, hG2 | h ∈ G } = G/G1 ∪̇G/G2,

E = { hX | h ∈ G } = G/X,

and it comes endowed with a natural G-action, i.e.,

g.(hG1) = (gh)G1 for every g ∈ G, hG1 ∈ G/G1 ⊆ V
g.(hG1) = (gh)G2 for every g ∈ G, hG2 ∈ G/G2 ⊆ V ,
g.(hX) = (gh)X for every g ∈ G, hX ∈ G/X = E .

(5.3)

Pick g ∈ M and hX ∈ E . Then g.hX = hX if, and only if, g ∈ hXh−1, i.e.,

g = hxλh−1 for some λ ∈ Zp. Since M ⊆ Ker(θ), it follows that

(5.4) 1 = θ(g) = θ
(
hxλh−1

)
= θ(x)λ = (1 − p)λ,

and therefore λ = 0, as 1+pZp is torsion-free. Hence, the subgroupM intersects trivially

the stabilizer StabG(hX) of every edge hX ∈ E . By [15, Thm. 5.6], M decomposes as

free pro-p product as follows:

(5.5) M =

(
∐

ω∈V′

StabM (ω)

)

∐ F,

where F is a free pro-p group, and V ′ ⊆ V is a continuous set of representatives of the

space of orbits M\V . Clearly, the vertices G1 and G2 belong to different orbits, thus in

the decomposition (5.5) one finds the two factors

StabM (G1) = { g ∈M | gG1 = G1 } =M ∩G1,

StabM (G2) = { g ∈M | gG2 = G2 } =M ∩G2.

Since N1 ⊆ M ∩ G1 ⊆ Ker(θ) ∩ G1 = N1, one has StabM (G1) = N1, and analogously

StabM (G2) = N2. Therefore, from (5.5) one obtains

(5.6) M = N1 ∐N2 ∐




∐

ω∈V′r{G1,G2}

StabM (ω)∐ F



 .

It is straightforward to see that t /∈ N1 ∐N2. Since M is generated as pro-p group by

N1, N2 and t, the right-side factor in (5.6) is necessarily T , and this proves (i).

In order to prove (ii), we need only to show that uMu−1 =M , as H = 〈u,M 〉. Since
N1 is normal in U1, and u ∈ U1, then uN1u

−1 = N1 — analogously, uN2u
−1 = N2.

Now, observe that the integer

(1− p)p − 1 =

(

1−
(
p

1

)

p+

(
p

2

)

p2 − . . .− pp
)

− 1
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is divisible by p2 but not by p3, so we put (1 − p)p = 1 + p2λ, with λ ∈ 1 + pZp. From

the relation r1 = 1 one deduces

(5.7) yx1 = y1−p
1 · ([y2, y3] · · · [yd1−1, yd1

])
−1
,

and by iterating (5.7) p times, one obtains yu1 = y
(1−p)p

1 n1 for some n1 ∈ N ′
1 — for this

purpose, observe that for every ν ≥ 0 and i ≥ 1, the triple commutator

[yν1 , [yi, yi+1]] =
[

y
yν
1

i , y
yν
1

i+1

]−1

· [yi, yi+1]

belongs to N ′
1, as y

yν
0

i ∈ N1. Analogously, z
u
1 = z

(1−p)p

1 n2 for some n2 ∈ N ′
2. Altogether,

(5.8) tu = (z−1
1 y1)

u = zu1 y
u
1 = n−1

2 · w−pλ · t · vpλ · n1,

which belongs to M — here we replaced z
−(1−p)p

1 = w−pλ · z−1
1 and y

(1−p)p

1 = y1 · vp
λ

.

Hence, M EH . Finally, by definition H =M ·Xp, and moreover

M ∩Xp ⊆ Ker(θ) ∩Xp = {1},
so that H =M ⋊Xp. This completes the proof of (ii).

Finally, by (i) and (ii) one has the isomorphism of p-elementary abelian groups

M/Φ(M) ≃ N1/Φ(N1)×N2/Φ(N2)× T/T p

H/Φ(H) ≃ Xp/Xp2 ×M/Mp[M,H ].
(5.9)

From (5.8) one has that [T,Xp] ⊆ Φ(M), and since H = MXp, U1 = N1X
p, and

U2 = N2X
p, form (5.9) one deduces (iii). �

5.3. The subgroup H and Kummerianity.

Proposition 5.3. The oriented pro-p group (H, θ|H) is not Kummerian.

Proof. Let N be the normal subgroup of H generated as a normal subgroup by N1, N2,

and set H̄ = H/N . Then N ⊆ Ker(θ|H), and clearly H̄ is finitely generated. Moreover,

by duality the restriction map res1H,N : H1(H,Z/pZ) → H1(N,Z/pZ)H is surjective, as

by Lemma 5.2 one has

N/Np[N,H ] ≃ N1/N
p
1 [N1, U1]×N2/N

p
2 [N2, U2],

which embeds in H/Φ(H). In particular, {uN, tN} is a minimal generating set of H̄.

Thus, by Proposition 2.10 if the oriented pro-p group (H̄, θ̄) is not Kummerian — where

θ̄ = (θ|H)/N : H̄ → 1 + pZp is the orientation induced by θ|H —, then also (H, θ|H) is

not Kummerian.

By (5.8), in H one has that [t, u−1] ≡ 1 mod N , and thus H̄ is abelian. Moreover,

θ̄(uN) = θ(u) = (1 − p)p and θ̄(tN) = θ(t) = 1,

so that Ker(θ̄) = 〈tN〉. Therefore, the subgroup Kθ̄(H̄) is generated by
(

t−θ(u)utu−1
)

N = tp
2λN.

Thus, the quotient Ker(θ̄)/Kθ̄(H̄) = 〈tN〉/〈tN〉p2

is not torsion-free, and by Proposi-

tion 2.2, (H̄, θ̄) is not Kummerian. �

This completes the proof of Theorem 1.1 case (1.1.b).
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Remark 5.4. If d1 = d2 = 1, case (1.1.b) of Theorem 1.1 is a particular case of

[3, Prop. 6.5].

6. Massey products

6.1. Massey products in Galois cohomology. Here we recall briefly what we need

in order to prove Proposition 1.3. For a detailed account on Massey products for pro-p

groups, we direct the reader to [8, 20, 36].

Let G be a pro-p group. For n ≥ 2, the n-fold Massey product on H1(G,Z/pZ) is a

multi-valued map

H1(G,Z/pZ)× . . .×H1(G,Z/pZ)
︸ ︷︷ ︸

n times

−→ H2(G,Z/pZ).

For n ≥ 2, given a sequence α1, . . . , αn of elements of H1(G,Z/pZ) (with possibly

αi = αj for some 1 ≤ i < j ≤ n), the (possibly empty) subset of H2(G,Z/pZ) which is

the value of the n-fold Massey product associated to the sequence α1, . . . , αn is denoted

by 〈α1, . . . , αn〉. If n = 2, then the 2-fold Massey product coincides with the cup-

product, i.e., for α1, α2 ∈ H1(G,Z/pZ) one has

(6.1) 〈α1, α2〉 = {α ` α2} ⊆ H2(G,Z/pZ).

A pro-p group G is said to satisfy:

(a) the n-Massey vanishing property (with respect to Z/pZ) if for every sequence

α1, . . . , αn of elements of H1(G,Z/pZ), 〈α1, . . . , αn〉 6= ∅ implies 0 ∈ 〈α1, . . . , αn〉;
(b) the strong n-Massey vanishing property (with respect to Z/pZ) if for every se-

quence α1, . . . , αn of elements of H1(G,Z/pZ), the condition on the cup-products

(6.2) α1 ` α2 = α2 ` α3 = . . . = αn−1 ` αn = 0

implies 0 ∈ 〈α1, . . . , αn〉 (cf. [22, Def. 1.2]) — we remind that the triviality

condition (6.2) is satisfied whenever 〈α1, . . . , αn〉 6= ∅, cf., e.g., [20, § 2];

(c) the cyclic p-Massey vanishing property if for every element α ∈ H1(G,Z/pZ),

the p-fold Massey product 〈α, . . . , α〉 contains 0.

Remark 6.1. Given a sequence α1, . . . , αn of elements of H1(G,Z/pZ), if an element

ω of H2(G,Z/pZ) is a value of the n-fiold Massey product 〈α1, . . . , αn〉, then
ω + α1 ` β ∈ 〈α1, . . . , αn〉 and ω + αn ` β ∈ 〈α1, . . . , αn〉

for any β ∈ H1(G,Z/pZ) (cf. [20, Rem. 2.2]).

In [19, Thm. 8.1], J. Minač and N.D. Tân proved that the maximal pro-p Galois

group of a field K containing a root of 1 of order p (and also
√
−1 if p = 2) satisfies the

cyclic p-Massey vanishing property. The proof of the last property for a pro-p group G

as in Theorem 1.1 is rather immediate.

Proof of Proposition 1.3–(ii). By Proposition 4.1 and Proposition 5.1, G may complete

into a Kummerian oriented pro-p group with torsion-free orientation. Hence, G satisfies

the cyclic p-Massey vanishing property by [28, Thm. 3.10]. �
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6.2. Massey products and unipotent upper-triangular matrices. Massey prod-

ucts for a pro-p group G may be translated in terms of unipotent upper-triangular

representations of G as follows. For n ≥ 2 let

Un+1 =

















1 a1,2 · · · a1,n+1

1 a2,3 · · ·
. . .

. . .
...

1 an,n+1

1











| ai,j ∈ Z/p







⊆ GLn+1(Z/pZ)

be the group of unipotent upper-triangular (n+ 1)× (n + 1)-matrices over Z/p. Then

Un+1 is a finite p-group. Moreover, for 1 ≤ h, l ≤ n+1 let Eh,l denote the (n+1)×(n+1)

matrix with the (h, l)-entry equal to 1, and all the other entries equal to 0.

Now let ρ : G → Un+1 be a homomorphism of pro-p groups. Observe that for every

h = 1, . . . , n, the projection ρh,h+1 : G → Z/p of ρ onto the (h, h+ 1)-entry is a homo-

morphism, and thus it may be considered as an element of H1(G,Z/pZ). One has the

following “pro-p translation” of a result of W. Dwyer which interprets Massey product

in terms of unipotent upper-triangular representations (cf., e.g., [11, Lemma 9.3]).

Proposition 6.2. Let G be a pro-p group, and let α1, . . . , αn be a sequence of elements

of H1(G,Z/pZ), with n ≥ 2. Then the n-fold Massey product 〈α1, . . . , αn〉:
(i) is not empty if, and only if, there exists a morphism of pro-p groups ρ̄ : G →

Un+1/Z(Un+1) such that ρ̄h,h+1 = αh for every h = 1, . . . , n;

(ii) vanishes if, and only if, there exists a morphism of pro-p groups ρ : G → Un+1

such that ρh,h+1 = αh for every h = 1, . . . , n.

We recall that

Z(Un+1) = { In+1 + aE1,n+1 | a ∈ Z/pZ } ≃ Z/pZ.

We use this fact to prove statements (iii.a)–(iii.b) of Proposition 1.3. First of all, let

G be as in Theorem 1.1, and let α1, . . . , αn be a sequence of elements of H1(G,Z/pZ).

Keeping the same notation as in § 3.3, for h = 1, . . . , n one has

αh = αh(x) · χ+

d1∑

i=1

αh(yi) · ϕi +

d2∑

j=1

αh(zj) · ψj .

Therefore, for h = 1, . . . , n− 1 one obtains

αh ` αh = Sh · (χ ` ϕ1) + S′
h · (χ ` ψ1),

where

Sh =(αh(x)αh+1(y1)− αh(y1)αh+1(x))+

+ (−1)ǫ
∑

2|i

(αh(yi)αh+1(yi+1)− αh(yi+1)αh+1(yi)),

S′
h =(αh(x)αh+1(z1)− αh(z1)αh+1(x))+

+ (−1)ǫ
∑

2|j

(αh(zj)αh+1(zj+1)− αh(zj+1)αh+1(zj)),
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with ǫ = 0 if G is as in (1.1.a), and ǫ = 1 if G is as in (1.1.b). If the sequence

α1, . . . , αn satisfies condition (6.2), then one has Sh = S′
h = 0 for h = 1, . . . , n − 1, as

{χ ` ϕ1, χ ` ψ1} is a basis of H2(G,Z/p).

From now on, we will assume that p > 3 while considering a pro-p group G as in

(1.1.b), unless stated otherwise.

6.3. 3-fold Massey products. We are ready to prove the following.

Proposition 6.3. A pro-p group G satisfies the 3-Massey vanishing property in the

following cases:

(a) if G is as in (1.1.a);

(b) if G is as in (1.1.b) and p > 3.

Proof. Let α1, α2, α3 be a sequence of elements of H1(G,Z/pZ) satisfying (6.2). Then

S1 = S′
1 = S2 = S′

2 = 0 (cf. § 6.2). Our goal is to construct a morphism ρ : G → U4

such that ρ1,2 = α1, ρ2,3 = α2, ρ3,4 = α3.

For every w ∈ X set

A(w) = I + α1(w)E1,2 + α2(w)E2,3 + α3(w)E3,4 ∈ U4,

where I denotes the 4× 4 identity matrix. If G is as in (1.1.a), then one computes

C = [A(x), A(y1)] · · · [A(yd1−1), A(yd1
)]

= I + E1,4



α1(y1)α2(x)α3(y1) +
∑

2|i

α1(yi)α2(yi+1)α3(yi)





C′ = [A(x), A(z1)] · · · [A(zd2−1), A(zd2
)]

= I + E1,4



α1(z1)α2(x)α3(z1) +
∑

2|j

α1(zj)α2(zj+1)α3(zj)



 ;

(6.3)

while if G is as in (1.1.b), then one computes

C = A(y1)
p[A(y1), A(x)] · · · [A(yd1−1), A(yd1

)]

= I + E1,4



α1(x)α2(y1)α3(x) +
∑

2|i

α1(yi)α2(yi+1)α3(yi)





C′ = A(z1)
p[A(z1), A(x)] · · · [A(zd2−1), A(zd2

)]

= I + E1,4



α1(x)α2(z1)α3(x) +
∑

2|j

α1(zj)α2(zj+1)α3(zj)



 .

(6.4)

— observe that the exponent of U4 is p, as p > 4, and thus A(y1)
p = A(z1)

p = I.

In both cases, C,C′ ∈ Z(U4), and therefore the assignment w 7→ A(w) for every

w ∈ X yields a morphism ρ̄ : G → U4/Z(U4) satisfying ρ̄h,h+1 = αh for h = 1, 2, 3.

Thus, 〈α1, α2, α3〉 6= ∅ by Proposition 6.2.

Moreover, if C = C′ = I then the same assignment yields a morphism ρ : G→ U4 with

the desired properties. In particular, by (6.3)–(6.4) one has C = I if α1(w) = α3(w) = 0

for every w = y1, . . . , yd1
, or for every w = y2, . . . , yd1

and w = x; and analogously
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C′ = I if α1(w) = α3(w) = 0 for every w = z1, . . . , zdd2
, or for every w = z2, . . . , zd2

and w = x.

On the other hand, if C 6= I then χ ` ϕ1 = ± trg(r1G(3)) belongs to 〈α1, α2, α3〉,
and analogusly if C′ 6= I then χ ` ψ1 = ± trg(r2G(3)) belongs to 〈α1, α2, α3〉 (cf.

[20, Lemma 3.7]) — here the sign depends on whether the relations are as in (1.1.a) or

in (1.1.b). Now, if αh(yi) 6= 0 for some h = 1, 3 and i ∈ {2, . . . , d1}, then
χ ` ϕ1 = αh ` β for some β ∈ H1(G,Z/pZ).

Analogously, if αh(zj) 6= 0 for some h = 1, 3 and j ∈ {2, . . . , d2}, then
χ ` ψ1 = αh ` β for some β ∈ H1(G,Z/pZ).

Moreover, if αh(x) 6= 0 for some h = 1, 3, then

χ ` ϕ1 = αh ` β and χ ` ψ1 = αh ` β′

for some β, β′ ∈ H1(G,Z/pZ). Therefore, Remark 6.1 implies that if C 6= I or C′ 6= I

then 0 ∈ 〈α1, α2, α3〉 anyway. �

Remark 6.4. If p = 3 and G as in (1.1.b), then G does not satisfy the 3-Massey

vanishing property. Indeed, set α1 = α3 = ϕ1 + ψ1, and α2 = ϕ1. Then

α1 ` α2 = α2 ` α3 = ±(ϕ1 ` ψ1) = 0.

It is easy to see that one may construct a morphism of pro-p groups ρ̄ : G→ U4/Z(U4)

such that ρ̄1,2 = ρ̄3,4 = α1 and ρ̄2,3 = α2 — and thus 〈α1, α2, α1〉 6= ∅ by Proposi-

tion 6.2 —; but, on the other hand, one may not construct a morphism of pro-p groups

ρ : G → U4 satisfying ρ1,2 = ρ3,4 = α1 and ρ2,3 = α2 — so that 0 /∈ 〈α1, α2, α1〉 by

Proposition 6.2.

6.4. 4-fold Massey products.

Proposition 6.5. A pro-p group G as in Theorem 1.1 satisfies the strong 4-Massey

vanishing property.

Proof. Let α1, . . . , α4 be a sequence of four elements of H1(G,Z/pZ) satisfying (6.2).

Our goal is to construct a homomorphism of pro-p groups ρ : G→ U5 such that ρh,h+1 =

αh for h = 1, . . . , 5, so that the claim follows by Proposition 6.2.

Let I denote the identity matrix of the group U5. For every w ∈ X = {x, y1, . . . , zd2
}

set

A(w) =










1 α1(w) 0 0 0

1 α2(w) 0 0

1 α3(w) 0

1 α4(w)

1










∈ U5.

Moreover, put

C = (chl) = A(y1)
ǫp · [A(x), A(y1)](−1)ǫ · · · [A(yd1−1), A(yd1

)] ,

C′ = (c′hl) = A(z1)
ǫp · [A(x), A(z1)](−1)ǫ · · · [A(zd2−1), A(zd2

)] .

We will consider the matrix C as a function of the matrices A(x), . . . , A(yd1
), and the

matrix C′ as a function of the matrices A(x), A(z1), . . . , A(zd2
).
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Since p ≥ 5, the exponent of the p-group U5 is p, and thus A(y1)
p = A(z1)

p = I.

Moreover, for every w,w′ ∈ X , the (h, h + 1)-entry of [A(w), A(w′)] is 0 for every

h = 1, . . . , 4, and thus also ch,h+1 = c′h,h+1 = 0. Moreover, for h = 1, 2, 3 one has

ch,h+2 = Sh and c′h,h+2 = S′
h — which are equal to 0 by (6.2).

We split the proof in the analysis of the following three cases. Our aim is to modify

suitably the matrices A(w) — without modifying the (h, h+1)-entries with h = 1, . . . , 4

— in order to obtain C = C′ = I.

Case 1. Suppose first that:

(1.a) α2(x) = α2(yi) = 0 for all 2 ≤ i ≤ d1; or

(1.b) α3(x) = α3(yi) = 0 for all 2 ≤ i ≤ d1.

Since S1 = S2 = S3 = 0 by (6.2), one has

α1(x)α2(y1) = α2(y1)α3(x) = 0,(6.5)

α2(x)α3(y1) = α3(y1)α4(x) = 0,(6.6)

respectively in case (1.a) and in case (1.b). Applying (6.5)–(6.6), one computes

[A(y1), A(x)] =

{

I + (α3(y1)α4(x)− α3(x)α4(y1))E3,5 in case (1.a),

I + (α1(y1)α2(x)− α2(x)α1(y1))E1,3 in case (1.b),

and

[A(yi), A(yi+1)] =

{

I + (α3(yi)α4(yi+1)− α3(yi+1)α4(yi))E3,5 in case (1.a),

I + (α1(yi)α2(yi+1)− α2(yi+1)α1(yi))E1,3 in case (1.b),

for i = 2, 4, . . . , d1 − 1. Altogether, one has C = I + S3E3,5 in case (1.a) and C =

I + S1E1,3 in case (1.b), so that in both cases C = I by (6.2).

Analogously, if α2(x) = α2(zj) = 0 for all 2 ≤ j ≤ d2, or if α3(x) = α3(zj) = 0 for all

2 ≤ j ≤ d2, then C
′ = I. This completes the analysis of case 1.

Case 2. Now suppose that α1(x) = α4(x) = α1(yi) = α4(yi) = 0 for all 2 ≤ i ≤ d1.

Since S1 = S2 = S3 = 0 by (6.2), one has

(6.7) α1(y1)α2(x) = α3(x)α4(y1) = 0.

Then one computes

[A(y1), A(x)] = I + (α2(y1)α3(x)− α2(x)α3(y1))E2,4 + α2(x)α3(y1)α4(y1)E2,5,

[A(yi), A(yi+1)] = I + (α2(yi)α3(yi+1)− α2(yi+1)α3(yi))E2,4,

where we apply (6.7) to obtain the first equality, and in the second one i runs through

the even positive integers between 2 and d1 − 1. If α2(x)α3(y1)α4(y1) = 0 then it is

straightforward to see that C = I + S2E2,4 = I. Otherwise, α2(x) 6= 0, so that (6.7)

implies that α1(y1) = 0. In this case, set

Ã = I − α3(y1)α4(y1)E3,5.

Then [

Ã, A(x)
]

= I − α2(x)α3(y1)α4(y1)E2,5,
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and
[

A(y1)Ã, A(x)
]

=
[

A(y1), [Ã, A(x)]
]

︸ ︷︷ ︸

=I

[

Ã, A(x)
]

[A(y1), A(x)]

= I + (α2(y1)α3(x)− α2(x)α3(y1))E2,4.

Therefore, replacing A(y1) with A(y1)Ã yields c2,4 = S2 = 0 and Chl = 0 for h < l, i.e.,

C = I.

An analogous argument yields C′ = I — after replacing suitably the matrix A(z1) if

needed — if α1(x) = α3(x) = α1(zj) = α3(zj) = 0 for all 1 ≤ j ≤ d2. This completes

the analysis of case 2.

Case 3. Finally, if none of the above two assumptions on the triviality of the values

αh(x) and αh(yi), with 2 ≤ i ≤ d1, hold true, then

(3.a) there are w,w′ ∈ {x, y2, . . . , yd1
} — possibly w = w′ — such that α1(w) 6= 0

and α2(w
′) 6= 0, or

(3.b) there are w,w′ ∈ {x, y2, . . . , yd1
} — possibly w = w′ — such that α4(w) 6= 0

and α3(w
′) 6= 0.

Suppose we are in case (3.a). If w = x or w = yi with i odd, set

Ã =

{

I +
c1,4

α1(w)E2,4 if w ∈ { x, y3, . . . , yd1
}

I − c1,4
α1(w)E2,4 if w ∈ { yi | i is even },

and replace A(y1) with A(y1)Ã, if w = x, or A(yi−1) with A(yi−1)Ã if w = yi with i

odd, or A(yi+1) with A(yi+1)Ã, if w = y with i even. After the replacement, one has

chl = 0 for h < l ≤ h+ 2, and for (h, l) = (1, 4). Then, set

Ã′ =

{

I +
c2,5

α1(w′)E3,5 if w′ ∈ { x, y3, . . . , yd1
}

I − c2,5
α1(w′)E3,5 if w′ ∈ { yi | is even },

and replace A(y1) with A(y1)Ã
′, if w = x, or A(yi−1) with A(yi−1)Ã

′ if w = yi with i

odd, or A(yi+1) with A(yi+1)Ã
′, if w = y with i even. After this further replacement,

one has chl = 0 for h < l ≤ h+ 3. Finally, set

Ã′′ =

{

I +
c1,5

α1(w)E2,5 if w ∈ { x, y3, . . . , yd1
}

I − c1,5
α1(w)E2,5 if w ∈ { yi | i is even },

and replace A(y1) with A(y1)Ã
′′, if w = x, or A(yi−1) with A(yi−1)Ã

′′ if w = yi with i

odd, or A(yi+1) with A(yi+1)Ã
′′, if w = y with i even. After this last replacement, one

has C = I.

Now suppose we are in case (3.b). If w = x or w = yi with i odd, set

Ã =

{

I − c2,5
α4(w)E3,4 if w ∈ { x, y3, . . . , yd1

}
I +

c2,5
α4(w)E3,4 if w ∈ { yi | i is even },

and replace A(y1) with A(y1)Ã, if w = x, or A(yi−1) with A(yi−1)Ã if w = yi with i

odd, or A(yi+1) with A(yi+1)Ã, if w = y with i even. After the replacement, one has
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chl = 0 for h < l ≤ h+ 2, and for (h, l) = (2, 5). Then, set

Ã′ =

{

I − c1,4
α3(w′)E1,3 if w′ ∈ { x, y3, . . . , yd1

}
I +

c1,4
α3(w′)E1,3 if w′ ∈ { yi | i is even },

and replace A(y1) with A(y1)Ã
′, if w = x, or A(yi−1) with A(yi−1)Ã

′ if w = yi with i

odd, or A(yi+1) with A(yi+1)Ã
′, if w = y with i even. After this further replacement,

one has chl = 0 for h < l ≤ h+ 3. Finally, set

Ã′′ =

{

I − c1,5
α1(w)E1,4 if w ∈ { x, y3, . . . , yd1

}
I +

c1,5
α1(w)E1,4 if w ∈ { yi | i is even },

and replace A(y1) with A(y1)Ã
′′, if w = x, or A(yi−1) with A(yi−1)Ã

′′ if w = yi with i

odd, or A(yi+1) with A(yi+1)Ã
′′, if w = y with i even. After this last replacement, one

has C = I.

Moreover, if none of the above two assumptions on the triviality of the values αh(x)

and αh(zj), with 2 ≤ j ≤ d2, hold true, the same argument produces suitable matrices

A(z1), . . . , A(zd2
) such that the matrix C′ is the identity matrix. This concludes the

analysis of case 3.

Altogether, the assignment w 7→ A(x) for every w ∈ X — with the matrices A(w)’s

suitably modified in case of need — yields a homomorphism of pro-p groups ρ : G→ U5

with the desired properties. �

We believe that the answer to the following questions is positive.

Question 6.6. (a) Let G be as in (1.1.a). Does G satisfy the strong n-Massey

vanishing property for every n ≥ 3?

(b) Let G be as in (1.1.b). Does G satisfy the strong n-Massey vanishing property

for every 3 ≤ n < p?

7. The Minač-Tân pro-p group

We focus now on the Minač-Tân pro-p group

G = 〈 x1, . . . , x5 | r = 1 〉 with r = [[x1, x2], x3] [x4, x5].

Using Proposition 6.2, one may show that G does not satisfy the 3-Massey vanishing

property (cf. [20, Ex. 7.2]). Our aim is to show that G cannot complete into a 1-

cyclotomic oriented pro-p group with torsion-free orientation.

7.1. Kummerianity and 1-cyclotomicity.

Proposition 7.1. Let G be the Minač-Tân pro-p group, and let θ : G → 1 + pZp be

a torsion-free orientation. Then the oriented pro-p group (G, θ) is Kummerian if, and

only if, x4, x5 ∈ Ker(θ), and:

(a) x3 ∈ Ker(θ); or

(b) x1, x2 ∈ Ker(θ).
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Proof. Let c : G → Zp(θ) be an arbitrary continuous 1-cocycle, and set c(xi) = λi for

i = 1, . . . , 5. Applying (2.2)–(2.3) one computes c(r) = c([[x1, x2], x3]) + c([x4, x5]), and

c([[x1, x2], x3]) = θ(x1x2)
−1
(
θ(x3)

−1 − 1
)
(λ1(1− θ(x2))− λ2(1 − θ(x1))) ,

c([x4, x5]) = θ(x4x5)
−1 (λ4(1− θ(x5))− λ5(1− θ(x4))) .

(7.1)

On the other hand, c(r) = 0 as r = 1.

Suppose that (G, θ) is Kummerian. Then by Lemma 2.9, we may prescribe arbitrary

values to λ1, . . . , λ5. If λ4 = 1 and λi = 0 for i 6= 4, from (7.1) and from the fact that

c(r) = 0 one obtains 0 = 1 · (1− θ(x5)), and thus θ(x5) = 1. Analogously, if λ5 = 1 and

λi = 0 for i 6= 5, one deduces θ(x4) = 1. Finally, if λ4 = λ5 = 0 from (7.1) one obtains

0 = c(r) = θ(x1x2)
−1
(
θ(x3)

−1 − 1
)
(λ1(1− θ(x2))− λ2(1− θ(x1))) ,

and the arbitrariness of λ1, λ2 implies that θ(x3) = 1 or θ(x1) = θ(x2) = 1.

Conversely, suppose that x4, x5 ∈ Ker(θ), and at least one of the hypothesis (i)–(ii)

holds true. Then for any choice for λ4, λ5, by (7.1) one has c([x4, x5]) = 0. On the other

hand, one has

c([[x1, x2], x3]) =

{

0 · (λ1(1− θ(x2))− λ2(1 − θ(x1))) = 0 if x3 ∈ Ker(θ),
(
θ(x3)

−1 − 1
)
(λ1 · 0− λ2 · 0) = 0 if x1, x2 ∈ Ker(θ).

Altogether, any choice for λ1, . . . , λ5 yields a well-defined continuous 1-cocycle c : G→
Zp(θ), and thus (G, θ) is Kummerian by Lemma 2.9. �

Now consider the subgroup H of G generated by x3, x4, x5 and by y = [x1, x2]. Then

H is subject to the relation

r = [y, x3][x4, x5] = 1.

If (G, θ) is a 1-cyclotomic oriented pro-p group, with θ a torsion-free orientation, then

= (H, θ|H) is Kummerian. Therefore, if c′ : H → Zp(θ|H) is a continuous 1-cocycle,

applying (2.2)–(2.3) one obtains

0 = c′(r) = c′([y, x3]) + c′([x4, x5])

= θ(yx3)
−1 (c′(y)(1 − θ(x3))− c′(x3)(1 − θ(y))) + 0

= θ(yx3)
−1c′(y)(1 − θ(x3)),

as θ(x4) = θ(x5) = 1 by Proposition 7.1, and y ∈ G′ ⊆ Ker(θ). Since c′(y) may be

arbitrarily chosen by Lemma 2.9, one deduces θ(x3) = 1. This proves the following.

Lemma 7.2. Let G be the Minač-Tân pro-p group, and let θ : G→ 1+pZp be a torsion-

free orientation. If the oriented pro-p group (G, θ) is 1-cyclotomic then x3, x4, x5 ∈
Ker(θ).

Moreover, if (G, θ) is 1-cyclotomic we may suppose without loss of generality that

x2 ∈ Ker(θ), too. Indeed, let vp : Zp → N denote the p-adic valuation, and let k ≥ 1 be

such that Im(θ) = 1 + pkZp.

Suppose first that vp(θ(x2)− 1) = k and vp(θ(x1)− 1) > k, and set z = x2x1. Then

{z, x2, x3, x4, x5} is a minimal generating set of G, vp(θ(z) − 1) = k, and G is subject

to the relation

[[z, x2], x3] [x4, x5] = 1,

as [x2x1, x2] = [x1, x2]. Hence, we may assume vp(θ(x1)− 1) = k.
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Consequently, there exists λ ∈ Zp such that θ(x2) = θ(x1)
λ. Now set z = x−λ

1 x2.

Then {x1, z, x3, x4, x5} is a minimal generating set of G, θ(z) = θ(x2)θ(x1)
−λ = 1, and

G is subject to the relation

[[x1, z], x3] [x4, x5] = 1,

as [x1, x
−λ
1 x2] = [x1, x2].

Therefore, from now on θ : G→ 1+pZp will denote a torsion-free orientation satisfying

x2, . . . , x5 ∈ Ker(θ).

7.2. The subgroup U . Put u = xp1 and t = x−1
1 x3. Let φ : G → Z/p be the homo-

morphism defined by φ(x1) = φ(x3) = 1 and φ(xi) = 0 for i = 2, 4, 5, and let U be

the kernel of φ. Then U is a normal subgroup of G of index p, and it is generated as a

normal subgroup of G by {u, t, x2, x4, x5}. In fact, U is generated as a pro-p group by

the set

XU =
{

u, tx
h
1 , x

xh
1

2 , x
xh
1

4 , x
xh
1

5 | h = 0, . . . , p− 1
}

,

as G/U = {U, x1U, . . . , xp−1
1 U}. We need to find a subset of XU which minimally

generates U as a pro-p group.

Proposition 7.3. The set

YU =
{

t, x2, x
x1

2 , t
xh
1 , x

xh
1

4 , x
xh
1

5 | h = 0, . . . , p− 1
}

,

is a minimal generating set of U as a pro-p group. Moreover, the abelian pro-p group

Uab is not torsion-free.

Proof. The subgroup U is the pro-p group generated by XU and subject to the p-relations

rx
h
1 = 1, h = 0, . . . , p− 1. Since x3 = x1t, one computes

[[x1, x2], x3] = [x1, x2]
−1 · [x1, x2]x3

= [x2, x1] · [x1, xx1

2 ]t

= x−1
2 · xx1

2 ·
((

x
x2
1

2

)−1

xx1

2

)t

.

(7.2)

From (7.2), and from the relation r = 1, one deduces the equivalence

(7.3)
(

x
x2
1

2

)−1

· (xx1

2 )
2 · x−1

1 ≡ 1 mod U ′,

as [x4, x5] ∈ U ′ and t ∈ U .

Hence, Uab is the abelian pro-p group generated by XUab = {wU ′ | w ∈ XU} and

subject to the p relations induced by the equivalences ((x
x2
1

2 )−1(xx1

2 )2x−1
1 )x

h
1 ≡ 1 mod U ′,

namely

x
x2
1

2 ≡ (xx1

2 )
2
x−1
1 mod U ′, for h = 0,

x
x3
1

2 ≡
(

x
x2
1

2

)2

(xx2

1 )
−1 ≡ (xx1

2 )
3
x−2
1 mod U ′, for h = 1,

...

x
xp
1

2 ≡
(

x
xp−1

1

2

)2 (

xp−2
1

)−1

≡ (xx1

2 )p x1−p
1 mod U ′, for h = p− 2,

x
xp+1

1

2 ≡ (xx1

2 )2 · x−1
1 ≡ (xx1

2 )p+1 x−p
1 mod U ′, for h = p− 1.

(7.4)
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On the one hand, from (7.4) one deduces that the coset x
xh
1

2 U ′ is generated by x2U
′ and

xx1

2 U
′ for every h = 2, . . . , p − 1, so that YUab = {wU ′ | w ∈ YU} generates Uab as

an abelian pro-p group. On the other hand, from the equivalences with h = p − 2 and

h = p− 1 one deduces that

(xx1

2 )
p
x1−p
1 (xu2 )

−1 ≡ (xx1

2 )
p
x1−p−1
1 ≡

(
xx1

2 x−1
1

)p ≡ 1 mod U ′,

(xx1

2 )
p+1

x−p
1 (xux1

2 )
−1 ≡ (xx1

2 )
p+1−1

x−p
1 ≡

(
xx1

2 x−1
1

)p ≡ 1 mod U ′,

as xu2 ≡ x2 mod U ′; therefore they yield equivalent relations in Uab. Altogether, Uab is

the abelian pro-p group minimally generated by XUab and subject to the relation
(
(x2U

′)−1 · xx1

2 U
′
)p

= 1.

Hence Uab is not torsion-free, and YU is a minimal generating set of U by Fact 2.1. �

From Proposition 7.3, one deduces that G is not absolutely torsion-free, and thus the

oriented pro-p group (G,1) is not 1-cyclotomic.

7.3. 1-cyclotomicity and the Minač-Tân pro-p group. We are ready to prove

Theorem 1.4.

Proof of Theorem 1.4. Suppose for contradiction that there exists a torsion free orien-

tation θ : G→ 1 + pZp such that the oriented pro-p group (G, θ) is 1-cyclotomic. Then

by § 7.1, we may assume without loss of generality that x2, . . . , x5 ∈ Ker(θ), while

θ(x1) 6= 1 by § 7.2. Set λ ∈ pZp r {0} such that θ(x1) = 1 + λ.

Consider the oriented pro-p group (U, θ|U ), and set K = Kθ|U (U), Ū = U/K. Our

goal is to show that the oriented pro-p group (Ū , (θ|U )/K) is not (θ|U )/K-abelian, so

that (U, θ|U ) is not Kummerian by Proposition 2.8, and thus (G, θ) is not 1-cyclotomic.

Since K ⊆ Φ(U), by Proposition 7.3 the set YŪ = {wK | w ∈ YU} is a minimal

generating set of Ū . Now, since θ(t) = θ(x1) = (1+λ)−1, one has wt ≡ w1+λ mod K for

every w ∈ U . Therefore, from (7.2), and from the fact that [x4, x5] ∈ Ker(θ|U )′ ⊆ K,

one obtains

[x1, x2]
−1 ([x1, x2]

x1)
t ≡ [x1, x2]

−1 ([x1, x2]
x1)

(1+λ)−1

≡ 1 mod K,

and consequently

[x1, x2]
x1 ≡ [x1, x2]

1+λ mod K,

[x1, x2]
x2
1 ≡ [x1, x2]

(1+λ)2 mod K,

...

[x1, x2]
xp−1

1 ≡ [x1, x2]
(1+λ)p−1

.

(7.5)

Set

µ = (1 + λ)0 + (1 + λ)1 + . . .+ (1 + λ)p−1 =
(1 + λ)p − 1

λ
.

Then µ 6= 0 (as λ 6= 0), and p | µ. Since [x1, x2] = (xx1

2 )−1x2, replacing the coset xx1

2 K

with the coset [x1, x2]K in YŪ yields another minimal generating set — let us call it Y ′
Ū
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— of Ū . Now, from (7.5) one obtains

[u, x2] = [x1, x2]
xp−1

1 · · · [x1, x2]x1 · [x1, x2]

≡ [x1, x2]
(1+λ)p−1 · · · [x1, x2]1+λ · [x1, x2] mod K

≡ [x1, x2]
µ mod K

— observe that [x1, x2]
xh
i ∈ Ker(θ|U ) for every h, and thus all such elements commute

modulo K. Therefore, one has the relation

([x1, x2]K)
µ
= [uK, x2K]

between elements of the minimal generating set Y ′
Ū
, and by [11, Thm. 8.1] this relation

prevents the oriented pro-p group (Ū , (θ|U )/K) from being Kummerian — and thus also

(θ|U )/K-abelian. �

From Theorem 1.4 we obtain a new family of pro-p groups which cannot complete

into 1-cyclotomic oriented pro-p groups.

Corollary 7.4. Let G be the pro-p group with presentation

G = 〈x1, . . . , xn, xn+1, xn+2 | [[. . . [[x1, x2], x3], . . . xn−1] , xn] [xn+1, xn+2] = 1〉 ,
with n ≥ 3. Then G cannot complete into a 1-cyclotomic oriented pro-p group with

torsion-free orientation.

Proof. Set y = [. . . [x1, x2], . . . xn−2], and let H be the subgroup of G generated by

{y, xn−1, . . . , xn+2}. Then
H = 〈 y, xn−1, . . . , xn+2 | [[y, xn−1], xn][xn+1, xn+2] 〉

is isomorphic to the Minač-Tân pro-p group, and hence it cannot complete into a 1-

cyclotomic oriented pro-p group with torsion-free orientation by Theorem 1.4. �

The following question remains open (cf. [2, Ex. 3.2]).

Question 7.5. Is the Minač-Tân pro-p group G a Bloch-Kato pro-p group? Namely, is

the Z/pZ-cohomology algebra of every closed subgroup of G a quadratic algebra?
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