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T-cell dysfunction in the glioblastoma
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Despite recent advances in cancer immunotherapy, certain tumor types, such as Glio-

blastomas, are highly resistant due to their tumor microenvironment disabling the anti-tumor

immune response. Here we show, by applying an in-silico multidimensional model integrating

spatially resolved and single-cell gene expression data of 45,615 immune cells from 12 tumor

samples, that a subset of Interleukin-10-releasing HMOX1+myeloid cells, spatially localizing

to mesenchymal-like tumor regions, drive T-cell exhaustion and thus contribute to the

immunosuppressive tumor microenvironment. These findings are validated using a human

ex-vivo neocortical glioblastoma model inoculated with patient derived peripheral T-cells to

simulate the immune compartment. This model recapitulates the dysfunctional transforma-

tion of tumor infiltrating T-cells. Inhibition of the JAK/STAT pathway rescues T-cell func-

tionality both in our model and in-vivo, providing further evidence of IL-10 release being an

important driving force of tumor immune escape. Our results thus show that integrative

modelling of single cell and spatial transcriptomics data is a valuable tool to interrogate the

tumor immune microenvironment and might contribute to the development of successful

immunotherapies.
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Tumor-infiltrating lymphocytes, along with resident and
infiltratingmyeloid cells, make up a significant proportion
of the glioblastoma tumor microenvironment1–3. Recently,

single-cell RNA sequencing (scRNA-seq) based characterization
of the myeloid cell compartment revealed remarkable hetero-
geneity with regards to cellular diversity and transcriptional
plasticity1,4. However, the variety of lymphoid cell types within
malignant brain tumors remains poorly investigated. Insights into
the transcriptional programs and genetic drivers of lineage dif-
ferentiation within the lymphoid compartment will aid in
understanding key mechanisms that play important roles in the T
cell differentiation, within the glioblastoma microenvironment.
Recently, two studies have provided evidence that the crosstalk
between myeloid and lymphoid cells accounts for a significant
degree of T cell malfunction, which partially explains the lack of
antitumor immunity5,6. In other cancer entities such as color-
ectal cancer7, liver cancer8, or melanoma9, a variety of T cell
states have been identified and investigated. Prolonged immune
activation and ambiguous stimulation, such as those seen
during uncontrolled tumor growth or chronic infection, alter
the CD8+ lymphocyte secretome, resulting in a loss of their
cytotoxic profile9–11, also referred to as T cell exhaustion. This
exhaustion state is marked by inhibitory cell surface receptors
(PD1, CTLA-4, LAG-3, TIM3, and others), in addition to anti-
inflammatory cytokines such as IL-10 and TGF-ß present in the
tumor microenvironment11–13. Therefore, this cellular state of
“dysfunction” or “exhaustion” represents a paramount barrier
in the development of successful immune-based vaccines or
checkpoint therapy2,14,15. Glioblastoma, the most common and
aggressive primary brain tumor in adults, is archetypical for
tumors with a strong immunosuppressive microenviroment16.
Current, immunotherapies such as PDL1/PD1 checkpoint
blockade17 or peptide vaccination18, that have led to remark-
able improvement in therapeutic outcome for several types of
cancer, has failed to demonstrate its effectiveness in patients
suffering from glioblastoma.

To address this sparsity of knowledge with respect to the
lymphoid cell population in glioblastoma, we performed tran-
scriptional profiling using scRNA-sequencing, mapping potential
cellular interactions and/or cytokine responses that could lead to
dysfunctional and/or exhausted T cells. Pseudotime analysis
revealed an increased response to Interleukin 10 (IL-10) during
the transformation of T cells from the effector state to the dys-
functional state. To computationally explore the “connected” cells
driving this transformation, we introduce an in silico approach
termed “Nearest Functionally Connected Neighbor (NFCN)”,
which identified a subset of myeloid cells, marked by CD163 and
HMOX1 expression. Further, spatially resolved transcriptomics
confirmed the spatial overlap between exhausted T cells and
HMOX1+ myeloid cells, spatially localized within regions of the
tumor enriched for mesenchymal transcriptional signatures.
Finally, using a human neocortical GBM model coupled with
patient-derived T cells to simulate the lymphoid compartment,
we validated the role of HMOX1+ myeloid cells as key drivers for
the immunosuppressive microenvironment found in glio-
blastoma. The dysfunctional T cell transformation was found to
be rescued by the inhibition of the JAK-STAT pathway, mediated
by a reduction in IL-10 release in our ex-vivo model, as previously
demonstrated19. Based on these results, we treated a single
recurrent glioblastoma patient in a neoadjuvant setting, with
JAK-STAT inhibitor (Ruxolitinib), partially rescuing the immu-
nosuppressive environment.

Here, we show the interaction between the organ-specific
structural immunity of the brain and infiltrating lymphoid cells in
glioblastoma illustrating an exhausted T cell state in close
proximity to mesenchymal differentiated tumor cells. We

demonstrate that a defined myeloid cell population contributes to
T cell dysfunction through IL-10 signaling. In vitro and vivo data
reveal that manipulation of the driver pathway can rescue the
immunosuppressive impact of the myeloid cell population. Our
findings open perspectives to target the tumor microenvironment
and to improve immunotherapy response in glioblastoma.

Results
Single-cell analysis of the immune cell compartment in glio-
blastoma. In order to decipher the diversity of the immune
compartment within the glioblastoma microenvironment, we
performed droplet-based single-cell sequencing of neoplastic tis-
sue samples from 8 patients, diagnosed with de novo glioblastoma
(Detailed clinical data available in Supplementary data 1). Lym-
phoid and myeloid populations (CD45+/CD3+) were sorted from
neoplastic tissue specimens (Fig. 1a and Supplementary Fig. 1).
The scRNA-seq dataset consisted of 45,615 cells, with a mean of
9956 unique molecular identifiers (UMIs) and ~2989 uniquely
expressed genes per cell, Fig. 1b and Supplementary Fig. 2. The
data were corrected for mitochondrial gene expression, cell cycle
effects were regressed out, and batch effects due to technical
artifacts were accounted for. Horizontal data integration was
performed using the mutual nearest neighbor algorithm (MNN),
using the top 2000 most variable features as anchors, Supple-
mentary Fig. 3. Cell types were inferred using weighted mutual
neighbor (WNN)20 vertical integration with a publicly available
reference dataset20. To ensure comparability with previously
published datasets, we performed cross-validation with reference
dataset, demonstrating a close distribution of T cell subtypes
within all datasets21,22, Supplementary Fig. 2d. To identify and
exclude malignant cells, we inferred large-scale copy-number
variations (CNVs) from scRNA-seq profiles by averaging
expression over stretches of 100 genes on their respective
chromosomes23. With this approach, we confirmed that there was
minimal contamination by tumor cells (clustered as OPC cells),
based on their typical chromosomal alterations (gain of chro-
mosome 7 and loss of chromosome 10), Supplementary Fig. 4.

Diversity of T cell states in the glioblastoma microenviron-
ment. To explore the diversity of the T cells that are present in
the glioblastoma microenvironment, we isolated CD4+ and
CD8+ T cells by two different but complementary in silico
methods. T cells were first identified by means of non-negative
matrix factorization (NMF) and shared-nearest neighbor (SNN)
clustering. Cell type assignment was carried out based on marker
gene profiles (CD3+, CD4+/CD8+). In the second method,
T cells were isolated using a WNN-classification model, which
resulted in a total of 7352 cells (3602 CD4+ cells and 3750 CD8+

cells) Fig. 1b, c. For CD4+ and CD8+ T cells, NMF-based clus-
tering was performed, with the optimal cluster resolution deter-
mined by its cluster-tree stability which resulted in six CD8+ and
CD4+ clusters, Fig. 1c.

Clusters from the CD8+ T cell populations spanned several T
cell states, including the effector T cell program (CD8+Teff:
EOMES, GZMY, GZMK, and CTRAM), effector memory program
(CD8+TEM: IER2 and BCL2), tissue-resident memory programs
(CD8+TRM-CD39: ITGAE and ZNF6839), exhausted T cells
(CD8+Texhaused: HAVCR2, PDCDL1, CTLA4, and CXCL8),
heat shock protein-expressing or stress associated (CD8+HSP
HSPA1A) and a transcriptional program similar to a mucosal-
associated invariant T cell (CD8+MAIT-like CCR6, CD226, and
RORA), Fig. 1d.

In the CD4+ cell population, we identified cells enriched for
effector memory programs (CD4+ TEM: CD44, TAF4B, and
RASA3), two T helper programs (CD4+Th1: TBX21, IFNG, and
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IFIT2; CD4+Th17-like RUNX1, PALLD, DUSP4, HLA-DRA,
similar to Th17/ invariant Treg signatures24), a stress-associated
cluster (CD4+HSP HSPA1A), a cluster with regulatory T cell
program (FOXP3, TIGIT, and IL2RA) and a cluster of proliferat-
ing T cells (MIK67 and TOP2A), Fig. 1e. Due to the absence of
proliferating CD8+ and only a minimal proportion of proliferat-
ing CD4+ T cells, our data support the general observation that
antitumor immunity in GBM is weak. To investigate this putative
tumor-associated dysfunction, we estimated the likelihood of
T-cell dysfunction/exhaustion based on known signature gene
expression within each cluster. CD8+ T cells revealed a stronger
probability for tumor-associated exhaustion compared to the
relatively exhaustion-resistant CD4+ population25. In CD8+ T
cell populations, the strongest association to tumor-associated
exhaustion was confirmed in the clusters 5 and 3 (TRM-CD39
and T exhausted) Fig. 2a, b (FDR < 0.01, hypergeometric test).

Tumor-associated T cell exhaustion correlates with IL-10
response. To identify potential drivers of T cell exhaustion,
hierarchical trees were reconstructed to infer cellular differ-
entiation trajectories. This was then re-embedded into a dynamic
model (RNA-velocity) to decipher the temporal evolution of T
cell states. We used a single-cell trajectories reconstruction,
exploration, and mapping (STREAM) model, to identify lineage
states in both CD8+ and CD4+ T cell populations. For the CD8+

population, we identified three major branches (S0–S2), reflecting
major T cell states, Fig. 2b. The “S1” state was found to be
associated with increased expression of T cell exhaustion/dys-
function markers (HAVCR2, CTLA4, and PDCD1) and enriched
cells from the T exhausted cluster. The “S2” state predominantly
contained effector T cells, Fig. 2c. When we mapped the gene
expression of previously defined exhaustion and effector markers
along the pseudotime trajectory spanning from state S0 to state
S1, an enrichment of the exhaustion gene expression program
was observed at the terminus of the S1 branch, Fig. 2d. In order to
determine transcriptional pathways associated with T cell
exhaustion, pathway signaling inference was carried out, revealing
a significant correlation between T cell exhaustion and IL-10 as
well as partially TGFß response (false discovery rate [FDR] <0.01,
hypergeometric test). This finding confirms results presented in
previous reports linking IL-10-signaling to tumor-associated T
cell exhaustion through the STAT3-BLIMP-1 (gene: PRDM1)
axis12. In the CD4+ T cell population, only the relatively small
Th17-like cluster showed strong enrichment for T cell exhaustion
genes, Fig. 2c. Pseudotemporal lineage reconstruction revealed
that the Th17-like cluster has a distinct sub-lineage (CD4+ T cell
state S3 and S4), marked by increased enrichment of IL10 and
TGF-beta response pathways, Fig. 2e, f. Other identified lineages
correspond to known CD4+ lineages such as regulatory or
memory T cells, Fig. 2e.
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IL-10 mediated downstream signaling in T cells. To gain further
insights into accurate downstream signaling due to the immu-
nosuppressive cytokine IL-10, we carried out IL-10 stimulation of
both naive and pre-stimulated T cells (IL2/IFN-gamma) followed
by bulk RNA-seq. IL-2 was used to simulate the early stages of
immune response in T cells26. De novo motif enrichment was
then carried out on genes that were significantly upregulated to
infer common transcription factor binding sites, Fig. 3a. In line

with literature12, we confirmed a significant enrichment of IRF1
and PRDM1/14 binding sites. A close overlap between both
BLIMP-1 (Gene: PRDM1) and IRF1 peaks in ChiP-seq data was
reported recently, confirming that IL-10 stimulation can be linked
to BLIMP-1 transcriptional regulation27. Exploration of CD8+

T cells from our scRNA-seq data supported this finding, with
increased expression of PRDM1 in the exhausted CD8+ cluster,
Fig. 3b.
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Based on the findings so far, we hypothesized that the IL10-
STAT3-BLIMP-1 signaling axis could be a potential driver of
tumor-associated T cell exhaustion. To further investigate the
transcriptional effects of PRDM1, we performed in silico
perturbation of PRDM1 within our scRNA-seq dataset. This in
silico perturbation required gene regulatory networks (GRNs),
inferred using CellOracle28, Fig. 3c. Integration of pseudotime
and perturbation trajectories (Fig. 3c) by its inner product
revealed a reversal of differentiation towards T effector programs
in CD8+ T cells after PRDM1-KO, Fig. 3e. Although the cells
belonging to the CD4+ Th17-like cluster showed a correlation to
IL-10 signaling above, Fig. 2f, the simulated perturbation did not
lead to an inversion of its transcriptional program, suggesting that
CD4+ Th17 differentiation is not directly driven by IL-10-
signaling, Fig. 3f. These findings point back to the subset of CD8+

T cells expressing classical exhaustion signatures. They are highly
correlated to IL-10 response leading to further downstream
activation of the STAT3-BLIMP-1 axis, as previously reported,
detailing cancer-associated T cell dysfunction12. Our conclusions
raise several questions: What cell types are involved in IL-10
signaling and what is the spatial localization of this interaction.
The relevance of this question is highlighted by reports detailing
intense crosstalk between tumor, myeloid and lymphoid cells, and
improved understanding could significantly contribute to the
improvement of therapeutic approaches5,6,21.

T cell activation and exhaustion is associated with glioblastoma
subtypes. Glioblastoma has been shown to present a high degree of

transcriptional heterogeneity due to regional metabolic differences
and varying composition of the tumor microenvironment29. To
determine the spatial distribution of the above illustrated T cell
clusters and its colocalization to defined tumor states, we per-
formed spatially resolved transcriptomic RNA sequencing (stRNA-
seq). Tissue samples were obtained from three primary IDH1/2
wildtype glioblastoma patients, and the dataset contained a total of
2352 sequenced spots, Fig. 4a. We observed a median of eight cells
per spot (range: 4 to 22 cells per spot), which allows for spatial
mapping of gene expression, but not at single-cell resolution30.
Although this could be considered a limitation, when expression
profiles based on the latest glioblastoma subtype classification29

were spatially mapped, the results confirmed the hypothesized
juxta-positioning of the mesenchymal subset to the tumor-
associated myeloid compartment5,21. These findings were further
supported by a recent report that linked myeloid–tumor cell
interactions to defined epigenetic immunoediting, resulting in an
immunosuppressive phenotype6. This would mean that exhausted
T cells would be preferentially spatially located within regions of
mesenchymal transcriptional programs Fig. 4b. When we spatially
correlated our T cell clusters to GBM subtypes using a seeded non-
negative matrix factorization (NMF) regression31 and Moran sta-
tistics, tumor regions enriched for mesenchymal-like (MES-like),
and astrocytic-like (AC-like) transcriptional signatures were co-
localized with activated CD8+ effector, CD8+ T exhausted clusters,
and CD4 Th17-like, Fig. 4c, d. To further confirm this spatial
dependency, we quantified the putative distance between T cells
and GBM subtypes. Spots that were enriched for both MES-like
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and AC-like signatures were in proximity to exhausted CD8+TRM
and T exhausted clusters, suggesting that specific tumor subtypes
could be associated with immunosuppression, Fig. 4e, f. The
immunosuppressive microenvironment is known to be orche-
strated by several cytokines, contributing to the epigenetic
immunoediting as recently described6. The spatial proximity of
CCL2, a T cell chemoattractant and IFN-gamma response coupled
with the expression of exhaustion markers in MES-like tumor
regions was confirmed in the stRNA-seq dataset, Fig. 4g and
Supplementary Fig. 4b. Given the lack of single-cell resolution in
the stRNA-seq, the dataset was supplemented with imaging mass
cytometry (IMC, n= 1) to determine precise cellular distances
between the CD8+ T cell population (PD1+/TIM3+/CD8A+) and
the tumor subgroups (MES-like: EGFR+, CHI3L1+; AC-like:
EGFR+, HOPX+; NPC-like: EGFR+, CD24+; OPC-like: EGFR+,
OLIG1+), Fig. 4h. The IMC dataset confirmed the spatial juxta-
position of exhausted CD8+ and MES/AC-like tumor cells Fig. 4i.

CD163+HMOX1+ MΦ’s release IL-10 in the tumor micro-
environment. We recently reported that the crosstalk between
myeloid cells and reactive astrocytes in the tumor micro-
environment was linked to IL10 release, mediated by IFN-
gamma-JAK/STAT signaling19. To investigate the extent to which
the myeloid compartment contributes to the immunosuppressive

dysregulation of T cells, we introduce the “Nearest Functionally
Connected Neighbor” algorithm (NFCN). This in silico model
was used to identify cell pairs that are most likely to be related,
through divergent (up/down) stream signaling activity, Fig. 5a.
With our model, cellular interactions with distinct mutual acti-
vation requires two fundamental prerequisites. On the one hand,
a ligand needs to be expressed and released, or otherwise pre-
sented on the cell surface. To minimize the effects of randomly
elevated expression or technical artifacts, the occurrence of ligand
induction (upstream pathway signaling) was verified. On the
other hand, the receiving cell needs to express the receptor, and,
as with the inducing cell, downstream signaling has to be acti-
vated as well, allowing us to predict the functional status of the
receiver cell. To account for the actual physical interaction of the
cell pairs estimated to be connected, we calculated the probability
of their spatial juxtaposition by integrating stRNA-seq data.

We used our in silico model to screen for potential cells that
evoke the IL-10 response in T cells. The algorithm identified pairs
of lymphoid (T cell clusters) and myeloid cells (macrophages and
microglia cluster) and estimated the likelihood of mutual
activation Fig. 5b. Clustering of myeloid cells is presented in
the supplementary figure in detail, Supplementary Fig. 5. By
extracting the nearest connected cells (top 1% of ranked cells), we
identified a subset of myeloid cells characterized by remarkably
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high IL10 expression. Most of the receiver cells among the
connected cells (top 1% of ranked cells) originated from the T cell
cluster. This baseline myeloid–lymphoid interaction prediction
was further corrected according to their spatial juxtaposition. The
most likely position of each ligand- and receptor cell pair was
then estimated and putative distance was quantified Fig. 5b.
Connected cell pairs with a putative distance >150 µm were
excluded from further analysis. The expression signatures from
the highly connected cells were then projected onto our stRNA-
seq datasets using the SPOTlight31 algorithm, resulting in a map
of IL-10 connectivity. The spatial positioning of the connected
cell pairs revealed a significant spatial correlation to MES-like and

AC-like regions of the tumor, Fig. 5c. Estimated cell connections
were balanced between CD4+ and CD8+ T cells, Fig. 5d, but
mainly included T cells from the CD8+TRM/Exhausted or
CD4+Th1 cell clusters, Fig. 5e. We found that myeloid cells from
two clusters (aMΦ, bMΦ, Supplementary Fig. 5), characterized by
the expression of tumor-associated macrophage genes (CD163,
CCL4, APOE, and HLA-DRA) were strongly connected to the
CD8+ exhausted and CD4+ Th1 T cell clusters. When this
myeloid cell population was further characterized using gene set
enrichment analysis, significant enrichment of pathways involved
in antigen-processing and cytokine signaling was observed, Fig. 5f.
This enrichment is coupled with a significant increase in the
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expression of Heme Oxygenase 1 (HMOX1), activated during
inflammation and oxidative injuries, and regulated through the
Nrf2/Bach1-axis32–34, as well as through the IL-10/HMOX1-
axis35. Furthermore, HMOX1 has been shown to be upregulated
in the alternatively activated macrophage subtype32. Analysis of
the CD163+ HMOX1+ myeloid population revealed a high
expression of IL10, Fig. 5g. In line with our observations, in the
stRNA-seq, HMOX1 expression was found to be significantly
correlated with the expression of mesenchymal-like marker genes,
Supplementary Fig. 4c. To further validate potential interactions
between the myeloid–lymphoid compartment, we isolated CD3+

IBA1+ (gene: CD3D and AIF1) doublets from our dataset, Fig. 5h.
These doublets contained myeloid–lymphoid cell pairs, assumed
to be physically connected36, Fig. 5i. When comparing the gene
expression profile of our top connected cell pairs (Ligand cells:
Myeloid cells; Receiver cells: T cells) with the CD3+ IBA1+

doublets, a strong expression of both CD163 and HMOX1 was
observed, Fig. 5j underpinning the observation that physically
connected cells mainly arise from our identified
CD163+HMOX1+ myeloid subpopulation, Fig. 5k.

HMOX1+ IBA1+ myeloid cells are located at the tumor
microenvironment interface. To further evaluate the tumor–host
interactions we made use of the recently described human neocor-
tical GBM model, where the cellular architecture of the CNS is well
preserved19,37, Fig. 6a, b. Our data suggest that mesenchymal-like
tumor cells are the GBM cells that are involved in the tripartite
relationship between myeloid cells, T cells, and GBM cells. There-
fore, we inoculated cortical tissue sections with a patient-derived
primary GBM cell line (BTSC#233, GFP-tagged, previously char-
acterized by RNA-seq profiling as mesenchymal38). The lymphoid
compartment was simulated by autografting patient-derived per-
ipheral T cells (CD4+/CD8+ Ratio: 1.2), that were tagged with
CellTraceTM Far Red (CTFR, Thermo Fischer Scientific) for visua-
lization. The presented model is only a simplification of the complex
intercellular dependencies, implying that some confounders were
not represented. An obvious aberration from cancer physiology in
our model is the absence of bone-derived macrophages. Since the
myeloid compartment is predominantly represented by microglia in
our model, we aimed to determine whether the mechanism of
HMOX activation is shared between macrophages and microglia.
This was carried out by reconstructing the spatial juxtaposition,
where we found HMOX1+ IBA1+ microglia were present in close
proximity to a tumor (p < 0.023) and T cells (p < 0.001), compared
to HMOX1− IBA1+ microglia, Fig. 6c. These findings suggest that
the mechanism of HMOX1 activation in macrophages and micro-
glial cells is shared. This ensures the compatibility of the model in
the investigation of the effect of HMOX1 expression, even in the
absence of bone-derived macrophages. Of note, our results are also
in agreement with previous work detailing the characteristic upre-
gulation of HMOX1 in both microglia and macrophages34. Since an
additional source of bias are other cell types within the micro-
environment expressing HMOX1 (such as astrocytes39), we chemi-
cally depleted myeloid cells from the model using Clodronate
disodium, as previously described19. Post depletion, only a minimal
number of HMOX1+ cells remained, suggesting that the proportion
of non-myeloid HMOX1+ cells represent a negligible minority,
Fig. 6d. HMOX1+ IBA1+ myeloid cells were found to be sig-
nificantly enriched in the direct neighborhood (<200 µm) of the
tumor-T cell interface, and therefore expected to participate in the
hypothesized tripartite relationship, Fig. 6e.

Myeloid cell depletion results in increased GZMB expression in
tumor-infiltrating T cells. Next, we focused to isolate the effects
that HMOX1+IBA1+ myeloid cells have on T cells through IL10-

signaling. We report that the chemical depletion of myeloid cells
resulted in a significant reduction of IL10 in the extracellular
medium, measured using an enzyme-linked immunosorbent
assay (ELISA), Fig. 6f, left. Concurrently, the inflammatory
cytokine IL2, which has been reported to be expressed by acti-
vated CD4+ and CD8+ T cells40, was found to be increased after
myeloid depletion, Fig. 6f, right. In addition to changes in the
cytokine landscape, we report an increased expression of Gran-
zyme B (GZMB, marker for effector T cells) in T cells in envir-
onments lacking the myeloid compartment, Fig. 6g, h. To
evaluate the relationship between GZMB expression and IL-10
levels, the model was treated with an IL-10 neutralizing antibody.
When free IL-10 was neutralized, a similar upregulation of GZMB
was observed, Fig. 6g. Increased expression of GZMB was coupled
with a significant reduction of TIM3 (Gene: HAVCR2), Fig. 6g, a
characteristic marker for IL-10 affected exhausted T cell cluster,
Fig. 1d. Since the regulation of IL-10 release was found to be
linked to the JAK-STAT pathway in our recent reports19, tissue
sections were pretreated with Ruxolitinib, an FDA-approved
JAK1/2-inhibitor, before inoculation with patient-derived T cells.
In line with our above findings, we found strong induction of
GZMB expression in T cells, Fig. 6h.

Case study: JAK-STAT inhibition of a recurrent GBM patient.
With promising results from ex-vivo tissue experiments, a glio-
blastoma patient, with tumor recurrence after radiation and the
CeTeG protocol as well as TTField therapy, was treated in a
neoadjuvant setting with Ruxolitinib for 4 weeks as part of the
“Compassionate Use” program (RL 2001/83/EG VO 726/2004),
before tumor resection, Fig. 7a. Immunostainings of tissue post-
resection revealed a significant increase in both CD8+ and CD4+

T cells, with the CD68+ myeloid cell population remaining stable,
Fig. 7b, c. When we mapped data from scRNA-seq of CD45+

sorted cells from the treated patient back to our reference dataset,
we found that the CD8+/CD4+ balance is markedly shifted in
favor of CD8+ cells, Fig. 7d. Reciprocal transformation revealed a
shift in T cell populations, with the largest population being T
effector and T effector memory cells, suggesting that JAK-
inhibition supports T cell activation, Fig. 7e. In the under-
represented CD4+ cell population, the shift towards the effector
memory program was even stronger, Fig. 7f. In both CD8+ and
CD4+ populations, a highly significant reduction in the number
of cells within the exhausted T cell population was observed,
suggesting that treatment with JAK-inhibitors could be a poten-
tial therapeutic option to boost T cell activation by reducing
immunosuppressive programs in both myeloid and glial cells,
Fig. 7e, f. Clinically, we observed a strong increase of the contrast-
enhanced tumor volume during treatment, which was histologi-
cally defined as “pseudoprogression” underpinning the effect of
the JAK-inhibitor therapy. Although the treatment history
revealed a prognostically poor course with early relapse on
therapy (6 months), the disease was stabilized for ~8.5 months
after JAK-inhibitor therapy and the patient is still alive after
~24 months, Fig. 7g.

Discussion
Although single-cell RNA sequencing is able to accurately map
the transcriptional diversity of cellular states23,29,41,42, spatial
information regarding the tissue architecture is lost. Here, we
combine single-cell RNA sequencing of the immune compart-
ment along with spatially resolved transcriptomic sequencing
(stRNA-seq) to gain spatial insights into the complex crosstalk,
cellular states, and cellular plasticity leading to the immunosup-
pressive environment found in glioblastoma (GBM). Recent
studies have reported a myriad of microglia and macrophages
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subtypes occupying glioblastoma and other glial tumors1,4,29,41,42.
However, detailed characterization of the tumor-infiltrating
lymphoid compartment is lacking. There has been rising inter-
est in a lymphoid compartment and their varied states due to its
importance in furthering our understanding of the immunosup-
pressive environment of glioblastoma and the development of
targeted therapies. T cell states, particularly in disease, are difficult
to accurately classify, leading to numerous definitions and asso-
ciated markers in recent years2,9,13,43,44. Some authors use the
terms “dysfunctional” and “exhausted” synonymously45, whereas
others differentiate between the dysfunctional and exhausted
states of T cells43,44. In this study, we use the definition of cellular
states proposed by Singer et al., 201610. On the basis of these gene
sets, our data showed that only cells which remained chronically
activated along the pseudotime trajectory entered a state of dys-
function, and further, exhaustion. The imbalance between pro-

and anti-inflammatory signaling, dominated by IL-10 release,
leads to terminal exhaustion of T cells, in agreement with current
literature2,46. In order to reach a consensus with regard to marker
genes, we further validated our findings using a set of marker
genes for T cell exhaustion, recently published in an overview
study47. We and others have previously shown that the GBM
microenvironment aids in the evolution of immune suppression.
In this process, both astrocytes and myeloid cells, driven by
STAT3 signaling, orchestrate the immunosuppressive environ-
ment by IL-10 release4,19,48,49. Based on the knowledge that IL-10
plays a crucial role in the shift from activation to exhaustion in
T cells, we built an in silico model that identified potential cells
that drive T cell exhaustion. Using this model, we identified a
subset of myeloid cells, marked by high expression of HMOX1,
the expression of which is induced by oxidative stress and
metabolic imbalance33,34. HMOX1 expression is linked to
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activation of the STAT3 pathway, which further induces IL-10
production. Furthermore, when we used spatial transcriptomics
to identify the spatial overlap of cells that were identified to be
highly connected, we saw that the HMOX1+ myeloid cells were
spatially correlated with T cell exhaustion and the mesenchymal
state of glioblastoma. These findings are in agreement with pre-
vious reports, revealing that mesenchymal cells are the compo-
nent of GBM participating in the immune crosstalk5,21,29.
HMOX1 expression was found to be increased in recurrence in
both GBM and IDH-WT astrocytoma and was negatively asso-
ciated with overall survival, Supplementary Fig. 6a, b.

In addition, we made use of a human neocortical GBM model
coupled with patient-derived T cells to mechanistically validate
the role of the myeloid cells with regard to IL-10 release and T
cell exhaustion. Fitting with our computational model, we
confirmed that the presence of HMOX1+ myeloid cells results
in the reduction of the effector T cell population, with a cor-
responding reduction in IL2 release. This loss of the effector T
cell population was coupled with increased expression of the
exhaustion marker TIM3. Following our recent work where we
demonstrated the effectivity of JAK-inhibition in reducing
levels of IL-10 in human brain tumors19, we present that the

inhibition of the JAK-STAT axis was able to partially rescue the
immunosuppressive environment, in a single patient. An
improvement in the survival of the treated patient compared to
patients with a similar prognosis is observed, but permanent
disruption of the blood–brain barrier with a repetitive increase
of contrast-enhancing lesions was reported. A sampling of these
contrast-enhancing lesions showed no evidence of tumor
recurrence, suggesting that manipulation of the glia/myeloid
environment exacerbated inflammation and resulted in pseu-
doprogression. Our single-cell RNA-seq confirmed a pro-
nounced enrichment of activated T cells, while the myeloid
population remained relatively stable.

In conclusion, this work provides the first glimpse at the
lymphocyte population in the glioblastoma microenvironment,
where we show that the functional interaction between the
myeloid and lymphoid compartment leads to a T cell dysfunc-
tion/exhaustion. Using a human neocortical GBM model and
single patient subject we showed that this IL-10 driven T cell
exhaustion can be rescued by JAK/STAT inhibition. Thus, the
results from this work can be used as a stepping stone towards the
development of successful immunotherapeutic approaches in the
context of GBM.
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Methods
Ethical approval. The local ethics committee of the University of Freiburg
approved the data evaluation, imaging procedures, and experimental design
(protocol 100020/09 and 472/15_160880). The methods used in this work were
carried out in accordance with the approved guidelines, with written informed
consent obtained from all subjects. The studies were approved by an institutional
review board. Further information and requests for resources, raw data, and
reagents should be directed and will be fulfilled by the Contact: D. H. Heiland,
dieter.henrik.heiland@uniklinik-freiburg.de.

T-cell isolation and stimulation. Blood was drawn from a healthy human indi-
vidual into an EDTA (ethylenediaminetetraacetic acid) blood collection tube.
T-cells were extracted by negative selection using a MACSxpress® Whole Blood
Pan T-Cell Isolation Kit (Miltenyi Biotec, Bergisch-Gladbach, Germany). T-cells
were then transferred to Advanced RPMI 1640 Medium (Thermo Fisher Scientific,
Carlsbad, USA) and split for cytokine treatment: Three technical replicates were
used for each T-cell treatment condition. Interleukin 2 (IL-2, Abcam, Cambridge,
UK) was used at a final concentration of 1 ng/ml, Interleukin 10 (IL-10, Abcam,
Cambridge, UK) at 5 ng/ml, Interferon gamma (IFN-γ, Abcam, Cambridge, UK) at
1 ng/ml, and Osteopontin (SPP-1, Abcam, Cambridge, UK) at 3 µg/ml. Cytokine
treatment was performed in Advanced RPMI 1640 Medium at 37 °C and 5% CO2

for 24 h.

RNA sequencing of stimulated T-cells. Purification of mRNA from total RNA
samples was carried out using the Dynabeads mRNA Purification Kit (Thermo
Fisher Scientific, Carlsbad, USA). The subsequent reverse transcription reaction
was performed using SuperScript IV reverse transcriptase (Thermo Fisher Scien-
tific, Carlsbad, USA). RNA sequencing preparation was carried out using, the Low
Input by PCR Barcoding Kit and the cDNA-PCR Sequencing Kit (Oxford Nano-
pore Technologies, Oxford, United Kingdom), using the MinION Sequencing
Device, the SpotON Flow Cell (R9.4.1), and MinKNOW software (Oxford Nano-
pore Technologies, Oxford, United Kingdom) according to the manufacturer’s
instructions. Samples were sequenced for 48 h on two flow cells. Base-calling was
performed by Albacore implemented in the nanopore software. Only D2-Reads
with a quality score above 8 were used for further alignment.

Sequence trimming and alignment. We made use of our previously reported19

automated pipeline for nanopore cDNA-seq data, available at GitHub (https://
github.com/heilandd/NanoPoreSeq). Multiplexed samples were separated by their
barcodes and trimmed using Porechop (https://github.com/rrwick/Porechop).
Alignment was carried out using minimap250 and processed with sam-tools51.

Post hoc analysis of bulk RNA sequencing data. A matrix of genes counts was
further processed using the RawToVis.R script (github.com/heilandd/Vis_Lab1.5),
normalizing of mapped reads by DESeq252, batch effect removal using ComBat53

and fitting for differential gene expression. Gene set enrichment analysis was
performed by transforming the log2 fold change of DE into a ranked z-scored
matrix, using clusterProfiler54,55. The expression matrix was analyzed using
AutoPipe (https://github.com/heilandd/AutoPipe), a supervised machine-learning
algorithm and visualized using a heatmap, implemented in the stats package in R.
Final visualization was carried out using Visualization package (Vis_Lab,
github.com/heilandd/Vis_Lab_1.5), implemented in R as a shiny dashboard app.
The top 50 up/downregulated genes of each stimulation condition with respect to
control was used to construct the stimulation library.

Single-cell suspensions for scRNA-sequencing. Tumor tissue was obtained from
glioma surgery immediately after resection and was transported in phosphate-
buffered saline (PBS) within ~5 min into our cell culture laboratory. Resected tissue
was reduced to small pieces under sterile conditions and was further processed
using the Neural Tissue Dissociation Kit (T) using C-Tubes (Miltenyi Biotech,
Bergisch-Gladbach, Germany) according to the manufacturer´s instructions.
Residual myelin and extracellular debris was eliminated using the Debris Removal
Kit (Miltenyi Biotech, Bergisch-Gladbach, Germany). Erythrocytes were removed
by resuspending and incubating the obtained pellet in 3,5 ml ACK-lysis buffer
(Thermo Fisher Scientific, Carlsbad, USA) for 5 min, followed by centrifugation
(350×g, 10 min, RT). Cell counts were quantified using a hematocytometer after
resuspending the pellet in PBS. The final cell suspensions were centrifuged again
(350×g, 10 min, RT) and resuspended in a freezing medium containing 10% DMSO
(Sigma-Aldrich, Schnelldorf, Germany) in FCS (PAN-Biotech, Aidenbach, Ger-
many). Cell suspensions were immediately placed in a storage container (Mr.
FrostyTM, Thermo Fisher Scientific, Carlsbad, USA) and stored at −80 °C freezer
for not more than 4 weeks.

Sample preparation for scRNA-sequencing. Four single-cell suspensions, origi-
nating from one patient with an IDH-mutated glioma and three patients with an
IDH-wildtype glioblastoma (GBM), were thawed and dead cells magnetically
labeled and eliminated using a Dead-Cell Removal Kit (Miltenyi Biotech). The
tumor immune compartment, T-cells in particular were positively selected by using

CD3+ conjugated magnetic beads (Miltenyi Biotech, Bergisch-Gladbach, Ger-
many). Cells were stained with trypan blue, counted using a hematocytometer, and
prepared at a concentration of 700 cells/µL.

Droplet-based scRNA-sequencing. Around 16,000 cells per sample were loaded
on the Chromium Controller (10x Genomics, Pleasanton, CA, USA) per Chro-
mium Next GEM Single Cell 3´v3.1 reaction (10x Genomics, Pleasanton, CA,
USA), for droplet-based scRNA-sequencing. Library construction and sample
indexing was carried out according to the manufacturer´s instructions. scRNA-
libraries were sequenced on a NextSeq 500/550 High Output Flow Cell v2.5 (150
Cycles) on an Illumina NextSeq 550 (Illumina, San Diego, CA, USA). The bcl2fastq
function provided by Illumina and the cell ranger (v3.0) function provided by 10x
Genomics were used for quality control.

Postprocessing of scRNA-sequencing data. Cell ranger (10x Genomics) was
used to detect low-quality read pairs from single-cell RNA sequencing (scRNA-seq)
data. Reads that did not satisfy the following criteria were filtered out: (1) Bases
with quality <10, (2) no homopolymers, and (3) “N” bases accounting for ≥10% of
the read length. The filtered reads were then mapped using STAR aligner56 and the
resulting filtered count matrix was further processed using Seurat v3.057 in the R
computing environment. Gene expression values were normalized by dividing each
estimated cell by the total number of transcripts and multiplied by 10,000, followed
by a natural-log transformation. Batch effects were then removed, and the data
were scaled using a regression model including the sample batch information and
percentage of ribosomal and mitochondrial gene expression. For downstream
analysis, we made use of 2000 most variably expressed genes and the decomposed
eigenvalue frequencies of the first 100 principal components, determined by the
number of nontrivial components in comparison to randomized expression values.
These nontrivial components were then used for SNN clustering58 followed by
dimensional reduction using the UMAP algorithm. Differentially expressed genes
(DE) of each cluster were obtained using a hurdle model tailored to scRNA-seq
data, part of the MAST software package (https://github.com/RGLab/MAST). Cell
types were identified using three different methods; Classical expression of sig-
nature markers of immune cells; SingleR an automated annotation tool for single-
cell RNA sequencing data obtaining signatures from the Human Primary Cell
Atlas, SCINA, a semi-supervised cell type identification tool using cell-type sig-
natures as well as a gene set variation analysis (GSVA). Obtained results were
combined and clusters were assigned to cell type based on highest enrichment
within all models. In order to individually analyze T-cells, we used the assigned
cluster and filter for the following criteria: CD3+ CD8+/CD4+ CD14− LYZ−

GFAP− CD163− IBA−.

Spatial transcriptomics. Spatial resolved transcriptomic data was acquired using
the Spatial transcriptomics kit (10x Genomics, Pleasanton, CA, USA). Tissue
Optimization and Library preparation were carried out according to the manu-
facturer’s protocol, as described below.

Tissue collection and RNA quality control. Tissue samples from three patients,
diagnosed with WHO IV glioblastoma multiforme (GBM), were included in this
study. Fresh tissue collected immediately post-resection was rapidly embedded in
optimal cutting temperature compound (OCT, Sakura, Japan) and snap-frozen in
liquid N2. The prepared tissue samples were stored at −80 °C until further pro-
cessing. A total of ten sections (10 µm each) per sample were lysed using TriZOl
(15596026, Invitrogen, Thermo Fisher Scientific, Carlsbad, USA) and used to
determine RNA integrity. Total RNA was extracted using the PicoPure RNA
Isolation Kit (KIT0204, Thermo Fisher Scientific, Carlsbad, USA) according to the
manufacturer’s protocol. RIN values were determined using a 2100 Bioanalyzer
(RNA 6000 Pico Kit, Agilent Technologies, Santa Clara, CA, USA) according to the
manufacturer’s protocol.

Tissue staining and imaging. 10 µm tissue sections were mounted onto spatially
barcoded glass slides with poly-T reverse transcription primers, one section per
array. The prepared slides were warmed to 37 °C, following which the sections were
fixed using 4% formaldehyde solution (P087.1, Carl Roth, Karlsruhe, Germany) for
10 min, which was then rinsed using PBS. The fixed sections were covered with
2-Propanol (20842312, VWR International, Radnor, PA, USA). Post evaporation
for 40 s, sections were incubated in Mayer’s Hematoxylin (1092490500, VWR
International, Radnor, PA, USA) for 7 min, Dako bluing buffer (CS70230-2, Agi-
lent Technologies, Santa Clara, CA, USA) for 90 s, and finally in Eosin Y (E4382,
MilliporeSigma, St. Louis, MO, USA) for 1 min. The glass slides were then washed
with RNase/DNase-free water and incubated at 37 °C for 5 min or until dry. Before
imaging, the glass slides were mounted with 87% glycerol (A3739, AppliChem,
Darmstadt, Germany) and covered with coverslips (01-2450/1, R. Langenbrinck,
Emmendingen, Germany). Brightfield imaging was performed at 10x magnification
with an inverted microscope (Axio Imager 2, Zeiss, Jena, Germany), post-processed
using ImageJ software. Post Imaging, coverslips, and glycerol were removed by
washing the glass slides in RNase/DNase-free water, after which the slides were
washed using 80% ethanol to remove final traces of glycerol.
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Permeabilization, cDNA synthesis, and tissue removal. For each capture array,
70 µL of pre-permeabilization buffer, containing 50 U/µl Collagenase along with
0.1% Pepsin in HCl was added, incubated for 20 min at 37 °C. Each array well was
then carefully washed using 100 µl 0.1x SSC buffer, following which 70 µl of Pepsin
was added and further incubated for 11 min at 37 °C. Each well was then washed as
previously described and 75 µl of cDNA synthesis master mix containing: 96 µl of
5X First-strand buffer, 24 µl 0.1 M DTT, 255.2 µl of DNase/RNase free water, 4.8 µl
Actinomycin, 4.5 µl of 20 mg/ml BSA, 24 µl of 10 mM dNTP, 48 µl of Superscript®,
and 24 µl of RNAseOUT™ was added to each well and incubated for 20 h at 42 °C.
Cyanine-3-dCTP was used to aid in the determination of the footprint of the tissue
section used.

Since glioblastoma tissue is fatty tissue, degradation and tissue removal was
carried out using Proteinase K, where 420 µl Proteinase K and PKD buffer (1:7),
were added to each well and incubated at 56 °C for 1 h with intermittent agitation
(15 s/3 min). After incubation, the glass slides were washed with 100 ml of 50 °C
SSC/SDS buffer with agitation three times, for 10 min, 1 min, and finally for 1 min
at 300 rpm. The glass slides were then air-dried at RT. Tissue cleavage was carried
out by the addition of 70 µl of cleavage buffer (320 µl RNase/DNase-free water,
104 µl Second strand buffer, 4.2 µl of 10 mM dNTP, 4.8 µl of 20 mg/ml BSA, and
48 µl of USER™ Enzyme) to each well and the slides were incubated at 37 °C for 2 h
with intermittent agitation.

Spot hybridization. In order to determine the exact location and quality of each of
the 1007 spots, fluorescent Cyanine-3 A is hybridized to the 5′ ends of the surface
probes. About 75 µL of the hybridization solution (20 µl of 10 µM Cynaine-3 A
probe and 20 µl of 10 µM Cyanine-3 Frame probe in 960 µl of 1X PBS) was added
to each well, incubated for 10 min at RT. The slides were then washed thrice with
100 ml of SSC/SDS buffer preheated to 50 °C for 10 min, 1 min, and 1 min at RT
with agitation. The slides were then air-dried and imaged after application of
Slowfade® Gold Antifade mountant (S36936, Thermo Fisher Scientific, Carlsbad,
USA) and a coverslip.

Library preparation
Second strand synthesis. About 5 µl second strand synthesis mix containing 20 µl of
5X First-Strand Buffer, 14 µl of DNA polymerase I (10 U/µl), and 3.5 µl Ribonu-
clease H (2 U/µl) were added to the cleaved sample and incubated at 16 °C for 2 h.
Eppendorf tubes were placed on ice and 5 µl of T4 DNA polymerase (3 U/µl) were
added to each strand and incubated for 20 min at 16 °C. About 25 µl of 80 mM
EDTA (30 µl 500 mM EDTA with 158 µl DNase/RNase free water) was added to
each sample and the samples were kept on ice.

cDNA purification. cDNA from the previous step was purified using Agencourt
RNAclean XP beads (Beckman Coulter, Brea, CA, USA) in a DynaMag™- 2
magnetic rack (12321D, Thermo Fisher Scientific, Carlsbad, USA), incubated at RT
for 5 min. Further cleansing was carried out by the addition of 80% ethanol, while
the samples were still placed in the magnetic rack. Sample elution was then carried
out using 13 µl of NTP/water mix.

In vitro transcription and purification. cDNA transcription to aRNA was carried
out by the addition of 4 µl of reaction mix containing: 10x Reaction Buffer, T7
Enzyme mix, and SUPERaseIn™ RNase Inhibitor (20U/µL) to 12 µl of eluted cDNA,
incubated at 37 °C, for 14 h. Samples were purified using RNAclean XP beads
according to the manufacturer’s protocol and further eluted into 10 μL DNase/
RNase free water. The amount and average fragment length of amplified RNA was
determined using the RNA 6000 Pico Kit (Agilent, 5067-1513) with a 2100 Bioa-
nalyzer according to the manufacturer’s protocol.

Adapter ligation. Next, a 2.5 μL Ligation adapter (IDT) was added to the sample
and was heated for 2 min at 70 °C and then placed on ice. A total of 4.5 μL ligation
mix containing 11.3 μL of 10X T4 RNA Ligase, T4 RNA truncated Ligase 2, and
11.3 μL of murine RNase inhibitor was then added to the sample. Samples were
then incubated at 25 °C for 1 h. The samples were then purified using Agencourt
RNAclean XP beads (Beckman Coulter, Brea, CA, USA) according to the manu-
facturer’s protocol.

Second cDNA synthesis. Purified samples were mixed with 1 µl cDNA primer
(IDT), 1 µl dNTP mix up to a total volume of 12 µl, and incubated at 65 °C for
5 min and then directly placed on ice. A 1.5 ml Eppendorf tube containing 8 µl of
the sample was mixed with 30 µl of 5X First-Strand Buffer, 7.5 µl of 0.1 M DTT,
7.5 µl of DNase/RNase free water, 7.5 µl of SuperScript® III Reverse transcriptase,
and 7.5 µl of RNaseOUT™ Recombinant ribonuclease Inhibitor, incubated at 50 °C
for 1 h followed by cDNA purification using Agencourt RNAClean XP beads
(Beckman Coulter, Brea, CA, USA) according to the manufacturer’s protocol.
Samples were then stored at −20 °C.

PCR amplification. Prior to PCR amplification, we determined that 20 cycles were
required for appropriate amplification. A total reaction volume of 25 µl containing
2x KAPA mix, 0.04 µM PCRInPE2 (IDT), 0.4 µM PCR InPE1.0 (IDT), 0.5 µM PCR
Index (IDT), and 5 µL of purified cDNA were amplified using the following

protocol: 98 °C for 3 min followed by 20 cycles at 98 °C for 20 s, 60 °C for 30 s,
72 °C for 30 s followed by 72 °C for 5 min. Libraries were purified according to the
manufacturer’s protocol and eluted in 20 µL elution buffer. The samples were then
stored at −20 °C until used.

Quality control of libraries. The average length of the prepared libraries was
quantified using an Agilent DNA 1000 high sensitivity kit, using a 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA). The concentration of the libraries
was determined using a Qubit (dsDNA High Sensitivity kit, Thermo Fisher Sci-
entific, Carlsbad, USA). Libraries were diluted to 4 nM, pooled, and denatured
before sequencing on the Illumina NextSeq platform using paired-end sequencing.
We used 30 cycles for read 1 and 270 cycles for read 2 during sequencing (Primer
sequences in the source data file).

Postprocessing spatial transcriptomics data. The H&E staining image was
aligned using the manufacturer-provided st-pipeline (github.com/SpatialTran-
scriptomicsResearch/st_pipeline). The pipeline contains the following steps:
Quality trimming and removing of low-quality bases (bases with quality <10),
removal of homopolymers, normalization of AT and GC content, mapping read 2
using STAR, demultiplexing based on read 1, sort for reads (read1) with valid
barcodes, annotation of reads using htseq-count, group annotated reads by barcode
position, gene and genomic location (with an offset) to get a read count
(github.com/SpatialTranscriptomicsResearch/st_pipeline). The output from the
pipeline consists of a gene count matrix, a spatial information file containing the x
and y coordinates of each spot, and the H&E image. As described for the scRNA-
seq, Seurat v3.0 was used to normalize gene expression values, regression of cell
cycle effects, determination of nontrivial components, SNN clustering, and finally
dimensional reduction and visualization using the UMAP algorithm. We further
built and provide a user-friendly viewer for spatial transcriptomic data and provide
tutorials on analysis of data: https://themilolab.github.io/SPATA/.

Spatial gene expression. For spatial expression plots, we used either normalized
and scaled gene expression values (for single genes) or enrichment scores of
defined gene sets, using the 0.5 quantiles of a probability distribution fitting. The
x-axis and y-axis coordinates are obtained from an input file based on the locali-
zation of the H&E staining. We computed a matrix based on the minimum and
maximum extension of the spots used (32 × 33) containing either gene expression
or computed scores. Spots not covered with tissue were set to zero. The matrix was
then transformed using the squared distance between two points divided by a given
threshold, implemented in the fields package (https://github.com/dnychka/
fieldsRPackage) and the input values were adapted by increasing the contrast
between empty spots. The data were represented either as surface plots using the
Plotly package59 or as images using the graphics package, both implemented in the
R computing environment.

Representation of cellular states. We aligned spots to variable states based on
predefined gene sets (GS) that were selected GS(1,2,..n). First, we spots were sepa-
rated into GS(1+2) versus GS(2+4), using the following equation:

A1 ¼ k GSð1Þ;GSð2Þk1 � k GSð3Þ;GSð4Þk1 ð1Þ
A1 defines the y-axis of the two-dimensional representation. In a next step, we

calculated the x-axis separately for spots A1 < 0 and A1 > 0:

A 1>0 : A2 ¼ log 2 ðGSð1Þ � ½GSð2Þ þ 1 �Þ ð2Þ

A1<0 : A2 ¼ log 2 ðGSð3Þ � ½GSð4Þ �Þ ð3Þ
For further visualization of the enrichment based on gene set enrichment across

the two-dimensional representation, we transformed the distribution to
representative colors using a probability distribution fitting. This representation is
an adapted method published by Neftel and colleagues recently29,42.

Spatial correlation analysis. Spatial correlation analysis was carried out by per-
forming background noise reduction using a deep autoencoder followed by a
Bayesian correlation model. In a first step, noise reduction was carried out using an
autoencoder similar to that recently described for single-cell RNA sequencing
studies60. The autoencoder comprises of both an encoder and decoder component,
which can be defined as transitions:

encoder : ϕ : X ! F decoder : ψ : F ! X ð4Þ

ϕ;ψ ¼ arg:minkX � ðϕ;ψÞXk2 ð5Þ
The encoder stage takes the input x 2 Rd ¼ X and maps it to z 2 Rp ¼ F at

the layer position φ:

x ¼ Aφ¼0; zφ ¼ ReLUðWφ ´Aφ�1 þ bφÞ ð6Þ
zφ is also referred to as latent representation, here presented as

z1; z2; ¼ ; zφ¼n , where φ describes the number of hidden layers. W is the
weight matrix and b represent the dropout/bias vector. The network architecture
contained 32 hidden layers, as recommended60. In the decoder, weights and
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biases are reconstructed through backpropagation (ψ : F ! X) and z is mapped
to x0 ¼ A00 , in the shape as x0 .

Aφ�10 ¼ σ 0ðWφ0 ´ zφ þ bφ0Þ ð7Þ
At this stage, W 0; σ 0; b0 from the decoder are unrelated to W; σ; b from the

encoder. Therefore, we used a loss function to train the network to minimize
reconstruction errors.

Lðx; x0Þ ¼ x � σ 0ðW 0ðσðWx þ bÞÞ þ b0Þ2 ð8Þ
In the second step, we used the predicted gene expression matrix (x0) and fitted

and Bayesian correlation model61 (https://github.com/rasmusab/
bayesian_first_aid). An illustration of spatial correlation is provided in
Supplementary Fig. 7.

Integration of scRNA sequencing data into a spatial context. In order to
integrate the identified cellular clusters into the cartesian space of spatially resolved
transcriptomic data, we used the recently published Spotlight algorithm, integrat-
ing the output into our SPATA objects for visualization31.

RNA-velocity and pseudotime trajectory analysis. In order to determine
dynamic changes in gene expression, we extracted splicing information from the
*.bam files generated by cell ranger, using the velocyto.py tool62. The resulting
*.loom files were merged and transformed into h5ad format for further processing
by scVelo63 and CellRank64. This analysis pipeline is integrated into the SPATA
toolbox65. Single-cell data was used to generate a SPATA S4 object, using the
UMAP coordinates as spatial coordinates. The output of the scVelo script
(implemented in the development branch of the SPATA toolbox) was imported
into the SPATA S4 object (slot:@fdata) and for further visualization. RNA-velocity
streams were converted into trajectories and also imported into the SPATA S4
object (slot:@trajectories). Dynamic gene expression changes along trajectories was
performed using the “assessTrajectoryTrends()” function within SPATA.

Gene set enrichment analysis. Gene sets were obtained from the MSigDB v7
database66 and was supplemented with internally created gene sets, available at
github.com/heilandd. Normalized and centered expression data which was further
transformed to z-scores ranging from 1 to 0 was used for enrichment analysis of
single clusters.

Genes were ranked by log fold change which was then used as the input for
Gene Set Enrichment Analysis. For IL10 signaling we used the signatures:
“BIOCARTA_IL10_PATHWAY”, “GOBP_INTERLEUKIN_10_PRODUCTION”,
“REACTOME_INTERLEUKIN_10_SIGNALING”. For TGB beta signaling:
“BIOCARTA_TGFB_PATHWAY”.

Identification of cycling cells. Proliferation scores were calculated based on
genesets generated by Neftel. et. al., using the Gene Set Variation Analysis (GSVA)
software package67 in the R computing environment. The analysis was based on a
nonparametric unsupervised approach, transforming a classic gene matrix (gene-
by-sample) into a gene set by sample matrix, resulting in an enrichment score for
each sample and pathway. From the calculated enrichment scores, a threshold was
determined based on distribution fitting to define cycling cells.

Cell type prediction. Meaningful components (n= 54) were generated from the
eigenvalue frequencies of the first 100 principal components. Shared-nearest
neighbor (SNN) graph clustering resulted in 21 clusters (C0–C20) containing
uniquely gene expression profiles. The major observed cell type when using the
semi-supervised subtyping algorithm of scRNA-seq (SCINA-Model)68 and
SingleR69 are: microglia cells (TMEM119, CX3CR1, and P2RY12) and macrophages
(AIF1, CD68, CD163 and low expression of TMEM119, CX3CR1), followed by
CD8+ T-cells (CD8A and CD3D), natural killer cells (KLRD1, GZMH, GZMA,
NKG7, and CD52), CD4+ T-cells (BCL6, CD3D, CD4, CD84, and IL6R), T-memory
cells (TRBC2, LCK, L7R, and SELL), granulocytes (LYZ), a minor number of oli-
godendrocytes and oligodendrocyte-progenitor cell (OPC’s) (OLIG1, MBP, and
PDGFA), and endothelial cells (CD34, PCAM1, and VEGFA) Fig. 1b and Supple-
mentary Fig. 1b–f.

Nearest functionally connected neighbor (NFCN) algorithm. In the scope of this
work, we created a model: Nearest Functionally Connected Neighbor (NFCN), to
identify connected cells that interact by means of defined activation or inhibition of
downstream signaling in the responder cell. The model assumes that a cell–cell
interaction is only when a receptor/ligand pair induces corresponding downstream
signaling within the responder cell (cell with expressed receptor). Furthermore, we
consider that the importance of an activator cell (cell with expressed ligand) can be
ranked according to their enriched signaling, responsible for inducing expression of
the ligand. Based on these assumptions, we defined an algorithm to map cells along
an interaction trajectory. The algorithm was designed to identify potential acti-
vators from defined subsets of cells.

A normalized and scaled gene expression matrix, a string containing the subset
of target cells, a list of genes defining ligand induction on the one side, and receptor

signaling on the other side are used as input for the algorithm. Genes were chosen
from the MSigDB v7 database or our own stimulation library, generated as
described previously. We then downscaled the data to 3000 representative cells
including all myeloid cell types, calculating the enrichment of induction and
activation of the receptor/ligand pair of interest. Enrichment scores were calculated
by singular value decomposition (SVD) over the genes in the gene set, with the
coefficients of the first right-singular vector defining the enrichment of induction/
activation profiles. Both expression values and enrichment scores were fitted using
a probability distribution model, with cells outside the 95% quantile rejected. We
then fitted a model using a nonparametric kernel estimation (Gaussian or Cauchy-
Kernel), based on receptor/ligand expression (Aexp) and up/downstream signaling
(Aeff) of each cell (i = {1,..n}):

nexp i ¼
Aexp i �minðAexpÞ

maxðAexpÞ �minðAexpÞ
ð9Þ

bf hðnexp iÞ ¼
1
n
∑
n

i¼1
Khðnexp � nexp iÞ ð10Þ

Where K is the kernel and 0.7 > h > 0.3 was used to adjust the estimator. The
model resulted in a trajectory defined as Ligand(−)-Induction(−) to cells of the
target subset with Receptor(−)-Activation(−). Further, cells were aligned along the
“interaction trajectory”. We defined connected cells as those falling in the upper
70% CI in receptor/ligand expression as well as sores of induction/activation. The
representation process is illustrated schematically in Fig. 5a. In addition,
receptor–ligand interactions were also determined using NicheNet70.

CNV estimation. Copy-number variations (CNVs) were estimated by aligning
genes to their chromosomal location and applying a moving average to the relative
expression values, with a sliding window of 100 genes within each chromosome, as
described recently23. First, we arranged genes in accordance with their respective
genomic localization using the CONICSmat software package71. As a reference set
of non-malignant cells, we identified and used 400 CD8+ cells (low likelihood of
expression by tumor cells). To avoid the biasing the moving average based on the
expression of specific genes, we limited relative expression values [−2.6, 2.6],
replacing all values above/below exp(i) = |2.6| using the infercnv software package
(https://github.com/broadinstitute/inferCNV), as previously reported15.

Flow cytometry. Single-Cell suspensions were cleared of dead cells using the Dead-
Cell Removal Kit (Miltenyi Biotech, Bergisch-Gladbach, Germany) and enriched
for CD3+ cells by CD3-MACS enrichment (Miltenyi Biotech, Bergisch-Gladbach,
Germany). Isolated cells were then incubated with VivaFix™ 398/550 (BioRad
Laboratories, CA, USA) according to the manufacturer´s instructions, followed by
fixation in 4% paraformaldehyde (PFA) for 10 min. After centrifugation (350×g;
4 °C; 5 min), the cell pellet was suspended in 0.5 ml 4 °C FACS buffer. Cell sus-
pensions were then centrifuged at 350×g for 5 min, followed by resuspension in
FACS buffer, twice. Finally, cells were resuspended in 0.5–1 ml of FACS buffer,
depending on cell count. Sorting was carried out using a Spectral cell Analyzer
(SP6800, Sony Biotechnology, CA, USA) in standardization mode, with photo-
multiplier tube voltage set to maximum in order to reach a saturation rate below
0.1%. Gating was performed using FCS Express 7 plus (De Novo Software, CA,
USA) at the Lighthouse Core Facility, University of Freiburg.

Immunofluorescence. Culture media was removed from wells containing tissue
sections on insets. Tissue sections were fixed using 1 ml of 4% paraformaldehyde
(PFA) per well for 1 h, followed by incubation in 20% methanol for 5 min. Per-
meabilization was carried out using 1% Triton (X-100, MilliporeSigma, St. Louis,
MO, USA) overnight at 4 °C and further blocked using 20% BSA for 4 h. The
permeabilized and blocked sections were then labeled using primary antibodies in
5% BSA-PBS incubated overnight at 4 °C. Washed sections were labeled with
secondary antibodies conjugated with Alexa 405, 488, 555, or 568 for 3 h at RT.
Finally, sections were mounted on glass slides using DAPI fluoromount (0100-20,
Southern Biotech, AL, USA), as previously described19.

Human organotypic tissue culture. Human neocortical tissue cultures were
prepared as recently described19,37,72. In brief, damaged tissue was dissected away
from the tissue block in a preparation medium containing Hibernate medium
supplemented with 13 mM Glucose and 30 mM NMDG. About 300-μm-thick
coronal tissue sections were generated using a vibratome (VT1200, Leica Biosys-
tems, Germany) and incubated in preparation medium for 10 min before plating.
Three to four sections were gathered per insert, the transfer of which was facilitated
by a fire-polished wide mouth glass pipette. Tissue sections were cultured in a
growth medium containing Neurobasal (L-Glutamine) supplemented with 2%
serum-free B-27, 2% Anti-Anti, 10 mM Glucose, 1 mM MgSO4, and 1 mM Glu-
tamax, at 5% CO2 and 37 °C. Culture medium was replaced 24 h post-plating, and
every 48 h thereafter.

Chemical depletion of microglia from tissue cultures. Selective depletion of the
myeloid cell compartment of human neocortical sections was performed by
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supplementing the growth medium with 50 µM of Clodronate (D4434, Milli-
poreSigma, St. Louis, MO, USA) for 24 h and 11 µM for the next 48 h.

Tumor/T-cell inoculation into tissue cultures. ZsGreen tagged BTSC#233 cell
lines were cultured as previously described by us37,72. Post trypsinization, a cen-
trifugation step was performed, following which the cells were harvested and
suspended in MEM media at a concentration of 20,000 cells/µl. inoculate Cultured
tissue sections were inoculated with 1 µl of tumor cells using a 10 µl Hamilton
syringe, and further cultured as required. Matched peripheral blood samples were
collected from the cortical tissue donors. Peripheral T-cells were isolated using the
same MACSxpress® Whole Blood Pan T-Cell Isolation Kit (Miltenyi Biotech,
Bergisch-Gladbach, Germany) and erythrocytes were eliminated from the sus-
pension using ACK-lysis buffer (Thermo Fisher Scientific, Carlsbad, USA). T-cells
were then fluorescently tagged using the CellTraceTM Far Red Cell Proliferation kit
(C34564, Thermo Fisher Scientific, Carlsbad, USA) prior to inoculation. Endo-
genous IL-10 receptor expressed on T-cells were blocked using anti-IL10 neu-
tralizing antibody (ab34843, Abcam, Cambridge, UK) at a concentration of 5 µg/ml
for 1 h at 37 °C. Both naïve and neutralized T-cells (40,000 cells/µl) were inoculated
into tissue sections and cultured for 48 h.

Cytokine quantification. A multi-analyte enzyme-linked immunosorbent assay
(ELISA; MEH-003A, Qiagen, Venlo, Netherlands) was used to measure cytokine
concentrations of IL2, IL-10, IL-13, and IFN-gamma in the cell culture medium
48 h after T-cell inoculation. Absorbance was determined using a multimode plate
reader (Tecan Infinite® 200, Tecan, Männedorf, Switzerland).

Treatment of patients with JAK-inhibitor. A patient with a recurrent glio-
blastoma was treated with a daily dose of 40 mg Ruxolitinib for 4 weeks as
neoadjuvant therapy. Pretreatment, tumor progress was confirmed by biopsy. After
4 weeks, the patient underwent a resective surgery along with adjuvant Temozo-
lomide therapy.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data and processed scRNA-seq, stRNA-seq, and RNA-seq data generated in this
study have been deposited in the OSF database under accession code https://osf.io/4q32e/
https://doi.org/10.17605/OSF.IO/4Q32E, Source data are available in the source data
file. Source data are provided with this paper.

Code availability
For bulk RNA-seq analysis: https://github.com/heilandd/Vis_Lab1.5, NFCN2:
www.github.com/heilandd/NFCN2, SPATA2: https://github.com/theMILOlab/SPATA2.
Further information and requests for resources, raw data and reagents should be directed
and will be fulfilled by the contact: D.H.Heiland, dieter.henrik.heiland@uniklinik-
freiburg.de.
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