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Abstract. Let p be a prime. We study pro-p groups of p-absolute Galois type, as

defined by Lam–Liu–Sharifi–Wake–Wang. We prove that the pro-p completion of the

right-angled Artin group associated to a chordal simplicial graph is of p-absolute

Galois type, and moreover it satisfies a strong version of the Massey vanishing

property. Also, we prove that Demushkin groups are of p-absolute Galois type, and

that the free pro-p product — and, under certain conditions, the direct product

— of two pro-p groups of p-absolute Galois type satisfying the Massey vanishing

property, is again a pro-p group of p-absolute Galois type satisfying the Massey

vanishing property. Consequently, there is a plethora of pro-p groups of p-absolute

Galois type satisfying the Massey vanishing property that do not occur as absolute

Galois groups.

1. Introduction

Throughout the paper, p will denote a prime number. Given a field K, let K̄s denote

the separable closure of K, and let K(p) denote the maximal p-extension of K. The

absolute Galois group GK := Gal(K̄s/K) is a profinite group, and the Galois group

GK(p) := Gal(K(p)/K), called the maximal pro-p Galois group of K, is the maximal

pro-p quotient of GK. A major difficult problem in Galois theory is the characterization

of profinite groups which occur as absolute Galois groups of fields, and of pro-p groups

which occur as maximal pro-p Galois groups (see, e.g., [15, § 3.12] and [28, § 2.2]).

Observe that if a pro-p group G does not occur as the maximal pro-p Galois group of

a field containing a root of 1 of order p, then it does not occur as the absolute Galois

group of any field (see, e.g., [38, Rem. 3.3]). For this reason, the pursue of obstructions

which detect effectively pro-p groups which do not occur as absolute Galois groups has

great prominence in current research in Galois theory (see, e.g., [1, 5, 14,38]).

The celebrated Bloch-Kato Conjecture — established by M. Rost and V. Voevodsky,

with Ch. Weibel’s “patch”, and now called the Norm Residue Theorem (see [16, 43, 49,

51]) — provides a description of the Galois cohomology of absolute Galois groups in

terms of low-degree cohomology. As a consequence, if K is a field containing a root of
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1 of order p, the structure of the Z/p-cohomology algebra

H•(GK(p)) :=
∐
n≥0

Hn(GK(p),Z/p),

endowed with the cup-product `, is determined by degrees 1 and 2. This remarkable

results provided new fuel — and new substantial results — to the research on maximal

pro-p Galois groups of fields.

Subsequently, the paper by M. Hopkins and K. Wickelgren [18] kicked off a hectic

research on Massey products in Galois cohomology. Given a pro-p group G and an

integer n ≥ 2, the n-fold Massey product is a multi-valued map which associates a

(possibly empty) subset of H2(G,Z/p) to a n-tuple of elements of H1(G,Z/p) (if n = 2 it

coincides with the cup-product). Moreover, G is said to satisfy the n-Massey vanishing

property if every non-empty value of an n-fold Massey product contains 0. In [25],

E. Matzri proved that if K is a field containing a root of 1 of order p, then GK(p)

has the 3-Massey vanishing property (see also [13] and [31]): this result produced new

obstructions for the realization of pro-p groups as absolute Galois groups (see, e.g.,

[33, § 7]); and Minač and Tân conjectured that such a GK(p) has the n-Massey vanishing

property for every integer n ≥ 3 (see [29, Conj. 1.1]).

Another cohomological property enjoyed by maximal pro-p Galois groups — and

related to both the Norm Residue Theorem and Massey products — is the one which

gives the title to this paper. A pro-p group G is said to be of p-absolute Galois type if,

for every α ∈ H1(G,Z/p), the sequence

(1.1) H1(N,Z/p)
cor1

N,G // H1(G,Z/p)
`α // H2(G,Z/p)

res2
G,N // H2(N,Z/p)

is exact, where N = Ker(α), and the middle arrow denotes the cup-product by α (see

[22, § 1.4]). This condition, generalized to arbitrary cohomological degrees, is satisfied

by the absolute Galois group of a field containing a root of 1 of order p, and it is heavily

used in the proof of the Norm Residue Theorem (see [16, Thm. 3.6]). Y.H.J Lam, Y. Liu,

R.T. Sharifi, P. Wake, and J. Wang proved that the sequence (1.1) is exact at H1(G,Z/p)
if, and only if, the p-fold Massey product associated to the p-tuple α, . . . , α, β (where α

appears p− 1 times) contains 0 whenever α, β are elements of H1(G,Z/p) such that the

cup-product α ` β is trivial; and moreover if G is of p-absolute Galois type then it has

the 3-Massey vanishing property (see [22] and § 3.4).

It is natural to ask how well pro-p groups satisfying these cohomological properties —

the Massey vanishing properties and being of p-absolute Galois type — “approximate”

maximal pro-p Galois groups of fields containing a root of 1 of order p: i.e., if there are

(and how “many”) pro-p groups satisfying these cohomological properties but which do

not occur as maximal pro-p Galois groups of fields containing a root of 1 of order p.

Keeping this question in mind, we focus on the family of right-angled Artin pro-p

groups (pro-p RAAGs for short). The pro-p RAAG GΓ associated to a simplicial graph Γ

is the pro-p completion of the discrete right-angled Artin group associated to Γ. Right-

angled Artin groups have surprising richness and flexibility, and played a prominent

role in geometric group theory in recent decades (for an overview on right-angled Artin

groups, see [4]). Moreover, pro-p RAAGs share several properties of their discrete

brothers (see, e.g., [20,24]): in particular, they have a very rich subgroup structure, and
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their Z/p-cohomology algebra depends only on degrees 1 and 2. For this reasons, pro-p

RAAGs are extremely interesting also from a Galois-theoretic perspective.

Our first goal is to prove that every pro-p RAAG satisfies a strong Massey vanishing

property, introduced by A. Pál and E. Szabó in [35] (see also [32, § 4]).

Theorem 1.1. Let Γ be a simplicial graph, and let GΓ be the associated pro-p RAAG.

For every integer n ≥ 3, GΓ has the strong n-Massey vanishing property, i.e., for every

n-tuple α1, . . . , αn of elements of H1(GΓ,Z/p) such that the n− 1 cup-products

α1 ` α2, α2 ` α3, . . . , αn−1 ` αn

are trivial, the associated n-fold Massey product contains 0.

Observe that for a general pro-p group G, the condition on the triviality of the cup-

products α1 ` α2, . . . , αn−1 ` αn is a necessary condition for the non-emptiness of

the n-fold Massey product associated to the n-tuple α1, . . . , αn ∈ H1(G,Z/p) (see, e.g.,

[33, § 2] and Proposition 3.1 below). By Theorem 1.1, this condition is also sufficient if

G is a pro-p RAAG.

Our second goal is to show that a wide family of simplicial graphs yields pro-p RAAGs

of p-absolute Galois type. Recall that a simplicial graph is said to be chordal (or

triangulated) if each of its cycles of length at least 4 has a chord, i.e. if it contains no

induced cycles other than triangles. We prove the following.

Theorem 1.2. Let Γ be a simplicial graph, and let GΓ be the associated pro-p RAAG.

Then GΓ is a pro-p group of p-absolute Galois type in the following cases:

(i) if Γ is chordal;

(ii) if Γ consist of a row of subsequent squares, i.e., Γ has geometric realization

(1.2) • • • • • • •

• • • • • • •

An example of pro-p RAAG associated to a chordal simplicial graph is the pro-p

group

G = 〈 v1, v2, . . . , vd | [v1, v2] = [v2, v3] = . . . = [vd−1, vd] = 1 〉 ,
which is the pro-p RAAG associated to the simplicial graph Ld−1 with geometric real-

ization

Ld−1 • • • • •
with d vertices and d− 1 edges.

A simplicial graph Γ is said to be of elementary type if no induced subgraph of Γ has

either of the two forms

• •
C4

• •
L3 • • • •

— simplicial graphs of elementary type are sometimes called Droms graphs, as C. Droms

showed that these are precisely the simplicial graphs such that all subgroups of the

associated RAAGs are again RAAGs (see [9]). In [47], I. Snopce and P.A. Zalesskĭı
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proved that given a simplicial graph Γ with associated pro-p RAAG GΓ, one has GΓ '
GK(p) for some field K containing a root of 1 of order p if, and only if, Γ is of elementary

type (see [47, Thm. 1.2]). For example, every simplicial graph as in Theorem 1.2–(ii) is

not of elementary type, and thus the associated pro-p RAAG G does not occur as the

maximal pro-p Galois group of a field containing a root of 1 of order p.

Observe that every simplicial graph of elementary type is chordal, but chordal sim-

plicial graphs containing a length-3 path as an induced subgraph is not of elementary

type — e.g., if d ≥ 4 the simplicial graph Ld is not of elementary type, and thus the

associated pro-p RAAG G does not occur as the maximal pro-p Galois group of a field

containing a root of 1 of order p.

Then, we turn our attention to other sources of pro-p groups of p-absoulte Galois

type. Besides pro-p RAAGs, also Demushkin groups are pro-p groups of p-absolute

Galois type, independently on their realizability as maximal pro-p Galois groups of

fields (see Remark 5.4).

Theorem 1.3. Let G be a Demushkin group. Then G is of p-absolute Galois type.

Moreover, one may employ free pro-p products and direct products to combine pro-p

groups of p-absolute Galois type, and obtain new pro-p groups of p-absolute Galois type.

Theorem 1.4. Let G1, G2 be two pro-p groups of p-absolute Galois type.

(i) The free pro-p product G1 q G2 of G1 and G2 is a pro-p group of p-absolute

Galois type.

(ii) Assume further that for both i = 1, 2: (a) Gi is finitely generated; (b) the abelian-

ization of Gi is a free abelian pro-p group; and (c) H2(Gi,Z/p) is generated by

cup-products of elements of H1(Gi,Z/p). Then also the direct product G1 ×G2

of G1 and G2 is a pro-p group of p-absolute Galois type.

Notice that pro-p RAAGs, and the pro-p completions of orientable surface groups

(which are Demushkin groups) satisfy the three conditions (a)–(c) prescribed in The-

orem 1.4–(ii). Analogously, we prove that also the n-Massey vanishing property, for

every n ≥ 3, is preserved by direct products, under the same conditions (a)–(c) as in

Theorem 1.4–(ii), see Theorem 5.6. Incidentally, this implies that a positive solution of

Efrat’s Elementary Type Conjecture implies a positive solution to Minač-Tân’s Massey

vanishing conjecture for fields containing all roots of 1 of p-power order whose maximal

pro-p Galois group is finitely generated — see Corollary 5.7 —, and this provides a

strong evidence for the latter conjecture.

It is worth underlining that the direct product of two pro-p groups may occur as the

maximal pro-p Galois group of a field containing a root of 1 of order p only if both

factors occur as the maximal pro-p Galois group of fields containing a root of 1 of order

p, and one of the two factor is a free abelian pro-p group (see [19, Prop. 3.2]). Therefore,

Theorem 1.2 and Theorem 1.4 produce a lot of concrete examples of pro-p groups of

p-absolute Galois type which do not occur as the maximal pro-p Galois group of a field

containing a root of 1 of order p, and hence neither as an absolute Galois group.

Altogether, one concludes the following.

Corollary 1.5. There exist a lot of pro-p groups of p-absolute Galois type with the n-

Massey vanishing property, for every n ≥ 3, that do not occur as maximal pro-p Galois
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groups of fields containing a root of 1 of order p, and hence neither as absolute Galois

groups.

From Corollary 1.5, one sees that the property of being of p-absolute Galois type and

the Massey vanishing properties, used to filter out maximal pro-p Galois groups of fields

containing a root of 1 of order p (and thus also absolute Galois pro-p groups) from the

class of pro-p groups provide — even combined together — a strainer whose mesh is

rather coarse. The result of Snopce and Zalesskĭı is based on the study of the Bloch-

Kato property and of 1-cyclotomicity (see § 2.4 below): so, these two properties — which

are consequences of the Norm Residue Theorem and of Kummer theory respectively —

appear to be much more restrictive, and effective for the pursue of pro-p groups that

are not absolute Galois groups. In fact, the strength of these two properties lies in the

fact that they are hereditary with respect to closed subgroups. Therefore, it would be

interesting to investigate pro-p groups such that every closed subgroup is of p-absolute

Galois type. At this aim, we prove that it is enough to verify that every open subgroup

is of p-absolute Galois type (see Proposition 5.10).

The paper is structured as follows. In § 2 we list some facts on Z/p-cohomology of pro-p

groups (cf. § 2.1), and some properties of simplicial graphs and pro-p RAAGs (cf. § 2.2–2.3),

which are preliminary to the proofs of our results. In § 3 we give a brief (and self-contained)

tractation on Massey products in Z/p-cohomology of pro-p groups, and we prove Theorem 1.1

(cf. § 3.3). In § 4 we prove Theorem 1.2 (cf. § 4.4), after some preliminary technical results

whose proofs mix together combinatorics and group cohomology (cf. § 4.2–4.3). Finally, in § 5

we deal with free pro-p products and direct products (cf. § 5.1 and § 5.3 respectively) and with

Demushkin groups (cf. § 5.2), and we prove Theorems 1.3–1.4; while in § 5.4 we define pro-p

groups hereditarily of p-absolute Galois type, and we prove Proposition 5.10.

2. Pro-p RAAGs and cohomology

We work in the world of pro-p groups. Henceforth, every subgroup of a pro-p group

will be tacitly assumed to be closed, and the generators of a subgroup will be intended

in the topological sense. For a pro-p group G and a positive integer n, Gn will denote

the subgroup of G generated by the n-th powers of all elements of G. Moreover, for two

elements g, h ∈ G, we set

gh = ghg−1, and [g, h] = gh · h−1,

and for two subgroups H1, H2 of G, [H1, H2] will denote the subgroup of G generated

by all commutators [g, h] with g ∈ H1 and h ∈ H2. In particular, G′ will denote the

closure of the commutator subgroup of G, and Φ(G) will denote the Frattini subgroup

of G, i.e., Φ(G) = Gp ·G′.

2.1. Preliminaries on pro-p groups and cohomology. For the definition and prop-

erties of Z/p-cohomology of pro-p groups, we refer to [44, Ch. I, § 4] and to [34, Ch. III,

§ 9]. The definition of the cup-product may be found in [34, Ch. I, § 4].

Let G be a pro-p group, and consider Z/p as a trivial G-module. Then

(2.1) H1(G,Z/p) = Hom(G,Z/p) ' (G/Φ(G))∗,
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where the second term is the group of homomorphisms of pro-p groups from G to

Z/p, and ∗ denotes the dual as a Z/p-vector space. Thus, if G is finitely generated

and X = {x1, . . . , xd} is a minimal generating set of G, then H1(G,Z/p) has a basis

X ∗ = {χ1, . . . , χd} dual to X , i.e., χi(xj) = δij for every i, j ∈ {1, . . . , d}.
A short exact sequence of pro-p groups

(2.2) {1} // R // F // G // {1}

is said to be a minimal presentation of G if F is a free pro-p group and R ⊆ Φ(F ) or,

equivalently, if the epimorphism F � G induces an isomorphism

inf1
G,F : H1(G,Z/p) ∼−→ H1(F,Z/p).

The elements of R are called relations of G, and a minimal set generating R as a normal

subgroup of F is called a set of defining relations of G. A minimal presentation (2.2)

induces an exact sequence in cohomology

(2.3)

0 H1(G,Z/p) H1(F,Z/p) H1(R,Z/p)F

H2(G,Z/p) H2(F,Z/p) = 0

inf1G,F res1
F,R

trg

inf2G,F

where inf1
G,F is an isomorphism, and H2(F,Z/p) = 0 as F is free. Hence, also the map

trg is an isomorphism. Altogether, one has

(2.4) (R/Rp[R,F ])
∗ ∼ // H1(R,Z/p)F

trg // H2(G,Z/p)

(for the left-side isomorphism see, e.g., [44, Ch. I, § 4.3]). Therefore, since a set of

defining relations of G gives rise to a basis of the Z/p-vector space R/Rp[R,F ], it yields

a basis of H2(G,Z/p), via the isomorphism trg, as well.

Let F (3) be the third term of the descending p-central series of F , i.e.,

F (3) = Φ(F )p · [Φ(F ), F ]

(see, e.g., [34, Def. 3.8.1]). Then the quotient Φ(F )/F (3) is a p-elementary abelian pro-p

group, and thus it may be considered as a Z/p-vector space. If we consider — with an

abuse of notation — X = {x1, . . . , xd} as a minimal generating set of F too, then every

element r of F ′ may be written as

r =
∏

1≤i<j≤d

[xi, xj ]
aij · y

for some aij ∈ Z/p and y ∈ F (3), and the exponents aij are uniquely determined

[34, Prop. 3.9.13–(i)]. Consequently, the set{
[xi, xj ] · F (3) | 1 ≤ i < j ≤ d

}
is a linearly independent subset of Φ(F )/F (3).

Set I = {1, . . . , d}, and consider the set I × I endowed with the lexicographic order

≺ inherited from I, i.e., (i, j) ≺ (i′, j′) if i < i′ or i = i′ and j < j′. The following result

relates elementary commutators and cup-products (cf. [34, Prop. 3.9.13–(ii)]).
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Proposition 2.1. Let G be a finitely generated pro-p group with minimal generating set

X = {x1, . . . , xd}, let (2.2) be a minimal presentation of G, and let X ∗ = {χ1, . . . , χd}
be the basis of H1(G,Z/p) dual to X . Suppose that {r1, . . . , rm} is a subset of R such

that

r1 =
[
xi(1), xj(1)

] ∏
1≤i<j≤d

(i,j)�(i(1),j(1))

[xi, xj ]
a(1)i,jy1,

...

rm =
[
xi(m), xj(m)

] ∏
1≤i<j≤d

(i,j)�(i(m),j(m))

[xi, xj ]
a(m)i,jym,

for some y1, . . . , ym ∈ F (3), where a(h)i,j ∈ Z/p for every h = 1, . . . ,m and 1 ≤ i < j ≤
d, and (i(1), j(1)) ≺ . . . ≺ (i(m), j(m)). Then {χi(1) ` χj(1), . . . , χi(m) ` χj(m)} is a

linearly independent subset of H2(G,Z/p).

Observe that given a set of relations {r1, . . . , rd} ⊆ R ∩ F ′ such that their images

in the quotient RF (3)/F (3) form a linearly independent subset, one may always assume

that they satisfy the properties described in Proposition 2.1–(ii), after performing Gauß

reduction (cf. [40, Rem. 2.5]).

Let H1, H2 be subgroups of a pro-p group G such that H1 ⊇ H2. Henceforth, for

α ∈ H1(H1,Z/p), α|H2 ∈ H1(H2,Z/p) will denote the restriction of α to H2, while

rH1,H2
: H2(H1,Z/p)→ H2(H2,Z/p) will denote the restriction map in degree 2. Recall

that for every α1, α2 ∈ H1(H1,Z/p), one has

(2.5) rH1,H2(α1 ` α2) = (α1|H2) ` (α2|H2)

(cf. [34, Prop. 1.5.3]). Moreover, for α′ ∈ H1(G,Z/p) and V,W subspaces of H1(G,Z/p),
we set

α′ ` V := {α′ ` β | β ∈ V } ,
V `W := {β ` β′ | β ∈ V, β′ ∈W} .

2.2. Graphs and RAAGs. For the definition of simplicial graph we follow [6, § 1.1].

A simplicial graph is a pair Γ = (V, E) of sets such that E ⊆ [V]2, i.e., the elements of E
are 2-element subsets of V (we always assume implicitly that V ∩E = ∅). The elements

of V are the vertices of Γ, the elements of E are its edges. One may realize geometrically

a simplicial graph by drawing a dot for each vertex and joining two of these dots by

a line if the corresponding two vertices form an edge. Henceforth, we will always deal

with finite simplicial graphs, i.e., with a finite number of vertices.

Remark 2.2. In [45], a simplicial graph is called an unoriented combinatorial graph.

Definition 2.3. Let Γ = (V, E) be a simplicial graph.

(a) Γ is said to be complete if E = [V]2, i.e., every vertex is joined to any other

vertex.

(b) A simplicial graph Γ′ = (V ′, E ′) is a subgraph of Γ if V ′ ⊆ V and E ′ ⊆ E ; Γ′ is

a proper subgraph if Γ′ 6= Γ; finally, Γ′ is said to be an induced subgraph if in

addition E ′ = E ∩ [V ′]2.
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(c) An induced subgraph Γ′ = (V ′, E ′) of Γ is called an n-clique of Γ if Γ′ is a

complete simplicial graph with n vertices; while Γ′ is called an n-cycle of Γ,

with n ≥ 3, if Γ′ is a cycle with n vertices, i.e., V ′ = {v1, . . . , vn} and

E ′ = { {v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1} } .

(d) Γ is said to be the pasting of two proper induced subgraphs Γ1 = (V1, E1) and

Γ2 = (V2,Γ2) along a common induced subgraph Γ′ = (V ′, E ′) if V = V1 ∪ V2

and V ′ = V1 ∩ V2 — namely, Γ is the “union” of Γ1 and Γ2, and Γ′ is the

“intersection” of Γ1 and Γ2.

Given a simplicial graph Γ = (V, E), we set d(Γ) = |V|, and we denote the number of

connected components of Γ by r(Γ).

Example 2.4. Set V = {v1, . . . , v5} and

E = { {v1, v2}, {v1, v3}, {v1, v4}, {v1, v5}, {v2, v3}, {v3, v4}, {v4, v5} } .

The simplicial graph Γ = (V, E) has geometric realization

v1

•

∆

• • • •
v2 v3 v4 v5

and it is the pasting of the two induced subgraphs Γ1 = (V1, E1) and Γ2 = (V2, E2), with

V1 = V r {v5} and V2 = V r {v2}, along the common subgraph ∆, which is the triangle

with vertices v1, v3, v4. Moreover, if ∆′ and ∆′′ are the triangles with vertices v1, v2, v3

and v1, v4, v5 respectively, then ∆,∆′,∆′′ are the 3-cliques — and the 3-cycles — of Γ,

which has no n-cliques nor n-cycles for n > 3.

As mentioned in the Introduction, a simplicial graph Γ = (V, E) is said to be chordal

(or triangulated) if it has no cycles with more than 3 vertices — e.g., the simplicial

graph in Example 2.4 is chordal. Clearly, this property is hereditary, namely, every

induced subgraph of a chordal simplicial graph is again chordal. One has the following

characterization of chordal simplicial graphs (cf., e.g., [6, Prop. 5.5.1]).

Proposition 2.5. A simplicial graph is chordal if, and only if, it can be constructed

recursively by pasting along complete subgraphs (i.e., cliques), starting from complete

simplicial graphs.

Example 2.6. If Γ is as in Example 2.4, then Γ is the pasting of Γ1 and Γ2 along

the complete simplicial graph ∆, and in turn Γ1 is the pasting of ∆′ and ∆ along the

subgraph with vertices v1, v3 and edge {v1, v3}, which is complete — and analogously

Γ2. On the other hand, Γ is not of elementary type, as the induced subgraph of Γ with

vertices v2, v3, v4, v5 is the graph L3.

Given a simplicial graph Γ = (V, E), the associated pro-p RAAG is the pro-p group

GΓ with presentation

(2.6) GΓ = 〈 v ∈ V | [v, w] = 1 for all {v, w} ∈ E 〉 .
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The next result summarizes some useful and well-known features of pro-p RAAGs, which

follow from the definition of a pro-p RAAG (2.6) (and from the recursive procedure to

construct a chordal simplicial graph, cf. Proposition 2.5, in the case of item (iv)).

Proposition 2.7. Let Γ = (V, E) be a simplicial graph, and let GΓ be the associated

pro-p RAAG.

(i) The pro-p group GΓ is torsion-free, and the abelianization GΓ/G
′
Γ is isomorphic,

as an abelian pro-p group, to the free Zp-module generated by V — and thus also

to Zd(Γ)
p .

(ii) For every induced subgraph Γ′ = (V ′, E) of Γ, the inclusion V ′ ↪→ V induces an

isomorphism of pro-p groups from GΓ′ to the subgroup of GΓ generated by V ′.
(iii) If Γ1, . . . ,Γr are the connected components of Γ, then GΓ ' GΓ1

q . . . q GΓr

(here q denotes the free pro-p product of pro-p groups, cf. [42, § 9.1]).

(iv) If Γ is chordal and connected, then GΓ can be constructed recursively via proper

amalgamated free pro-p products over free abelian subgroups, starting from free

abelian pro-p groups (for the definition of proper amalgamated free pro-p product

see [42, § 9.2]).

Example 2.8. Let Γ be as in Example 2.4, and let GΓ be the associated pro-p RAAG.

Then one has the decomposition as proper amalgamated free pro-p product

(2.7) GΓ = GΓ1 qG∆ GΓ2

(here Γ1,Γ2 are as in Example 2.4), if one considers Γ as the patching of Γ1 and Γ2

along ∆. Equivalently,

(2.8) GΓ = (G∆′ qA1
G∆)︸ ︷︷ ︸

GΓ1

qA2
G∆′′

(here A1 and A2 are the subgroups of GΓ generated by v1, v3 and v1, v4 respectively).

Observe that A1 ' A2 ' Z2
p, while G∆′ ' G∆ ' G∆′′ ' Z3

p.

2.3. The cohomology of pro-p RAAGs. Given a simplicial graph Γ = (V, E), with

V = {v1, . . . , vd}, let V denote the Z/p-vector space generated by V. One defines the

Stanley-Reisner Z/p-algebra Λ•(Γ) associated to Γ as the quotient

Λ•(Γ) =
∐
n≥0

Λn(Γ) =
Λ•(V )

( v ∧ w | {v, w} /∈ E )

of the exterior algebra Λ•(V ) =
∐
n≥0 Λn(V ) generated by V over the ideal generated

by the wedge products of disjoint vertices. The algebra Λ•(Γ) inherits the grading from

the exterior algebra Λ•(V ), and hence it is a non-negatively graded connected algebra

of finite type (i.e., Λ0(Γ) = Z/p and dim(Λn(Γ)) < ∞ for every n ≥ 0). In particular,

Λ•(Γ) is a quadratic algebra, as v ∧ w ∈ Λ2(V ) for every v, w ∈ V (for the definition of

quadratic algebra see, e.g., [40, § 1]).

For vi1 , . . . , vin ∈ V, let vi1 · · · vin denote the image of vi1 ∧ · · · ∧ vin ∈ Λn(V ) in

Λn(Γ). The kernel of the epimorphism ψn : Λn(V )� Λn(Γ) has a basis

{ vi1 ∧ · · · ∧ vin | 1 ≤ i1 < . . . < in ≤ d, {vis , vit} /∈ E for some s < t } .

On the other hand, one has ψn(vi1 ∧ · · · ∧ vin) 6= 0 if, and only if, {vis , vit} ∈ E for

every 1 ≤ s < t ≤ n — namely, if, and only if, there exists an n-clique ∆ of Γ such that
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V(∆) = {vi1 , . . . , vin}. Hence, for each positive degree n the Z/p-vector subspace Λn(Γ)

comes endowed with a basis

{ vi1 · · · vin | 1 ≤ i1 < . . . < in ≤ d and { vi1 , . . . , vin } = V(∆) }

where ∆ runs thorugh all n-cliques of Γ.

Now let GΓ be the pro-p RAAG associated to Γ. By (2.1), H1(GΓ,Z/p) has a basis

V∗ = {χ1, . . . , χd} dual to V. Let Γ∗ = (V∗, E(Γ∗)) be the simplicial graph with E(Γ∗) =

{{χi, χj} | {vi, vj} ∈ E}. Then

H•(GΓ) = Λ•(Γ
∗)

(cf., e.g., [36, § 3.2] and [3, Thm. 5.1]). In particular, the Z/p-cohomology algebra of a

pro-p RAAG is quadratic. We will use

B2
Γ∗ := { χi ` χj | 1 ≤ i < j ≤ d and {vi, vj} ∈ E }

as the canonical basis of Λ2(Γ∗) = H2(GΓ,Z/p).

2.4. Pro-p RAAGs and maximal pro-p Galois group. The following notions were

introduced respectively in [37] and in [14,41].

Definition 2.9. Let G be a pro-p group.

(i) G is said to be a Bloch-Kato pro-p group if for every subgroup H ⊆ G, the

Z/p-cohomology algebra H•(H) is a quadratic Z/p-algebra.

(ii) G is said to be 1-cyclotomic if there exists a continuous G-module M , isomorphic

to Zp as an abelian pro-p group, such that for every subgroup H ⊆ G and for

every positive integer n the natural map

H1(H,M/pnM) −→ H1(H,M/pM),

induced by the epimorphism of continuous G-modules M/pnM � M/pM , is

surjective.

Remark 2.10. Let G be a pro-p group.

(a) If G is Bloch-Kato, then one has that H2(H,Z/p) = H1(H,Z/p) ` H1(H,Z/p)
for every subgroup H of G.

(b) If G is 1-cyclotomic and the action on the associated G-module M is trivial, then

G is absolutely torsion-free, i.e., H/H ′ is a free abelian pro-p group for every

subgroup H of G (cf. [39, Rem. 2.3]). Absolutely torsion-free pro-p groups were

introduced by T. Würfel in [53].

If K is a field containing a root of 1 of order p, then the maximal pro-p Galois group

GK(p) is both Bloch-Kato and 1-cyclotomic, respectively by the Norm Residue Theorem

and by Kummer theory (cf. [14, § 4] and [41, Thm. 1.1]). In fact, by an earlier result of

A.S. Merkur′ev and A.A. Suslin — which is the “degree 2 version” of the Norm Residue

Theorem —, one knows that

H2(GK(p),Z/p) = H1(GK(p),Z/p) ` H1(GK(p),Z/p)

(cf. [26], see also [34, Thm. 6.4.4]). Therefore, a pro-p group G which is not Bloch-Kato

(or just with elements in H2(G,Z/p) which do not arise from cup-products), or which is

not 1-cyclotomic, can not occur as the maximal pro-p Galois group of a field containing
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a root of 1 of order p — and hence as an absolute Galois group. These properties were

employed by I. Snopce and P.A. Zalesskĭı to determine which pro-p RAAGs occur as

maximal pro-p Galois groups (cf. [47, Thm. 1.2 and Thm. 1.5]).

Theorem 2.11. Let Γ be a simplicial graph, and let GΓ be the associated pro-p RAAG.

The following are equivalent:

(i) Γ is of elementary type;

(ii) GΓ occurs as the maximal pro-p Galois group of a field K containing a root of

1 of order p;

(ii′) GΓ occurs as the maximal pro-p Galois group of a field K containing all roots

of 1 of p-power order;

(iii) GΓ is a Bloch-Kato pro-p group;

(iii′) H2(H,Z/p) = H1(H,Z/p) ` H1(H,Z/p) for every subgroup H of GΓ;

(iv) GΓ is 1-cyclotomic;

(iv′) GΓ is absolutely torsion-free.

(v) Every finitely generated subgroup of GΓ is again a pro-p RAAG.

3. Massey products

3.1. Massey products in Galois cohomology. Let G be a pro-p group. For n ≥ 2,

the n-fold Massey product on H1(G,Z/p) is a multi-valued map

H1(G,Z/p)× . . .×H1(G,Z/p)︸ ︷︷ ︸
n times

−→ H2(G,Z/p).

Given an n-tuple (with n ≥ 2) α1, . . . , αn of elements of H1(G,Z/p) (with possibly

αi = αj for some 1 ≤ i < j ≤ n), the (possibly empty) subset of H2(G, ,Z/p) which is

the value of the n-fold Massey product associated to the n-tuple α1, . . . , αn is denoted by

〈α1, . . . , αn〉. If n = 2, then the 2-fold Massey product coincides with the cup-product,

i.e., for α1, α2 ∈ H1(G,Z/p) one has

(3.1) 〈α1, α2〉 = {α ` α2} ⊆ H2(G,Z/p).

For further details on this operation in the profinite and Galois-theoretic context, we

direct the reader to [12, 33, 50]. In particular, the definition of n-fold Massey products

in the Z/p-cohomology of pro-p groups may be found in [33, Def. 2.1]. For the purposes

of our investigation, the properties described below — and, in particular, the group-

theoretic characterizations given by Proposition 3.4 — will be enough.

Given an n-tuple α1, . . . , αn of elements of H1(G,Z/p), n ≥ 2, the Massey product

〈α1, . . . , αn〉 is said:

(a) to be defined, if 〈α1, . . . , αn〉 6= ∅;

(b) to vanish, if 0 ∈ 〈α1, . . . , αn〉.
Moreover, the pro-p group G is said to satisfy the n-Massey vanishing property (with

respect to Z/p) if every defined n-fold Massey product in H•(G) vanishes.

In the following proposition we collect some properties of Massey products (cf., e.g.,

[50, § 1.2] and [33, § 2]).

Proposition 3.1. Let G be a pro-p group and let α1, . . . , αn be an n-tuple of elements of

H1(G,Z/p), with n ≥ 3. Suppose that the n-fold massey product 〈α1, . . . , αn〉 is defined.
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(i) For every a ∈ Z/p and i ∈ {1, . . . , n} one has

∅ 6= a · 〈α1, . . . , αn〉 ⊆ 〈α1, . . . , aαi, . . . , αn〉.

In particular, if αi = 0 for some i, then 0 ∈ 〈α1, . . . , αn〉.
(ii) For all i = 1, . . . , n− 1 one has αi ` αi+1 = 0.

(iii) The set 〈α1, . . . , αn〉 is closed under adding α1 ` α′ and αn ` α′ for any

α′ ∈ H1(G,Z/p).

Let K be a field containing a root of 1 of order p. In [29, Conj. 1.1], J. Minač and

N.D. Tân conjectured that the maximal pro-p Galois group GK(p) has the n-Massey

vanishing property with respect to Z/p, for every n ≥ 3. This conjecture has been

proved in the following cases:

(a) if n = 3, by E. Matzri in the preprint [25] (replaced by the paper by I. Efrat

and E. Matzri [13]);

(b) for every n ≥ 3 if K is a local field, by J. Minač and N.D. Tân (cf. [30, Thm. 7.1])

— in fact, in this case GK(p) has the strong n-Massey vanishing property for

every n ≥ 3 (cf. [32, Prop. 4.1]).

(c) for every n ≥ 3 if K is a number field, by J. Harpaz and O. Wittenberg (cf.

[17]).

In [33, § 7], one may find some examples of pro-p groups with defined and non-

vanishing 3-fold Massey products, and hence which do not occur as maximal pro-p

Galois groups of fields containing a root of 1 of order p.

Example 3.2. Let G be the pro-p group with minimal presentation

G = 〈 x1, . . . , x5 | [[x1, x2], x3][x4, x5] 〉.

Then there is a 3-fold Massey product in H•(G) which is defined but does not vanishes

(cf. [33, Ex. 7.2]). Th.S. Weigel and the third-named author1 suspect that G is not a

Bloch-Kato pro-p group, and G is not 1-cyclotomic (cf. [41, Rem. 3.7]).

Remark 3.3. Following [32, Def. 4.5], one says that a pro-p group G has the cup-

defining n-fold Massey product property, with n ≥ 3, if the n-fold Massey product

〈α1, . . . , αn〉, associated to an n-tuple α1, . . . , αn of elements of H1(G,Z/p), is defined

whenever

α1 ` α2 = α2 ` α3 = . . . = αn−1 ` αn = 0.

Thus, G has the strong n-fold Massey vanishing property if, and only if, it has both the

n-fold Massey vanishing property and the cup-defining n-fold Massey product property.

Moreover, if G has the cup-defining n-fold Massey product property, then G has the van-

ishing (n− 1)-fold Massey vanishing property, as observed in [32, Rem. 4.6]. Therefore,

G has the strong n-fold Massey vanishing property for every n ≥ 3 if, and only if, it has

the cup-defining n-fold Massey product property for every n ≥ 3. In [32, Question 4.2]

it is asked whether the maximal pro-p Galois group of a field containing a root of 1 of

order p has the the strong n-fold Massey vanishing property for every n ≥ 3.

1During the problem session of the conference “New Trends Around Profinite Groups” (Sept. 2021),

the third-named author promised a bottle of Franciacorta wine to anyone who will prove this.
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3.2. Massey products and unipotent representations. Massey products for a pro-

p group G may be translated in terms of unipotent upper-triangular representations of

G as follows. For n ≥ 2 let

Un+1 =




1 a1,2 · · · a1,n+1

1 a2,3 · · ·
. . .

. . .
...

1 an,n+1

1

 | ai,j ∈ Z/p


⊆ GLn+1(Z/p)

be the group of unipotent upper-triangular (n + 1) × (n + 1)-matrices over Z/p. Then

Un+1 is a finite p-group. Moreover, let In+1 and Ei,j denote respectively the identity

(n + 1) × (n + 1)-matrix and the (n + 1) × (n + 1)-matrix with 1 at entry (i, j) and 0

elsewhere, for 1 ≤ i < j ≤ n+ 1. The center of Un+1 is the subgroup

Z(Un+1) = In+1 + Z/p · E1,n+1 = { In+1 + a · E1,n+1 | a ∈ Z/p }

(cf., e.g., [33, § 3] or [14, p. 308]). Set Ūn+1 = Un+1/Z(Un+1). For a homomorphism

of pro-p groups ρ : G→ Un+1, respectively ρ̄ : G→ Ūn+1, and for 1 ≤ i ≤ n, let ρi,i+1,

resp. ρ̄i,i+1, denote the projection of ρ, resp. ρ̄, on the (i, i+ 1)-entry. Observe that

ρi,i+1 : G −→ Z/p and ρ̄i,i+1 : G −→ Z/p

are homomorphisms of pro-p groups, and thus we may consider ρi,i+1 and ρ̄i,i+1 as ele-

ments of H1(G,Z/p). One has the following “pro-p translation” of a result of W. Dwyer

which interpretes Massey product in terms of unipotent upper-triangular represetations

(cf., e.g., [14, Lemma 9.3]).

Proposition 3.4. Let G be a pro-p group and let α1, . . . , αn be an n-tuple of elements

of H1(G,Z/p), with n ≥ 2.

(i) The n-fold Massey product 〈α1, . . . , αn〉 is defined if and only if there exists

a continuous homomorphism ρ̄ : G → Ūn+1 such that ρ̄i,i+1 = αi for every

i = 1, . . . , n.

(ii) The n-fold Massey product 〈α1, . . . , αn〉 vanishes if and only if there exists a

continuous homomorphism ρ : G → Un+1 such that ρi,i+1 = αi for every i =

1, . . . , n.

3.3. Proof of Theorem 1.1. We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let α1, . . . , αn a sequence of elements of H1(GΓ,Z/p) such that

αh ` αh+1 = 0 for every h = 1, . . . , n — possibly, αh = αh′ for some h′ 6= h —, and

write αh = a1,hχ1 + . . .+ad,hχd for every h (by Proposition 3.1–(i) we may assume that

αh 6= 0 for every h). Then for every h = 1, . . . , d− 1

αh ` αh+1 =

(
d∑
i=1

ai,hχi

)
`

 d∑
j=1

aj,h+1χj


=

∑
1≤l<l′≤d
{vl,vl′}∈E

(al,hal′,h+1 − al′,hal,h+1)χl ` χl′
(3.2)
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— recall that χj ` χi = −χi ` χj for every 1 ≤ i, j ≤ d —, which is trivial by

hypothesis. Since B2
Γ∗ is a basis of Λ2(Γ∗), one has

al,hal′,h+1 − al′,hal,h+1 = 0

whenever {vl, vl′} ∈ E .

Let F be the free pro-p group generated by V, and let ρ̃ : F → Un+1 be the homo-

morphism of pro-p groups defined by

ρ̃(vi) =



1 α1(vi) 0 · · · 0

1 α2(vi) · · · 0

1
. . .

...
. . . αn−1(vi) 0

1 αn(vi)

1


.

Observe that αh(vi) = ai,h for every h = 1, . . . , n and i = 1, . . . , d. Then

ρ̃(vivj) =



1 ai,1 + aj,1 ai,1aj,2 0 · · · 0

1 ai,2 + aj,2 ai,2aj,3 · · · 0

1 ai,3 + aj,3
. . .

...
. . .

. . . ai,n−1aj,n
1 ai,n + aj,n

1


.

If {vi, vj} ∈ E , then ai,haj,h+1 = aj,hai,h+1, so that ρ̃(vivj) = ρ̃(vjvi); on the other

hand, vi and vj commute in GΓ. Therefore, ρ̃ yields a homomorphism ρ : GΓ → Un+1

such that ρh,h+1 = αh for every h = 1, . . . , n, and by Proposition 3.4 the n-fold Massey

product 〈α1, . . . , αn〉 is defined and vanishes. �

3.4. Pro-p groups of p-absolute Galois type and Massey products. Let G be a

pro-p group. First of all, we underline that for every α ∈ H1(G,Z/p), the sequence (1.1)

is a complex, i.e.,

(3.3) cor1
N,G(α′) ` α = 0 and rG,N (α′′ ` α) = 0

for every α′ ∈ H1(N,Z/p) and α′′ ∈ H1(G,Z/p). Moreover, observe that if α ∈
H1(G,Z/p) is equal to 0, then the sequence (1.1) is trivially exact at both H1(G,Z/p)
and H2(G,Z/p), as both cor1

N,G and res2
G,N are the identity maps, and the cup-product

by α is the trivial map.

The following notion was introduced in [22, Def. 6.1.1].

Definition 3.5. A pro-p group G has the p-cyclic Massey vanishing property if for all

α, β ∈ H1(G,Z/p) such that α ` β = 0, the p-fold Massey product

〈α, . . . , α︸ ︷︷ ︸
p−1 times

, β〉

vanishes.
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Observe that if p = 2 then every pro-2 group has, trivially, the 2-cyclic vanishing

property by (3.1).

If K is a field containing a root of 1 of order p, then the maximal pro-p Galois group

GK(p) has the p-cyclic Massey vanishing property (cf. [46, Thm. 4.3], see also [22, § 6.1]).

The following remarkable result was proved by Lam et al. (cf. [22, Prop. 6.1.3–6.1.4

and Thm. C]).

Theorem 3.6. Let G be a pro-p group.

(i) If the sequence (1.1) is exact at H2(G,Z/p) for every α ∈ H1(G,Z/p), then it

is exact also at H1(G,Z/p) for every α, i.e., G is of p-absolute Galois type.

(ii) The sequence (1.1) is exact at H1(G,Z/p) for every α ∈ H1(G,Z/p) if, and only

if, G has the p-cyclic Massey vanishing property.

(iii) If G has the p-cyclic Massey vanishing property, then it has also the 3-Massey

vanishing property.

Example 3.7. Let G be the pro-p group of Example 3.2. Then by Theorem 3.6–(iii) G

has not the p-cyclic Massey vanishing property, and thus by Theorem 3.6–(ii) G is not

of p-absolute Galois type.

4. Pro-p RAAGs of p-absolute Galois type

4.1. Pro-p RAAGs of p-absolute Galois type. By Theorem 1.1, the pro-p RAAG

GΓ associated to any simplicial graph Γ = (V, E) has the p-cyclic Massey vanishing

property. Pick α ∈ H1(GΓ,Z/p), and set N = Ker(α). By Theorem 3.6–(ii), the

sequence

(4.1) H1(N,Z/p)
cor1

N,GΓ // H1(GΓ,Z/p)
cα // H2(GΓ,Z/p)

rGΓ,N // H2(N,Z/p) ,

is exact at H1(GΓ,Z/p) — here cα(β) = β ` α for every β ∈ H1(GΓ,Z/p). Moreover,

by Theorem 3.6–(i), in order to prove Theorem 1.2–(i) it is enough to show that, given

a chordal graph Γ, for every non-trivial α ∈ H1(GΓ,Z/p) the sequence (4.1) is exact at

H2(GΓ,Z/p).

4.2. Cup-product. Set α = χ1 + . . . + χm ∈ H1(GΓ,Z/p) for some 1 ≤ m ≤ d. The

goal of this subsection is to compute dim(Im(cα)).

Henceforth, we identify Hn(GΓ,Z/p) = Λn(Γ∗). Now, let Γα = (V(Γα), E(Γα)) be

the induced subgraph of Γ with vertices V(Γα) = {v1, . . . , vm} — so that m = d(Γα)

—, and put V0 = Span{χm+1, . . . , χd}. Then

H1(GΓ,Z/p) = Λ1(Γ∗) = Λ1(Γ∗α)⊕ V0,

H2(GΓ,Z/p) = Λ2(Γ∗) = Λ2(Γ∗α)⊕ (Λ1(Γ∗) ` V0) .
(4.2)

Consequently,

(4.3) Im(cα) = (Λ1(Γ∗α) ` α)⊕ (V0 ` α) ,

where the left-side summand is a subspace of Λ2(Γ∗α), and the right-side summand is a

subspace of Λ1(Γ∗) ` V0. We study the dimension of these two summands in the next

two propositions.
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Proposition 4.1. Let Γ = (V, E) be a simplicial graph, with V = {v1, . . . , vd} — so

that d = d(Γ) —, and let V∗ = {χ1, . . . , χd} be the basis of Λ1(Γ∗) dual to V. If

α = χ1 + . . .+ χd, then

(4.4) dim (Λ1(Γ∗) ` α) = d(Γ)− r(Γ).

Proof. Clearly, Λ1(Γ∗) ` α is generated by the set S = {χ1 ` α, . . . , χd ` α}. Moreover,

0 = α ` α = (χ1 + . . .+ χd) ` α = χ1 ` α+ . . .+ χd ` α,

and thus for any j ∈ {1, . . . , d} one has χj ` α = −
∑
i 6=j χi ` α. Therefore, for any j

the set

Sj = { χ1 ` α, . . . , χj−1 ` α, χj+1 ` α, . . . , χd ` α }
is enough to generate Λ1(Γ∗) ` α.

Assume first that Γ is a tree. We proceed by induction on the number of vertices of

Γ. If |V| < 3 then (4.4) holds trivially, so assume that Γ has at least three vertices. Up

to renumbering the vertices, we may assume that v1 is a leaf of Γ (i.e., {v1, vi} ∈ E only

for one i ∈ {2, . . . , d}, say i = 2). We claim that S1 is linearly independent. Indeed, let

β be a Z/p-linear combination of the elements of S1, i.e.,

(4.5) β = a2(χ2 ` α) + . . .+ ad(χd ` α) =
∑

{vi,vj}∈E
i<j

bij(χi ` χj)

for some ai, bij ∈ Z/p (where the bij ’s are uniquely determined as B2
Γ∗ is a basis of

Λ2(Γ∗)). Since v1 is a leaf, joined only to v2, one has b1,2 = −a2. Thus, if β = 0 then

b1,2 = 0, and hence a2 = 0. Now let T = (V(T), E(T)) be the subtree of Γ obtained

removing the vertex v1 — namely, V(T) = V r {v1} and E(T) = E r {{v1, v2}}. We

denote the elements of V(T)∗ by χ2|T, . . . , χd|T, and we set αT = χ2|T + . . .+χd|T. By

induction,

{ (χ3|T) ` αT, . . . , (χd|T) ` αT }
is a linearly independent subset of Λ2(T∗). Let rΓ,T : Λ2(Γ∗)→ Λ2(T∗) be the epimor-

phism of Z/p-vector spaces defined by

rΓ,T(χi ` χj) =

{
(χi|T) ` (χj |T), if i 6= 1

0, if i = 1

for χi ` χj ∈ B2
Γ∗ , i < j. If β = 0, then

0 = rΓ,T(β) = a3 ((χ3|T) ` αT) + . . .+ ad ((χd|T) ` αT) ,

and the inductive hypothesis implies that a3 = . . . = ad = 0. Therefore, S1 is linearly

independent.

Assume now that Γ is connected, and let T = (V(T), E(T)) be a maximal tree of Γ.

Then V(T) = V (cf. [45, Ch. I, § 2.3, Prop. 11]). As above, we denote the elements of

V(T)∗ by χi|T for 1 ≤ i ≤ d, and αT = χ1|T + . . . + χd|T. Let rΓ,T : Λ2(Γ∗) → Λ2(T∗)

be the epimorphism of Z/p-vector spaces defined by

rΓ,T(χi ` χj) =

{
(χi|T) ` (χj |T), if {vi, vj} ∈ E(T)

0, if {vi, vj} /∈ E(T),
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and set

β = a2(χ2 ` α) + . . .+ ad(χd ` α), with ai ∈ Z/p.
Then

(4.6) rΓ,T(β) = a2 ((χ2|T) ` αT) + . . .+ ad ((χd|T) ` αT) .

Since {(χi|T) ` αT | i = 1, . . . , d} is a linearly independent subset of Λ2(T∗), if β = 0

then by (4.6) one has a2 = . . . = ad, so that also S1 is linearly independent.

Finally, if Γ1, . . . ,Γr(Γ) are the connected components of Γ, then

Λ1(Γ∗) = Λ1(Γ∗1)⊕ . . .⊕ Λ1(Γ∗r(Γ)),

and moreover β ` β′ = 0 for β ∈ Λ1(Γ∗i ) and β′ ∈ Λ1(Γ∗j ), i 6= j. Hence,

Λ1(Γ∗) ` α = (Λ1(Γ∗1) ` α1)⊕ . . .⊕
(

Λ1(Γ∗r(Γ)) ` αr(Γ)

)
,

where αj =
∑
vi∈V(Γj)

χi for every j = 1, . . . , r(Γ), and this yields (4.4). �

Proposition 4.2. Let

V0,α = { vj | m < j ≤ d and {vi, vj} ∈ E for some 1 ≤ i ≤ m }

be the set of vertices of Γ not lying in Γα but joined to some vertices of Γα. Then

(4.7) dim(V0 ` α) = |V0,α|.

Proof. Clearly, the set S0,α = {α ` χj | vj ∈ V0,α} generates V0 ` α. On the other

hand, we claim that S0,α is a linearly independent subset of Λ2(Γ∗). Indeed, for vj ∈ V0,α

one has

(4.8) α ` χj = χ1 ` χj + . . .+ χm ` χj ,

where at least one summand of the right-side term of (4.8) is non-trivial, as vj ∈ V0,α.

Moreover, observe that if m < j′ ≤ d, j′ 6= j, and vj′ ∈ V0,α, then necessarily α ` χj′ 6=
α ` χj , as otherwise by (4.8) one would have

χ1 ` χj + . . .+ χm ` χj = χ1 ` χj′ + . . .+ χm ` χj′ ,

and thus

(4.9) χi ` χj = χi′ ` χj′ for some 1 ≤ i, i′ ≤ m

such that χi ` χj and χi′ ` χj′ are not trivial, since B2
Γ∗ is a basis of Λ2(Γ∗). But

equality (4.9) is impossible, as j′ 6= i, j and hence {vi, vj} 6= {vi′ , vj′}.
For every vj ∈ V0,α set

Sj,α = { χi ` χj | 1 ≤ i ≤ m, χi ` χj 6= 0 } .

Then, the sets Sj,α, with vj running through the elements of V0,α, are disjoint and

non-empty subsets of the basis B2
Γ∗ . Therefore, by (4.8) one has

S0,α =

 ∑
β∈Sj,α

β | vj ∈ V0,α

 ⊆ ⊕
vj∈V0,α

Span{Sj,α},

so that S0,α is a linearly independent subset of Λ2(Γ∗), as claimed. �
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Altogether, if α = χ1 + . . .+ χm ∈ H1(GΓ,Z/p) for some 1 ≤ m ≤ d, from (4.3) and

from Propositions 4.1–4.2 one concludes that

dim(Im(cα)) = dim (Λ1(Γ∗α) ` α) + dim(V0 ` α)

= (d(Γα)− r(Γα)) + |V0,α|,
(4.10)

where V0,α is as in Proposition 4.2 (note that necessarily r(Γα) ≤ m), with no restrictions

on the shape of the simplicial graph Γ.

4.3. Restriction. The goal of this subsection is to study dim(Im(rGΓ,N )) in case Γ is

a chordal graph. By duality (cf. 2.4), this depends on how may defining relations of GΓ

“remain” defining relations for a minimal presentation of N .

Throughout this subsection, we set α = χ1 + . . . + χm ∈ H1(GΓ,Z/p) for some

1 ≤ m ≤ d, and we set Γα = (V(Γα), E(Γα)), with V(Γα) = {v1, . . . , vm}, as in § 4.2 (so

that m = d(Γα)). For 1 ≤ i ≤ d set

wi =

{
viv
−1
i+1, if i < m

vi, if i ≥ m.

Then W = {w1, . . . , wd} is a minimal generating set of GΓ, which induces a basis

W∗ = {ω1, . . . , ωd} of H1(GΓ,Z/p) — observe that ωj = χj for j > m. Set

Yα = { w1, . . . , wm−1 } and Y = Yα ∪ { vm+1, . . . , vd } =W r { wm },

and let Hα and H be the subgroups of GΓ generated respectively by Yα and Y. Since

α(wi) = 0 for i 6= m, these two subgroups are contained in N .

Lemma 4.3. The sets Y and Yα are minimal generating sets of H and Hα respectively.

Proof. Since Y is a subset of W, which is a minimal generating set of GΓ, the cosets

wiΦ(GΓ), with i 6= m, are linearly independent in the Z/p-vector space GΓ/Φ(GΓ),

and thus also the cosets wiΦ(H), with i 6= m, are linearly independent in H/Φ(H)

— and analogously the cosets wiΦ(Hα), with 1 ≤ i < m, are linearly independent in

Hα/Φ(Hα). �

By Lemma 4.3, and by duality, H1(H,Z/p) and H1(Hα,Z/p) have bases

Y∗ = { ωi|H | wi ∈ Y } and Y∗α = { ωi|Hα | wi ∈ Yα }

respectively. The next proposition gives a lower bound for the dimension of the image

of the map rGΓ,Hα restricted to the summand Λ2(Γ∗α) of H2(GΓ,Z/p) (cf. (4.2)). The

idea is the following. If v1, v2, v3 are vertices of Γα, and they are joined to each other

(namely, they are the vertices of a 3-clique of Γα), then the commutator

[w1, w2] =
[
v1v
−1
2 , v2v

−1
3

]
= [v1, v2][v1, v

−1
3 ][v−1

2 , v−1
3 ]

is trivial: since w1, w2 ∈ Yα, the relation [w1, w2] = 1 is a defining relation of Hα

induced by the three defining relations [v1, v2] = [v1, v3] = [v2, v3] = 1 of GΓ. We

use this fact, together with the recursive procedure to construct a chordal graph via

patching subgraphs along cliques, starting from cliques.

Proposition 4.4. If Γ is a chordal simplicial graph, then

(4.11) dim (rGΓ,Hα(Λ2(Γ∗α))) ≥ |E(Γα)| − d(Γα) + r(Γα).
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Proof. We proceed as follows: first, we suppose that Γα is complete, then we suppose

that Γα is connected, and finally we deal with the general case.

If Γα is complete, then [wi, wj ] = 1 for every 1 ≤ i < j ≤ m−1, and thus Hα ' Zm−1
p .

From M. Lazard’s work [23], one knows that the Z/p-cohomology algebra of a free

abelian pro-p group is an exterior algebra (see, e.g., [48, Thm. 5.1.5]). Thus, H•(Hα) is

the exterior algebra generated by Y∗α, and consequently

(4.12) dim
(
H2(Hα,Z/p)

)
=

(
m− 1

2

)
=

(
m

2

)
−m+ 1.

Moreover, observe that H2(Hα,Z/p) = rGΓ,Hα(Λ2(Γ∗α)), as the map res1
GΓ,Hα

is surjec-

tive and H2(Hα,Z/p) = Λ2(H1(Hα,Z/p)). This proves (4.11) in this case.

Now suppose that Γα is connected and not complete. We use the recursive procedure

to construct a chordal graph (cf. Proposition 2.5): namely, we may find two proper

induced subgraphs Γ1,Γ2 of Γα (which are chordal as well), whose intersection is a

clique ∆, such that Γα is the pasting of Γ1 and Γ2 along ∆. Up to renumbering, we

may suppose that

V(Γ1) = { v1, . . . , vm1 } and V(Γ2) = { vm2 , . . . , vm },

with 1 < m2 ≤ m1 < m, so that V(∆) = {vm2
, . . . , vm1

}. Let H1, H2 and A be the

subgroups of Hα generated, respectively, by {w1, . . . , wm1−1}, by {wm2 , . . . , wm−1}, and

by {wm2 , . . . , wm1−1}. Since ∆ is complete, A ' Zm2−m1
p — so A might be trivial, if ∆

consists only of one vertex. Thus,

(4.13) H2(A,Z/p) = Λ2(V∆) = rGΓ,A (Λ2(Γ∗α))

where V∆ = Span{ ωi|A | m2 ≤ i < m1 }. Consider the sequence of Z/p-vector spaces

(4.14)

rGΓ,Hα (Λ2(Γ∗α)) rGΓ,H1
(Λ2(Γ∗α))⊕ rGΓ,H2

(Λ2(Γ∗α))

Λ2(V∆) = rGΓ,A (Λ2(Γ∗α)) 0 ,

f1

f2

where f1 = rHα,H1 ⊕ rHα,H2 and f2 = rH1,A − rH2,A. The map f2 is surjective, as the

subset { (ωi|Hk) ` (ωj |Hk) | m2 ≤ i < j < m1 } of H2(Hk,Z/p) is linearly independent

for both k = 1, 2 — as [wi, wj ] = 1 for every m2 ≤ i < j < m1 —, and

rHk,A ((ωi|Hk) ` (ωj |Hk)) = (ωi|A) ` (ωj |A).

Moreover, Im(f1) ⊆ Ker(f2), as rHk,A ◦ rHα,Hk = rHα,A. Finally, let β1, β2 ∈ Λ2(Γ∗α) be

such that (rGΓ,H1
(β), rGΓ,H2

(β2)) ∈ Ker(f2), and write

β1 =
∑

1≤i<j≤m

aij(ωi ` ωj) and β1 =
∑

1≤i<j≤m

bij(ωi ` ωj),

with aij , bij ∈ Z/p — here we employ { ω1, . . . , ωm } as a basis of Λ1(Γ∗α). Since

rHk,A ◦ rGΓ,Hk = rGΓ,A for both k = 1, 2, and ωi|A = 0 for i < m2 or i ≥ m1, one has

rH1,A (rGΓ,Hk(β1)) =
∑

m2≤i<j<m1

aij ((ωi|A) ` (ωj |A)) ,
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and similarly for β2, and therefore aij = bij for m2 ≤ i < j < m1. Set

β =
∑

1≤i<j≤m

cij(ωi ` ωj) ∈ Λ2(Γ∗α) with cij =

{
aij for j < m1,

bij for i ≥ m2.

Then rGΓ,Hk(β) = rGΓ,Hk(βk) for both k = 1, 2, and thus (rGΓ,H1
(β1), rGΓ,H2

(β2)) =

f1(rGΓ,Hα(β)).

Altogether, the sequence (4.14) is exact. Moreover, observe that for both k = 1, 2

one has

rGΓ,Hk (Λ2(Γ∗α)) = rGΓ,Hk (Λ2(Γ∗k)) ,

and by induction one has the inequality (4.11) with Hk instead of Hα and Γk instead

of Γα, as Γk is chordal, and a proper subgraph of Γ. Therefore, from the exactness of

(4.14) and from (4.13) we deduce that

dim (rGΓ,Hα(Λ2(Γ∗α))) ≥ dim (rGΓ,H1
(Λ2(Γ∗α))) + dim (rGΓ,H2

(Λ2(Γ∗α)))−
(
m1 −m2

2

)
≥ [|E(Γ1)| − (m1 − 1)] + [|E(Γ2)| − ((m−m2 + 1)− 1)]

− [|E(∆)| − ((m1 −m2 + 1)− 1)]

= |E(Γα)| − (m− 1),

as E(Γα) = E(Γ1) ∪ E(Γ2) and E(∆) = E(Γ1) ∩ E(Γ2), and dim(Λ2(V∆)) =
(
m1−m2

2

)
.

Thus, inequality (4.11) holds for Γα chordal and connected (i.e., with r(Γα) = 1).

Finally, let Γα,1, . . . ,Γα,r be the connected components of Γα. Then

Λ1(Γ∗α) = Λ1(Γ∗α,1)⊕ . . .⊕ Λ1(Γ∗α,r).

Write α = α1 +. . .+αr, where αi ∈ Λ1(Γ∗α,i) for each i = 1, . . . , r. Since every connected

component is disjoint to each other, one has β ` β′ = 0 for every β ∈ Λ1(Γ∗α,i) and

β′ ∈ Λ1(Γ∗α,j) with 1 ≤ i < j ≤ r, and therefore

(4.15) Λ1(Γ∗α) ` α =
(
Λ1(Γ∗α,1) ` α1

)
⊕ . . .⊕

(
Λ1(Γ∗α,r) ` αr

)
.

Since (4.4) holds for each connected component of Γα, by (4.15) it holds also for Γα
itself. This completes the proof. �

Example 4.5. Let Γ be a simplicial chordal graph as in Example 2.4, with associated

pro-p RAAG GΓ. Set α = χ1 + . . .+ χ5 (so that Γα = Γ), and let Hα ⊆ GΓ and Yα be

as above. Then in Hα one has the three relations

[w1, w2] =
[
v1v
−1
2 , v2v

−1
3

]
= 1, as G∆′ = 〈 v1, v2, v3 〉 ' Z3

p,

[w1w2, w3] =
[
v1v
−1
3 , v3v

−1
4

]
= 1, as G∆ = 〈 v1, v3, v4 〉 ' Z3

p,

[w1w2w3, w4] =
[
v1v
−1
4 , v4v

−1
5

]
= 1, as G∆′′ = 〈 v1, v4, v5 〉 ' Z3

p,

which are independent in the sense of Proposition 2.1, and induced, respectively, by the

relations of G∆′ , of G∆, and of G∆′′ . Therefore,

dim (rGΓ,Hα(Λ2(Γ∗))) ≥ 3 = |E| − d(Γ) + r(Γ).

In particular, by the proof of Proposition 4.4 the decomposition (2.7) yields

dim (rGΓ,Hα(Λ2(Γ∗))) ≥ (|E(Γ1)| − d(Γ1) + 1) + (|E(Γ2)| − d(Γ2) + 1)− dim (Λ2(V∆))

= (5− 4 + 1) + (5− 4 + 1)−
(

2

2

)
= 3.
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On the other hand, the subgroups A1, A2 of GΓ (cf. Example 2.8) induce no relations

in Hα, as

A1 ∩Hα = 〈 w1w2 〉 and A2 ∩Hα = 〈 w1w2w3 〉,
and both are isomorphic to Zp. Hence, by the proof of Proposition 4.4, the decomposi-

tion (2.8) yields

dim (rGΓ,Hα(Λ2(Γ∗))) ≥ (|E(Γ1)| − d(Γ1) + 1) + (|E(∆′′)| − d(∆′′) + 1)− 0

= ((|E(∆′)| − d(∆′) + 1) + (|E(∆)| − d(∆) + 1)− 0) + 1− 0

= 1 + 1 + 1 = 3.

The next proposition gives a lower bound for the dimension of the image of the map

rGΓ,Hα restricted to the summand Λ1(Γ∗) ` V0 of H2(GΓ,Z/p) (cf. (4.2)). The idea is

the following. If v1, v2 ∈ V(Γα) and v3 ∈ V rV(Γα), and {v1, v3}, {v2, v3} ∈ E , then the

commutator

[w1, w3] =
[
v1v
−1
2 , v3

]
= [v1, v3][v−1

2 , v3]

is trivial: since w1, w3 ∈ Y, the relation [w1, w3] = 1 is a defining relation of H induced

by the two defining relations [v1, v3] = [v2, v3] = 1 of GΓ.

Proposition 4.6. Let Γ be a simplicial graph. Then

(4.16) dim (rGΓ,H(Λ1(Γ∗) ` V0)) ≥ |E0|+
∑

vj∈V0,α

(e(vj)− 1),

where V0,α is defined as in Proposition 4.2, E0 = {{vi, vj} ∈ E | m < i < j ≤ d}, and

e(vj) is the number of vertices of V(Γα) which are joined to vj.

Proof. If {vi, vj} ∈ E0, then wi = vi and wj = vj , and thus one has the relation

[wi, wj ] = 1 in H.

On the other hand, for vj ∈ V0,α, let vj1 , . . . , vje(vj)
be the vertices lying in V(Γα)

which are joined to vj , with 1 ≤ j1 < . . . < je(vj) ≤ m. Then, by commutator calculus,

for each vj ∈ V0,α one has the e(vj)− 1 relations

1 =
[
vj1v

−1
j2
, vj
]

= [wj1 · · ·wj2−1, wj ]

= [wj1 , wj ] · · · [wj2−1, wj ] · y1

...

1 =
[
vje(vj)−1

v−1
je(vj)

, vj

]
= [wje(vj)−1

· · ·wje(vj)−1, wj ]

= [wje(vj)−1
, wj ] · · · [wje(vj)−1, wj ] · ye(vj)−1

for some y1, . . . , ye(vj)−1 ∈ H(3).

Now let F be the free pro-p group generated by Y, and for every element x ∈ F , let

x̄ denote the image of x via the canonical projection F → F/F (3). The list of all the

relations above satisfies the hypothesis of Proposition 2.1, as their images modulo F (3)

give rise to the subset{
[wi, wj ], with {vi, vj} ∈ E0,∑j2−1

k=j1
[wk, wj ], . . . ,

∑je(vj)−1

k=je(vj)−1
[wk, wj ], with vj ∈ V0,α

}
⊆ Φ(F )/F (3)
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(here we use the additive notation for Φ(F )/F (3)). Therefore, the set{
(ωi|H) ` (ωj |H), with {vi, vj} ∈ E0,

(ωj1 |H) ` (ωj |H), . . . , (ωje(vj)−1
|H) ` (ωj |H), with vj ∈ V0,α

}
is a linearly independent subset of H2(H,Z/p), and thus of rGΓ,H(Λ1(Γ∗) ` V0). This

implies (4.16). �

4.4. Proof of Theorem 1.2. First, we prove Theorem 1.2–(i).

Theorem 4.7. Let Γ = (V, E) be a simplicial chordal graph. Then the associated pro-p

RAAG GΓ is of p-absolute Galois type.

Proof. Let α be a non-trivial element of H1(GΓ,Z/p), and set N = Ker(α). Put V =

{v1, . . . , vd} (so that d = d(Γ)), and write

α = a1χ1 + a2χ2 + . . .+ adχd, ai ∈ Z/p.

After replacing every generator vi with a−1
i vi in V, if ai 6= 0, 1, we may assume without

loss of generality that ai ∈ {0, 1} for every i = 1, . . . , d. Moreover, after renumbering the

vertices of Γ, we may assume that α = χ1+. . .+χm, for some m ∈ {1, . . . , d}. Finally, let

Γα = (V(Γα), E(Γα)) be the induced subgraph of Γ with vertices V(Γα) = {v1, . . . , vm}
(so that m = d(Γα)).

By Theorem 3.6–(i), it sufficies to show that Im(cα) = Ker(rGΓ,N ). In fact, since

Im(cα) ⊆ Ker(rGΓ,N ) — as (4.1) is a complex —, it is enough to show the left-side

inequality in

(4.17) dim(Im(cα)) ≥ dim(Ker(rGΓ,N )) = dim (Λ2(Γ∗))− dim (Im(rGΓ,N )) .

Moreover, if H ⊆ N is defined as in § 4.3, the functoriality of the restriction map implies

that dim(Im(rGΓ,N )) ≥ dim(Im(rGΓ,H)). Therefore, showing the inequality

(4.18) dim (Im(cα)) + dim (Im(rGΓ,H)) ≥ dim (Λ2(Γ∗)) = |E|.

will prove the left-side inequality in (4.17), and thus the equality Im(cα) = Ker(rGΓ,N ).

Let Hα ⊆ H be as defined in § 4.3, and let Wα be a subspace of rGΓ,H(Λ2(Γ∗α)) such

that the morphism

rH,Hα |Wα
: Wα −→ rGΓ,Hα(Λ2(Γ∗α))

is an isomorphism, and let V0 be as in § 4.2–4.3. Then Wα ∩ rGΓ,H(Λ1(Γ) ` V0) = 0 as

α′|Hα = 0 for every α′ ∈ V0, so that rH,Hα(α′′ ` α′) = 0 for every α′′ ∈ Λ1(Γ∗). Hence,

Im (rGΓ,H) ⊇Wα ⊕ rGΓ,H(Λ1(Γ) ` V0),

and consequently

(4.19) dim (Im(rGΓ,H)) ≥ dim(Wα) + dim (rGΓ,H(Λ1(Γ) ` V0)) .

Now, by Proposition 4.4 and Proposition 4.6, one has

dim(Wα) + dim(rGΓ,H(Λ1(Γ) ` V0)) ≥ (|E(Γα)| − d(Γα) + r(Γα)) +

+

|E0|+ ∑
vj∈V0,α

(e(vj)− 1)

 .
(4.20)
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Equations (4.10), (4.19), and (4.20), imply that

dim(Im(cα)) + dim(Im(rGΓ,H)) ≥ |E(Γα)|+ |E0|+ |V0,α|+
∑

vj∈V0,α

(e(vj)− 1)

= |E(Γα)|+ |E0|+
∑

vj∈V0,α

e(vj) = |E|,

and this yields inequality (4.18). �

Remark 4.8. The iterated procedure to construct chordal simplicial graphs (cf. Propo-

sition 2.5) makes them — and the associated pro-p RAAGs, also in the generalized

version (see [40, § 5.1] for the definition of generalized pro-p RAAG) — rather special:

indeed, by [40, Prop. 5.22] a generalized pro-p RAAG associated to a chordal simplicial

graph may be constructed by iterating proper amalgamated free pro-p products over

uniformly powerful (in some cases, free abelian) subgroups.

On the one hand, this property is crucial in the proof of Proposition 4.4; on the other

hand this implies that the Z/p-cohomology algebra of a generalized pro-p RAAG associ-

ated to a chordal simplicial graph is quadratic (cf. [40, Rem. 5.25]) — notice that, unlike

pro-p RAAGs, a generalized pro-p RAAG may yield a non-quadratic Z/p-cohomology

algebra (see [40, Ex. 5.14]).

Finally, the pro-p RAAGs associated to chordal simplicial graphs are precisely those

pro-p RAAGs which are coherent (cf. [47, Thm. 1.6]).

As stated in Theorem 1.2, chordal graphs are not the only simplicial graphs yielding

pro-p RAAGs of p-absolute Galois type. Let n be a positive integer, and let Qn be the

simplicial graph consisting of a row of n subsequent squares, i.e., Qn is the graph with

geometric realization

v1 v3 v5 v7 · · · v2n−3 v2n−1 v2n+1

• • • • • • •

• • • • • • •
v2 v4 v6 v8 · · · v2(n−1) v2n v2(n+1)

(for the example displayed in the picture above, n ≥ 3).

Clearly, Qn is not chordal. Yet, the structure of such a graph shows a feature similar

to the structure of chordal graphs. Given an induced subgraph Γ′ of a simplicial graph Γ,

we say that Γ′ is a subsquare of Γ if Γ′ is isomorphic to Q1, and we say that Γ′ is a subedge

of Γ if Γ′ consists of two joined vertices, i.e., V(Γ′) = {v, w} and E(Γ′) = {{v, w}}.

Lemma 4.9. Let n be a positive integer. Every connected induced subgraph of Qn may

be constructed recursively by pasting along complete subgraphs (i.e., subgraphs consisting

of a single vertex or subedges), starting from single vertices, subedges and subsquares.

Proof. Let Γ′ be an induced subgraph of Qn, and consider the set S of those subgraphs

of Γ′ which are either subsquares of Γ′, or subedges of Γ′ which are not subedges of any

subsquare of Γ′. Then Γ′ may be constructed by pasting together all subgraphs in S. It

is straightforward to see that if Γ1,Γ2,Γ3 ∈ S, and Γ1 ∩ Γi 6= ∅ for both i = 2, 3, then

Γ2 ∩ Γ3 = ∅. Moreover, one has the following:
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(a) if two subsquares belonging to S have non-trivial intersection, then they past

along a common subedge;

(b) if two subedges belonging to S have non-trivial intersection, then they past

along a common vertex;

(c) if a subsquare and a subedge of Γ′, both belonging to S, have non-trivial inter-

section, then they past along a common vertex.

This completes the proof. �

Lemma 4.10. Let n be a positive integer, and let Γ′ be an induced subgraph of Qn.

Moreover, let q(Γ′) be the number of distinct subsquares of Γ′. Then

(4.21) |E(Γ′)| − d(Γ′) + r(Γ′) = q(Γ′).

Proof. We proceed following the inductive construction of Γ′, as done in Lemma 4.9. If

Γ′ consists of a single vertex, of a couple of joined vertices, or if it is a subsquare, then

it is straightforward to see that (4.21) holds.

So, suppose that Γ′ is the pasting of two proper induced subgraphs Γ1,Γ2 along a

common subgraph ∆, where either ∆ is a single vertex, or a subedge of Γ′. Clearly,

q(Γ′) = q(Γ1) + q(Γ2). If ∆ is a single vertex, then

|E(Γ′)| = |E(Γ1)|+ |E(Γ2)| and d(Γ′) = d(Γ1) + d(Γ2)− 1;

while if ∆ is a subedge then

|E(Γ′)| = |E(Γ1)|+ |E(Γ2)| − 1 and d(Γ′) = d(Γ1) + d(Γ2)− 2.

Therefore, if (4.21) holds for both Γ1,Γ2, then it holds also for Γ′. Finally, if Γ1, . . . ,Γr
are the connected components of Γ′, then

|E(Γ′)| = |E(Γ1)|+ . . .+ |E(Γr)| and d(Γ′) = d(Γ1) + . . .+ d(Γr),

so, if (4.21) holds for all the connected components Γ1, . . . ,Γr, then it holds also for

Γ′. �

We are ready to prove Theorem 1.2–(ii).

Theorem 4.11. Let n be a positive integer. The pro-p RAAG GQn is of p-absolute

Galois type.

Proof. Put Q = Qn. We use the same notation as in § 4.1–4.3, with Γ = Q. Let α be

a non-trivial element of H1(GQ,Z/p) — as done in the proof of Theorem 4.7, we may

assume without loss of generality that

α = χa1
+ . . . χam for some 1 ≤ a1 < . . . < am ≤ 2(n+ 1).

By Theorem 3.6–(i) it sufficies to show that Im(cα) = Ker(rGQ,N ).

Let H,Hα ⊆ GQ as defined in § 4.3. We pursue the same strategy as in the proof of

Theorem 4.7, in order to prove inequality (4.18) for Γ = Q. Let Wα be a subspace of

rGQ,H(Λ2(Q∗α)) as defined in the proof of Theorem 4.7. Then

Im(rGQ,H) ⊇Wα ⊕ rGQ,H(Λ1(Q∗) ` V0).

By (4.10) and by Proposition 4.6 (which hold for any simplicial graph), it is enough to

show that

(4.22) dim(rGQ,Hα(Λ2(Q∗α))) ≥ |E(Qα)| − d(Qα) + r(Qα).
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Let Q(i) be the i-th subsquare of Q, i.e., Q(i) is the induced subgraph of Q with vertices

V(Q(i)) = {v2i−1, . . . , v2i+2}. If Q(i) is a subsquare of Qα, too, then by commutator

calculus one has the relation

1 =
[
v2i−1v

−1
2i+2, v2iv

−1
2i+1

]
= [w2i−1w2iw2i+1, w2i] = [w2i−1, w2i] · [w2i+1, w2i] · yi,

for some yi ∈ H(3)
α , as both v2i−1, v2i+2 commute with both v2i, v2i+1. Now let F be the

free pro-p group generated by {wa1 , . . . , wam−1}, and for x ∈ F let x̄ denote the image

of x via the canonical projection F → F/F (3). If Q(i1), . . .Q(iq(Qα)) are the subsquares

of Qα, the list of q(Qα) relations above satisfies the hypothesis of Proposition 2.1, as

their images modulo F (3) give rise to the set
[w2i1−1, w2i1 ] + [w2i1+1, w2i1 ]

...

[w2iq(Qα)−1, w2iq(Qα)
] + [w2iq(Qα)+1, w2iq(Qα)

]

 ⊆ Φ(F )/F (3).

(here we use the additive notation for Φ(F )/F (3)). Therefore, the set
(ω2i1−1|Hα) ` (ω2i1 |Hα) = rGQ,Hα (ω2i1−1 ` ω2i1)

...

(ω2iq(Qα)−1|Hα) ` (ω2iq(Qα)
|Hα) = rGQ,Hα

(
ω2iq(Qα)−1 ` ω2iq(Qα)

)


is a linearly independent subset of H2(Hα,Z/p) — and, in fact, of rGQ,Hα(Λ2(Q∗α)) —,

of cardinality q(Qα). Therefore, dim(rGQ,Hα(Λ2(Q∗α))) ≥ q(Qα), and inequality (4.22)

follows by Lemma 4.10. �

We were not able to prove any result about graphs containing n-cycles, with n ≥ 5,

as induced subgraphs. Still, we suspect that the answer to the following question is

positive.

Question 4.12. Let Γ = (V, E) be a simplicial graph. Is it true that the associated

pro-p RAAG of p-absolute Galois type if, and only if, Γ does not contain n-cycles as

induced subgraphs for n ≥ 5?

5. More pro-p groups of p-absolute Galois type

5.1. Free pro-p products. One knows that for every n ≥ 3 the n-Massey vanishing

property is preserved by free pro-p products (cf. [33, Prop. 4.5]). We show that also the

property of being of p-absolute Galois type is preserved by free pro-p products.

Theorem 5.1. Let G1, G2 be pro-p groups, and let G denote their free pro-p product

G1qG2. If G1 and G2 are of p-absolute Galois type, then also G is of p-absolute Galois

type.

Proof. Since G = G1 qG2, one has an isomorphism of graded Z/p-algebras

(5.1) H•(G) ' H•(G1)⊕H•(G2),

which implies that α1 ` α2 = 0 for every α1 ∈ H1(G1,Z/p) and α2 ∈ H1(G2,Z/p) (cf.

[34, Thm. 4.1.4–4.1.5]).

By Theorem 3.6–(i), it sufficies to show that (1.1) is exact at H2(G,Z/p) for every

non-trivial α ∈ H1(G,Z/p). By (5.1) we may write α = α1 + α2, with α1 = α|G1
∈
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H1(G1,Z/p) and α2 = α|G2
∈ H1(G2,Z/p). Set N = Ker(α), and N1 = Ker(α1) =

N ∩G1 and N2 = Ker(α2) = N ∩G2. By the Kurosh Subgroup Theorem for free pro-p

products of pro-p groups (cf. [34, Thm. 4.2.1]), one has

(5.2) N = N1 qN2 q

(∐
x∈S1

xN1x
−1

)
q

∐
y∈S2

yN2y
−1

q F
︸ ︷︷ ︸

H

,

where S1,S2 are finite subsets of non-trivial elements of G (in particular, one has

xN1x
−1 6= N1 and yN2y

−1 6= N2 for every x ∈ S1 and y ∈ S2), and F is a (possi-

bly trivial) free pro-p group. Thus, by (5.1) one has

H2(N,Z/p) = H2(N1,Z/p)⊕H2(N2,Z/p)⊕H2(H,Z/p).

For i = 1, 2, let ci : H1(Gi,Z/p) → H2(Gi,Z/p) denote the map induced by cup-

product with αi. By (5.1), for every α′ ∈ H1(G,Z/p) one has

cα(α′) = (α′|G1
+ α′|G2

) ` (α1 + α2)

= (α′|G1 ` α1) + (α′|G2 ` α2)

= c1(α′|G1
) + c2(α′|G2

).

Therefore, Im(cα) = Im(c1) ⊕ Im(c2). On the other hand, by (5.1) for every β ∈
H2(G,Z/p) one has β = rG,G1

(β) + rG,G2
(β), and since Ni = N ∩Gi for both i = 1, 2,

one has

rG,N (β) = rG,N (rG,G1
(β) + rG,G2

(β))

= rG1,N1
(rG,G1

(β)) + rG2,N2
(rG,G2

(β)) .

Consequently, Ker(rG,N ) = Ker(rG1,N1)⊕Ker(G2, N2), which is equal to Im(c1)⊕Im(c2),

as by hypothesis bothG1, G2 are of p-absolute Galois type. This concludes the proof. �

Remark 5.2. By Theorem 3.6–(ii), if G is as in Theorem 5.1, then G has the p-cyclic

Massey vanishing property. In fact, employing the universal property of free pro-p

products it is easy to prove that also the strong n-fold Massey vanishing property, for

every n ≥ 3, is preserved by free pro-p products (cf. [32, Prop. 4.8]).

5.2. Demushkin groups. Recall that a Demushkin group is a pro-p group G satisfying

the following:

(i) dim(H1(G,Z/p)) <∞;

(ii) H2(G,Z/p) ' Z/p;
(iii) the cup-product induces a non-degenerate bilinear form

H1(G,Z/p)×H1(G,Z/p)
` // H2(G,Z/p) ;

cf., e.g., [34, Def. 3.9.9]. From condition (ii), one deduces that Demushkin groups have a

minimal presentation with only one defining relation (cf. § 2.1). In particular, the only

finite Demushkin group G occurs in case p = 2 and dim(H1(G,Z/p)) = 1, i.e., G ' Z/2
(cf. [34, Prop. 3.9.10]). For more properties of Demushkin groups we direct the reader

to [34, Ch. III, § 9].
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One knows that any Demushkin group has the strong n-Massey vanishing property

for every n ≥ 3 (cf. [35, Thm. 3.5] and [32, Prop. 4.1]). We show that, in addition, any

Demushkin group is of p-absolute Galois type.

Theorem 5.3. Let G be a Demushkin group. Then G is of p-absolute Galois type.

Proof. Condition (iii) in the definition of Demushkin group implies that for any α ∈
H1(G,Z/p), α 6= 0, one has

(5.3) α ` H1(G,Z/p) = H2(G,Z/p).

Put N = Ker(α). Then by (5.3), the map cα : H1(G,Z/p) → H2(G,Z/p) is surjective.

Thus, by (3.3) one has Im(cα) = Ker(rG,N ), so that (1.1) is exact at H2(G,Z/p). By

Theorem 3.6–(i), this is sufficient to show that G is of p-absolute Galois type. Still, here

we provide an explicit proof of the fact that, if dim(H1(G,Z/p)) is even, the sequence

(1.1) is exact at H1(G,Z/p) for every α ∈ H1(G,Z/p). (Recall that if p 6= 2 then

dim(H1(G,Z/p)) is necessarily even.)

So, let G be a Demushkin group with d = dim(H1(G,Z/p)) even, and pick α ∈
H1(G,Z/p), α 6= 0. Since the cup-product induces a non-degenerate bilinear form,

H1(G,Z/p) decomposes as a direct sum of hyperbolic planes, and thus we may complete

{α} to a basis {α1 = α, α2, . . . , αd} of H1(G,Z/p) such that

(5.4) α1 ` α2 = α3 ` α4 = . . . = αd−1 ` αd 6= 0, and αi ` αj = 0

for any other couple of i, j with 1 ≤ i < j ≤ d. Thus, Ker(cα1) = Span{α1, α3, . . . , αd}.
Let {y1, . . . , yd} be a minimal generating set of G such that αi(yj) = δij . Then by

(5.4) one has an equivalence

(5.5) [y1, y2][y3, y4] · · · [yd−1, yd] ·
d∏
i=1

ypbii ≡ 1 mod F (3),

for some b1, . . . , bd ∈ Z/p (cf. [34, Prop. 3.9.13–(ii)]).

Set N = Ker(α1) — so, N is generated as a normal subgroup of G by the set

{yp1 , y2, . . . , yd}. Then N is again a Demushkin group, with

dim
(
H1(N,Z/p)

)
= 2 + p(d− 1)

(cf. [34, Thm. 3.9.15]). Moreover, (5.5) implies that [y2, y1] ≡ ypb11 mod Φ(N), and

therefore the set

Y =
{
yp1 , y2, y

ν
1yiy

−ν
1 | 3 ≤ i ≤ d, 0 ≤ ν ≤ p− 1

}
is a minimal generating set of N . Let {ψ1, ψ2, ψ3,0, ψ3,1, . . . , ψd,p−1} be the basis of

H1(N,Z/p) dual to Y, and consider {1, y1, . . . , y
p−1
1 } as a set of representatives of the

quotient G/N . For every α′ ∈ H1(N,Z/p) and every x ∈ G one has the formula

(5.6) cor1
N,G(α′)(x) =

p−1∑
h=0

α′
(
y−h

′
xyh1

)
,

where 0 ≤ h′ ≤ p−1 is such that xyh1N = yh
′

1 N (cf. [34, Ch. I, § 5.4]). Then (5.6) implies

that cor1
N,G(ψ1) = α1 and cor1

N,G(ψi,ν) = αi for every 3 ≤ i ≤ d and 0 ≤ ν ≤ p − 1,

while cor1
N,G(ψ2) = 0. Namely, Im(cor1

N,G) = Ker(cα1
). �
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Remark 5.4. If K is a p-adic local field containing a root of 1 of order p, then its

maximal pro-p Galois group is a Demushkin group, with

dim(H1(GK(p),Z/p)) = [K : Qp] + 2

(cf. [34, Thm. 7.5.11]). Also, Z/2 is the maximal pro-2 Galois group of R. It is still an

open problem to determine whether any other Demushkin group occurs as the maximal

pro-p Galois group of a field containing a root of 1 of order p.

5.3. Direct products. Let G be a pro-p group whose abelianization G/G′ is a free

abelian pro-p group. If p = 2, then the natural map H1(G,Z/4) → H1(G,Z/2) is

surjective, so that α ` α = 0 for every α ∈ H1(G,Z/2) (cf., e.g., [41, Fact. 7.1]; if p > 2

then one has α ` α = 0 trivially).

Proposition 5.5. Let G be a pro-p group whose abelianization G/G′ is a free abelian

pro-p group. Then for every α ∈ H1(G,Z/p) and for every n ≥ 2, the n-fold Massey

product 〈α, . . . , α〉 vanishes.

Proof. By Proposition 3.1–(i), we may suppose that α 6= 0. Let π : G → G/G′ denote

the canonical projection, and let ᾱ : G/G′ → Z/p be the morphism such that α = ᾱ ◦π.

Moreover, pick g ∈ G such that α(g) = 1. Then one has

G/G′ = 〈 π(g) 〉 ×B, for some B ⊆ Ker(ᾱ),

while 〈π(g)〉 ' Zp. Let ρ′ : G/G′ → Un+1 be the representation such that

ρ′(π(g)) =



1 1 0 · · · 0

1 1
. . .

...
. . .

. . . 0

1 1

1


and ρ′|B ≡ In+1. Then, the composition ρ = ρ′ ◦ π : G → Un+1 is a homomorphism

satisfying ρi,i+1 = α for every i = 1, . . . , n, and Proposition 3.4 yields the claim. �

Let G1 and G2 be two pro-p groups, and let G = G1 × G2 be their direct product.

Then for the Z/p-cohomology algebra of G one has the following:

H1(G,Z/p) = H1(G1,Z/p)⊕H1(G2,Z/p),

H2(G,Z/p) = H2(G1,Z/p)⊕H2(G2,Z/p)⊕
(
H1(G1,Z/p) ∧H1(G2,Z/p)

)
,

(5.7)

(cf. [34, Ch. II, § 4, Thm. 2.4.6 and Ex. 7]). In particular, if {χ1, . . . , χd1} and

{ψ1, . . . , ψd2
} are bases of H1(G1,Z/p) and H1(G2,Z/p) respectively, then

{ χi ` ψj | 1 ≤ i ≤ d1, 1 ≤ j ≤ d2 }

is a basis of H1(G1,Z/p) ∧H1(G2,Z/p).

Theorem 5.6. Let G1, G2 be two pro-p groups with torsion-free abelianization, and set

G = G1 ×G2.

(i) If both G1, G2 have the n-Massey vanishing property for every n ≥ 3, then also

G has the n-Massey vanishing property for every n ≥ 3.
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(ii) If both G1, G2 have the p-cyclic Massey vanishing property, then also G has the

p-cyclic Massey vanishing property.

Proof. First of all, observe that by (5.7) if α, β ∈ H1(G,Z/p) have trivial cup-product

α ` β, and α, β do not lie in the same subgroup H1(Gi,Z/p), then necessarily β = aα

for some a ∈ Z/p. In this case, by Proposition 3.1–(i) we may assume that a = 1 or

a = 0. Moreover, obviously the abelianization G/G′ ' G1/G
′
1 × G2/G

′
2 of G is a free

abelian pro-p group.

(i) Let α1, . . . , αn be a sequence of elements of H1(G,Z/p) such that the n-fold Massey

product 〈α1, . . . , αn〉 is defined — by Proposition 3.1, we may assume that αi 6= 0 for

all i = 1, . . . , n. Then αi ` αi+1 = 0 for all i = 1, . . . , n− 1, and by Proposition 3.4–(i)

there exists a representation ρ̄ : G→ Ūn+1 such that ρi,i+1 = αi for all i = 1, . . . , n.

If α1, . . . , αn ∈ H1(G1,Z/p), then the n-fold Massey product 〈α1|G1 , . . . , αn|G2〉 is de-

fined in H•(G1) — indeed, ρ̄|G1 : G1 → Ūn+1 is a representation satisfying (ρ̄|G1)i,i+1 =

αi|G1
— and thus, by hypothesis, 〈α1|G1

, . . . , αn|G2
〉 vanishes, yielding a representation

ρ′ : G1 → Un+1 satisfying ρ′i,i+1 = αi|G1
for every i = 1, . . . , n. Then, the represen-

tation ρ : G → Un+1 given by ρ|G1
= ρ′ and G2 ⊆ Ker(ρ) satisfies ρi,i+1 = αi for

every i = 1, . . . , n, and thus 〈α1, . . . , αn〉 vanishes by Proposition 3.4. Analogously, if

α1, . . . , αn ∈ H1(G2,Z/p) then 〈α1, . . . , αn〉 vanishes.

Otherwise, we may assume that α1 = . . . = αn, and the claim follows by Proposi-

tion 5.5.

(ii) Pick two non-trivial elements α, β ∈ H1(G,Z/p) such that α ` β = 0.

If α, β ∈ H1(G1,Z/p), then by hypothesis the p-fold Massey product

〈α|G1 , . . . , α|G1 , β|G1〉

vanishes in H•(G1), as

(α|G1) ` (β|G1) = rG,G1(α ` β) = 0

(by the functoriality of the restriction map). Thus, by Proposition 3.4–(ii) there exists a

representation ρ′ : G1 → Up+1 satisfying ρ′i,i+1 = α for i = 1, . . . , p+ 1, and ρ′p,p+1 = β.

As done above, we may define a representation ρ : G → Up+1 such that ρ|G1 = ρ′ and

G2 ⊆ Ker(ρ), so that ρi,i+1 = α for i = 1, . . . , p − 1 and ρp,p+1 = β. Therefore, the p-

fold Massey product 〈α, . . . , α, β〉 vanishes in H•(G). Analogously, if α, β ∈ H1(G2,Z/p)
then the p-fold Massey product 〈α, . . . , α, β〉 vanishes in H•(G).

Otherwise, if β = aα for some a ∈ (Z/p)×, then we may assume that a = 1, and the

p-fold Massey product 〈α, . . . , α〉 vanishes in H•(G) by Proposition 5.5. �

The Elementary Type Conjecture on maximal pro-p Galois groups, formulated by

I. Efrat, predicts that the maximal pro-p Galois group of a field containing a root of

1 of order p may be constructible — if it is finitely generated — starting from free

pro-p groups and Demushkin groups (and also the cyclic group of order 2, if p = 2),

and iterating free pro-p products and certain semidirect products with Zp (cf. [10, 11],

see also [41, § 7.5]). In case of fields containing all roots of 1 of p-power order, then

a finitely generated maximal pro-p Galois group shoud be constructible starting from

free pro-p groups and Demushkin groups with torsion-free abelianization, iterating free
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pro-p products and direct products with Zp. Therefore, from Theorem 5.6–(ii), together

with the aforementioned results contained in [33, § 4], one deduces the following.

Corollary 5.7. If the Elementary Type Conjecture holds true, then the maximal pro-p

Galois group GK(p) of a field K containing all roots of 1 of p-power order has the strong

n-Massey vanishing property for every n ≥ 3, provided that GK(p) is finitely generated.

In other words, Efrat’s Elementary Type Conjecture implies a strengthened version

of Minač-Tân’s conjecture [29, Conj. 1.1] — formulated again by Minač and Tân in [32]

(cf. Remark 3.3, see also [35]) — for fields containing all roots of 1 of p-power order

with finitely generated maximal pro-p Galois group.

Theorem 5.8. Let G1, G2 be two finitely generated pro-p groups with torsion-free

abelianization and such that H2(Gi,Z/p) = H1(Gi,Z/p) ` H1(Gi,Z/p) for both i = 1, 2.

If G1 and G2 are of p-absolute Galois type, then also the direct product G1 × G2 is of

p-absolute Galois type.

Proof. Let α be a non-trivial element of H1(G,Z/p), and set N = Ker(α).

Suppose first that α ∈ H1(G1,Z/p). Then N = N1 × G2, where N1 = N ∩ G1 =

Ker(α|G1
), so that

H2(N,Z/p) = H2(N1,Z/p)⊕H2(G2,Z/p)⊕
(
H1(N1,Z/p) ∧H1(G2,Z/p)

)
by (5.7). Let V0 be a subspace of H1(G1,Z/p) such that H1(G1,Z/p) = V0 ⊕ Span{α}.
We decompose the map rG,N into its restrictions to the direct summands of H2(G,Z/p)
as follows:

H2(G1,Z/p)

rG1,N1

��
rG,N

##

⊕ H2(G2,Z/p)

Id

⊕
(
V0 ∧H1(G2,Z/p)

)
⊕
(
α ∧H1(G2,Z/p)

)
r′

��
0

��
H2(N1,Z/p) ⊕ H2(G2,Z/p) ⊕

(
H1(N1,Z/p) ∧H1(G2,Z/p)

)
.

By hypothesis, Ker(rG1,N1) = Im(cα|G1
); while the map

r′ = (res1
G1,N1

|V0
) ∧ Id : V0 ∧H1(G2,Z/p) −→ H1(N1,Z/p) ∧H1(G2,Z/p)

is injective, as Ker(res1
G1,N1

) = Span{α}. Altogether, Ker(rG,N ) = Im(cα).

Obviously, after switching G1 and G2 the same argument shows that Ker(rG,N ) =

Im(cα) if α ∈ H1(G2,Z/p).
Suppose now that α = α1 + α2, with α1 = α|G1

∈ H1(G1,Z/p) and α2 = α|G2
∈

H1(G2,Z/p). Let X = {x1, . . . , xd1
} and Y = {y1, . . . , yd2

} be minimal generating

sets of G1 and G2 respectively, satisfying α1(xd1) = 1 and α(xi) = 0 for i 6= d1, and

α2(yd2) = 1 and α(yj) = 0 for j 6= d2; and let

B1 = { χ1, . . . , χd1 = α1 } ⊆ H1(G1,Z/p),

B2 = { ψ1, . . . , ψd2
= α2 } ⊆ H1(G2,Z/p),

be the bases dual to X and Y respectively. First, observe that α1 ` α2 = α ` α2 =

α1 ` α, so that α1 ` α2 ∈ Im(cα). Moreover, for every 1 ≤ i < d1 and 1 ≤ j < d2 one

has

χi ` α = χi ` α1 + χi ` α2 = χi ` χd1
+ χi ` ψd2

,

α ` ψj = α1 ` ψj + α2 ` ψj = χd1
` ψj − ψj ` ψd2

.
(5.8)
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We claim that the set

S = { α1 ` α2, χi ` α, α ` ψj | 1 ≤ i < d1, 1 ≤ j < d2 }

is a linearly independent subset of H2(G,Z/p). Indeed, suppose that there exist a, bi, cj ∈
Z/p, with 1 ≤ i < d1 and 1 ≤ j < d2, such that

(5.9) a(α1 ` α2) +

d1−1∑
i=1

bi(χi ` α) +

d2−1∑
j=1

cj(α ` ψj) = 0

Applying (5.8) to (5.9) yields

d1−1∑
i=1

bi(χi ` χd1)−
d2−1∑
j=1

cj(ψj ` ψd2) +

+

d1−1∑
i=1

bi(χi ` ψd2
) +

d2−1∑
j=1

cj(χd1
` ψj) + a(χd1

` ψd2
)

 = 0.

Since the three sets {χi ` χj | 1 ≤ i < j ≤ d2}, {ψi ` ψj | 1 ≤ i < j ≤ d2} and

{χi ` ψj | 1 ≤ i ≤ d1, 1 ≤ j ≤ d2} are bases of the direct summands of H2(G,Z/p) by

(5.7), one has a = bi = cj = 0 for every i, j. Therefore,

(5.10) dim(Im(cα)) ≥ |S| = (d1 − 1) + (d2 − 1) + 1 = d1 + d2 − 1.

Now put z = xd1y
−1
d2

and

Z1 = { x1, . . . , xd1−1, z } , Z2 = { y1, . . . , yd2−1, z } .

Let H1, H2, and H, be the subgroups of G generated by Z1, by Z2, and by Z1 ∪ Z2

respectively. Then H1, H2 ⊆ H ⊆ N . Since Z1 ∪ Z2 ∪ {xd1
} is a minimal generating

set of G, the inclusions Hi ↪→ G (with i ∈ {1, 2}) and H ↪→ G induce morphisms of

p-elementary abelian groups Hi/Φ(Hi) → G/Φ(G) and H/Φ(H) → G/Φ(G) which are

injective. Therefore, Zi is a minimal generating set of Hi, and Z1 ∪ Z2 is a minimal

geberating set of H, so that by duality the sets

B1 = { χ1|H1 , . . . , χd1−1|H1 , χd1 |H1 = α1|H1 } ,
B2 = { ψ1|H2

, . . . , ψd2−1|H2
,−ψd2

|H2
= −α2|H2

} ,
BH = { χ1|H , . . . , χd1−1|H , ψ1|H , . . . , ψd2−1|H , α1|H = −α2|H }

are bases of H1(H1,Z/p), H1(H2,Z/p), and H1(G,Z/p) respectively.

We claim that H1 ' G1 and H2 ' G2. Indeed, put C = 〈yd2
〉 ' Zp, and K1 = H1C.

Since G/G′ = G1/G
′
1 ×G2/G

′
2 ' Zd1+d2

p by hypothesis, one has

H1/H
′
1 ' Zd1

p and K1/K
′
1 = H1/H

′
1 × C ' Zd1+1

p ,

and consequently H1 ∩C = {1}— namely, K1 = H1×C. On the other hand, K1 is the

subgroup of G generated by {x1, . . . , xd1
, yd2
}, i.e., K1 = G1 × C. Altogether, one has

(5.11) H1 =
H1

H1 ∩ C
τ1 // H1 × C

C
=
G1 × C
C

G1
τ2oo

where both τ1 and τ2 are isomorphisms. Put φ = τ−1
2 ◦τ1. Then φ is an isomorphism, and

in particular φ(xi) = xi for i = 1, . . . , d1 − 1, and φ(z) = τ−1
2 (zC) = τ−1

2 (xd1C) = xd1 .
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By duality, the isomorphism φ∗ : H1(G1,Z/p) → H1(H1,Z/p) induced by φ coincides

with the restriction of res1
G,H1

to H1(G1,Z/p) — in particular, φ∗(χd1
) = α1|H1

=

χd1
|H1

. Since H2(G1,Z/p) = H1(G1,Z/p) ` H1(G1,Z/p), by (2.5) also the restriction

of rG,H1 to H2(G1,Z/p) is an isomorphism, so that if S1 = {χi ` χj | (i, j) ∈ I1} is a

basis of H2(G1,Z/p), then

rG,H1
(S1) = { (χi|H1

) ` (χj |H1
) | (i, j) ∈ I1 }

is a basis of H2(H1,Z/p). Thus, by the functoriality of the restriction map rG,H(S1)

is a linearly independent subset of H2(H,Z/p). An analogous argument proves that if

S2 = {ψi ` ψj | (i, j) ∈ I2} is a basis of H2(G2,Z/p), then rG,H2
(S2) is a basis of

H2(H1,Z/p), and rG,H(S2) is a linearly independent subset of H2(H,Z/p).
Finally, in H one has (d1 − 1)(d2 − 1) relations [xi, yj ] = 1, with i < d1 and j < d2,

which give rise to the subset

SH = { (χi|H) ` (ψj |H) | 1 ≤ i < d1, 1 ≤ j < d2 }

of H2(H,Z/p), which is linearly independent by Proposition 2.1.

Altogether, the disjoint union

rG,H(S1) ∪̇ rG,H(S2) ∪̇ SH ⊂ H2(H,Z/p)

is a linearly independent subset of H2(H,Z/p), as each one of the three subsets is linearly

independent, and one has rG,Hj (Si) = rH,Hi(SH) = {0}, for i, j ∈ {1, 2}, i 6= j — while

rG,Hi(Si) is linearly independent for both i = 1, 2. Therefore, by the functoriality of the

restriction map one has

dim (Im(rG,N )) ≥ dim (Im(rG,H))

≥ dim
(
H2(G1,Z/p)

)
+ dim

(
H2(G2,Z/p)

)
+ (d1 − 1)(d2 − 1).

(5.12)

Summing up (5.10) and (5.12), together with (5.7), yields

dim (Im(cα)) + dim (Im(rG,N )) ≥ dim
(
H2(G1,Z/p)

)
+ dim

(
H2(G2,Z/p)

)
+ d1d2

= dim
(
H2(G,Z/p)

)
,

and therefore Ker(rG,N ) = Im(cα). Then Theorem 3.6–(i) yields the claim. �

The list of finitely generated pro-p groups G of p-absolute Galois type satisfying the

three conditions (a)–(c) in Theorem 1.4–(ii) includes:

(a) pro-p RAAGs associated to simplicial graphs — whose family includes, in turn,

finitely generated free pro-p groups and finitely generated free abelian pro-p

groups —, by Theorems 1.1–1.2;

(b) Demushkin groups with torsion-free abelianization, or, equivalently, pro-p com-

pletions of oriented surface groups — namely, pro-p groups with minimal pre-

sentation

G = 〈 x1, . . . , xd | [x1, x2][x3, x4] · · · [xd−1, xd] 〉

with d even (these are precisely the Demushkin groups G with invariant q(G) =

0, cf. [21]) —, by [33, Thm. 4.3] and Theorem 5.3.

There are only very few ways to combine these pro-p groups via direct product, to obtain

the maximal pro-p Galois group of a field containing a root of 1 of order p, as stated by

the following (see also [19, Prop. 3.2]).
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Proposition 5.9. Let G1, G2 be two pro-p groups. Then the direct product G1 × G2

occurs as the maximal pro-p Galois group of a field containing a root of 1 of order p

only if one of the two factors is a free abelian pro-p group, and the other factor occurs

as the maximal pro-p Galois group of a field containing all roots of 1 of p-power order.

Proof. Suppose that G occurs as the maximal pro-p Galois group of a field K containing

a root of 1 of order p. Then by the Fundamental Theorem of Galois theory, for both

i = 1, 2, Gi is isomorphic to GKi(p), with Ki = K(p)Gi — and clearly both fields K1,K2

contain a root of 1 of order p.

By [37, Thm. 5.6], the direct product of two pro-p groups may occur as the maximal

pro-p Galois group of a field containing a root of 1 of order p only if one of the two

factors — say, G2 in our case — is a free abelian pro-p group. Now suppose that there

is a root ζ of 1 of order pf , with f ≥ 2, lying in K(p) but not in K. Then K(ζ)/K
is a Galois extension, of degree at most pf−1. Let g be an element of G such that

g.ζ = ζ1+pf−1

— i.e., g surjects to a suitable generator of the subquotient

Gal(K(ζ)/K(ζp)) =
GK(ζp)(p)

GK(ζ)(p)
' Z/p

of G. Since G2 is an abelian normal subgroup of G, [41, Thm. 7.7] implies that

ghg−1 = h1+pf−1

for every h ∈ G2.

This contradicts the fact that, by hypothesis, G2 is contained in the center of G, as

f ≥ 2. Thus, K (and hence also K1) contains every root of 1 of p-power order lying in

K(p).

Conversely, if G1 ' GK̄(p) for some field K̄ containing all roots of 1 of p-power order,

and G2 is a free abelian pro-p group, then it is well-known that G occurs as the maximal

pro-p Galois group of the field of Laurent series K̄((X )), where X = {Xi | i ∈ I}
is a set of indeterminates in bijection with a minimal generating set of G2 (cf., e.g.,

[37, Ex. 4.10]). �

Altogether, Theorems 1.1–1.4 and Theorem 5.6 provide a huge amount of pro-p groups

of p-absolute Galois type with the n-Massey vanishing property for every n ≥ 3. Still,

only few of them occur as the maximal pro-p group of a field containing a root of 1 of

order p, because of the restrictions given by Theorem 2.11 and Proposition 5.9. This

yields Corollary 1.5.

5.4. Pro-p groups hereditarily of p-absolute Galois type. We say that a pro-p

group G is hereditarily of p-absolute Galois type if every closed subgroup of G is of

p-absolute Galois type. Clearly, the maximal pro-p Galois group of a field containing a

root of 1 of order p is hereditarily of p-absolute Galois type, as every closed subgroup is

again the maximal pro-p Galois group of a field containing a root of 1 of order p.

The following result shows that, in order to verify the hereditariety, it is enough to

check open subgroups, in analogy with the Bloch-Kato property and 1-cyclotomicity

(cf. [41, Cor. 3.2 and Cor. 3.5]).

Proposition 5.10. Let G be a pro-p group. If every open subgroup of G is of p-absolute

Galois type, then G is hereditarily of p-absolute Galois type.
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Proof. Let H be a closed subgroup of G. By Theorem 3.6-(i), it is enough to show that

for every non-trivial α ∈ H1(H,Z/p), one has Ker(rH,Nα) = Im(cα), where Nα = Ker(α)

and cα : H1(H,Z/p) → H2(H,Z/p) denotes, as usual, the map induced by the cup-

product by α.

Since H is a closed subgroup of G, one has H =
⋂
U∈UH U , where UH is the set of all

open subgroups of G containing H (cf. [7, Prop. 1.2–(iii)]), and thus

(5.13) Hn(H,Z/p) = lim−→
U∈UH

Hn(U,Z/p) for every n ≥ 1,

where the morphisms of the injective limit are given by the restriction maps resnU,V for

every U, V ∈ UH such that U ⊇ V ⊇ H (cf. [44, Ch. I, § 2.2, Prop. 8]). In particular,

for U ∈ UH sufficiently small, there exists αU ∈ H1(U,Z/p) such that the restriction

αU |H is α. Then one has a commutative diagram

(5.14) H1(U,Z/p)
cαU //

res1
U,H

��

H2(U,Z/p)
rU,NαU //

rU,H

��

H2(NαU ,Z/p)

rHαU ,Hα

��
H1(H,Z/p)

cα // H2(H,Z/p)
rH,Nα // H2(Nα,Z/p)

where cαU denotes the map induced by the cup-product by αU , and NαU = Ker(αU ),

and the top row is exact by hypothesis.

Now pick β ∈ Ker(rH,N ), β 6= 0. After taking U even smaller, we may assume that

there exists βU ∈ H2(U,Z/p) such that β = rU,H(βU ) and rU,NαU (βU ) = 0. Since the

top row of (5.14) is exact, there exists α′ ∈ H1(U,Z/p) such that βU = α′ ` αU , and

thus β = (α′|H) ` α by (2.5). Hence β ∈ Im(cα). �
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