
Review article

Role of inflammation in diabetic macular edema and neovascular
age-related macular degeneration

Stela Vujosevic a,b, Marco Lupidi c,*, Simone Donati d, Carlo Astarita e, Valentina Gallinaro e,
Elisabetta Pilotto f

a Department of Biomedical, Surgical and Dental Sciences University of Milan, Milan, Italy
b Eye Clinic, IRCCS MultiMedica, Milan, Italy
c Eye Clinic, Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona, Italy
d Department of Medicine and Surgery, University of Insubria of Varese, Varese, Italy
e AbbVie S.r.l., SR 148 Pontina, Campoverde, LT 04011, Italy
f Department of Neuroscience-Ophthalmology, University of Padova, Padova, Italy

A R T I C L E I N F O

Keywords:
Diabetic Macular Edema
Neovascular age-related macular degeneration
Inflammation
Intravitreal corticosteroid implant
VEGF inhibitors

A B S T R A C T

Diabetic macular edema (DME) and neovascular age-related macular degeneration (nAMD) are multifactorial
disorders that affect the macula and cause significant vision loss. Although inflammation and neoangiogenesis
are hallmarks of DME and nAMD, respectively, they share some biochemical mediators. While inflammation is a
trigger for the processes that lead to the development of DME, in nAMD inflammation seems to be the conse-
quence of retinal pigment epithelium and Bruch membrane alterations. These pathophysiologic differences may
be the key issue that justifies the difference in treatment strategies. Vascular endothelial growth factor inhibitors
have changed the treatment of both diseases, however, many patients with DME fail to achieve the established
therapeutic goals. From a clinical perspective, targeting inflammatory pathways with intravitreal corticosteroids
has been proven to be effective in patients with DME. On the contrary, the clinical relevance of addressing
inflammation in patients with nAMD has not been proven yet. We explore the role and implication of inflam-
mation in the development of nAMD and DME and its therapeutical relevance.

1. Introduction

The increase in life expectancy, as well as changes in life habits, has
led to an increase in the prevalence of chronic inflammatory eye dis-
orders such as chorioretinal degenerative diseases.110

Among patients with diabetes mellitus (DM), diabetic retinopathy
(DR) and diabetic macular edema (DME) are the most common com-
plications leading to vision loss.182 It was estimated that 103.1 million,
28.5 million, and 18.8 million people worldwide were diagnosed with
DR, vision-threatening DR, and DME, respectively, in 2020;207 with a
likely increase in 2030 to 129.84 million for DR, 44.82 million for
vision-threatening DR and 23.50 million for DME.186 A systematic re-
view and meta-analysis published recently found that the prevalence of
DMEwas 5.47 % in the overall sample, ranging from 5.81 % to 5.14 % in
the low- and high-income countries, respectively.74

Along with DR and DME, neovascular age-related macular

degeneration (nAMD) is an exudative chorioretinopathy that causes
severe visual impairment in older adult patients worldwide.26,74,75,209

The estimated total prevalence of age-related macular degeneration
(AMD) in 2020 was projected to be 196million people, increasing to 288
million in 2040. Of those, nAMD represents approximately 10–15%, and
about 20 million people were affected in 2020. Due mainly to its rapid
progression, it represents 90 % of severe vision loss associated with
macular degeneration.26,74,110,209

Although DR/DME and nAMD are multifactorial disorders, current
scientific evidence highlights a key role for several common cellular and
molecular events: vascular endothelial dysfunction, 62,212increased
vascular permeability, 139,169oxidative stress, 12,15,46,113overexpression
of adhesion molecules, 46,90 alterations in the extracellular matrix (ECM)
metalloproteinase system,63,83,84,131 and increased levels and activity of
pro-inflammatory molecules.23,35,47,50,52,65,81,163,168

On the other hand, inflammation, a nonspecific protective response,
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that aims to neutralize harmful stimuli, interacts with vascular changes,
but the nature of this interrelationship frequently remains complex and
puzzling, and the consequences are difficult to predict. 35,157 Moreover,
inflammation and angiogenesis can be triggered by the same molecular
events, in which ischemia plays an important role, further strengthening
this association. 32,170 We review the role of inflammation in the
development of DME and nAMD and its therapeutic relevance.

2. Methods

A comprehensive narrative review of the available evidence was
performed. We carried out literature research using the following key-
words: "Diabetic Macular Edema" AND "Inflammation" OR "Neuro-
vascular Unit" AND "Clinical Outcomes"; "Diabetic retinopathy" AND
"Neurovascular Unit" AND "Clinical outcomes"; "Neovascular age-related
macular degeneration" AND "Inflammation" OR "Complement system"
AND "Clinical outcomes". This study included papers conducted on
humans and written in English, French, Italian, Portuguese, or Spanish.
In addition, we manually checked the reference lists of the different
studies included in this review to find any additional publications that
could be useful for the current paper.

3. Diabetic macular edema

3.1. The role of the retinal neurovascular unit in DR and DME

In patients with DM, the dysregulation of glucose and lipid meta-
bolism has marked effects on both retinal cells and vessel endothelium.
Extensive research, comprising both in vivo and in vitro experiments, has
demonstrated loss of endothelial cells and pericytes following exposure
to elevated glucose levels. 105,112 Moreover, alterations in retinal vessel
endothelium serve as chemotactic signals for leukocyte adhesion,
perpetuating a cycle of chronic inflammation. Simultaneously,
abnormal blood flow patterns within the retina manifest as micro-
aneurysms, capillary depletion, and retinal ischemia.47

The pathogenesis of diabetes complications is commonly analyzed
within the context of cellular metabolic and signaling pathways that
contribute to organ dysfunction, and specifically for DR/DME develop-
ment the blood-retinal barrier (BRB) plays a crucial role. Its structural
foundation lies in neurovascular units (NVU), which exemplify a
collaborative relationship between the nervous and vascular systems,
supporting each other’s functions.193

The NVU is a complex multi-heterocellular structure composed of
endothelial cells, neurons, glia, smooth muscle cells, pericytes, and
extracellular matrix (Table 1). Together with the BRB, the NVU, regu-
lates blood flow and retinal cell metabolism, thus allowing the
controlled exchange of nutrients and metabolic waste products.45,61, 96,
102,106,126,150,193,210

Cellular alterations in the retinal NVU, including changes in the
cytoskeleton, metabolism, chaperones, secreted proteins, signaling
proteins, and transporters, play an important role in the development
and progression of DR and DME.102,106,130,137,159 Early activation of the
innate immune system, the complement system, and retinal microglia
have a role in the damage of the retinal NVU causing reduced synaptic
protein expression and altered glial function.103,107,119,155

According to current evidence, DR is not only a microvascular
complication due to DM, but also a neurodegenerative disease.32 Glial
cells (astrocytes, Müller cells, and resident microglia) are critically
located between the vasculature and neurons of the retina, regulating
the retinal microenvironment, which is compromised in the initial stages
of DR.32,170

Müller cells and astrocytes play a crucial role in actively maintaining
retinal homeostasis and protection against oxidative stress.202 Müller
cells, spanning the entire thickness of the neural retina, provide struc-
tural and metabolic support to all neuronal cells and contribute to local
immune surveillance as well. They produce interleukins (ILs),

chemokines, and vascular endothelial growth factor (VEGF). Further-
more, Müller cells regulate the expression of aquaporins and inwardly
rectifying potassium (Kir) channels which are essential for maintaining
fluid homeostasis.25,50,81,84,163

Resident microglial cells respond to chronic insults, such as diabetes,
by becoming activated, changing their appearance into an ameboid
form, and gaining the ability to migrate into the retina.23 Once acti-
vated, microglia produce proinflammatory and cytotoxic factors,
including tumor necrosis factor (TNF)-alpha, IL-a1ß, reactive oxygen
species (ROS), and reactive nitrogen species.182 These factors function-
ally impair neuronal cells and cause injury to pericytes and endothelial
cells, leading to dysfunction of the NVU, BRB breakdown, increased
vascular leakage, transcellular transport, immune cell infiltration, and
reduction of the intercellular junction, finally resulting in the develop-
ment of DME.130,137,159

3.2. The advanced glycation end products (AGEs), protein kinase C
(PKC) and polyol pathway

In patients with DM, hyperglycemia can induce the overactivation of
multiple biochemical pathways, including the advanced glycation end
products (AGEs), the polyol, the PKC activation, the local renin-
angiotensin system (RAS), and the hexosamine pathways.11,35,155

Overactivation of these pathways induces inflammation, hypoxia,
and oxidative stress35,192 which in turn leads to a BRB breakdown,
increasing osmotic pressure with the subsequent edema.35,192

AGEs are biological macromolecules (proteins, lipids, or DNA) that
become glycated after exposure to glucose.177 AGEs enhance fibrosis
and trigger inflammation by forming collagen crosslinks and engaging
with the AGE receptor (RAGE), which disrupts calcium regulation.35

Additionally, they have been associated with leukocyte activation, and
promote the upregulation of the vascular cell adhesion molecule 1
(VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) on the
endothelial cell surface.28 AGEs can bind various receptors on the cell
surface and stimulate the production of reactive species of oxygen, the
increase of cell permeability, and inflammation.24,73

The activation of the polyol pathway leads to alternative glycolysis
through sorbitol and fructose production,18,188 and overexpression of
ROS, with the subsequent increase of cell oxidative stress.33 On the other

Table 1
Different components of the Neurovascular Unit (NVU) and their function.

Component Function

Endothelial cells (ECs) • Their specialization depends on the vascular
bed in which they are situated.

• At the BRB:
• ECs exhibit reduced pinocytosis/transcytosis.
• Increase expression of tight junction molecules.
• Exclude free transport of substances over 400
kDa

Mural cellsa • They are positioned in the basement membrane
shared with ECs.

• They are involved in:
• Maintain vascular stability.
• Provide structural support for blood vessels.
• Govern vasodilation/constriction.

Glial cells • Glial cells physically ensheath blood vessels
with their endfeet, creating the semi-permeable
glia limitans.

• Glia physically connects vessels to neurons;
modulates neurotransmission; and impacts
neurogenesis.

Microglia; Macrophages; and
Perivascular Macrophages.

• They play roles in phagocytosis and the
inflammatory response.

ECM molecules • They support the glio-vascular interface.

ECs: Endothelial cells; BRB: Blood retinal barrier; ECM: Extracellular matrix
cells.
aConstitute pericytes and vascular smooth muscle cells (vSMCs).
Source:Adapted from Kugler et al (102.
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hand, the accumulation of fructose, which is considered a glycating
agent, is responsible for the formation of AGEs.33

Finally, hyperglycemia also causes the accumulation of diac-
ylglycerol (DAG) in the retina, which is responsible for the PKC acti-
vation pathway.35,177 This is involved in different processes related to
DME, such as retinal vascular dysfunction and pericyte loss55,64, in-
duction of angiogenesis and leukocyte adhesion2189, increase of oxida-
tive stress levels55 and apoptosis.10

3.3. The role of inflammation in DME

Inflammatory processes may underlie many of the retinal vascula-
ture alterations observed in eyes with DME.81 Several cytokines, che-
mokines, and permeating factors [including placental growth factor
(PLGF), platelet-derived growth factor (PDGF), interleukin (IL)− 6, IL-8,
monocyte chemoattractant protein (MCP)− 1, ICAM-1, interferon-indu-
cible 10-kDa protein (IP-10) and erythropoietin (EPO)] have been
repeatedly found elevated in ocular fluids of eyes with DME (Table 2). A
relationship between intraocular levels of inflammatory molecules and
retinal thickness at the OCT has been found.47,50,51, 97,107,132,133,143,146,
213

Ischemic retina releases vascular endothelial growth factor (VEGF),
which may trigger to neo-angiogenesis but also causes excessive
vascular permeability204,208. Its family includes several VEGF isoforms
(-A, -B, -C, -D, -E) and the PLGF. The overexpression of VEGF-A and
PLGF are associated with an increase in vascular permeability35,208 and

are elevated in the retina and vitreous of patients with DME;81 however,
in DME eyes that do not adequately responding to VEGF inhibitors
(anti-VEGF) treatment, higher levels of inflammatory molecules, such as
IL-6, IL-8, tumor necrosis factor receptor (TNFR)− 1 and − 2, and matrix
metalloproteinase (MMP)− 9 were documented.190

Increased levels of inflammatory cytokines, including TNF-α, IL-1β,
and IL-6, favor the upregulation of intracellular adhesion molecules,
such as ICAM-1 and VCAM-1, which attract monocytes and leukocytes
and promote a continuous inflammatory response132,133,140,177. Finally,
the combined action of these processes results in decreasing local blood
flow velocity, further increasing retinal hypoxia132,133.

Fig. 1 summarizes the main pathways involved in the development of
DR and DME.

4. Neovascular age-related macular degeneration

The pathophysiology of AMD is multifactorial and includes defects in
autophagy, mitochondrial dysfunction with altered response to oxida-
tive stress, changes in the extracellular matrix metalloproteinase (ECM)
system, aging of the choroidal vascularization and chronic inflamma-
tion.6,46,53,83,84,86,185

Early and intermediate stages of AMD are usually characterized by
the presence of drusen, which are deposits of ECM beneath the basal
lamina of the RPE.6,16,53

Intermediate AMD can evolve to more advanced stages that include 2
different forms, not mutually exclusive, namely geographic atrophy and
nAMD. 6,16,53

The hallmark of nAMD is the development of macular neo-
vascularization (MNV). Hypoxia, as well as hyperactivity of the com-
plement system, leads to disturbances in the pro/antiangiogenic balance
in RPE cells. Overexpression of proangiogenic VEGF contributes to the
breakdown of the BRB and sprouting of fragile blood vessels from the
choroid through Bruch membrane into the retina;15,110 however, VEGF
alone is not sufficient to cause MNV, indicating the involvement of other
pathways, such as components of the alternative complement pathway
(ACP)135 and inflammation.6,16,53,86, 138,164,185

4.1. Complement system and glial‑mediated mechanisms in nAMD

The complement system is composed of approximately 50 proteins,
circulating in the blood as inactive components, whose main role is to
recognize and mediate the removal of pathogens, debris, and dead
cells.29,152 In nAMD, complement activation leads to the recruitment
and activation of immune cells, including retinal microglial cells,
circulating lymphocytes andmonocytes/macrophages, andmast cells.14,
136 Moreover, complement activation can also stimulate RPE cells into
secreting a range of inflammatory cytokines, such as IL-6, IL-8, and
monocyte chemotactic protein-1 (MCP-1), further contributing to BRBs
dysfunction.113

Drusen contain many components of the ACP, such as C3/C5, com-
plement factor H (CFH), and the terminal pathway proteins C5, C6, C7,
C8, C976,156. Anaphylatoxins C3a and C5a, generated with the break-
down of C3 and C5, were immunolocalized to drusen in eyes with
nAMD, providing direct evidence of complement activation.135

Furthermore, C3a, C5a, and membrane attack complexes found in sub-
retinal drusen plaques are associated with an increase in the levels of the
pro-angiogenic VEGF in primary human RPE cells, but not in human
choroidal endothelial cells.36,76,78, 111,135,156,168,187 In nAMD, the stim-
ulation of monocytes by C3a can lead to IL-1β secretion and leucine-rich
repeat (LRR)-containing proteins (NLR) P3 (NLRP3) inflammasome
activation8,9, and both C3a and C5a cause an increase in nuclear factor
kappa B (NF-kB) signaling in monocyte-derived dendritic cells.8,109

Additionally, these ACP components and the membrane-attack-complex
(MAC) C5b-9 in RPE cells overlying drusen, may either lyse RPE cells or
impair their physiological homeostasis.36,76,78, 111,135,156,168,187

In this complex environment, retinal microglia have been implicated

Table 2
Different inflammatory/ pro-inflammatory molecules related to diabetic reti-
nopathy (DR) and diabetic Macular Edema (DME) and its relationship with
central retinal thickness (CRT).

Molecules Ocular media Increase* CRT (±) Ref.

IL− 3 Aqueous 3.6 × - 79

Vitreous NSa - 56

IL− 6 Aqueous 10.4 × - 79

Vitreous 19.8 × - 51

Vitreous 10.2 × Yes (+) 50

Vitreous 14.4 × - 213

Aqueous 2.3 × No 107

NSa - 56

IL− 8 Aqueous 10.3 × - 79

Vitreous 8.9 × - 213

Aqueous 2.3 × Yes (+) 107

Vitreous NSa - 51

IL− 13 Aqueous 0.9 × No 107

Vitreous NSa - 51

EGF Aqueous 1.7 × - 79

Vitreous NS - 213

Aqueous NS No 107

Vitreous NSa - 56

HGF Aqueous 1.9 × - 79

Vitreous 3.6 × - 143

aMultivariate analysis with adjustment on all biological factors assessed.
* Fold increase Patients vs Controls.
(+) = positive correlation with central macular thickness.
(− ) = negative correlation with central macular thickness.
Abbreviations: CFRT: Central retinal thickness; IL: Interleukin; EGF: Epidermal
Growth Factor; HGF: Hepatocyte Growth Factor; TGF-β: Transforming Growth
Factor β; TNF-α: Tumor Necrosis Factor α; PGF: Placental Growth Factor; VEGF:
Vascular Endothelial Growth Factor; PEDF: Pigment Epithelium Derived Factor;
PDGF-AA: Platelet Derived Growth Factor; PDGF-AB: Platelet Derived Growth
Factor; PDGF-BB: Platelet Derived Growth Factor; ICAM-CD54: InterCellular
Adhesion Molecule 1; VCAM: Vascular cell adhesion molecule 1; CXCL-10: C-X-C
motif chemokine 10; IP-10: Interferon gamma-induced protein 10; CCL2: Che-
mokine ligand 2; MCP-1: Monocyte chimoattractant protein 1; CXCL-9: C-X-C
motif chemokine ligand 9; MIG: Monokine induced by γ-interferon; MMP-9:
Matrix metallopeptidase 9; PAI-1: Plasminogen activator inhibitor-1; sF1t1:
Soluble fms-like tyrosine kinase-1; sVEGFR-1 = Soluble vascular endothelial
growth factor receptor 1; NS: Not significant.
Source:Adapted from Daruich et al (35.
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in the etiology of nAMD. Retinal microglia are found able to produce and
release ACP components, such as C3, CHF, and complement factor B
(CFB).44 Since the link has been established between alterations in the
ACP, microglia, and the risk of developing nAMD,8,9,44,49,53,66,76,78, 109,
111,129,156,158 there is increasing evidence suggesting the involvement of
inflammation and dysregulated innate immunity in the pathogenesis of
nAMD.6149,164

4.2. The role of inflammation in nAMD

RPE and dendritic cells (DCs) play crucial roles in the formation of
drusen. Choroidal DCs become activated and recruited in response to
damaged RPE cells. This activation perpetuates and amplifies local
inflammation through various mechanisms, including the formation of
immune complexes and the activation of complement and choroidal T-
cells or phagocytic cells.66,78,87

Furthermore, in addition to the ACP components, drusen contain
several pro-inflammatory factors, such as proinflammatory cytokines
(IL-6, IL-18, IL-22, and IL-17A), matrix-remodeling proteases (MMP)
(mainly MMP-1, MMP-2, MMP3, and MMP-9), and growth factors (e.g.,
transforming growth factor-β).36,76, 111,135,156

Pathological changes within the Bruch membrane combined with
proangiogenic and inflammatory factors enable the invasion of endo-
thelial cells, pericytes, fibrocytes, and inflammatory cells into the sub-
RPE or the neurosensory retina.131,171 Subsequently, there is an active
inflammatory phase, in which several mediators are produced by the
RPE, retinal glial cells (Müller cells and microglia), endothelial cells, and
invading macrophages.16,36,76,111,156 IL-1β, for instance, produced by
activated retinal microglia and RPE118,175 stimulates VEGF secretion86

and may initiate a paracrine amplification loop of inflammasome
activation.20

Additionally, activated components of the ACP (such as C3a and

C5a) and CFH, significantly increase oxidative stress in the retina,
leading to the excessive formation of ROS.17 In patients with nAMD, the
existence of significantly increased levels of total oxidant status in the
serum and decreased levels of total antioxidant status has been reported.
39,148 ROS are associated with nAMD progression since able to induce
necrosis of RPE cells, promoting the release of damage-associated mol-
ecules that can further stimulate immune and inflammatory
responses.148

Collectively, damage to the RPE and Bruch membrane breakdown
leads to the activation of inflammatory pathways resulting in the release
of proinflammatory cytokines and other mediators.7,37,38,80,86,95,100,134,
162 This environment promotes the activation of immune cells (gran-
ulocytes, monocyte-derived macrophages, and lymphocytes) and com-
plement system,67,70 which stimulates RPE cells to release IL-8, and
MCP-1, further contributing to BRB dysfunction.119 Fig. 2 summarizes
the different pathways involved in the pathophysiology of nAMD.

5. Therapeutic relevance of inflammation in DME and nAMD

Neovascular AMD and DME are 2 prevalent and disabling macular
disorders, with complex and, not fully-understood etiopathogenesis. The
advent of anti-VEGF therapy meant a significant treatment improve-
ment, but many patients failed to achieve the established therapeutic
goals.165,166 Up to 40 % of eyes with DME treated with anti-VEGF do not
adequately respond to treatment.21,59 Whereas in nAMD, despite great
short-term functional and anatomical results, long-term observational
studies revealed that almost one-third of patients had poor visual out-
comes over periods of several years,22 101,125,154,167. These findings
might indicate a complex pathophysiology, in which other factors, such
as inflammation, are involved in the development and progression, at
least for DME;6,35,53,81,86,98,171 however, it must be considered that
vision loss in nAMD may be related to other factors, such as retinal

Fig. 1. An overview of the different pathways involved in the development of diabetic retinopathy (DR) and diabetic Macular Edema (DME). Adapted from Daruich
et al (35) and Romero-Aroca et al (155). LDL: Low-density lipoprotein; ROS: Reactive oxidative species; AGEs: Advanced glycation end-products; PKC: Protein kinase
C; RAS: Renin–angiotensin system; ICAM-1: Inflammatory intercellular adhesion molecule-1; VEGF: Vascular endothelial growth factor; VCAM-1: Vascular cell
adhesion molecule-1; PEDF: Pigment epithelium-derived factor; CCL2: Chemokine C-C motif ligand 2; Ang-2: angiopoietin-2; IL: Interleukin; TNF: Tumor necrosis
factor; DME: Diabetic Macular Edema.
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degeneration, fibrosis, and/or atrophy.6,53,86

As inflammation is a key contributing factor in the etiopathogenesis
of DME, research on corticosteroids (CS), has been ongoing for many
years due to their powerful anti-inflammatory/antiedematous effects,
with different intravitreal CS nowadays approved.19,34,184,206 CS inhibits
the arachidonic acid pathway via phospholipase A2 inhibition, this re-
duces the synthesis of thromboxane, leukotrienes, and prostaglandins.
Furthermore, CS can stabilize lysozymes, decrease the synthesis of in-
flammatory mediators and VEGF, inhibit cell proliferation, stabilize the
BRB, enhance the density and activity of tight junctions in the retinal
capillary endothelium, and improve retinal oxygenation.153,179 In
addition, there is evidence suggesting that CS controls gene expression
promoting anti-inflammatory factors.160

Clinical studies reported that intravitreal injection of CS significantly
decrease the levels of monocyte chemo-attractant protein 1 (MCP-1),
soluble intercellular adhesion molecule 1 (sICAM-1), monokine induced
by gamma interferon (MIG), soluble vascular cell adhesion protein
(sVCAM), IL-6, interferon-induced protein (IP)− 10, VEGF, and
PDGF.145,173 Furthermore, more pronounced changes in specific in-
flammatory OCT imaging biomarkers in the inner retina are documented
after CS versus anti-VEGF treatment.116,124,183,195,198,199,201 The evalu-
ation of OCT imaging biomarkers is far less invasive than molecular
biomarkers found in the aqueous humor196,197 and are classified as
disorganization of the inner retinal layers (DRIL),122 presence, size, and
localization of hyperreflective foci (HRF),123 serous retinal neuro-
epithelial detachment (SRD),200 intraretinal cystoid spaces,117 loss of
integrity of the outer retinal layers, specifically the external zone/ex-
ternal limiting membrane (EZ/ELM).89 Imaging biomarkers may have a
predictive/prognostic role in DME121,183 and support precise clinical
management by identifying inflammatory DME phenotypes.201 Specif-
ically, SRD is associated with an elevated vitreous concentration of
proinflammatory cytokines, such as interleukin-6 and interleukin-8,174

whereas HRF represents activated microglia and may serve as a surro-
gate marker chronic neuro-inflammation.116,124,183,195,198,201

Their routine analysis and management in daily practice can be
extremely complex due to the large amount of data generated and the
time needed for manual identification 1,120. Some AI algorithms have
been shown to be useful, reliable, and reproducible tools for assessing
the most relevant OCT imaging biomarkers.124,181 They may allow cli-
nicians to routinely identify and quantify these parameters, offering an
objective way to phenotype DME.114

Unlike DME and DR, where inflammation holds a pivotal role since

the initial stages of the disease5,46,50,65,81,88,163,168, in nAMD, inflam-
mation seems to be related to the presence of drusen. They act as triggers
that can activate different pathways that promote the progression of
AMD to the late stage.16,78,156

Few reports are published on the use of intravitreal CS in addition to
anti-VEGF for patients with nAMD 31,40,42. The administration of intra-
vitreal CS has reduced the central retinal thickness and the number of
anti-VEGF injections in the long term, but has not led to functional
improvements.13,40,57

Local inhibition of complement activation has been considered a
promising approach not only for geographic atrophy (GA)69,93 but also
for treating nAMD. 78,142,161 New biologic agents included molecules
that target different components of the complement cascade, such as
C3-mediated treatments (POT-4/AL78898A, APL-2); factor D-mediated
treatments (lampalizumab); and C5-mediated treatments (eculizumab,
LFG316, ARC1905).141 Despite the preclinical relevance of the com-
plement pathway, none of these molecules moved to the phase III stage
of development in nAMD. Additionally, results from pivotal trials of
complement inhibitors in GA69,93 have shown an increased incidence of
macular neovascularization in the treatment group compared with
sham, highlighting the complement system’s complex and not fully
understood role in the pathogenesis, and as a therapeutic target, in
nAMD.142,205

It is worth mentioning an additional pathway that has been recently
explored as a potential target in DME and nAMD, which is the
angiopoietin-Tie2 (Ang/Tie2) axis.94 Ang/Tie2 pathway is involved in
distinct and important stages of angiogenesis such as vessel remod-
eling/maturation and vascular permeability with a possible downstream
effect that may impact the underlying inflammation.95

Due to the failure of complement inhibitors monotherapy trials,
there are no available treatments that directly and specifically tackle the
complement system/inflammation in nAMD, and all the therapeutic
agents target VEGF.151,161 With the latest approved drugs to have either
a higher molar dose 104 or the capability to target and inhibit both VEGF
and Ang-2;92 this in turn leads to longer treatment intervals and better
anatomical results when compared to older anti-VEGF.211

On the contrary, since we have better understood the role of
inflammation in the development and progression of DME the rationale
for CS employment has improved. Different meta-analyses have evalu-
ated or compared the effect of anti-VEGF therapy and CS in patients with
DME.4,30,43,68, 103,108,144,147,153,194,203 A systematic review and
meta-analysis that included 14 randomized controlled trials (RCTs)

Fig. 2. Overview of the pathophysiological leading to choroidal neovascularization. Adapted from Anderson et al (7) and Campochiaro (26). Ang-2: Angiopoietin-2;
CXCR4: CXC chemokine receptor 4; FGF: Fibroblast growth factor; HIF-1: Hypoxia-inducible factor-1; PDGFβ: Platelet-derived growth factor; PDGFRβ: platelet-
derived growth factor receptor beta; PLGF: Placental growth factor; SDF-1: stromal derived factor-1; VEGF: Vascular endothelial growth factor; VEGFR: Vascular
endothelial growth factor receptor; VE-PTP: Vascular endothelial protein tyrosine phosphatase.
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assessed the efficacy and safety of intravitreal CS compared with
anti-VEGF in patients with DME.144 Regarding visual function, at the last
follow-up visit, there were no significant differences in best-corrected
visual acuity between the eyes treated with intravitreal CS and those
treated with intravitreal anti-VEGF (weighted mean difference: − 0.00
ETDRS letters; 95 % confidence interval: − 0.05 to 0.04 ETDRS letters;
p = 0.91).144 Nevertheless, among the 12 RCTs that reported informa-
tion about retinal thickness, final retinal thickness was significantly
lower in the eyes treated with intravitreal CS than in those treated with
intravitreal anti-VEGF (weighted mean difference: 39.99 µm; 95 %
confidence interval: 14.58 µm to 65.41 µm; p = 0.002).144

Chi and coworkers, in a systematic review and meta-analysis, eval-
uated not only RCTs, but also real-world studies.30 In patients with
resistant DME, defined as DME with suboptimal response after
anti-VEGF injections, best-corrected visual acuity was better in the eyes
treated with CS than in those treated with anti-VEGF (mean difference:
0.12 logMAR, 95 % CI 0.02–0.21, I2 = 0 %). Nevertheless, in patients
with nonresistant DME, a nonsignificant difference was found in visual
outcomes between intravitreal CS and intravitreal anti-VEGF (mean
difference: 0.00 logMAR; 95 % confidence interval: − 0.06 to 0.05).30

Regarding anatomic outcomes, intravitreal corticosteroids achieved a
greater retinal thickness decrease than anti-VEGF in both groups.30

Despite those results, CS has been long associated with a higher
incidence of intraocular pressure-related adverse events which represent
the main limitations and challenges of these anti-inflammatory drugs.
The results of a retrospective multicenter analysis, which included data
from 3014 CS injections in 1434 eyes with DME, found that 271 eyes
required cataract surgery.147 Regarding intraocular pressure-related
adverse events, 285 eyes had an intraocular pressure rise. Among
them, 15 eyes did not require any intraocular pressure lowering treat-
ment, 260 eyes were successfully managed with topical ocular hypo-
tensive medication, 1 eye was treated with laser trabeculoplasty, and 9
eyes required surgery.147

Development and progression of cataracts have also been associated
with prolonged and repeated exposure to CS, although according to the

results of a meta-analysis comparing the outcomes of cataract surgery
combined with either anti-VEGF therapy or CS in patients with DME, the
latter provided better anatomic outcomes than anti-VEGF.43

It is becoming increasingly important to define the patients’ char-
acteristics that may guide the choice among anti-VEGF and CS treat-
ments in first-line settings and different international guidelines and
consensus documents have been published trying to solve this issue.54,58,
99,166,176,191 Additionally, recent prospective and retrospective studies
highlight that early-switch to CS (after 3–6 anti-VEGF injections) had
better best-corrected visual acuity than late-switch patients (after >6
anti-VEGF injections) despite both groups showing significant central
subfield retinal thickness (CRT) improvement.71,127 This is of particular
interest as patient management strategies may also include switching
from one agent to another in case of refractory eyes; due to the main use
of anti-VEGF as a front-line drug, a therapeutic switch to CS is the most
common practice.166

5.1. Novel therapeutic options in development for DME and wAMD

Novel molecules are currently under development for DME and
nAMD; herein we describe a selected list of drugs that target pathways
different than VEGF.27,41,48,60,77,82,85, 91,117,172,178,180 (Table 3).

As there has been an increased interest in the inflammatory mech-
anisms behind the pathogenesis of DME, a range of new drugs are
currently being evaluated. These include novel CS formulations, fusion
protein targeting VEGF and integrin, interleukin-6 inhibitor; endothelin
pathways targets, guanylate cyclase activator– as well as inhibitors of
connexin43, plasma kallikrein inhibitor, rho-associated protein kinase 1
and 2, and reduction-oxidation factor-1.48,172

Additionally, the route of administration for these new therapies can
be topical (OCS-01 and OTT-166), oral (Tonabersat, RZ402, OPL-0401,
APX-3330, Runcaciguat, and AKST4290), intravitreal (AG73305,
R07200220, Perfuse-01, IBE-814 IVT, and SOM-401), or suprachoroidal
(OXU-001).27,41,48,60,77,82,85, 91,117,172,178,180

The topical dexamethasone ophthalmic suspension OCS-01(Oculis

Table 3
Overview of the current phase 2 and 3 clinical trials in diabetic eye diseases and neovascular age-related macular degeneration.

Diabetic Eye
Diseases

Drug Condition Mechanism Delivery NCT Status Last update

OCS− 01 DME Steroid, Dexamethasone Topical drop NCT05066997 Active, not
recruiting

January 2023

AG73305 DME Fusion protein targeting VEGF and integrin Intravitreal
injection

NCT053001751 Recruiting July 203

R07200220 DME Interleukin− 6 inhibitor Intravitreal
injection

NCT05151731 Recruiting September
2023

Perfuse− 011 NPDR Targets endothelin pathways Intravitreal implant NCT06003751 Recruiting August 2023
OXU− 001 DME Steroid microspheres. Microcatheterization

device
Suprachoroidal NCT05697809 Recruiting July 2023

Tonabersat DME Connexin43 inhibitor Oral NCT05727891 Recruiting August 2023
RZ402 DME Plasma kallikrein inhibitor Oral NCT05712720 Recruiting March 2023
OPL− 0401 NPDR, mild PDR ROCK 1 and 2 inhibitor Oral NCT05393284 Recruiting April 2023
APX− 3330 NPDR, mild PDR Ref− 1 inhibitor Oral NCT04692688 Completed February 2023
Runcaciguat NPDR Soluble guanylate cyclase activator Oral NCT04722991 Active, not

recruiting
September
2023

OTT− 166 NPDR, mild PDR Integrin inhibitor Topical drops NCT05409235 Active, not
recruiting

September
2023

IBE− 814 IVT DME Steroid, Dexamethasone Intravitreal implant NCT04576689 Active, not
recruiting

March 2023

SOM− 401 DME Nucleoside reverse transcriptase inhibitor Intravitreal
injection

NCT05699759 Recruiting March 2023

Neovascular Age-related macular degeneration
Drug Condition Mechanism Delivery NCT Status Last update
IBI− 302 nAMD Bispecific fusion protein Intravitreal

injection
NCT05972473
NCT05403749

Not yet recruiting August 2023
June 2022

AKST4290 nAMD CCR3 inhibitor Oral NCT04331730 Completed October 2022

NCT: Number of clinical trial; DME: Diabetic Macular Edema; NPDR: Non-proliferative diabetic retinopathy; PDR: Proliferative diabetic retinopathy; ROCK: Rho-
associated protein kinase; Ref: Reduction-oxidation factor; nAMD: Neovascular age-related macular degeneration.
Source:Adapted from Fowler et al (48) and Jung & Rachitskaya (82.
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SA, Lausanne, Switzerland), exploits the use of nanoparticle aggregates
based on γ-cyclodextrin to enhance drug penetration into both the
anterior and posterior segments of the eye. In a multicenter, double-
masked, parallel-group, randomized, phase 2 study, has been shown to
be significantly more effective than vehicle in improving central mac-
ular thickness in patients with DME.178

AG-73305 is a bi-specific (anti-VEGF and anti-integrin) Fc-fusion
protein, currently enrolling in a phase II clinical trial for DME patients;
preliminary results showed a dose-dependent improvement in best-
corrected visual acuity and CST.60

As for the treatment of nAMD, a new promising strategy is repre-
sented by efdamrofusp alfa (IBI302), which is globally the first bispecific
fusion protein that binds both the VEGF family, thereby inhibiting the
neoangiogenic signaling pathway, and the C3b and C4b, reducing the
complement-mediated inflammatory response. A prospective random-
ized, open-label, multiple ascending-dose, phase 1b study assessed the
efficacy, safety, and tolerability of efdamrofusp alfa in patients with
nAMD.77 Among the 18 patients in the study, 6 received efdamrofusp
alfa 2 mg, 6 received efdamrofusp alfa 4 mg, and 6 received aflibercept
2 mg. At week 20, mean changes from baseline in best-corrected visual
acuity and anatomic outcomes were similar among the 3groups.77

The oral small molecule CCR3 inhibitor (AKST4290) inhibits the
action of eotaxin, which may reduce the inflammation and neo-
vascularization of nAMD.41,82,180 In a prospective, multicenter,
open-label phase IIa pilot clinical study, 30 patients with newly diag-
nosed nAMD received oral treatment with AKST4290 (400 mg) twice
daily for 6 weeks.180 The results of this study found a best-corrected
visual acuity improvement of + 7.0 ± 12.5 letters at week-6, with 16
patients (55.2 %) experiencing a visual acuity gaining ≥ 5 letters.
Regarding safety, all adverse events were mild or moderate in severity,
and no additional safety issues were reported.180

Other new strategies for nAMD treatment not included in our review
are based on subretinal or intravitreal gene therapy which may induce
constitutive VEGF inhibition.27,91

6. Conclusion

We review the role of inflammation in nAMD and DME, its thera-
peutic relevance, and its unique implication in disease development. The
concentration of specific aqueous humor cytokines indeed, seems to be
disease dependent. In DME eyes the levels of proinflammatory cyto-
kines/chemokines, IL-8 and MCP-1 are higher than in nAMD, and more
importantly, IL-6 and ICAM-1 were exclusively found in the vitreous
humor of eyes with DME.86 Additionally, DME patients with higher
levels of inflammatory markers, e.g., IL-8, IL-6, IL-1b, and ICAM-1 in the
serum as well as in the aqueous humor, do not adequately respond to the
anti-VEGF treatment.3,72

A further distinction to take into consideration is the cell groups
involved in the development of such conditions. In DR/DME there is a
dysfunction of a complex and multicellular structure, known as NVU,
composed by endothelial cells, neurons, glia, smooth muscle cells, per-
icytes, and extracellular matrix.102,106,119,130,137,155,159 This dysfunction
has been associated with BRB breakdown and increased vascular
leakage and cytokine release, which may lead to the development of
DME.61,96,102,103 Whereas, in nAMD the complex of choroid, photore-
ceptors, RPE, and Bruch membrane is the paramount of the disease
development16,38,115,158 leading to the initiation of different processes,
including microglia activation, parainflammation, innate immune
response, and complement activation.16,36,38,53,66,76,78, 111,135,138,156,

185.
Despite several inflammatory pathways that have been proven to be

upregulated in both DME and nAMD, for now, it is not proven the
therapeutical relevance of inflammation in nAMD where anti-VEGF still
holds a major role. By contrast, in DME inflammation plays a pivotal role
and is therefore a main therapeutic target.

Finally, inflammation and neoangiogenesis are, respectively, the

hallmarks of DME and nAMD,1 116,124,128,181,183,195,198,201; the interplay
among them clearly remarks how different those diseases are from each
other and the need for a patient-personalized approach.
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