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The current study investigates the asymptotic spectral proper- 
ties of a finite difference approximation of nonlocal Helmholtz 
equations with a fractional Laplacian and a variable coefficient 
wave number μ, as it occurs when considering a wave 
propagation in complex media, characterized by nonlocal 
interactions and spatially varying wave speeds. More specifi- 
cally, by using tools from Toeplitz and generalized locally 
Toeplitz theory, the present research delves into the spectral 
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analysis of nonpreconditioned and preconditioned matrix 
sequences, with the main novelty regarding a complete 
picture of the case where μ = μ(x, y) is nonconstant. We 
report numerical evidence supporting the theoretical findings. 
Finally, open problems and potential extensions in various 
directions are presented and briefly discussed.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

In the present work, we consider the following two-dimensional nonlocal Helmholtz 
equation

{
(−Δ)α/2u(x, y) + μ(x, y)u(x, y) = v(x, y), (x, y) ∈ Ω ⊂ R2, α ∈ (1, 2),
u(x, y) = 0, (x, y) ∈ Ωc,

(1)

with a given variable-coefficient complex-valued wave number μ(x, y) and source term 
v(x, y). The fractional Laplacian operator (−Δ)α/2(·) has the explicit expression

(−Δ)α/2
(
u(x, y)

)
= cαP.V.

∫
R2

u(x, y) − u(x̃, ỹ) 
[(x− x̃)2 + (y − ỹ)2] 2+α

2 
dx̃dỹ, cα =

2αΓ(α+2
2 )

π|Γ(−α
2 )| ,

in which P.V. stands for the Cauchy principal value and Γ is the Gamma function. For 
simplicity, here the domain Ω is the square [0, 1]2 and Ωc is the complement of Ω in R2. 
However, we discuss at the end of the present paper that our analysis can be generalized 
to any rectangle and also to non-Cartesian domains.

The motivation for this work arises from the fact that, in order to accurately and finely 
describe certain physical processes such as complex and anomalous diffusion phenomena, 
fractional operators and fractional differential equations (FDEs) are required. Due to the 
richness of these models, a great amount of research has been devoted in the last three 
decades to their connection with anomalous processes. For instance, a detailed study of 
the analytic aspects can be found in [2,39,42,51] and references therein. A particularly 
versatile operator is the fractional Laplacian: its wide range of applications includes the 
modeling of long-range interactions and of anomalous diffusion [27,36].

On the downside, as often happens in applied mathematics, analytical solutions are not 
usually available in explicit form or, when they are, they are computationally inefficient. 
As a consequence, many numerical methods for approximating the continuous problems 
have been designed or adapted to the specific setting, such as finite difference-quadrature 
[19,31,32,40], spectral methods [30] or ad hoc finite element methods [15,21,28]. Such a 
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variety of research papers is not redundant, since there exist several equivalent definitions 
of the fractional Laplacian [34,38] that can be treated in different ways, depending also 
on the desired precision. The computational bottleneck comes once the approximated 
equations are obtained, usually in the form of a large and structured linear system: at 
this point, fast methods for their solution are strongly needed.

For this purpose, a circulant preconditioner was developed by Hao, Zhang, and Du [31] 
for the two-level Toeplitz matrix structure arising from (1). Subsequently, two varieties 
of τ preconditioners were proposed by Li, Chen, H.W. Sun, and T. Sun [37], who also 
reported a localization analysis for the spectra of the associated preconditioned matrix 
sequences. Our contribution lies in the latter direction, motivated by the well-known 
fact that τ preconditioning leads to superior performances than other matrix algebra 
approaches, such as ω-circulants with |ω| = 1, when real symmetric Toeplitz structures 
are involved. We refer the reader to [41,45,46] for theoretical studies in a general Toeplitz 
setting and to [3] for a recent interesting contribution in the fractional setting.

The aim of the current paper is to complete the analysis in [37] by giving a global 
spectral and singular value analysis of the original coefficient matrix sequences and of 
the preconditioned ones. We rely on the generalized locally Toeplitz (GLT) apparatus 
[23,24] and on results concerning the extreme eigenvalues of Toeplitz matrix sequences 
[13,43,44]. More in detail, in [37] only the case of a constant μ is theoretically consid-
ered, while the specific case of a real-valued variable coefficient μ(x, y) = cosx cos y was 
considered in the numerical tests: here we provide an exhaustive theoretical analysis of 
the spectral features of the considered matrix-sequences, both in a preconditioned and 
nonpreconditioned setting, in the general case where μ(x, y) is nonconstant and complex-
valued. Since the presence of a variable-coefficient complex-valued wave number spoils 
both the Toeplitzness and the real symmetry of the matrices, specific tools are also 
needed (see [23,24,29] and references therein).

The paper is organized in the following manner. Section 2 is an introduction to the 
theoretical apparatus and a summary of the necessary tools. Section 3 briefly describes 
the approximation of the considered equation and emphasizes the structural features 
of the resulting matrices, including a detailed study of the singular value and spectral 
properties via the GLT tools. In Section 4, the singular value and eigenvalue distribution 
of the preconditioned matrix sequences is obtained. Finally, in Section 5 the theoretical 
results are supported by several numerical experiments and in Section 6 conclusions, 
observations, and open problems are presented.

2. Spectral tools

In this introductory section, we present the tools needed to perform the spectral 
analysis of the involved matrices, derived from the theory of multilevel block GLT matrix-
sequences. The non-block setting, corresponding to scalar-valued symbols, is described 
in detail in books [23,24], while the block case, corresponding to matrix-valued symbols, 
is explored in papers [5,6]. In our specific context, the size of the blocks is r = 1 and the 
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dimensionality of the domain of the problem is d = 2, therefore throughout this work we 
remain in the setting of 2-level non-block GLT sequences. However, the spectral tools 
are presented in the maximal generality required by the potential extensions.

The preliminary theory is organized as follows. Subsection 2.1 fixes notations and 
terminology. Subsection 2.2 introduces the definitions of distribution and clustering for 
a generic matrix sequence, while Subsection 2.3 delves into the related notion of approx-
imating class of sequences. Subsection 2.4 is devoted to the matrix structures that make 
up the multilevel block GLT ∗-algebra, which is treated in Subsection 2.5 from the point 
of view of the related operative features.

2.1. Notation and terminology

Matrices and matrix sequences. Given a square matrix A ∈ Cm×m, we indicate with 
A∗ its conjugate transpose and with A† the Moore–Penrose pseudoinverse of A. Recall 
that A† = A−1 whenever A is invertible. The singular values and eigenvalues of A are 
denoted respectively by σ1(A), . . . , σm(A) and λ1(A), . . . , λm(A).

Regarding matrix norms, ‖ · ‖ refers to the spectral norm and for 1 ≤ p ≤ ∞ the 
notation ‖ · ‖p stands for the Schatten p-norm, defined as the p-norm of the vector 
of the singular values. Note that the Schatten ∞-norm, which is equal to the largest 
singular value, coincides with the spectral norm ‖ · ‖; the Schatten 1-norm, since it is 
the sum of the singular values, is often referred to as the trace-norm; and the Schatten 
2-norm coincides with the Frobenius norm. Schatten p-norms, as important special cases 
of unitarily invariant norms, are treated in detail in a wonderful book by Bhatia [11].

Finally, the expression matrix sequence identifies any sequence of the form {An}n, 
where An is a square matrix of size dn with dn strictly increasing, so that dn → ∞ as 
n → ∞. A r-block matrix sequence, or simply a matrix sequence if r can be deduced 
from context, is a special {An}n in which the size of An is dn = rφn, with r ≥ 1 ∈ N

fixed and φn ∈ N strictly increasing.

Multi-index notation. To effectively deal with multilevel structures it is necessary to use 
multi-indexes, which are vectors of the form i = (i1, . . . , id) ∈ Zd. The related notation 
is listed below.

• 0,1,2,... are vectors of all zeroes, ones, twos,...
• h ≤ k means that hr ≤ kr for all r = 1, . . . , d. More in general, relations between 

multi-indexes are evaluated componentwise.
• Operations between multi-indexes, such as addition, subtraction, multiplication and 

division, are also performed componentwise.
• The multi-index interval [h,k] is the set {j ∈ Zd : h ≤ j ≤ k}. We always assume that 

the elements in an interval [h,k] are ordered in the standard lexicographic manner:
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[
· · ·

[[
(j1, . . . , jd)

]
jd=hd...,kd

]
jd−1=hd−1,...,kd−1

· · ·
]
j1=h1,...,k1

.

• j = h, . . . ,k means that j varies from h to k, always following the lexicographic 
ordering.

• m → ∞ means that min(m) = minj=1,...,d mj → ∞.
• The product of all the components of m is denoted as ν(m) :=

∏d
j=1 mj .

A multilevel matrix sequence is a matrix sequence {An}n such that n varies in some 
infinite subset of N, n = n(n) is a multi-index in Nd depending on n, and n → ∞ when 
n → ∞. This is typical of many approximations of differential operators in d dimensions.

Measurability. All the terminology from measure theory, such as “measurable set”, 
“measurable function”, “a.e.”, etc., refers to the Lebesgue measure in Rt, denoted with μt. 
A matrix-valued function f : D ⊆ Rt → Cr×r is said to be measurable (resp., continuous, 
Riemann-integrable, in Lp(D), etc.) if all its components fαβ : D → C, α, β = 1, . . . , r, 
are measurable (resp., continuous, Riemann-integrable, in Lp(D), etc.). If fm, f : D ⊆
Rt → Cr×r are measurable, we say that fm converges to f in measure (resp., a.e., in 
Lp(D), etc.) if (fm)αβ converges to fαβ in measure (resp., a.e., in Lp(D), etc.) for all 
α, β = 1, . . . , r.

2.2. Distribution and clustering

This subsection presents the notions of distribution and clustering of a matrix se-
quence, both in the sense of the eigenvalues and singular values, and some related 
definitions and results. In what follows, Cc(R) is the space of continuous complex-valued 
functions with bounded support on R, and Cc(C) is defined in the same way.

Definition 1. Let {An}n be a matrix sequence, with An of size dn, and let ψ : D ⊂ Rt →
Cr×r be a measurable function defined on a set D with 0 < μt(D) < ∞.

• We say that {An}n has a (asymptotic) singular value distribution described by ψ, 
and we write {An}n ∼σ ψ, if

lim
n→∞

1 
dn

dn∑
i=1 

F (σi(An)) = 1 
μt(D)

∫
D

∑r
i=1 F (σi(ψ(x)))

r
dx, ∀ F ∈ Cc(R).

• We say that {An}n has a (asymptotic) spectral (or eigenvalue) distribution described 
by ψ, and we write {An}n ∼λ ψ, if

lim
n→∞

1 
dn

dn∑
i=1 

F (λi(An)) = 1 
μt(D)

∫
D

∑r
i=1 F (λi(ψ(x)))

r
dx, ∀ F ∈ Cc(C).
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If ψ describes both the singular value and eigenvalue distribution of {An}n, we write 
{An}n ∼σ,λ ψ.

The informal meaning behind the spectral distribution definition is the following: if ψ
is continuous, then a suitable ordering of the eigenvalues {λj(An)}j=1,...,dn

, assigned in 
correspondence with an equispaced grid on D, reconstructs approximately the r surfaces 
x → λi(ψ(x)), i = 1, . . . , r. For instance, in the simplest case where t = 1 and D = [a, b], 
dn = nr, the eigenvalues of An are approximately equal - up to few potential outliers 
- to λi

(
ψ(xj)

)
, where xj = a + j (b−a)

n , j = 1, . . . , n, i = 1, . . . , r. If t = 2 and D =
[a1, b1] × [a2, b2], dn = n2r, the eigenvalues of An are approximately equal - again up to 
few potential outliers - to λi

(
ψ(xj1 , yj2)

)
, where xj1 = a1 + j1

b1−a1
n , yj2 = a2 + j2

b2−a2
n , 

j1, j2 = 1, . . . , n, i = 1, . . . , r. For t ≥ 3 a similar reasoning applies.
Now let us proceed to the notion of clustering. We recall that the ε-expansion of S ⊆ C

is the set B(S, ε) :=
⋃

z∈S B(z, ε), where B(z, ε) := {w ∈ C : |w− z| < ε} is the complex 
disk with center z and radius ε > 0.

Definition 2. Let {An}n be a matrix sequence, with An of size dn, and let S ⊆ C be 
nonempty and closed. {An}n is strongly clustered at S in the sense of the eigenvalues if, 
for any ε > 0 and as n tends to infinity, the number of eigenvalues of An outside B(S, ε)
is bounded by a constant qε independent of n. In symbols,

qε(n, S) := #
{
j ∈ {1, . . . , dn} : λj(An) / ∈ B(S, ε)

}
= O(1), as n → ∞.

{An}n is weakly clustered at S if, for each ε > 0,

qε(n, S) = o(dn), as n → ∞.

A corresponding definition can be given for the singular values, with S ⊆ R+. If {An}n
is strongly or weakly clustered at S and S is not connected, the connected components 
of S are called sub-clusters.

The case of spectral single point clustering, where S consists of a single complex 
number s, retains special significance in the theory of preconditioning.

In the following remark, we clarify the deep connection between the two definitions 
above; in fact, clustering can be seen as a special case of distribution. First, recall that 
given a measurable function g : D ⊆ Rt → C, the essential range of g is defined as 
ER(g) :=

{
z ∈ C : μt

(
{g ∈ B(z, ε)}

)
> 0 for all ε > 0

}
, where {g ∈ B(z, ε)} := {x ∈

D : g(x) ∈ B(z, ε)}. Generalizing the concept to a matrix-valued function ψ : D ⊂ Rt →
Cr×r, the essential range is the union of the essential ranges of the eigenvalue functions 
λi(ψ), i = 1, . . . , r.
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Remark 1. If {An}n ∼λ ψ, then {An}n is weakly clustered at the essential range of ψ
(see [29, Theorem 4.2]). Furthermore, if ER(ψ) = {s} with s a fixed complex number, 
then {An}n ∼λ ψ iff {An}n is weakly clustered at s in the sense of the eigenvalues.

These statements can be translated to the singular value setting as well, with obvious 
minimal modifications. For instance, if ER(|ψ|) = s with s a fixed nonnegative number, 
then {An}n ∼σ ψ iff {An}n is weakly clustered at s in the sense of the singular values.

2.3. Approximating classes of sequences

In this subsection, we present the notion of approximating class of sequences and a 
related key result.

Definition 3. (Approximating class of sequences) Let {An}n be a matrix-sequence and 
let {{Bn,j}n}j be a class of matrix-sequences, with An and Bn,j of size dn. We say that 
{{Bn,j}n}j is an approximating class of sequences (a.c.s.) for {An}n if the following 
condition is met: for every j there exists nj such that, for every n ≥ nj ,

An = Bn,j + Rn,j + Nn,j ,

rank Rn,j ≤ c(j)dn and ‖Nn,j‖ ≤ ω(j),

where nj , c(j), and ω(j) depend only on j and

lim
j→∞

c(j) = lim
j→∞

ω(j) = 0.

{{Bn,j}n}j
a.c.s. wrt j−−−−−−−→ {An}n denotes that {{Bn,j}n}j is an a.c.s. for {An}n.

The following theorem represents the expression of a related convergence theory and 
it is a powerful tool used, for example, in the construction of the GLT ∗-algebra.

Theorem 1. Let {An}n, {Bn,j}n, with j, n ∈ N, be matrix-sequences and let ψ,ψj : D ⊂
Rd → C be measurable functions defined on a set D with positive and finite Lebesgue 
measure. Suppose that

1. {Bn,j}n ∼σ ψj for every j;
2. {{Bn,j}n}j

a.c.s. wrt j−−−−−−−→ {An}n;
3. ψj → ψ in measure.

Then

{An}n ∼σ ψ.

Moreover, if all the involved matrices are Hermitian, the first assumption is replaced by 
{Bn,j}n ∼λ ψj for every j, and the other two are left unchanged, then {An}n ∼λ ψ.
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2.4. Matrix structures

In this subsection we introduce the three types of matrix structures that constitute 
the basic building blocks of the GLT ∗-algebra.

Zero-distributed sequences. Zero-distributed sequences are defined as matrix sequences 
{An}n such that {An}n ∼σ 0. Note that, for any r ≥ 1, {An}n ∼σ 0 is equivalent to 
{An}n ∼σ Or, where Or is the r × r zero matrix. The following theorem, taken from 
[23,47], provides a useful characterization for detecting this type of sequences. We use 
the natural convention 1/∞ = 0.

Theorem 2. Let {An}n be a matrix sequence, with An of size dn. Then

• {An}n ∼σ 0 if and only if An = Rn + Nn with rank(Rn)/dn → 0 and ‖Nn‖ → 0 as 
n → ∞;

• {An}n ∼σ 0 if there exists p ∈ [1,∞] such that ‖An‖p/(dn)1/p → 0 as n → ∞.

Multilevel block Toeplitz matrices. Given n ∈ Nd, a matrix of the form

[Ai−j]ni,j=1 ∈ Cν(n)r×ν(n)r,

with blocks Ak ∈ Cr×r, k ∈ [−(n − 1), . . . ,n − 1], is called a multilevel block Toeplitz 
matrix, or, more precisely, a d-level r-block Toeplitz matrix.

Given a matrix-valued function f : [−π, π]d → Cr×r belonging to L1([−π, π]d), the 
n-th Toeplitz matrix associated with f is defined as

Tn(f) := [f̂i−j]ni,j=1 ∈ Cν(n)r×ν(n)r,

where

f̂k = 1 
(2π)d

∫
[−π,π]d

f(θ)e−ı̂(k,θ)dθ ∈ Cr×r, k ∈ Zd,

are the Fourier coefficients of f , in which ı̂ denotes the imaginary unit, the integrals are 
computed componentwise and (k,θ) = k1θ1 + . . . + kdθd. Equivalently, Tn(f) can be 
expressed as

Tn(f) =
∑

|j1|<n1

. . .
∑

|jd|<nd

[
J (j1)
n1

⊗ . . .⊗ J (jd)
nd

]
⊗ f̂(j1,...,jd)

where ⊗ denotes the Kronecker tensor product between matrices and J (l)
m is the matrix 

of order m whose (i, j) entry equals 1 if i− j = l and zero otherwise.
{Tn(f)}n∈Nd is the family of (multilevel block) Toeplitz matrices associated with f , 

which is called the generating function.
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Block diagonal sampling matrices. Given d ≥ 1, n ∈ Nd and a function a : [0, 1]d →
Cr×r, we define the multilevel block diagonal sampling matrix Dn(a) as the block diag-
onal matrix

Dn(a) = diagi=1,...,n a
( i 
n

)
∈ Cν(n)r×ν(n)r.

2.5. The ∗-algebra of multilevel block GLT sequences

Let r ≥ 1 be a fixed integer. A multilevel r-block GLT sequence, or simply a GLT 
sequence if we do not need to specify r, is a special multilevel r-block matrix-sequence 
equipped with a measurable function κ : [0, 1]d × [−π, π]d → Cr×r, d ≥ 1, called symbol. 
The symbol is essentially unique, in the sense that if κ, ς are two symbols of the same 
GLT sequence, then κ = ς a.e. We write {An}n ∼GLT κ to denote that {An}n is a GLT 
sequence with symbol κ.

It can be proven that the set of multilevel block GLT sequences is the ∗-algebra 
generated by the three classes of sequences defined in Subsection 2.4: zero-distributed, 
multilevel block Toeplitz and block diagonal sampling matrix sequences. The GLT class 
satisfies several algebraic and topological properties that are treated in detail in [5,6, 
23,24]. Here, we focus on the main operative properties, listed below, that represent a 
complete characterization of GLT sequences, equivalent to the full constructive definition.

GLT 1. If {An}n ∼GLT κ then {An}n ∼σ κ in the sense of Definition 1, with t = 2d and 
D = [0, 1]d × [−π, π]d. If moreover each An is Hermitian, then {An}n ∼λ κ, again in 
the sense of Definition 1 with t = 2d.

GLT 2. We have:
• {Tn(f)}n ∼GLT κ(x,θ) = f(θ) if f : [−π, π]d → Cr×r is in L1([−π, π]d);
• {Dn(a)}n ∼GLT κ(x,θ) = a(x) if a : [0, 1]d → Cr×r is Riemann-integrable;
• {Zn}n ∼GLT κ(x,θ) = Or if and only if {Zn}n ∼σ 0.

GLT 3. If {An}n ∼GLT κ and {Bn}n ∼GLT ς then:
• {A∗

n}n ∼GLT κ∗;
• {αAn + βBn}n ∼GLT ακ + βς for all α, β ∈ C;
• {AnBn}n ∼GLT κς;
• {A†

n}n ∼GLT κ−1 provided that κ is invertible a.e.
GLT 4. {An}n ∼GLT κ if and only if there exist {Bn,j}n ∼GLT κj such that 

{{Bn,j}n}j
a.c.s. wrt j−−−−−−−→ {An}n and κj → κ in measure.

Note that, by GLT 1, it is always possible to obtain the singular value distribution from 
the GLT symbol, while the eigenvalue distribution can be deduced only if the involved 
matrices are Hermitian. However, interesting tools are available for matrix sequences in 
which the non-Hermitian part is somehow negligible, see [29,35] and references therein. 
The main result is reported below, more advanced tools can be found in [7].
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Theorem 3. [23, Corollary 4.1][24, Corollary 2.3] Let {Xn}n, {Zn}n be matrix sequences, 
with Xn, Zn of size dn, and set Yn = Xn +Zn. Assume that the following conditions are 
met

1. ‖Xn‖, ‖Zn‖ ≤ C for all n, where C is a constant independent of n;
2. Every Xn is Hermitian and {Xn}n ∼λ κ;
3. ‖Zn‖1 = o(dn).

Then {Yn}n ∼λ κ. Moreover, if ‖Zn‖1 = O(1), the range of κ is a strong cluster for the 
eigenvalues of {Yn}n.

3. Discretized problem and GLT analysis

In this section, we briefly present the discretization of the two-dimensional fractional 
Helmholtz equation (1), with Ω = [0, 1]2 and Ωc = R2 \ Ω, and then compute the GLT 
symbol of the resulting coefficient matrix sequence in order to study the singular value 
and eigenvalue distribution.

3.1. Discretization

We follow the fractional centered differences technique adopted in [31], to which we 
refer for further details.

Let n be a positive integer and define the uniform spatial partition Ωh = {(xi, yj) :
i, j = 1, 2, . . . n}, with stepsize h = 1 

n+1 and grid points xi = ih, yj = jh, for i, j ∈ Z. 
Consider the discrete fractional Laplacian operator

(−Δh)α/2u(x, y) := 1 
hα

∑
k1,k2∈Z

b
(α)
k1,k2

u(x + k1h, y + k2h), (2)

where

b
(α)
k1,k2

= 1 
4π2

π∫
−π

π∫
−π

tα(θ1, θ2)e−ı̂(k1θ1+k2θ2)dθ1dθ2, ı̂2 = −1,

are the Fourier coefficients of the function

tα(θ1, θ2) =
[
4 sin2

(
θ1

2 

)
+ 4 sin2

(
θ2

2 

)]α
2 
.

Now define the weighted space

W γ,1(R2) =

⎧⎨
⎩u ∈ L1(R2) :

∫
R2

(1 + |z|)γ |ũ(x̃, ỹ)| dx̃dỹ < ∞

⎫⎬
⎭ ,
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in which |z|2 = x̃2 + ỹ2 and ũ(x̃, ỹ) is the Fourier transform of u(x, y). Thanks to [31, 
Theorem 2.2], for any u ∈ W 2+α,1(R2) it holds

(−Δ)α/2u(x, y) = (−Δh)α/2u(x, y) + O(h2). (3)

Combining (2) and (3) and applying them to (1), we obtain

(−Δh)α/2u(xi, yj) + μ(xi, yj)u(xi, yj) = v(xi, yj) + R̃i,j,h, (xi, yj) ∈ Ωh,

where R̃i,j,h is the truncation error. Since the approximation is uniform, there exists 
a constant cu independent of i, j, h such that |R̃i,j,h| ≤ cuh

2, therefore the method is 
consistent with precision order 2.

Letting μi,j = μ(xi, yj), vi,j = v(xi, yj), ui,j ≈ u(xi, yj) and disregarding the trun-
cation error, we arrive at the following numerical scheme for solving the continuous 
problem

{
(−Δh)α/2ui,j + μi,jui,j = vi,j , (xi, yj) ∈ Ωh,

ui,j = 0, (xi, yj) ∈ Ωc
h,

where Ωc
h := {(xi, yj) : i, j ∈ Z} \ Ωh.

Making use of the multi-index notation with the standard lexicographic order and 
setting

u = [u1,1 u1,2 . . . u1,n u2,1 u2,2 . . . u2,n . . . un,n ] ,

v = [v1,1 v1,2 . . . v1,n v2,1 v2,2 . . . v2,n . . . vn,n ] ,

the scheme above is rewritten as the linear system

Anu :=
(
Bn + Dn(μ)

)
u = v, n = (n, n)

where Bn = 1 
hαTn(tα) and Dn(μ) is the block diagonal sampling matrix associated to μ. 

More explicitly, the two-level symmetric Toeplitz matrix Tn(tα) generated by tα(θ1, θ2)
has the form

Tn(tα) =

⎡
⎢⎢⎢⎢⎢⎢⎣

C0 C1 C2 · · · Cn−2 Cn−1
C1 C0 C1 · · · Cn−3 Cn−2
C2 C1 C0 · · · Cn−4 Cn−3
...

...
...

. . .
...

...
Cn−2 Cn−3 Cn−4 · · · C0 C1
Cn−1 Cn−2 Cn−3 · · · C1 C0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

in which
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Ck =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b
(α)
0,k b

(α)
1,k b

(α)
2,k · · · b

(α)
n−2,k b

(α)
n−1,k

b
(α)
1,k b

(α)
0,k b

(α)
1,k · · · b

(α)
n−3,k b

(α)
n−2,k

b
(α)
2,k b

(α)
1,k2

b
(α)
0,k · · · b

(α)
n−4,k b

(α)
n−3,k

...
...

...
. . .

...
...

b
(α)
n−2,k b

(α)
n−3,k b

(α)
n−4,k · · · b

(α)
0,k b

(α)
1,k

b
(α)
n−1,k b

(α)
n−2,k b

(α)
n−3,k · · · b

(α)
1,k b

(α)
0,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Remark 2. The coefficients b(α)
k1,k2

can be computed via the trapezoidal rule

b
(α)
k1,k2

≈ 1 
M2

M−1∑
p=0 

M−1∑
q=0 

tα(pδ, qδ)e−ı̂(k1pδ+k2qδ), δ = 2π
M

, M � 2n.

Using the FFT, the computation of b(α)
k1,k2

, k1, k2 = 0, . . . ,M−1, costs O(M logM), then 
in practice only the coefficients with 0 ≤ k1, k2 ≤ n− 1 are employed.

3.2. GLT, singular value and eigenvalue analysis

This subsection contains the GLT analysis of the coefficient matrix sequence obtained 
previously. In order to obtain a meaningful distribution, we rescale the linear system as

Ânu :=
(
B̂n + hαDn(μ)

)
u = hαv, n = (n, n), (4)

in which B̂n := Tn(tα).

Remark 3. It holds

1. {B̂n}n ∼GLT tα;
2. {B̂n}n ∼σ tα;
3. {B̂n}n ∼λ tα.

In fact, the first assertion is just an application of the first item of GLT 2. The second 
and third one are consequences of GLT 1, since B̂n is Hermitian.

First, we perform the analysis with the assumption that the wave function μ(x, y) is 
essentially bounded. In this setting, we are able to obtain both the precise eigenvalue and 
spectral distribution. The case of an unbounded μ(x, y) is more delicate and is treated 
afterwards.

3.2.1. The case of an essentially bounded wave function
To begin, we observe that from the fact that μ(x, y) is essentially bounded it follows 

the inequality
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‖hαDn(μ)‖ ≤ hα‖μ‖∞. (5)

As a consequence, the following lemma can be proved. It will allow us to prove the first 
main distributional theorem.

Lemma 1. Let μ(x, y) be an essentially bounded complex-valued function. Then

1. {hαDn(μ)}n ∼GLT 0;
2. {hαDn(μ)}n ∼σ 0;
3. {hαDn(μ)}n ∼λ 0.

Proof. Points 2 and 3 follow directly from (5):

2. all the singular values of hαDn(μ) converge to zero, at least as fast as hα‖μ‖∞. 
Then the related sequence {hαDn(μ)}n is strongly clustered at 0 in the sense of the 
singular values and it follows from Theorem 2 that {hαDn(μ)}n is zero-distributed; 
either by the first item, taking Rn equal to the null matrix, or the second one, taking 
p = ∞;

3. all the eigenvalues of hαDn(μ) converge to zero, at least as fast as hα‖μ‖∞, since the 
spectral radius of a matrix is bounded from above by its spectral norm. By direct 
inspection, {hαDn(μ)}n ∼λ 0.

Finally, 1 follows from 2 simply by the third item in GLT 2. •

Theorem 4. Let μ(x, y) be an essentially bounded complex-valued function. Then

a1. {B̂n + hαDn(μ)}n ∼GLT tα;
a2. {B̂n + hαDn(μ)}n ∼σ tα;
a3. {B̂n + hαDn(μ)}n ∼λ tα.

Proof. Point a1 follows from the first items of Remark 3 and Lemma 1 with a straight-
forward application of the GLT tools: invoking the ∗-algebra structure of the GLT class 
expressed by GLT 3, we obtain that {B̂n + hαDn(μ)}n ∼GLT tα + 0 = tα. Then a2 is an 
obvious consequence of a1 and GLT 1.

Regarding a3, we invoke Theorem 3 with Xn = B̂n and Zn = hαDn(μ). Since B̂n is 
Hermitian, we can apply known results concerning the extreme eigenvalues of Hermitian 
Toeplitz matrices [43,44] and obtain that ‖B̂n‖ = ‖Tn(tα)‖ < ‖tα‖∞, where the strict in-
equality holds because min tα = 0 and max tα = 23α/2 > 0, in accordance with Theorem 
2.1 in [44] by setting g = 1 and f = tα. Recalling (5), the first assumption of Theorem 3
is satisfied. Moreover, the second assumption holds true by Remark 3. Finally, inequality 
(5) leads to

‖hαDn(μ)‖1 ≤ hα‖μ‖∞n2 = o(n2),
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which is the third and last assumption. Therefore by Theorem 3 we can conclude {B̂n +
hαDn(μ)}n ∼λ tα. •

3.2.2. The case of an unbounded wave function
Now we proceed to the case where μ(x, y) is unbounded. For this purpose, for any 

M > 0 we define the following truncated version of μ

μM (x, y) =
{

μ(x, y) if |μ(x, y)| ≤ M,

M otherwise,
(6)

to which, in analogy with the structure of Dn(μ), we associate the block diago-
nal sampling matrix Dn(μM ). This process constructs a class of matrix sequences 
{{hαDn(μM )}n}M , allowing us to rely on the notion of a.c.s. in the sense of Defini-
tion 3. We begin with a preliminary lemma.

Lemma 2. Let μM (x, y) be Riemann-integrable for any M > 0 and suppose that 
{μM (x, y)}M converges pointwise to μ(x, y), with μ(x, y) unbounded and complex-valued. 
Then

1. {hαDn(μ)}n ∼GLT 0;
2. {hαDn(μ)}n ∼σ 0.

Proof. Let us start with the proof of 2. From the hypothesis that μM is Riemann-
integrable for any M > 0 and the second item of GLT 2, we deduce that {Dn(μM )}n∼GLT
μM . Now consider the sequence {hαIn2}n: it is obviously zero-distributed, since any sin-
gular value equals hα, therefore it is a GLT sequence with symbol 0 by the third item 
of GLT 2. So, by the third item of GLT 3, we obtain

{hαDn(μM ) = hαIn2 ·Dn(μM )}n ∼GLT 0 · μM = 0,

or equivalently {hαDn(μM )}n is zero-distributed. It is easy to see by direct inspection 
that {{hαDn(μM )}n}M is an a.c.s. for {hαDn(μ)}n, so we conclude by applying Theo-
rem 1 with j = M , ψM = 0, and ψ = 0, and by observing that the pointwise convergence 
implies the weaker type of convergence in measure. Then the first assertion is just an 
obvious consequence of 2 by GLT 2. •

Theorem 5. Let μM (x, y) be Riemann-integrable for any M > 0 and suppose that 
{μM (x, y)}M converges pointwise to μ(x, y), with μ(x, y) unbounded and complex-valued. 
Then

b1. {B̂n + hαDn(μ)}n ∼GLT tα;
b2. {B̂n + hαDn(μ)}n ∼σ tα.
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Proof. The proof of b1 is once again a straightforward application of the GLT axioms: 
we know from Remark 3 that {B̂n}n ∼GLT tα, combining this result with Lemma 2 and 
the second item of GLT 3 we get {B̂n + hαDn(μ)}n ∼GLT tα. As usual, with GLT 1 we 
obtain the singular value distribution in b2. •

Regarding the eigenvalue distribution in the case of an unbounded wave function 
μ(x, y), so far we have been unable to obtain a satisfactory generalization for the eigen-
values as the one we have for the singular values, even using the more sophisticated 
tools in [7]. Theorem 5 represents only a partial answer. Hence, this question needs to 
be explored further in the future.

Remark 4. Note that, if μ(x, y) is real-valued, then all the distributional results found 
in Subsection 3.2.1 hold also in the unbounded case. In fact, under this assumption the 
diagonal part hαDn(μ) is Hermitian, so the eigenvalue distribution follows simply as a 
consequence of GLT 1.

4. Preconditioning

In this section, after a brief introduction to the unilevel and two-level τ algebra, we 
consider the ad hoc τ preconditioners proposed in [37] and perform the distribution 
and clustering analysis of the preconditioned matrix-sequences, both in the sense of the 
eigenvalues and singular values.

4.1. The τ algebra

Given a symmetric Toeplitz matrix Tn ∈ Rn×n, the natural τ preconditioner of Tn is 
defined as

τ(Tn) := Tn −H(Tn), (7)

in which H(Tn) denotes the Hankel matrix, namely a matrix whose entries are constant 
along each antidiagonal, fully characterized by its first row [t2, t3, . . . , tn−1, 0, 0] and its 
last column [0, 0, tn−1, . . . , t3, t2]�, where [t1, t2, . . . , tn]� is the first column of Tn.

A great amount of theoretical and computational research has been dedicated in the 
last decades to this type of preconditioner [12,14,45]. It is well-known that τ matrices 
form an algebra, closed under inversion, and that they can be uniformly diagonalized 
through the following discrete sine transform (DST) matrix

[Sn]i,j =
√

2 
n + 1 sin

(
πij

n + 1

)
, 1 ≤ i, j ≤ n.

In other words, we can always decompose τ(Tn) as
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τ(Tn) = SnΛnSn,

where Λn is the diagonal matrix containing the eigenvalues of τ(Tn). Note that Sn is 
real, symmetric and orthogonal, so that Sn = ST

n = S−1
n . Moreover, Sn is associated 

to the fast sine transform of type I, thanks to which the DST (the product between Sn

and any vector in Rn) can be performed in O(n logn) real operations; more precisely 
the cost is about half of the renowned fast Fourier transform [50] (further details and a 
description of several sine/cosine transforms can be found in [17,33]). As a consequence, 
in the τ algebra all the relevant matrix operations, such as matrix-vector and matrix-
matrix product, inversion, solution of a linear system or computation of the spectrum, 
have the computational cost of O(n logn). In particular, the eigenvalues of τ(Tn) are 
obtained as the DST of the first column of Tn.

Generalizing to any d-level symmetric Toeplitz matrix Tn, with d ≥ 1 and n =
(n1, . . . , nd), the d-level τ preconditioner is diagonalized as

τ(Tn) = SnΛnSn, Sn = Sn1 ⊗ · · · ⊗ Snd
,

in which Λn is the diagonal matrix containing the eigenvalues of τ(Tn) and is obtained 
as the d-level discrete sine transform of type I of the first column of Tn.

The set of d-level τ matrices is the d-level τ algebra. Again, all the relevant matrix 
operations in the d-level τ algebra cost O

(
ν(n) log ν(n)

)
real operations, which, given 

the fact that the size of the matrices is ν(n), is quasi optimal.
From the algebraic point of view, the explicit construction of τ(Tn) can be done 

recursively: starting from the most external level and working inward, apply the additive 
decomposition (7) until the scalar level, where the matrices are 1 × 1, is reached. From 
distribution results on multilevel Hankel matrix sequences [20], it is known for any L1

function f it holds
{
Tn(f) − τ

(
Tn(f)

)}
n
∼σ,λ 0. (8)

4.2. Preconditioning proposals

Here we give the definitions of two pairs of τ preconditioners that were proposed in 
[37] for linear system (4), in light of the excellent structural, spectral and computational 
features of the τ algebra.

The first pair is based on approximating tα, the function that generates the Toeplitz 
sequence in (4), in a separable way as

g(2)
α (θ1, θ2) = g(1)

α (θ1) + g(1)
α (θ2) =

[
4 sin2

(
θ1

2 

)]α
2 

+
[
4 sin2

(
θ2

2 

)]α
2 
,

in which g(1)
α (θ) =

[
4 sin2 ( θ

2 
)]α

2 . Then, the 2-level Toeplitz matrix generated by g(2)
α has 

the form
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Tn(g(2)
α ) = In ⊗ Tn(g(1)

α ) + Tn(g(1)
α ) ⊗ In, n = (n, n).

Note that, combining GLT 2 and GLT 1 with the fact that Tn(g(2)
α ) is real and symmetric 

(hence Hermitian), we have

{Tn(g(2)
α )}n ∼GLT,σ,λ g(2)

α . (9)

The preconditioners are then defined as

τ
(
Tn(g(2)

α )
)
, τ

(
Tn(g(2)

α )
)

+ hαμhIn2 ,

where μh is the arithmetic average of the evaluations of μ(x, y) over the grid points. In 
the case of a bounded variable coefficient μ(x, y), the authors in [37] proved good local-
ization results for the preconditioned matrices, with bounds independent of n. However, 
a straightforward GLT analysis demonstrates that the clustering at 1 cannot hold.

Proposition 1. It holds
{
τ
(
Tn(g(2)

α )
)−1

(
B̂n + hαDn(μ)

)}
n
∼GLT,σ

tα

g(2)
α

.

Moreover, assuming that μ(x, y) is essentially bounded, it holds
{
τ
(
Tn(g(2)

α )
)−1

(
B̂n + hαDn(μ)

)}
n
∼λ

tα

g(2)
α

.

Proof. From Equation (8) we know that 
{
Tn(g(2)

α )− τ
(
Tn(g(2)

α )
)}

n
is a zero-distributed 

sequence, hence it is a GLT sequence with symbol 0 by GLT 2. Turning to the ∗-algebra 
properties in GLT 3 and recalling (9), we deduce that 

{
τ(Tn

(
g(2)
α )

)}
n

is a GLT sequence 

with symbol g(2)
α . Recalling that τ matrices are real and symmetric, using GLT 1, GLT 

3 and Theorems 4 and 5, we conclude. •

Therefore the preconditioned sequence has eigenvalues clustered at the range of 
tα/g(2)

α , which is a nontrivial real positive interval and cannot reduce to the point s = 1.
Before proceeding to the next preconditioner, we note that, very similarly to Lemma 1, 

in the case where μ(x, y) is essentially bounded the maximal singular value of hαμhIn2 is 
bounded from above by hα‖μ‖∞, hence {hαμhIn2}n is a zero-distributed GLT sequence. 
In other words, we have that

{hαμhIn2}n ∼GLT,σ 0. (10)

Proposition 2. Assuming that μ(x, y) is essentially bounded, it holds
{(

τ
(
Tn(g(2)

α )
)

+ hαμhIn2

)−1 (
B̂n + hαDn(μ)

)}
n

∼GLT,σ
tα

g(2)
α

.
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Moreover, if μ(x, y) is real-valued, it holds
{(

τ
(
Tn(g(2)

α )
)

+ hαμhIn2

)−1 (
B̂n + hαDn(μ)

)}
n

∼λ
tα

g(2)
α

.

Proof. From the proof of Proposition 1 we know that {τ
(
Tn(g(2)

α )
)
}n ∼GLT g(2)

α . By
GLT 3, GLT 1 and Equation (10), it holds 

{
τ
(
Tn(g(2)

α )
)

+ hαμhIn2
}
n
∼GLT,σ g(2)

α . The 
conclusion follows as in Proposition 1. If μ(x, y) is real-valued, the reasoning is the same, 
combined with the fact that the diagonal matrix hαμhIn2 is Hermitian. •

To summarize, both preconditioned matrix sequences cannot cluster at 1 in the sense 
of the singular values, since the cluster is at the range of tα/g(2)

α . The same conclusion is 
drawn for the eigenvalues if μ(x, y) is real-valued. In light of these negative results, the 
main part of our analysis will be focused on the second pair of preconditioners, defined 
simply as

τ(B̂n), τ(B̂n) + hαμhIn2 ,

where μh is again the arithmetic average of the evaluations of μ(x, y) over the grid points. 
We will prove that, under mild assumptions, these preconditioners guarantee the cluster 
a 1, both in the sense of the eigenvalues and of the singular values.

4.3. Singular value and spectral analysis

In this subsection we study the singular value and eigenvalue distribution of the lat-
ter preconditioning proposals. In Subsection 4.3.1 we analyze the case where the wave 
number μ(x, y) is essentially bounded. In this case, the distributions follow in a straight-
forward way from the GLT nature of the involved matrix sequences. Then in Subsection 
4.3.2 we progress to the more general case of an unbounded function μ(x, y). In this case, 
the eigenvalue distribution is not automatically implied by the GLT axioms on account 
of the fact that the matrix sequences are not Hermitian.

4.3.1. The case of an essentially bounded wave function

Theorem 6. Let μ(x, y) be an essentially bounded complex-valued function and let 
{μ̄h(n)}n be a bounded sequence of complex numbers. Then, for Pn ∈

{
τ(B̂n), τ(B̂n) +

hαμ̄h(n)In2

}
,

p1. {Pn}n ∼GLT,σ,λ tα;
p2.

{
P−1

n

(
B̂n + hαDn(μ)

)}
n
∼GLT,σ 1. 

If moreover {μ̄h(n)}n is made of real nonnegative numbers, 
{
P−1

n

(
B̂n + hαDn(μ)

)}
n∼λ 1.
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Proof. To prove p1, we observe that {δn = B̂n − τ(B̂n)}n ∼GLT 0, since by (8) the 
sequence is zero-distributed. Therefore by GLT 3 {τ(B̂n) = B̂n−δn}n ∼GLT tα−0 = tα. 
By (10), {hαμ̄h(n)In2}n ∼GLT 0 and again GLT 3 implies {τ(B̂n) + hαμ̄h(n)In2}n ∼GLT

tα. So by GLT 1 it holds {Pn}n ∼σ tα for Pn ∈
{
τ(B̂n), τ(B̂n) + hαμ̄hI

}
. To handle 

the eigenvalue distribution, we remark that, since B̂n is symmetric positive definite, by 
similarity the desired result is equivalent to

{Xn + Zn}n ∼λ 1

with

Xn := τ(B̂n)−1/2B̂nτ(B̂n)−1/2,

Zn := τ(B̂n)−1/2hαDn(μ)τ(B̂n)−1/2.

To prove the latter, we rely on Theorem 3. Since {Xn}n is a symmetric positive definite 
GLT sequence with symbol 1, by the second part of GLT 1 we have {Xn}n ∼λ 1 and 
assumption 2 is satisfied. Regarding assumption 1, by the results in [16,41] {Xn}n is 
uniformly bounded in spectral norm and the minimal eigenvalue of τ(B̂n) is asymptotic 
to hα, leading to the fact that {Zn}n is also uniformly bounded in spectral norm i.e. its 
maximal singular value is O(1) (see (11) for more precise derivations). Finally, considering 
that the eigenvalues of τ(B̂n) are a uniform sampling of tα (up to relative infinitesimal 
errors), the s-th singular value of Zn is bounded from above by

rs(α, μ) := hα‖μ‖∞
λs

(
τ(B̂n)

) ,

so that

σ1(Zn) ≤ r1(α, μ) = O(1), (11)

σs(Zn) ≤ rs(α, μ) = o(1), ∀s = s(n), 1 = 0(s(n)). (12)

Therefore ‖Zn‖1 =
∑n2

j=1 σj(Zn) = o(n2) by direct computation using (11), (12), and 
the ordering σ1(Zn) ≥ σj(Zn) ≥ · · · ≥ σn2(Zn). Applying Theorem 3 we obtain {Yn =
Xn + Zn}n ∼λ 1.

The GLT properties in p2 follow plainly from Theorem 4 and the third and fourth 
parts of GLT 3 combined with p1. The singular value distribution then is an obvious 
consequence of GLT 1. As for the eigenvalue distribution, it follows in the same way as 
above from Theorem 3, given that the sequence μ̄h(n) is nonnegative and bounded. •
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4.3.2. The case of an unbounded wave function

Theorem 7. Let μM (x, y) in (6) be Riemann-integrable for any M > 0 and suppose 
that {μM (x, y)}M converges pointwise to μ(x, y), with μ(x, y) unbounded and complex-
valued. Let {μ̄h(n)}n be a sequence of complex numbers such that hαμ̄h(n) = o(1). Then, 
for Pn ∈

{
τ(B̂n), τ(B̂n) + hαμ̄h(n)In2

}
,

q1. {Pn}n ∼GLT,σ tα;
q2.

{
P−1

n

(
B̂n + hαDn(μ)

)}
n
∼GLT,σ 1.

If moreover μ(x, y) and {μ̄h(n)}n are real-valued, then

q3. {Pn}n ∼λ tα;
q4.

{
P−1

n

(
B̂n + hαDn(μ)

)}
n
∼λ 1.

Proof. From Theorem 6 we know that {τ(B̂n)}n ∼GLT tα and from (10) that 
{hαμ̄h(n)In2}n ∼GLT 0. By GLT 3, we have {Pn}n ∼GLT tα for Pn ∈

{
τ(B̂n), τ(B̂n) +

hαμ̄hIn2
}
, and by GLT 1 {Pn}n ∼σ tα.

The GLT properties in q2 follow plainly from Theorem 5 and the third and fourth 
parts of GLT 3 combined with q1.

If μ and {μ̄h(n)}n are real, all the matrices are Hermitian or similar to Hermitian 
matrices, where the similarity is still of GLT nature. Therefore statements q3 and q4
follow from the second part of GLT 1. •

As we have already mentioned, when μ(x, y) is complex-valued and unbounded we 
have been unable to obtain a satisfactory generalization of the eigenvalue distribution. 
In particular, the unbounded character of the inverse of the preconditioning matrix-
sequences has been the main obstacle. This matter is therefore left for future work, see 
in particular [1] for the specific case of a complex-valued μ with power singularities.

5. Numerical experiments

This section is divided in two parts. Subsection 5.1 contains a visualization of the most 
relevant theoretical results, while Subsection 5.2 analyzes the convergence behavior of 
the preconditioned CG/GMRES applied to the scaled linear systems (4)

Ânu := (B̂n + hαDn(μ))u = hαv, n = (n, n),

with the preconditioners described in Section 4.3

Pn = τ(B̂n) + hαμhIn2 ,
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Fig. 1. Singular/Eigenvalues of the matrix Ân for μ(x, y) = exp(ı̂(x + 4y)), α = 1.2 and n2 = 212. The first 
(second) panel reports in blue the singular values (real part of the eigenvalues) and in red the equispaced 
sampling of tα in nondecreasing order. The third panel reports the eigenvalues in the complex plane. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

where B̂n := Tn(tα) and μh is chosen as the arithmetic average of the evaluations of 
μ(x, y) over the grid points.

5.1. Numerical tests and visualization of the theory

In the current subsection we report a numerical and visual representation the singular 
value and eigenvalue analysis made in the previous sections.

In Figs. 1–8, we plot the singular values and eigenvalues of the matrix Ân with size 
ν(n) = n2 = 212 and α ∈ {1.2, 1.4, 1.6, 1.8}, displaying the results contained in The-
orems 4 and 5. The clustering at zero of the imaginary part of the eigenvalues of Ân
and the relation {Ân} ∼σ,λ tα are already clearly visible for a moderate matrix size like 
212. It is remarkable that no outliers are present, since the imaginary parts are always 
negligible and the graph of the equispaced sampling of tα and of the real parts of the 
eigenvalues superpose completely. The same happens for the singular values.

Tables 1–2 show the number of singular values outliers, with respect to neighborhoods 
of radius ε = 0.1, 0.01, for the preconditioned matrix sequence, for α ∈ {1.2, 1.4, 1.6, 1.8}
and two examples of the function μ. The clustering at 1 is evident and in accordance 
with Theorem 7, item q2.

The same kind of evidence for the outlying eigenvalues is given in Tables 3–4. The 
spectral clustering at 1 emerges from the numerical data and it is consistent with the 
theoretical analysis in Theorems 6–7. Figs. 9–10 provide a further visualization of the 
eigenvalue clustering at 1, showing the whole spectra in the complex plane.
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Fig. 2. Singular/Eigenvalues of the matrix Ân for μ(x, y) = exp(ı̂(x + 4y)), α = 1.4 and n2 = 212. The first 
(second) panel reports in blue the singular values (real part of the eigenvalues) and in red the equispaced 
sampling of tα in nondecreasing order. The third panel reports the eigenvalues in the complex plane.

Fig. 3. Singular/Eigenvalues of the matrix Ân for μ(x, y) = exp(ı̂(x + 4y)), α = 1.6 and n2 = 212. The first 
(second) panel reports in blue the singular values (real part of the eigenvalues) and in red the equispaced 
sampling of tα in nondecreasing order. The third panel reports the eigenvalues in the complex plane.
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Fig. 4. Singular/Eigenvalues of the matrix Ân for μ(x, y) = exp(ı̂(x + 4y)), α = 1.8 and n2 = 212. The first 
(second) panel reports in blue the singular values (real part of the eigenvalues) and in red the equispaced 
sampling of tα in nondecreasing order. The third panel reports the eigenvalues in the complex plane.

Fig. 5. Singular/Eigenvalues of the matrix Ân for μ(x, y) = −2 + exp(ı̂(3x + 2y)), α = 1.2 and n2 = 212. 
The first (second) panel reports in blue the singular values (real part of the eigenvalues) and in red the 
equispaced sampling of tα in nondecreasing order. The third panel reports the eigenvalues in the complex 
plane.
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Fig. 6. Singular/Eigenvalues of the matrix Ân for μ(x, y) = −2 + exp(ı̂(3x + 2y)), α = 1.4 and n2 = 212. 
The first (second) panel reports in blue the singular values (real part of the eigenvalues) and in red the 
equispaced sampling of tα in nondecreasing order. The third panel reports the eigenvalues in the complex 
plane.

Fig. 7. Singular/Eigenvalues of the matrix Ân for μ(x, y) = −2 + exp(ı̂(3x + 2y)), α = 1.6 and n2 = 212. 
The first (second) panel reports in blue the singular values (real part of the eigenvalues) and in red the 
equispaced sampling of tα in nondecreasing order. The third panel reports the eigenvalues in the complex 
plane.
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Fig. 8. Singular/Eigenvalues of the matrix Ân for μ(x, y) = −2 + exp(ı̂(3x + 2y)), α = 1.8 and n2 = 212. 
The first (second) panel reports in blue the singular values (real part of the eigenvalues) and in red the 
equispaced sampling of tα in nondecreasing order. The third panel reports the eigenvalues in the complex 
plane.

Table 1
Number of outlying singular values No(ε) with respect 
to a neighborhood of 1 of radius ε = 0.1 or ε = 0.01
and related percentage for increasing dimension n2 - Ω =
[0, 1]2.

μ(x, y) = exp(ı̂(x + 4y))
n No(0.1) Percentage No(0.01) Percentage

α = 1.2
24 5 1.95% 130 50.8% 
25 11 1.07% 137 13.4% 
26 21 0.51% 191 4.66%

α = 1.4
24 4 1.56% 51 20.0% 
25 9 0.88% 77 7.52% 
26 19 0.46% 136 3.32%

α = 1.6
24 3 1.17% 31 12.1% 
25 6 0.58% 57 5.57% 
26 13 0.32% 114 2.78%

α = 1.8
24 1 0.39% 20 7.81% 
25 2 0.19% 40 3.91% 
26 5 0.12% 82 2.00% 
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Table 2
Number of outlying singular values No(ε) with respect 
to a neighborhood of 1 of radius ε = 0.1 or ε = 0.01
and related percentage for increasing dimension n2 - Ω =
[0, 1]2.

μ(x, y) = −2 + exp(ı̂(3x + 2y))
n No(0.1) Percentage No(0.01) Percentage

α = 1.2
24 20 7.81% 256 100% 
25 25 2.44% 932 91.0% 
26 36 0.88% 1065 26.0%

α = 1.4
24 10 3.91% 243 94.9% 
25 15 1.46% 297 29.0% 
26 25 6.10% 304 7.42%

α = 1.6
24 5 1.95% 122 47.6% 
25 8 0.78% 114 11.1% 
26 16 0.39% 160 3.91%

α = 1.8
24 3 1.17% 47 18.3% 
25 4 0.39% 60 5.86% 
26 7 0.17% 99 2.42% 

Table 3
Number of outlying eigenvalues No(ε) with respect to a 
neighborhood of 1 of radius ε = 0.1 or ε = 0.01 and related 
percentage for increasing dimension n2 - Ω = [0, 1]2.

μ(x, y) = exp(ı̂(x + 4y))
n No(0.1) Percentage No(0.01) Percentage

α = 1.2
24 5 1.95% 247 96.5% 
25 10 0.98% 165 16.1% 
26 19 0.46% 211 5.15%

α = 1.4
24 4 1.56% 71 27.7% 
25 7 0.68% 83 8.10% 
26 16 0.390% 142 3.47%

α = 1.6
24 3 1.17% 34 13.3% 
25 4 0.39% 56 5.47% 
26 9 0.22% 109 2.66%

α = 1.8
24 0 0% 21 8.20% 
25 1 0.09% 38 3.71% 
26 1 0.02% 75 1.83% 

5.2. Preconditioned CG and GMRES convergence

In the present subsection, we provide convergence results when applying the con-
sidered preconditioning strategy for two Krylov methods to the non-Hermitian linear 
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Table 4
Number of outlying eigenvalues No(ε) with respect to a 
neighborhood of 1 of radius ε = 0.1 or ε = 0.01 and related 
percentage for increasing dimension n2 - Ω = [0, 1]2.

μ(x, y) = −2 + exp(ı̂(3x + 2y))
n No(0.1) Percentage No(0.01) Percentage

α = 1.2
24 20 7.81% 256 100% 
25 25 2.44% 968 94.5% 
26 38 0.93% 1078 26.3%

α = 1.4
24 10 3.91% 249 97.2% 
25 15 1.46% 304 29.7% 
26 23 0.56% 323 7.88%

α = 1.6
24 6 2.34% 126 49.2% 
25 8 0.78% 121 11.8% 
26 13 0.32% 173 4.22%

α = 1.8
24 3 1.17% 47 18.3% 
25 3 0.29% 64 6.25% 
26 4 0.09% 99 2.42% 

Fig. 9. Eigenvalues of the preconditioned matrix of size n2 = 212 for μ(x, y) = exp(ı̂(x + 4y)) and α =
{1.2, 1.4, 1.6, 1.8}, respectively.

systems arising from the numerical approximation of our fractional Helmholtz equations 
on the square domain Ω = [L,R]2 = [−1, 1]2. Here h = (R− L)/(n + 1) is the step size, 



578 A. Adriani et al. / Linear Algebra and its Applications 708 (2025) 551–584 

Fig. 10. Eigenvalues of the preconditioned matrix of size n2 = 212 for μ(x, y) = −2 + exp(ı̂(3x + 2y)), and 
α = {1.2, 1.4, 1.6, 1.8}, respectively.

xi = L+ ih, i = 0, . . . , n+1, yj = L+ jh, j = 0, . . . , n+1, and the domain Ω = [−1, 1]2

is chosen as in the numerical results in [37].
As expected from Theorem 6, item p2, and Theorem 7, item q4, when μ(x, y) is 

real-valued a standard preconditioned CG (PCG) method is sufficient for obtaining a 
fast convergence, with a total cost of O

(
n2 log(n)

)
arithmetic operations. In fact, under 

mild assumptions, the resulting matrices are real symmetric and positive definite and 
the associated preconditioned matrix-sequences show a spectral clustering at 1. The fast 
convergence is well confirmed in Table 5, Table 6 and in Table 8. Of course, when the 
infinity norm of μM (x, y) = M cos(x) cos(y) grows (M = 1, 10, 100), we observe a slight 
increase in the number of the iterations, just because the radius of the cluster at 1 is 
influenced by M as the matrix size is fixed. In any case, we can state that the resulting 
PCG is optimal and robust with respect to the problem and discretization parameters 
α,M, h. In Table 7 and in Table 8 we report the numerical results when a preconditioned 
GMRES is employed with the same preconditioner and the quality of the convergence is 
of the same type as for the PCG.

Furthermore, in Table 9 and in Table 10, we take into consideration two examples of 
bounded complex-valued functions μ(x, y). In accordance with the theoretical analysis 
and with the eigenvalue clustering at 1 observed in Subsection 5.1, a very good numerical 
behavior is reported. Also for these two examples the preconditioned GMRES is optimal 
and robust with respect to the parameters α and h.

Finally, we stress that the results are remarkable, especially taking into account the 
asymptotic theoretical barriers proved in [49,48] concerning the matrix algebra precon-
ditioning for linear systems with multilevel Toeplitz coefficient matrices.
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Table 5
Number of preconditioned PCG iterations to solve the lin-
ear system for increasing dimension n2 till tol = 1.e − 11 -
Ω = [−1, 1]2.

μ(x, y) = cos(x) cos(y)
α = 1.2 α = 1.4 α = 1.6 α = 1.8

n - Pn - Pn - Pn - Pn

24 23 8 25 8 28 7 30 7 
25 36 9 44 9 51 8 60 7 
26 56 10 72 10 91 9 113 8 
27 85 11 115 10 159 10 212 8 
28 131 12 190 11 276 10 397 9 
29 200 12 314 12 489 11 >500 9 
μ(x, y) = cos(2x) cos(2y)

α = 1.2 α = 1.4 α = 1.6 α = 1.8
n - Pn - Pn - Pn - Pn

24 23 9 25 8 28 8 30 7 
25 37 9 44 9 52 8 60 7 
26 56 10 73 9 91 9 114 8 
27 86 11 116 10 160 9 213 8 
28 132 12 191 11 279 10 399 9 
29 202 12 315 12 492 11 >500 9 
μ(x, y) = cos(4x) cos(4y)

α = 1.2 α = 1.4 α = 1.6 α = 1.8
n - Pn - Pn - Pn - Pn

24 23 9 26 8 28 7 30 7 
25 38 9 43 9 52 8 60 7 
26 59 10 74 9 92 9 114 8 
27 90 11 121 10 161 9 214 8 
28 138 11 199 11 282 10 401 9 
29 211 12 324 11 495 11 >500 9 
μ(x, y) = cos(10x) cos(10y)

α = 1.2 α = 1.4 α = 1.6 α = 1.8
n - Pn - Pn - Pn - Pn

24 23 8 26 8 28 7 30 7 
25 38 9 45 8 52 8 60 7 
26 59 10 74 9 92 8 114 8 
27 90 10 121 10 162 9 214 8 
28 138 11 199 11 283 10 401 9 
29 210 12 325 11 496 10 >500 9 

6. Conclusions

In this work we considered a Helmholtz equation with fractional Laplace operator 
approximated by ad hoc centered differences with variable wave number μ(x, y), in great 
generality including the case in which the function is complex-valued. Several results 
concerning distribution and clustering have been derived, both in the sense of the eigen-
values and singular values. A wide set of numerical experiments and visualizations has 
been reported and discussed. The results strongly agree with the theoretical forecasts 
presented in the theoretical part.
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Table 6
Number of preconditioned PCG iterations to solve the lin-
ear system for increasing dimension n2 till tol = 1.e − 11 -
Ω = [−1, 1]2.

μ(x, y) = M cos(x) cos(y), M = 10
α = 1.2 α = 1.4 α = 1.6 α = 1.8

n - Pn - Pn - Pn - Pn

24 19 12 22 12 25 11 28 10 
25 29 13 37 12 46 11 56 10 
26 45 14 61 13 82 12 105 11 
27 69 16 100 14 144 12 198 11 
28 106 17 164 15 252 13 371 11 
29 162 17 269 16 442 14 >500 12 
μ(x, y) = M cos(x) cos(y), M = 100

α = 1.2 α = 1.4 α = 1.6 α = 1.8
n - Pn - Pn - Pn - Pn

24 13 19 13 19 16 19 20 18 
25 15 26 20 24 28 22 38 20 
26 22 30 33 28 49 24 71 20 
27 33 33 53 30 86 26 133 22 
28 51 36 88 31 151 27 251 22 
29 78 39 144 33 266 29 471 24 

Table 7
Number of preconditioned GMRES iterations to solve the 
linear system for increasing dimension n2 till tol = 1.e− 11
- Ω = [−1, 1]2.

μ(x, y) = M cos(x) cos(y), M = 10
α = 1.2 α = 1.4 α = 1.6 α = 1.8

n - Pn - Pn - Pn - Pn

24 19 12 22 11 25 10 28 9 
25 29 12 37 11 46 10 56 9 
26 45 13 60 12 81 11 105 9 
27 68 14 99 12 142 11 195 10 
28 104 14 161 13 248 11 365 10 
29 158 15 263 13 433 11 >500 10 
μ(x, y) = M cos(x) cos(y), M = 100

α = 1.2 α = 1.4 α = 1.6 α = 1.8
n - Pn - Pn - Pn - Pn

24 13 17 13 17 16 17 20 16 
25 15 22 20 21 28 19 38 16 
26 22 26 33 23 49 20 71 17 
27 33 27 53 24 85 20 132 18 
28 51 29 87 25 148 21 246 18 
29 77 30 141 26 259 22 462 18 

Many more intricate cases can be treated using the same type of theoretical apparatus, 
including the GLT theory, tools like the approximating class of sequences and that of 
non-Hermitian perturbations of Hermitian matrix-sequences. In particular, future work 
can be focused on the following topics



A. Adriani et al. / Linear Algebra and its Applications 708 (2025) 551–584 581

Table 8
Number of preconditioned PCG/GMRES iterations to solve the 
linear system for increasing dimension n2 till tol = 1.e − 11 -
Ω = [−1, 1]2.

μ(x, y) = cos(x) cos(4y)(1 − exp(x + y)) - PCG 
α = 1.2 α = 1.4 α = 1.6 α = 1.8

n - Pn - Pn - Pn - Pn

24 41 16 46 14 52 12 60 11 
25 62 16 74 14 92 12 111 11 
26 95 16 122 14 160 13 207 11 
27 145 17 199 15 280 13 389 11 
28 221 17 326 15 491 13 >500 11 
29 338 18 >500 16 >500 14 >500 12 
μ(x, y) = cos(x) cos(4y)(1 + exp(x + y)) - GMRES 

α = 1.2 α = 1.4 α = 1.6 α = 1.8
n - Pn - Pn - Pn - Pn

24 40 15 45 13 52 11 59 10 
25 62 15 73 13 91 11 111 10 
26 94 16 120 13 158 12 205 10 
27 143 16 196 14 274 12 381 10 
28 216 16 319 14 476 12 >500 10 
29 328 16 >500 14 >500 12 >500 10 

Table 9
Number of preconditioned GMRES iterations to solve the linear 
system for increasing dimension n2 till tol = 1.e − 11 - Ω =
[−1, 1]2.

μ(x, y) = exp(̂i(x + 4y))
α = 1.2 α = 1.4 α = 1.6 α = 1.8

n - Pn - Pn - Pn - Pn

24 39 11 45 10 52 9 60 8 
25 60 12 74 11 90 10 110 8 
26 91 12 120 11 157 10 204 8 
27 138 12 195 11 272 10 380 9 
28 209 13 317 12 476 10 >500 9 
29 319 13 >500 12 >500 11 >500 9 

Table 10
Number of preconditioned GMRES iterations to solve the linear 
system for increasing dimension n2 till tol = 1.e − 11 - Ω =
[−1, 1]2.

μ(x, y) = −2 + exp(̂i(3x + 2y))

α = 1.2 α = 1.4 α = 1.6 α = 1.8
n - Pn - Pn - Pn - Pn

24 47 15 51 13 57 11 63 10 
25 73 16 84 13 99 12 117 10 
26 111 16 137 14 171 12 216 10 
27 168 16 222 14 298 12 402 10 
28 256 16 360 14 >500 12 >500 10 
29 387 17 >500 14 >500 12 >500 10 
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• A p order finite element approximation in space dimension d leads to d-level Toeplitz 
matrices having a matrix-valued generating function, which is also the GLT symbol. 
In this case the parameter r takes the form r = pd [25].

• Along the same lines of the previous item, we could consider discontinuous Galerkin 
techniques of degree p with r = (p+1)d [6], or isogeometric analysis with polynomial 
degree p and regularity k ≤ p− 1 with r = (p− k)d [6,9,10,26].

• The preceding two items could be considered also in the case where the main opera-
tor, i.e. the fractional Laplacian, is defined on a non-Cartesian d-dimensional domain, 
or equipped with variable coefficients, or with approximations on graded grids. We 
observe that cases considered in the current item lead to r×r matrix-valued symbols 
in t = 2d independent variables, as in the general GLT theory [4,6,24]. In fact, the 
related GLT theory is already available [4–6,8,23,24], while the other tools do not 
depend from a specific structure of the involved matrix sequences. Of course when 
a vector PDE or a vector FDE is considered, the number r has to be multiplied by 
the number of scalar differential equations (see e.g. [18,22] and references therein).
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