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Abstract: Xenobiotics released in the environment can be taken up by aquatic and terrestrial or-
ganisms and can accumulate at higher concentrations through the trophic chain. Bioaccumulation
is therefore one of the PBT properties that authorities require to assess for the evaluation of the
risks that chemicals may pose to humans and the environment. The use of an integrated testing
strategy (ITS) and the use of multiple sources of information are strongly encouraged by authorities
in order to maximize the information available and reduce testing costs. Moreover, considering
the increasing demand for development and the application of new approaches and alternatives
to animal testing, the development of in silico cost-effective tools such as QSAR models becomes
increasingly important. In this study, a large and curated literature database of fish laboratory-based
values of dietary biomagnification factor (BMF) was used to create externally validated QSARs. The
quality categories (high, medium, low) available in the database were used to extract reliable data
to train and validate the models, and to further address the uncertainty in low-quality data. This
procedure was useful for highlighting problematic compounds for which additional experimental
effort would be required, such as siloxanes, highly brominated and chlorinated compounds. Two
models were suggested as final outputs in this study, one based on good-quality data and the other
developed on a larger dataset of consistent Log BMFL values, which included lower-quality data.
The models had similar predictive ability; however, the second model had a larger applicability
domain. These QSARs were based on simple MLR equations that could easily be applied for the
predictions of dietary BMFL in fish, and support bioaccumulation assessment procedures at the
regulatory level. To ease the application and dissemination of these QSARs, they were included with
technical documentation (as QMRF Reports) in the QSAR-ME Profiler software for QSAR predictions
available online.

Keywords: QSAR; biomagnification; bioaccumulation; MLR; alternatives to animal testing; data quality

1. Introduction

Bioaccumulation is a fundamental property for understanding the fate of a substance
in the environment and its behaviour in the presence of living organisms. In a regulatory
context, high-quality information that describes properties, activities and the fate of chemi-
cals are required to improve risk assessment procedures [1]. Among the metrics available
to describe bioaccumulation, the biomagnification factor (BMF) is defined as an increase in
the fat-adjusted concentration of a substance in organisms at succeeding trophic levels in
the food chain [1] and can be quantified as:

BMF =
Cpredator

Cprey

where Cpredator and Cprey are the concentration in the predator and the prey, respectively, in
steady-state conditions.

According to the OECD guidelines [2], BMFs should be corrected on the basis of the
lipid content both in the fish (which is strongly associated with the bioaccumulation of
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hydrophobic chemicals) and in the food (Annex 7 [2]). The BMFL is usually derived from
the BMF by dividing the BMF by the lipid content of the fish (LFish) and multiplying by the
lipid content of the diet (LDiet) [3].

BMFL = BMF ∗ LDiet
LFish

In the literature, it was demonstrated that BMFs increased with increasing lipid
content in the diet unless the lipids in the organisms and in the diet assumed similar
sorption capacities for neutral hydrophobic chemicals [3,4]. In order to remove the apparent
variability, Gobas and collaborators [3] proposed an alternative normalization, which
included the standardization of the BMF to the lipid content of fish by dividing the BMF in
units of kilograms of diet per kilogram of fish by the lipid content of the fish LFish (kilograms
of lipid per kilogram of fish), and then multiplying by the lipid content of the fish of 0.05 kg
lipid/kg fish.

The BMF5% has the advantage of having the same units as the wet weight BMF of
kilograms per diet per kilograms of fish (which are different from the BMFL, lipid-corrected
units). Despite this advantage, Gobas and collaborators [3] concluded that normalizing the
BMF to both the lipid content of the fish and the lipid content of the diet, as recommended
in the OECD 305 guideline [2], provided a more realistic indicator of the potential for
biomagnification in the environment. For this reason, the data used here to develop the
QSAR models are based on the normalization of the lipid content in both the fish and
the diet.

An alternative to the BMF measured in laboratory experiments is the BMF determined
in field studies. The field-derived BMF is the ratio between the steady-state concentrations
in the organism and in the diet of the organism determined from the field where the
organism is exposed to chemicals in the air, water and diet [5]. The laboratory- and
field-derived BMFs differ in the sense that the first involves the exposure of the predator
to chemicals only from the diet, while the second considers the uptake from both the
respiratory medium and the diet [6,7].

The criterion that is commonly used to indicate the capability of a chemical to bio-
magnify is a BMF greater than 1 [5,8–11]. The rate of biomagnification in different types of
organisms (e.g., fish, mammals and birds) can differ due to the greater capability of higher
trophic-level organisms to biotransform chemicals [5,12].

For decades, dietary bioaccumulation testing in fish was conducted for scientific and
regulatory purposes. In 2012, the Organization of Economic Co-operation and Development
(OECD) provided a revised guidance (Test Guideline 305 [2]) based on a systemic review of
dietary bioaccumulation testing methods, literature and data.

Among all of the metrics used to assess bioaccumulation, the dietary BMF is considered
one of the best to be used for this purpose [5,13]. According to REACH (Annex III), to assess
bioaccumulation it is necessary to consider all the information derived from the uptake of a
chemical from different routes and to focus the efforts on in silico and in vitro approaches.
However, while several in silico QSAR models have been developed for the estimation
of BCF [14–17], only few QSARs are available for the prediction of the biomagnification
factor [9,18]. For instance, Fatemi and Baher [18] developed linear and non-linear QSAR
models based on BMF data measured in the field for 42 PCBs.

Another work published by Grisoni and co-workers [9] reported linear and non-linear
QSAR models developed on selected data for 214 compounds extracted from the Arnot
and Quinn dietary BMF database [8]. In our study, the Arnot and Quinn database is used
for the development of QSAR models based on multiple linear regression and validated
according to the OECD guidance.

The first aim of this paper is to develop QSARs based on multiple modelling tech-
niques, taking into account data quality scores as provided in the original literature [8].
This represents an interesting innovation compared to the literature models developed
using the same dataset. Furthermore, we want to compare low-quality data endpoints with
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the predictions generated using good-quality data, taking into consideration the structural
applicability domain of the model. This procedure allows for the identification of inconsis-
tent low-quality data, which deviate from the expected trend based on the QSAR generated
from good-quality data. Furthermore, it allows for the identification of groups of chemicals
that fall outside the applicability domain of the models based on good-quality data.

The QSAR models presented in this paper represent valuable tools, compliant with reg-
ulatory requirements, that can be applied to support chemical risk assessment procedures
and have been included in the freely available QSAR-ME Profiler software [19].

2. Materials and Methods
2.1. The Literature Dataset

The dataset of laboratory-based fish biomagnification data published by Arnot and
Quinn [8] was used to perform this study. The literature dataset is composed of 846 BMF
data records from several sources and covers a wide range of Log BMF values from −5.70
to 1.95.

The dataset includes heterogeneous organic chemicals such as PCBs, legacy organochlo-
rine pollutants, PBDEs, pesticides and siloxanes, and covers a wide range of estimated Log
Kow between 0.80 and 22.71. Almost 60% of the compounds have an estimated Log Kow
greater than 6.

2.2. Regression Models Dataset

Only BMF values flagged in the original database [8] as lipid-normalized were in-
cluded in the final dataset (BMFL). Moreover, categories based on data quality assigned
in Arnot and Quinn [8] were used to group data used for the development of multiple
linear regression (MLR) QSARs. These categories were assigned after an in-depth review
of the dietary BMFL data, based on methods described in OECD test guidelines 305 [2].
Three subsets were generated from these categories: Dataset 1 included only Log BMFL
data assigned to high- and medium-quality categories. Dataset 2 included only low-quality
data (which was not used to develop QSARs). The final dataset, Dataset 3, was composed
of Dataset 1 and only reliable values extracted from Dataset 2, based on the results of the
QSAR modelling. Dataset 1 was initially composed of 154 substances, of which 92 and
74 chemicals were of high or medium quality, respectively. Multiple data of both high and
medium quality (available for 12 compounds) were averaged to obtain individual values
for a single molecular structure to coherently develop the QSARs. Dataset 2 (Table S2) in-
cluded 121 molecules, for which only data classified as low quality were available. Dataset
3 included 152 substances from Dataset 1, in addition to 106 low-quality data belonging to
Dataset 2. Datasets 1 and 3 are reported in Supplementary Materials, excluding the outliers
found during the modelling procedures (Tables S1 and S3).

2.3. Data Curation and Calculation of the Molecular Descriptors

Molecules were represented as SMILES (Simplified Molecular Line Entry Systems),
which are string notations commonly used to describe molecular structures, including
information on connectivity among atoms. For the data curation step performed for
structural information, the matching of a structure in terms of both the SMILES and
the CAS number was checked using the CIR (Chemical Identifier Resolver) [20] node in
KNIME software [21]. The SMILES were converted into canonical SMILES using OpenBabel
software [22] prior to comparison. This procedure allowed for the detection of compounds
with the same molecular structure but different SMILES strings. Non-matching structures
(i.e., CAS corresponding to incorrect SMILES) were also identified. BMF data referred to
uncertain molecular structures, stereoisomers or chemicals with no corresponding CAS,
were all excluded from the originally dataset.

Chemical information encoded into the SMILES was extracted through the calculation
of molecular descriptors, which are numerical variables quantifying different aspects of the
structural information of a chemical. One-dimensional, two-dimensional and fingerprints
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descriptors were calculated using the PaDEL-Descriptors (version 2.21) software [23] using
the SMILES strings as input.

The following settings were applied to run the calculation of the molecular descriptors:
remove salts, detect aromaticity and standardize nitro groups. More than 2600 molecular
descriptors and fingerprints were calculated in this study. However, for further analysis,
constant or nearly invariant descriptors, and descriptors with a pairwise correlation above
98% were excluded in a pre-reduction step using QSARINS software [24]; thus, about
500 molecular descriptors were finally retained and entered the variable subset selection
procedure performed using a genetic algorithm (GA).

Theoretically calculated logarithmic octanol–water partition coefficients generated
using PaDEL-Descriptors (e.g., XlogP, MLogP and CrippenLogP) were manually excluded
from the final descriptors matrix. In fact, generated by different algorithms, these values
might be inconsistent, thus introducing further uncertainty in the QSAR models [25,26].

2.4. Multiple Linear Regression Models

Multiple linear regression (MLR) by means of ordinary least squares (OLS) was used
to develop the QSARs presented in this study. Prior to developing the QSAR models, Log
BMF datasets were split into training and prediction sets. The latter was used as an external
validation set of the QSARs, which meant that chemicals were not included during the
model development. Chemicals were sorted by increasing response, and one out of three
was then included in the prediction set. Chemicals with the highest and lowest value of
the response were always included in the training set only. After performing the splitting,
molecular descriptors were further filtered by removing invariant or correlated descriptors
as described in Section 2.3.

MLR-OLS QSARs were then developed using QSARINS software [24] by applying the
all-subset procedure, followed by a genetic algorithm variable subset selection (GA-VSS)
for variable selection [27].

2.5. Applicability Domain

The applicability domain of MLR models was studied by evaluating standardized
residuals and the leverage calculated using the descriptors included in the model. Com-
pounds with standardized residuals greater than 2.5 standard deviation units were flagged
as response outliers while compounds with a leverage value (h*) larger than 3 p′/n
(i.e., high-leverage chemicals), where p′ is the number of model variables incremented by
1 and n is the number of training objects, were flagged as out of the structural domain of
the model [28]. The plot of hat values (h) versus standardized residuals was used for a
graphical evaluation.

The datasets used to generate QSAR models in this study are reported as Supplemen-
tary Materials (Tables S1–S3).

3. Results and Discussion

The first dataset used to generate the models was Dataset 1, which included high-
and medium-quality data for 154 structurally heterogeneous compounds, see Table S1. A
QSAR model developed on such data should be highly reliable. This model was used to
investigate the reliability of the low-quality data (Dataset 2), see Table S2, and to address
the possible uncertainty associated with specific chemicals. A final model was developed
including high-quality and consistent data (i.e., Dataset 1 pooled with reliable data from
Dataset 2), see Table S3. The main aim of this study was to propose a new linear QSAR
model for dietary BMF prediction, applicable to a wide range of organic compounds with
different chemical structures.

3.1. Log BMFL QSAR Based on Dataset 1

The first modelling attempt performed on Dataset 1 highlighted the presence of
two recurrent outliers: 3,3’,4,5-Tetrachlorobiphenyl (CAS: 70362-49-1) with Log BMFL
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−2.52 and Propiconazole (CAS: 60207-90-1) with Log BMFL −2.22. These single experimen-
tal data were classified as medium quality. We wanted to highlight that the experimental
data available for 3,3’,4,5-Tetrachlorobiphenyl was inconsistent if compared with the ex-
perimental values available for similar compounds in the dataset. For instance, the Log
BMFL reported for 3,3’,4,5-Tetrachlorobiphenyl was the lowest value in comparison to
the experimental values available for other tetra-PCBs, whose values were mostly in the
0.22–0.80 range. Propiconazole had the lowest value in comparison to the other fungicides
in the same category, whose Log BMFL values were around −2.

These discrepancies might explain the limited accuracy of the QSAR predictions
calculated for these two outliers, which were removed from Dataset 1. The outliers excluded
from further modelling steps are listed in Table S4.

A training set of 115 compounds with a Log BMFL range between −2.3 and 0.93 was
then used to develop a new population of GA-selected MLR-QSARs based on Dataset 1.
A five-fold cross-validation was used to check the internal predictivity of the models
in the population, in addition to the quantification of the fitting (R2). The best model
chosen from the GA population, externally validated on 37 chemicals, was based on
7 molecular descriptors:

logBMFL(dietary) = −103.01 (±25.20)− 0.08 (±0.02)AATS5i + 9.74 (±2.03)BCUTw− 1l −
0.88 (±0.27) PubchemFP257 − 0.15 (±0.05) C3SP2 + 3.14 (±1.50) MATS1i − 0.54 (±0.40) GATS5m +

0.29 (±0.25) GGI5
(1)

ntraining = 115; nprediction = 37; R2 = 0.79; RMSEtr = 0.41; Q2LOO = 0.76; Q2LMO = 0.75;
RMSE cv = 0.44; MAEtr = 0.32; RMSEext = 0.49; MAEext = 0.38; R2

ext = 0.68; Q2-F3 = 0.70;
CCCext = 0.81.

Table 1 shows the averages of the RMSEtest and the MAEtest values of the models
based on seven descriptors, developed for each fold of Dataset 1.

Table 1. Averages of RMSEtest and MAEtest resulting from five-fold cross-validation of model based
on Dataset 1.

Model RMSEtest MAEtest

k fold_a 0.85 0.61
k fold_b 1.06 0.78
k fold_c 0.70 0.55
k fold_d 0.78 0.52
k fold_e 0.58 0.48

Average 0.80 0.59

The average of the RMSEtest of the k-fold population was 0.80, which was higher but
still comparable to the RMSEext (0.49) calculated for Equation (1). The difference between
RMSEext and RMSEtr might be due to the presence of outliers in the training set. In fact,
the cross-validated and external MAE values, which were less sensitive to outliers, were
more similar (MAEtest = 0.59 with respect to MAEext = 0.38).

The plot of the experimental versus predicted values for the model based on Dataset 1
is shown in Figure 1.

Furthermore, in the five-fold populations, GATS2i, SubFPC295, PubchemFP257, Pub-
chemFP503 and PubchemFP738 were among the most frequently selected descriptors across
the models of the seven variables. GATS2i was the Geary autocorrelation—lag 2/weighted
by the first ionization potential, and the SubFPC295 was related to the presence of het-
eroatoms and counted how frequently the bonds between the C and O, N or S atoms were
counted within the chemical structure. The binary fingerprint, PubchemFP257, was also
present in Equation (1) and was related to the presence of two or more aromatic rings.
PubchemFP503 and PubchemFP738 revealed the presence of different fragments, both
containing the Cl atom.
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The use of the k-fold supported the estimation of the predictivity of the model and
confirmed which structural features were relevant to estimate the biomagnification potential.

Figure 1. Plot of experimental vs. predicted Log BMFL values (calculated by Equation (1)). Black
dots = training set. White dots = prediction set.

Table 2 lists the molecular descriptors of Equation (1). In particular, the AATS5i
descriptor was the most important variable selected in Equation (1) and was related to
ionization potential. The presence of this feature in the molecular structure was inversely
related to an increase in the values of dietary BMFL. The second most important molecular
descriptor, BCUTw-1l, was encoding structural information related to molecular diversity
based on the information extracted from the burden matrix [29,30]. In the literature, the
same molecular descriptor was selected to develop classification models to predict biomag-
nification [31]. Furthermore, the presence of two or more aromatic rings (PubchemFP257)
within the molecular structure led to an increase in the molecular weight and dimension,
which seemed to decrease the bioaccumulative ability. In fact, this descriptor had a nega-
tive sign in the equation. A total of 84 chemicals in the dataset were characterized by the
presence of 2 or more aromatic rings, while 68 chemicals did not have this fragment within
their molecular structure. The descriptor, C3SP2, encoded for the presence of unsaturated
branched aliphatic systems [32]. All the compounds with large C3SP2 values (greater than
5) were PAHs and had Log BMF values between −2.5 and −1. MATS1i and GATS5m
were autocorrelation molecular descriptors and were related to ionization potential and
molecular weight, respectively. Finally, GGI5 was a topological charge descriptor [30,33].

The applicability domain calculated for the model is reported in Figure 2.
Figure 2 shows that only a few chemicals lay far from the central space of the model (i.e.,

the space on the left of the horizontal cut-off value h* = 0.209). In particular, one chemical
was highlighted as out of the structural AD and heavily out of the response AD of the
model (CAS 118-82-1), i.e., it had standardized residuals larger than 2.5 standard deviation
units. This molecule, called Binox M, was characterized by a large molecular structure.
It was categorized as an antioxidant and used in fuel, polymers and lubricant blending
industries, as well as an antioxidant additive in petroleum-based lubricants. The Log BMF
for this chemical was predicted with a residual larger than 4 standard deviations. However,
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Binox M was in the prediction set and it did not influence the model development. Six other
chemicals are highlighted in Figure 2, both for the training set and the prediction set, as out
of the structural AD of the model (CAS: 81-15-2, 120068-37-3, 541-02-6, 1836-75-5 for the
training set. CAS 118-74-1 and 4390-04-9 for the prediction set); however, were predicted
by the model with standardized residuals within 3 standard deviations. The list and the
molecular structure of the chemicals highlighted in Figure 2 are reported in Table S5.

Table 2. List of the molecular descriptors included in Equation (1) and short description.

Molecular Descriptor Description

AATS5i Average Broto–Moreau autocorrelation—lag 5/weighted by
first ionization potential

BCUTw-1l N high lowest atom weighted BCUTS

PubchemFP257 ≥2 aromatic rings

C3SP2 Number of doubly bounded carbons linked to 3 other carbons

MATS1i Moran autocorrelation—lag 1/weighted by
first ionization potential

GATS5m Geary autocorrelation—lag 5/weighted by mass

GGI5 Topological charge index of order 5

Figure 2. Applicability domain of the MLR-OLS model selected from the GA population
(Equation (1)). The cut-off value on the abscissa for Equation (1) is h* = 0.209. Chemicals with h values
larger than h* are outside the AD of the model. Black dots = training set. White dots = prediction set.

The split model Equation (1) was recalibrated, pooling the training and the prediction
set. The equation (Equation (2)) of the full model is reported below:
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logBMFL(dietary) = −103.72 (±22.93)− 0.07 (±0.02)AATS5i + 9.74 (±1.85) BCUTw− 1l −
0.83 (±0.25) PubchemFP257 − 0.15 (±0.05) C3SP2 + 3.73 (±1.36) MATS1i + 0.42 (±0.21) GGI5 −

0.55 (±0.34) GATS5m
(2)

ntraining = 152; R2 = 0.77; RMSEtr = 0.43; Q2LOO = 0.74; Q2LMO= 0.73; RMSEcv = 0.46;
MAEtr = 0.33.

3.2. Application of the Model to Investigate Reliability of Data Identified as Low Quality (Dataset 2)

Possible inconsistencies between the experimental data categorized as low quality
(Dataset 2) and the predictions based on Equation (2) were investigated as follows.

Figure 3 shows that most of the low-quality data fell in the AD of Equation (2) and had
experimental values consistent with the predictions generated by this QSAR. Clomazone,
Diflufenican and Metazachlor fell within the structural AD of the model, but they had large
errors in prediction.

Figure 3. The figure shows the plot of the experimental (x-axis) vs. the predicted values (y-axis)
of Equation (2), which are represented by black dots. Equation (2) is applied to predict remaining
low-quality data. Data corresponding to low quality are here plotted with a grey “X” (data included
in the AD) or squares (data excluded from the AD).

On the other hand, 15 chemicals fell outside the structural AD of the model (see the
green squares in Figure 3). Among these, the experimental Log BMFL values available for
the pesticides were mostly consistent with the expected values predicted by Equation (2).
However, the large deviations in the prediction from the experimental values were high-
lighted for siloxanes in the red ellipse on the top of Figure 3. Low-quality data falling
outside the structural AD of Equation (2) were unreliable; therefore, they were not used
to assess the consistency between the experimental Log BMFL and the QSAR predictions.
Furthermore, we wanted to point out that Equation (2) was not suitable to predict the Log
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BMFL of siloxanes. This fact highlighted that additional experiments would be necessary to
generate good-quality data for siloxanes. This would be useful to extend the AD of future
models to these chemicals.

3.3. Log BMFL QSAR Based on Dataset 3

A new model was developed using the final dataset, named Dataset 3, which combined
Dataset 1 and only the reliable low-quality data (i.e., included in the AD of Equation (2)).
The analysis of the best models in the population led to the identification of 15 chemicals
repeatedly mispredicted or falling outside the structural AD of multiple models. These
15 outliers, in addition to 3,3’,4,5-Tetrachlorobiphenyl and Propiconazole (already excluded
in Equation (1)), listed in Table S4, were not included in the next modelling steps.

The equation of the best model was based on seven molecular descriptors as follows:

LogBMFL (dietary) = −0.90 (±0.19) + 1.41 (±0.19) PubchemFP503 − 0.40 (±0.07) SubFPC295 − 0.06 (±0.02)
R_TpiPCTPC + 0.56 (±0.23) MLFER_S − 1.39 (±0.60) maxHother + 0.65 (±0.26) GGI5 − 4.00 × 10−3 (±2.5 × 10−3) VE3_Dt

(3)

ntraining = 194; nprediction = 64; R2 = 0.85; RMSEtr = 0.43; Q2LOO = 0.83; Q2LMO = 0.82; RMSE cv = 0.45;
MAEtr = 0.33; RMSEext = 0.58; MAEext = 0.40; R2

ext = 0.73; Q2-F3 = 0.72; CCCext = 0.84.
Table 3 shows the results from the five-fold cross-validation performed on the training set

and the averages of the RMSEtest and the MAEtest values of the models based on seven descriptors,
developed for each fold:

Table 3. Averages of RMSEtest and MAEtest resulting from five-fold cross-validation based on Dataset 3.

Model RMSEtest MAEtest

k fold_a 0.53 0.38
k fold_b 0.73 0.47
k fold_c 0.57 0.40
k fold_d 0.69 0.45
k fold_e 0.72 0.44

Average 0.65 0.43

The average RMSEtest of the five-fold cross-validation procedure listed in Table 3 was equal to
0.65, which was comparable to the RMSEext calculated for Equation (3) (0.58).

In this case, the analysis of the frequencies of the selected variables in the seven-size population
of the five-fold cross-validation also showed that PubchemFP503 was selected in almost all the popu-
lations. Other frequent variables were SubFPC295 and nBondsS3, which represented the total number
of single bonds (excluding the bonds to hydrogens and aromatic bonds), and the PubchemFP38,
which was related to the presence of two or more chlorine atoms within the molecular structure.

The plot of the experimental versus predicted values for the model based on Dataset 3 is shown
in Figure 4.

Table 4 includes a brief description of the meaning of the descriptors included in Equation (3),
which are listed in decreasing order of importance.

In this model, the most important molecular descriptor was the binary fingerprint, Pub-
chemFP503, followed by the substructure fingerprint count, SubFPC295. PubchemFP503 counted the
presence of a simple SMARTS pattern, which considered the presence of a bond aromaticity, a chlo-
rine atom and a triple bond. The SubFPC295 descriptor was related to the presence of heteroatoms
and counted how frequently the bonds between the C and O, N or S atoms was counted within
the chemical structure. The presence of these bonds within the molecular structures was inversely
related to the values of the dietary BMF. These two fingerprints were often selected in the five-fold
cross-validation population developed for Dataset 1. The other molecular descriptors were related
to the topology and the size of the molecule, such as the R_TpiPCTPC and the GGI5 descriptors.
The MLFER_S descriptor was related to polarizability. VE3_Dt was a 2D matrix-based descriptor
obtained using the detour matrix [30]; the negative sign in the equation for VE3_Dt suggested a
negative contribution to the activity.
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Figure 4. Plot of experimental vs. predicted Log BMFL values of the proposed MLR-OLS model
based on Dataset 3 (Equation (3)). Black dots = training set. White dots = prediction set.

Table 4. List of the molecular descriptors included in Equation (3) and short description.

Molecular Descriptor Description

PubchemFP503
Cl-C:C-[#1]

(where “-” matches a single, “#” matches a triple bond and “:”
denotes bond aromaticity)

SubFPC295 Counts of C–O, N or S bond

R_TpiPCTPC Ratio of total conventional bond order (up to order 10) with
total path count (up to order 10)

MLFER_S Combined dipolarity/polarizability

maxHother Maximum atom-type H E-State: H on aaCH, dCH2 or dsCH

GGI5 Topological charge index of order 5

VE3_Dt Logarithmic coefficient sum of the last eigenvector from
detour matrix

The applicability domain calculated for the model (Equation (3)) is reported in Figure 5.
Figure 5 highlights Binox M (CAS:118-82-1) as a high-leverage compound, which was already

detected as both a structural and a response outlier in Equation (1). In this case, Binox M was instead
correctly predicted by the model with a standardized residual close to zero.

Clomazone (CAS: 81777-89-1) was a strong outlier in the prediction set as in Equation (2).
The other chemicals highlighted in Figure 5 were structural high leverage but were correctly

predicted by the model. The list and the molecular structure of the chemicals highlighted in Figure 5
are reported in Table S5.
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Figure 5. Applicability domain of Equation (3). The cut-off value on the abscissa for Equation (3) is
h* = 0.1237. Values of h below h* are within the structural AD of the model. Black dots = training set.
White dots = prediction set.

Equation (3) was calibrated using the full dataset, and the corresponding best equation is:

logBMFL(dietary) = − 1.04 (±0.16) − 0.42 (±0.06) SubFPC295 + 1.38 (±0.18) PubchemFP503 −
0.06 (±0.02) R_TpiPCTPC + 0.57 (±0.23) MLFER_S + 0.73 (±0.22) GGI5 − 1.05 (±0.55) maxHother –

5.00× 10−3 (±2.4× 10−3) VE3_Dt
(4)

ntraining = 258; R2 = 0.82; RMSEtr = 0.47 Q2LOO = 0.80; Q2LMO = 0.80; RMSEcv = 0.49; MAEtr = 0.35.

3.4. Comparison with Existing BMFL QSAR Models
As was mentioned in the Introduction, few QSAR models were available for the prediction of

the dietary BMF in fish [9,18]. Their performances were compared with our models developed in this
study, as reported in Table 5.

The study published by Fatemi and Baher [18] proposed linear and non-linear QSAR models for
the prediction of the Log BMF for a dataset including 30 polychlorinated biphenyl (PCB) congeners
and 12 organochlorine pollutants. These models were hardly comparable with the QSARs developed
here. In fact, they were trained on only 42 compounds, with rather homogeneous molecular structures,
included up to 5 molecular descriptors, and covered an experimental range of Log BMFs smaller than
the other models reported in Table 5. In general, the fitting performances were comparable across all
the models reported in Table 5. However, not surprisingly, the literature model was more accurate
(especially when ANN were used) to predict Log BMF for PCBs and similar compounds, whereas
more general models, based on heterogeneous datasets, had larger RMSEext.

A closer comparison could be conducted between the QSARs proposed here and the regression
models published in Grisoni and colleagues [9], since data were taken from the same literature
source [8]. However, we wanted to highlight that information related to lipid normalization of
the BMF values was not considered by Grisoni et al. [9], and therefore the final values of Log
BMF modelled in the two studies, as well as the structural and response domain of the models,
were different.
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Table 5. Comparison of the statistical results of the QSAR models found in the literature with
the models proposed in this study for the prediction of dietary Log BMF in fish. MLR: multiple
linear regression, ANN: artificial neural network, GA: genetic algorithm, wNNR: weighted nearest-
neighbour regression.

Authors Method Var.
Training Prediction Cross-

Validation

Response
Range N◦ R2 RMSE SE N◦ R2 RMSE RMSE

Fatemi and
Baher, 2009 [18]

(Stepwise-MLR)
MLR

5

−0.13,
2.49

35

0.77
(R = 0.88) 0.24

7

0.50
(R = 0.71) 0.25

(Stepwise-
MLR)-ANN

0.98
(R = 0.99) 0.03 0.72

(R = 0.85) 0.11

GA-MLR
4

0.72
(R = 0.85) 0.28 0.87

(R = 0.93) 0.27

GA-ANN 1.0
(R = 1.0) 0.03 0.83

(R = 0.91) 0.08

Grisoni et al.,
2019 [9]

wNNR 4 −4.50,
1.10

160

0.76 0.52

54

0.75 0.54 0.52

MLR 7 0.75 0.53 0.71 0.57 0.55

Consensus 0.81 0.47 0.82 0.45 0.49

Dataset 1
Equation (1)

GA-MLR 7

−2.30,
0.93 115 0.79 0.41 37 0.68 0.49 0.80

Dataset 3
Equation (3)

−4.49,
1.03 194 0.85 0.43 64 0.73 0.58 0.65

In the work published by Grisoni et al. [9], a subset of 214 compounds was extracted from
the Arnot and Quinn Log BMF database [8]. Two types of QSAR models were proposed with
different levels of predictivity and interpretability. Model 1 (M1), developed using a weighted
nearest-neighbour regression (wNNR), was based on four molecular descriptors calculated using
DRAGON software. The molecular descriptors that were selected in wNNR were: the squared
octanol–water partitioning coefficient (MlogP2), the total number of bonds (nBT), and two types of
molecular substructures (B02[N-O] and F06[C-C]). The second model (M2) was an MLR model based
on seven molecular descriptors: MlogP2, X0Av, X1Per, SaaaC, VE1_B(m), B02[N-O] and B03[N-Cl].
MlogP2 was the squared logarithm of the octanol–water partitioning coefficient (Log kow) and was
selected in both the models. The other molecular descriptors were mainly related to the molecular
size, the presence of heteroatoms (e.g., O, N, P), the presence of rings and the typology of the bonds.
The predictions generated by M1 and M2 were then combined by consensus [9]. It was interesting to
highlight that some of the structural features similar to those selected in models M1 and M2 were also
selected in our QSARs. These included the general aspects related to molecular size and the presence
of heteroatoms, as well as the fragments detecting the presence of chlorine atoms and aromatic rings,
which were features related to molecular hydrophobicity. This supported the relevance of these
descriptors for modelling dietary BMF. Moreover, the SubFPC295 descriptor was also identified in a
former study as relevant for modelling Log BCF in fish [34].

Finally, the comparison of the external performances of the models of Grisoni and colleagues
with those calculated here for Equations (1) and (3), showed that these models had similar predictivity
when they were tested on chemicals not used to train the models.

These results also highlighted the importance of studies addressing the creation and curation of
large databases [8,35–37], which are useful for the development of meaningful QSAR models.

4. Conclusions
Bioaccumulation is one of the PBT properties that authorities require to assess in the evaluation

of the risks that chemicals may pose to humans and the environment.
In this work, a large curated database of fish laboratory-based BMF values available in the

literature [8] was used to develop externally validated QSAR models following OECD guidance [38].
In contrast to previous studies, only data reported as lipid-normalized (Log BMFL) were used to
create the models. Furthermore, data were combined according to data quality scores (high, medium
and low) assigned in the original dataset on the basis of perceived data quality and consistency with
the OECD guidelines [8].

Two regression models for the prediction of Log BMFL were suggested as the final output in this
study. One QSAR was based only on good-quality data (Dataset 1). This model was used to assess the
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consistency of low-quality data, and allowed for the identification of some problematic compounds,
such as siloxanes and highly brominated and chlorinated compounds. Additional experimental effort
is necessary to generate good-quality data for these chemicals. This will be useful in the future to train
QSARs on better data and larger applicability domains, which will allow for the reliable prediction of
similar compounds.

The other model, which was developed on a larger structural and response domain (Dataset 3,
i.e., Dataset 1 in addition to reliable values extracted from Dataset 2, excluding low-quality data for
problematic compounds), includes only consistent Log BMFL values.

Several structural features generally related to the presence of heteroatoms, aromatic rings,
chlorine atoms, as well as molecular polarizability and dimension have been highlighted as relevant
for modelling Log BMFL.

The models proposed in this study had comparable and good external predictive performances;
however, Equation (4) had a larger applicability domain. They were both based on simple MLR
equations that could be easily applied for the prediction of dietary BMFL in fish, and support
bioaccumulation assessment procedures at the regulatory level.

To ease the application and dissemination of these QSARs, they are both included with technical
documentation (i.e., QMRF Reports) in QSAR-ME Profiler software for QSAR predictions, available
from https://dunant.dista.uninsubria.it/qsar/ (accessed on 20 February 2023).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics11030209/s1. Table S1: Dataset 1: based on good quality data
(high and medium). Chemicals are reported with CAS numbers, names, splitting category (Training
or Prediction set), experimental and predicted Log BMFL, standardized residuals, HAT values and
values of the molecular descriptors included in the model. Table S2: Dataset 2: Dataset based only
on low quality data with experimental Log BMFL (low) and predicted Log BMFL (by Equation (2)).
Table S3: Dataset 3: Consistent dataset based on high quality data (Dataset 1) and verified low quality
data from Dataset 2. Chemicals are reported with CAS numbers, names, splitting category (Training
or Prediction set), experimental and predicted Log BMFL, standardized residuals, HAT values and
values of the molecular descriptors included in the model. Table S4: List of the excluded molecules.
Table S5: List of the molecules outside the Applicability Domain (AD) of equations 1 and 3. with CAS
numbers, SMILES, Structures, chemicals common names, and information on the AD.
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