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A B S T R A C T

Spectroscopy and chemometrics, supported by computer science, have yielded promising outcomes, as evidenced 
by trends observed in literature searches. However, while researchers meticulously construct chemometric 
models for exploratory, quantitation and classification purposes, the investigation of data quality, particularly 
error analysis, remains less frequent. Understanding and quantifying measurement errors is crucial for robust 
spectroscopic modeling and uncertainty estimation. By unraveling complexities related to multivariate errors and 
uncertainties in spectroscopic data, the scientific community is empowered to extract reliable information from 
spectroscopic analyses, paving the way for enhanced analytical practices. This review underscores the necessity 
for the scientific community to integrate error analysis and uncertainty estimation into multivariate analysis 
methods, offering tailored solutions for diverse data types and analysis objectives.

1. Introduction

Spectroscopic techniques have become indispensable tools in diverse 
scientific disciplines, offering profound insights into the molecular 
composition of materials (see e.g. Refs. [1–5] and references therein). 
Alongside traditional benchtop spectroscopy, many applications have 
been developed in the last years with portable spectroscopic instru
mentation [6–8]. However, in some cases, portability, may entail a lack 
of selectivity, requiring efforts to determine the analytes of interest by 
separating their contribution from interferents [9]. Portable sensors can 
be deployed at-line, on-line and in-line, and the massive amount of data 
collected requires appropriate analysis methods that have to be 
continuously improved [10].

Multivariate data generated by a spectrophotometer require appro
priate techniques for analysis, and chemometric methods are certainly 
among the most suitable for this purpose. The coupling of infrared 
spectroscopy and chemometrics emerged as a compelling and poten
tially enduring duo, with the assistance of a third party: computer sci
ence. For helping visualizing the trajectories of the fields, the results 
obtained in Scopus by using the queries: “(TITLE-ABS-KEY ((IR W/2 
spectroscopy) OR (infrared W/2 spectroscopy))), “(infrared W/1 spec
troscopy) AND (chemometrics OR (multivariate W/2 analysis))”, 

“(TITLE-ABS-KEY(Chemometrics))”,“(TITLE-ABS-KEY ((chemometrics 
OR (multivariate W/2 analysis)) AND (infrared W/1 spectroscopy)))” 
are reported in Fig. 1. Similar trends were observed from the results 
offered for the same keywords on Web of Science.

The figure reveals that chemometrics experienced significant success 
in tandem with the rise of spectrometers and the availability of com
puters. The trend of publications over the years shows similar tendencies 
for chemometrics and chemometrics applied in spectroscopy by high
lighting the correlation between their spreading.

Researchers working in the spectroscopic field are very careful to 
construct and develop increasingly suitable and reliable chemometric 
models for obtaining predictions, classifications, or even just for visu
alizing data. However, less often, the data quality in terms of the error 
associated with the data is investigated. This occurs because the errors 
associated with the measurements are often small, and the assumptions 
made when applying chemometric methods are generally valid. How
ever, this is not always true, and it needs further investigation [11–13]. 
The results of a chemometric model heavily depend on the data quality 
and the understanding of measurement errors [14]. The diverse nature 
of multivariate errors in spectroscopic data has a major impact on data 
preprocessing. By aligning preprocessing strategies with the nature of 
multivariate errors, researchers can enhance the signal-to-noise ratio, 
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leading to more accurate and interpretable spectroscopic models [15]. 
For instance, if instrumental noise dominates the dataset, specific 
denoising methods tailored to the spectral characteristics of the instru
ment may be more effective. Conversely, if variations in sample 
composition contribute significantly to the errors, normalization tech
niques specific to the sample type may be warranted.

The evaluation of the uncertainties of the results is another key point, 
and this concerns both quantitative and qualitative methods [16]. It is 
also important to mention that there is a degree of confusion about the 
term ‘uncertainty’, and it is frequently used in the literature to refer to 
different related concepts such as precision, error or confidence interval, 
when uncertainty is a term that encompasses all the sources of error, 
both random but also systematic, of an analytical method. Let us 
consider the impact that studying uncertainty has on estimating the 
figures of merit of an analytical method. Any analytical method requires 
the assessment of figures of merit, and multivariate calibration methods 
are not an exception. In this context, metrology and chemometrics have 
found themselves working in synergy [17–22]. When it comes to in
dustrial processes, uncertainty can be integrated into process monitoring 
and control strategies, providing very interesting insights [23–25]. And 
in the case of routine methods based on spectroscopic techniques, the 
significance of understanding measurement uncertainty is primary [26]. 
In all these cases, authors rarely discuss the uncertainty of their multi
variate results [27] and, if they do, they infrequently use this informa
tion to optimize their models [28]. It is worth recalling that errors in the 
reference values (the Y vector in case of regression models) also affect 
uncertainty estimation [29]. The success of spectroscopic data modeling 
should rely not only on the prediction estimates but also on their asso
ciated uncertainty. The most popular option for the calculation of un
certainty, although not the only one, relies on error-propagation 
equations. These equations, designed to estimate and propagate un
certainties throughout the modeling process, must be tailored to the 
multivariate nature of errors. Understanding how errors interact across 
multiple dimensions allows for the formulation of more accurate equa
tions that capture the complexity of uncertainties. This ensures that the 
propagated uncertainties in classification and prediction models are not 
oversimplified, providing a more realistic assessment of the reliability of 
analytical results [30].

Thus, everything is interconnected. Estimating uncertainty depends 
on certain assumptions, such as the error in measurement being inde
pendent and identically distributed (iid). However, this may not always 

be valid, as mentioned earlier, so studying the error structure of multi
variate data is a key step in estimating the uncertainty of the results. In 
addition, the correct estimation of uncertainty is essential for accurately 
estimating the figures of merit of the calculated models or other 
important parameters, e.g. Q-residuals and Hotelling-T2 statistics [30,
31]. Back in 1997, Paul de Bièvre wrote a very strong statement con
cerning the importance of providing the uncertainty of analytical re
sults. “So, a result without reliability (uncertainty) statement cannot be 
published or communicated because it is not (yet) a result. I am 
appealing to my colleagues of all analytical journals not to accept papers 
anymore which do not respect this simple logic.” [32]. This statement 
also holds for results obtained from multivariate calibration or classifi
cation models. Knowing the structure of errors allows for the develop
ment of approaches to calculate the uncertainties of classification and 
prediction outcomes, as well as calibration transfer strategies [33–37].

Multivariate errors in spectroscopic data arise from multiple sources, 
encompassing instrumental noise, variations in sample composition, and 
fluctuations in experimental conditions. These perturbations are not 
necessarily independent from each other [38]. These errors are not 
unidimensional; rather, they manifest as complex interactions of mul
tiple factors that challenge the traditional paradigms of error correction. 
Recognizing the nature of these errors is a fundamental step towards 
developing robust strategies for their identification, characterization, 
and effective management.

One of the distinctive features of multivariate errors in spectroscopic 
data is the presence of heteroscedasticity, where the variance of errors 
varies across different regions of the spectrum and/or among spectra 
[11,39–41]. This phenomenon can be attributed to factors such as the 
varying sensitivity of the instrument at different wavelengths or fluc
tuations in experimental conditions. In turn, correlated errors, where the 
errors in one part of the spectrum are systematically related to errors in 
another part, pose another layer of complexity in spectroscopic data 
modelling. These correlations may arise from instrumental drift, envi
ronmental factors, or other unmodeled sources of variability.

Effectively managing heteroscedastic and correlated errors is crucial 
for accurate model development and to develop more accurate uncer
tainty estimations. Ignoring these errors can lead to inaccurate (biased) 
parameter estimates and underestimated uncertainties [42].

Until a few years ago, it could be said that methods for the study of 
multivariate error and the calculation of uncertainty were not 
commonly used for several reasons: they require instrumental and 

Fig. 1. Publications per year related to infrared spectroscopy, chemometrics and the combination of the two on Scopus. Representation in logarithmic scale. Different 
colors are intended for different keywords. The dimensions of the balls represent the numbers in their real scales.
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analytical replicates, which were not always easy to obtain, especially 
with the expensive benchtop techniques prevalent years ago. Addi
tionally, they certainly require computational effort, which could have 
been a hindrance a few years ago, but now is overcome by modern 
computers [43]. Today, these issues can be considered overcome in most 
cases. However, even though methods for modelling errors in data and 
uncertainty in results are known, there is no unanimity among scientists 
in the field, and often the proposed methods lack statistical validation 
[44,45].

This review embarks on a comprehensive exploration of the strate
gies and methodologies employed in the management of multivariate 
errors and uncertainties in spectroscopic data modelling. From 
addressing baseline shifts and instrumental noise to accommodating 
variations introduced by diverse sample matrices, the intricacies of 
handling uncertainties are both a theoretical and practical necessity. 
Understanding the nature of these errors and the uncertainties in clas
sification and prediction models are critical for advancing the accuracy 
of analytical results. This article aims to provide researchers, analysts, 
and scientists with a roadmap for navigating the challenges posed by 
multivariate errors in spectroscopic data. As we unravel the layers of 
complexity inherent in data modelling, we aspire to empower the sci
entific community with the knowledge and tools necessary to extract 
meaningful and reliable information from spectroscopic analyses.

2. The nature of errors in analytical chemistry

As suggested by Booksh and Kowalski in 1994 [46], analytical 
chemistry, as the science of chemical measurements, is inherently linked 
with the concept of measurement error both in qualitative [16] and 
quantitative analysis [47]. From this, emerges the need for acknowl
edging figures of merit as essential both for characterizing a method and 
for method’s comparison. Errors could originate from several sources of 
variability introduced throughout the analysis process, spanning from 
the sampling step to data analysis, encompassing sample preparation 
and instrumental measurement as well. In the case of spectroscopic 
measurements, the different sources of variability depend on how the 
experiment is conducted and on the equipment used. For example, in the 
case of portable near-infrared instrumentation, the variability intro
duced by sample preparation is often reduced; however, this implies that 
the heterogeneity of the sample has often not been addressed.

The use of molecular spectroscopy has spread in the laboratories 
through the 80’s and since then, attention has been raised regarding the 
precision of spectrometers considering the different sources of vari
ability involved [48–51]. The measurement precision was described 
theoretically as dependent upon a number of factors: the blank and dark 
references solutions, the light optical path, and the sample positioning. 
Over time, the technologies and instrumentations have evolved, and 
while the main errors are still present, their characteristics could be 
considered to have changed as well. For example, the instrumentation 
for near infrared has been pushed in recent years towards portability and 
real-time implementations through miniaturization. In this context, 
several studies on different applications [52] have been published to 
investigate issues related to strategies for use and improvement of the 
technologies [53,54].

When aiming at gaining insights into data, classification, authenti
cation, process monitoring and prediction, spectroscopy is nowadays 
often coupled with chemometrics. Measurements can be easily acquired, 
and they can be presented and organized in the forms of vectors, 
matrices, and higher-order structures depending on the problem one 
wants to solve. The inherent complexity in instrumental data was sys
tematically classified by Sanchez and Kowalski [55], employing tensor 
algebra. In this structured framework, tensors emerge as entities that 
encapsulate data, with their order indicating the minimum number of 
indices necessary for meaningful data organization. Zero- and first-order 
tensors correspond to scalars and vectors, respectively, while 
second-order tensors, represented by matrices with elements adhering to 

specific relationships, extend this classification. This systematic 
approach spans not only the data itself but also encompasses the in
struments responsible for data delivery and the methodologies applied 
in subsequent analyses. The order of instrumentation linked to the form 
of data acquired is shown in Fig. 2.

Within this context, “error” means the quantitative deviation be
tween a measured value (x) and its “true” value (μ) as in Equation (1). 
“Uncertainty” assumes the role of statistically characterize this 
disparity, typically apparent in the context of replicated measurements 
and expressed through parameters such as variance, confidence in
tervals, or standard deviation. Conversely, “noise” conveys an organized 
sequence of errors, each possessing distinct characteristics, such as 
photomultiplier noise or drift noise. A univariate measurement inher
ently constitutes a singular sampling of this sequential noise structure 
[56]. Other important definitions related to metrology in analytical 
chemistry can be found in Ref. [57]. 

e= x − μ [Eq. 1] 

Table 1 provides some possible classifications for measurement er
rors and their descriptions as reported by Wentzell in Ref. [11]. As 
pointed out in the article, it is important to note that these classifications 
are not mutually exclusive, and multiple types of noise are typically 
observed in any given system.

When analyzing spectroscopic data from a multivariate perspective, 
the most frequently used tools rely on simplified assumptions regarding 
the characteristics of errors. The statistical representations of these er
rors are usually based on the assumption of homoscedasticity, which is 
characterized by a constant variance across a set of variables. On the 
contrary, heteroscedastic errors (when not all the variables are charac
terized by a constant variance) are often encountered when measuring 
with spectrometers. Independent errors arise when the error covariances 
within a group of variables are all zero whereas non-zero values are 
indicative of correlated errors.

Studying the nature of multivariate measurement errors offers 
several benefits. First, it provides insights into the origins of errors 
specific to a particular instrument or measurement system. This 
knowledge, in turn, can be used to enhance measurement quality by 
addressing the limiting sources of error. Second, understanding the 
characteristics of errors allows for the design of data analysis tools that 
can optimally handle or minimize these errors to more efficiently extract 
chemical information [11,15], such as for instance through specific data 
preprocessing [58]. Finally, the inherent error structure in multivariate 
data can be propagated through various pre-processing and data anal
ysis steps to gauge its impact on the final result. Knowledge on mea
surement errors has been proved useful also for other scopes as to 
compare models [59–61] and final results, and to predict the perfor
mance of instruments [36]. Other areas such as wavelength selection 
and estimation of sample set sizes can also benefit from investigating 
uncertainty [29]. In section 3, multivariate error calculation and 
modeling concerning spectroscopic data will be described.

The recognition of different error sources, including errors in sam
pling, instrumental errors, and errors introduced during modeling, al
lows for a more comprehensive evaluation of the overall measurement 
of uncertainty [62]. Uncertainty in measurement refers to the lack of 
exact knowledge about the true value of a quantity being measured. It 
encompasses both systematic errors, which are consistent and predict
able deviations from the true value, and random errors, which are un
predictable fluctuations in measured values. It also includes the concept 
of the errors one could make through the estimation phase. Estimating 
uncertainty involves quantifying both the systematic and random 
components of error to provide a range of values within which the true 
value is likely to lie. This can be done through methods such as error 
propagation, Monte Carlo simulations, resampling methods, or statisti
cal analysis of repeated measurements. By accounting for uncertainty, 
researchers can communicate the reliability of their measurements and 
ensure that conclusions drawn from the data are appropriately qualified. 

B. Giussani et al.                                                                                                                                                                                                                                Trends in Analytical Chemistry 181 (2024) 118051 

3 



In the analytical process each step contributes to the overall uncertainty 
of models, and careful consideration of these steps is essential for ac
curate and meaningful chemical analyses. For instance, when calcu
lating a regression model for property prediction, the error from the 
reference technique would be incorporated into the sources of variance 
for the models. Depending on the order of the data produced by the 
instrument, the applicable statistical methods differ, as do the figures of 
merit to investigate, since they are related to the model being calculated. 
The selection of the calculation approach should be thoughtful and 
reasonable, primarily contingent on the statistics of measurements, 
including the distribution of repeated measurements, the nature of 
measurement noise (homoscedastic or heteroscedastic), and the pro
cessing method [63]. In the case of spectroscopic data, which are 
intrinsically multivariate measurements, the characterization of un
certainties assumes heightened significance and is essential for suc
cessful data analysis. To describe uncertainty, it is necessary to provide 

the measurement variance for each variable and the covariance between 
measurement channels, as well as other model parameters. In other 
words, the inter-variable relationships within the error structures are 
crucial as well as the error associated with each variable [11,64]. In 
section 4, uncertainties related to models, including those concerning 
the final results of the models, will be discussed.

3. Estimation and study of multivariate errors

In the literature, errors are commonly determined by utilizing the 
mean (x) of multiple measurements as a substitute for the “true” value 
(μ). In this context, the definition of replication becomes crucial and the 
establishment of the level of replication influences the components of 
error variance that would be captured through experimentation. Indeed, 
the variance one would include in the data is related to the type of 
replicates acquired: sampling error, preparation error, technical error, 

Fig. 2. Representation of the relationship between the nature of data and instrumental characteristics.
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and/or instrumental measurement error. It is worthwhile to recall that 
some of these errors may be random errors and some other ones sys
tematic errors. Therefore, careful consideration of how replicates are 
defined is essential when seeking to characterize measurement errors. In 
the case where the use of replicate measurements is not an option or it is 
inappropriate, the multivariate error could be obtained through theo
retical calculations but under several assumptions [65]. In the past de
cades, a theoretical approach that allows for multivariate error 
simulation was presented [44] and an analytical measurement noise 
simulation software was published as MATLAB software [66].

The squared sum of all the variance terms included represents the 
overall variance of the system. For example, Equation (2) explains the 
variance included when considering instrumental and experimental 
replicates of the same sample: 

σ2
TOTAL = σ2

instrumental + σ2
experimental [Eq. 2] 

where instrumental replicates could be intended as multiple scan ac
quisitions without sample displacement, and experimental acquisition 
as scans of the sample in which the sample holder is emptied and refilled 
between scan acquisitions, respectively. In the same scenario, experi
mental replicates also represent independent aliquots of the same 
sample.

A widely used approach for characterizing multivariate measure
ment errors is the error covariance matrix (ECM). The literature de
scribes three distinct methods for estimating this matrix: experimental 
replication, theoretical prediction, and empirical modeling [11]. The 
experimental estimation can be easily performed by conducting calcu
lations once a sufficient number of sample replicates is obtained. In 
contrast, theoretical prediction requires a solid understanding of error 
sources beforehand, while empirical modeling strikes a balance between 
directly using replicate measurements and theoretical predictions.

In spectroscopy, if replicate measurements are possible, the pro
cedure to characterize the multivariate measurement errors starts with 
identifying what would be considered as the true sample spectrum 

depending on the replicates, r, considered. Subsequently, the residuals 
vector ei for each replicate can be obtained by subtracting from each 
spectrum (xi) the mean spectrum (x). A residuals matrix (Ê) can be 
constructed by collecting the residuals for all replicates. Then, the error 
covariance matrix (Σ) can be calculated as the covariance between the 
residuals as in Equation (3). 

Σ =

∑r

i=1
eT

i ei

(r − 1)
[Eq. 3] 

where, eT
i ei is the outer product of the residual vector for each replicate 

spectrum, and gives a matrix that captures the variance and covariances 
between spectral variables.

From the error covariance matrix, the error correlation matrix can be 
calculated as in Equation (4). It contains the correlation coefficients of 
the elements of Σ. 

Σcorr =
Σ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

diag(Σ)⋅diag(Σ)T
√ [Eq. 4] 

Estimates of variance based on experimental data are characterized 
by considerable uncertainty, primarily stemming from experimental 
limitations that typically impose constraints on the number of replicates. 
Therefore, to ensure a reliable estimation, it is crucial to either increase 
the number of replicates or, alternatively, aggregate error covariance 
across various sample subsets and then interpret the resulting average 
covariance matrix (Σavg). The latter approach is generally feasible, 
provided that the measurement data exhibit minimal changes between 
samples, which is typically for example in the case of near-infrared 
spectra of samples from the same origin. A graphical explanation of 
ECM calculation is furnished in Fig. 3.

Once the variance-covariance and the correlation matrices are ob
tained, the visual interpretation can take place (Fig. 4). The error 
covariance matrix describes the correlation between the errors at the 
different wavelengths. The diagonal of the matrix gives an idea about 
the uniformity of the errors in the spectra (homoscedasticity), while 
non-uniform values indicate that errors are not constant along the 
spectra (heteroscedasticity). The off-diagonal elements give information 
on the covariance of the measurement errors. The covariance matrix 
shows the strength of relationships among errors, while the correlation 
matrix, derived from it, reveals the underlying structure, providing 
complementary insights. The correlation matrix indicates the structure 
of the relationship among errors independently from the scale and is a 
matrix containing numbers ranging between − 1 and 1.

Different methods have been proposed to systematically investigate 
the error matrices [43,67] and to compare those obtained for different 
experimental conditions [68]. Since errors are often dominated by a 
bilinear structure, principal component analysis (PCA) and multivariate 
curve resolution (MCR) can be used to deduce the main structure by 
allowing simple interpretation related to the magnitude of the error 
components [69]. A possible quantitative approach to determine the 
important factors contributing to measurement error was proposed by 
Leger et al. [43], assuming the underlying idea of the bilinear structure. 
So, the number of PCA factors required to reconstruct the covariance 
matrix and their shape should offer clues on the nature of the underlying 
errors. Typically, there is a finite number of suspected physical factors 
(like constant offset, linear offset, multiplicative offset). Each target can 
be represented as a vector and can be projected in the subspace defined 
for the significant factors of the PCA model and then reconstructed back 
in the original space. The correlation between the test and projected 
vectors can be calculated to assess the closeness of the target vector to 
the subspace.

To assess the contribution of uncorrelated errors, the comparison 
within the cumulative variance for the PCA on the error covariance 
matrix, and the cumulative percentage variance for the original residual 

Table 1 
Classification and description of typical experimental measurement errors in spec
troscopy. The table has been readapted from Ref. [11].

Type of noise Description

Independent errors/ 
uncorrelated errors

Characterized by error covariance equal to zero.

Correlated errors Characterized by error covariance different from zero.
Homoscedastic errors Errors with a uniform variance.
Heteroscedastic errors Errors with a non-uniform variance.
White noise A vector of uncorrelated measurement errors.
Pink noise (or 1/f noise) A type of low-frequency noise in which the errors in 

adjacent measurements are more correlated than for 
measurements that are farther apart.

Drift noise Low-frequency or correlated noise which implies a 
slow change in measurement conditions, such 
temperature.

Source flicker noise Low-frequency noise that is specifically associated 
with variations in source signal intensity.

Proportional noise Heteroscedastic noise in which the standard deviation 
of the error is proportional to the magnitude of the 
signal.

Additive noise or offset 
noise

Correlated noise that randomly shifts the entire signal 
up or down by a fixed amount.

Multiplicative offset noise Correlated noise that randomly shifts the entire signal 
up or down by an amount proportional to the 
magnitude signal.

Baseline noise Variance introduced by a variable that displaces 
displacement of the baseline or the variance of the 
noise in the baseline regions where there is no signal.

Shot noise Heteroscedastic noise where the noise standard 
deviation is proportional to the square root of the 
signal (photomultipliers).

Digitization noise or 
quantization noise

Arises from finite precision of analog-to-digital 
converters.
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matrix (Ê), can provide insights. The correlations matrices can be 
resumed and studied through K index [70] and image analysis [68].

4. Uncertainty of final results

How the error of the experimental data is incorporated into the final 
result has been one of the most controversial topics in chemometrics for 
many years. We mean by final result the scores of a PCA model, the 
predicted concentration of a PLS regression model or the predicted class 
in a PLS-DA model, for instance. In this section, more emphasis will be 
put on prediction and classification results, as they are by far the most 
usual in the chemometric literature. As stated in the introduction, an 
analytical result should not be reported without an estimation of its 
uncertainty. Otherwise, results cannot be compared with established 
product specifications or even regulatory limits.

4.1. Exploratory models

Data analysis often starts with an exploratory or descriptive analysis, 

and multivariate spectroscopic data, for instance, are not an exception. 
Principal component analysis (PCA) is a cornerstone of multivariate 
exploratory analysis: reducing data dimensionality usually helps 
unraveling complex datasets and identifying underlying patterns and 
trends [71]. PCA is not free from sources of uncertainty. However, un
certainties associated to PCA results are seldom estimated. Nevertheless, 
when it is used as a dimensionality reduction algorithm for subsequent 
clustering, classification or process control tools, for instance, the 
propagation of the errors and consequent uncertainty calculation be
comes paramount [72].

Using resampling techniques is often the simplest way to estimate 
uncertainties associated to PCA. Resampling techniques involve the 
repeated draw of samples from a set and the recalculation of the model 
of interest on each subset of samples to obtain additional information 
from the model. In this way, with all these different subsets and there
fore different submodels, it is possible to calculate the precision asso
ciated to different model parameters (e.g. scores and/or loadings), 
similar to how the precision of the result for a given sample can be 
estimated from replicates of that sample. These precision estimates will 

Fig. 3. Representation of the calculation procedure for multivariate error covariance and correlation matrices.

Fig. 4. a) Example of 15 experimental replicates acquired with a NIR portable instrument on a white compact opaque pill for dietary supplementation. The in
strument used is an AvaSpec-Mini-NIR (Avantes, Apeldoorn, The Netherlands) coupled with AvaLight-HAL-S-Mini2 source and a reflection fiber probe. b) Mea
surement error covariance and correlation matrices.
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then be used to calculate the uncertainty of the desired parameters. For 
instance, to estimate the variability of the fit of a set of samples to a PCA 
model, one can draw different subsets of samples from the original data 
set, fit a PCA model to each new subset and then examine the variation 
of the different models. By doing this, additional information not 
available from fitting the model to the original set of samples can be 
obtained.

Resampling methods can be computationally expensive since they 
involve fitting the same model many times using the different subsets of 
the original data. Nevertheless, thanks to the recent strides in computing 
power, the computational demands of resampling methods are typically 
affordable [73]. Resampling techniques are versatile and applicable to 
various statistical problems without assuming a specific data distribu
tion and are able to cope with complicated statistics where no analytical 
formula is available [74].

The most important resampling methods in multivariate modelling 
are bootstrap, jackknife and cross-validation [75]. These methods can be 
mainly used for two purposes: to estimate the uncertainty of the pa
rameters of the calculated models or to assess the reliability or the 
quality of the models (for instance estimating the mean squared error). 
In this paper resampling methods will be primarily used in the estima
tion of the uncertainty of the parameters of the model, although a few 
comments about the use of resampling methods in assessing the quality 
of the models will be given.

Bootstrap involves drawing multiple samples with replacement [76] 
from the original dataset to estimate the variability of a model property 
or parameter, that can go from scores and loadings to prediction errors. 
Jackknife systematically leaves out one observation at a time from the 
dataset and fits a model for each subsample [76]. This process is 
repeated for each observation in the dataset, allowing for a compre
hensive evaluation of the model stability and performance. Jackknife is 
particularly valuable for estimating bias and variance in statistical es
timators, providing insights into the robustness of models and their 
sensitivity to individual data points.

These resampling techniques have been used to estimate the uncer
tainty of scores or Hotelling’s T2 values of a PCA model. As reviewed by 
Castura et al. [72], several authors have used resampling techniques on 
PCA: for example, Josse et al. [77] from a theoretical perspective, or 
Preisner et al. [26] for classifying different bacteria using infrared 
spectroscopy, have proposed using jackknifing and bootstrapping to 
obtain a population of scores and their uncertainty (an estimated vari
ance of their error).

Another resampling technique, widely used in chemometrics, is 
cross-validation, which is mostly used to assess the predictive perfor
mance of statistical models and less to estimate the uncertainty associ
ated with the models. In cross-validation, the dataset is divided into 
multiple subsets, and the model is trained and tested iteratively on 
different combinations of these subsets. When the validation subsets are 
composed by only one sample, the method is called leave-one-out cross- 
validation (LOOCV) and when they include two or more samples it is 
called k-fold or segmented cross-validation.

While all three resampling methods described (bootstrap, jackknife 
and cross-validation) share the goal of assessing the reliability and 
variability of a model, they differ in their specific approaches. Bootstrap 
and jackknife focus on sampling from the dataset, with bootstrap using 
random sampling with replacement and jackknife systematically omit
ting observations. Cross-validation, on the other hand, emphasizes 
model evaluation by partitioning the dataset into training and testing 
sets. Although bootstrap (and also jackknife) is mainly used to estimate 
the uncertainty or the variability associated to the models, a specific 
byproduct of bootstrap, out-of-bootstrap (OOB) [78], provides data 
points not included in a particular bootstrap sample, what is useful for 
performance evaluation: in each bootstrap sample, certain data points 
are not selected because of the random sampling with replacement. 
These data points that were not sampled in a given bootstrap iteration 
are referred to as “out-of-bootstrap” samples. These OOB samples can be 

used to evaluate the performance of a model, providing a form of 
cross-validation.

Focusing briefly on estimating the reliability or the performance of a 
model, the reviewed resampling techniques are often used in model 
aggregation (aggregating models based on bootstrap resampling is 
termed bagging): the combination of predictions of a number of different 
submodels to improve the models, which may be especially useful in 
case of small sample sizes [79]. Aggregation is used in bootstrap and 
cross-validation, but also in jackknife [78,80].

Of the resampling methods reviewed so far in this paper, at first 
glance, LOOCV and jackknife appear to be very similar. It is therefore 
worthwhile to make a comparison between them, a comparison that 
encompasses the two main goals of resampling techniques: estimating 
the variability or uncertainty of the model parameters, and assessing the 
reliability or performance of the model. Even if LOOCV and jackknife 
share the commonality of systematically leaving out individual obser
vations for analysis, their primary objectives and methodologies differ. 
LOOCV, mainly used to estimate the performance of a model, follows the 
following steps: 

a) Dataset splitting: given a dataset with n observations, LOOCV in
volves creating n different training sets. Each training set consists of 
n− 1 observations, leaving one observation out for testing.

b) Model training: a model is trained on each of the n− 1 observation 
sets.

c) Model testing: the trained model is tested on the single observation 
that was left out.

d) Performance aggregation: the performance metric (e.g., mean 
squared error) is calculated for each of the n tests. The final perfor
mance estimate is the average of these n values.

Jackknife, that is mainly used for estimating the bias and variance of 
statistical estimators, works in the following way: 

a) Dataset splitting: similar to LOOCV, jackknife involves creating 
subsets of the data by systematically leaving out one observation at a 
time. Given a dataset with n observations, n different subsets are 
created, each containing n− 1 observations.

b) Estimator calculation: for each subset, a statistical estimator (e.g., 
mean or variance) is calculated.

c) Bias and variance estimation: the jackknife estimator of the param
eter of interest is obtained by averaging these n estimators. The bias 
and variance of the estimator can also be derived from these n 
calculations.

Summarizing, jackknife focuses on estimating bias and variance in 
statistical estimators, while LOOCV (or cross-validation, generally 
speaking) is geared towards evaluating predictive models.

A final important remark in resampling techniques is how to deal 
with correlation between samples. Standard resampling methods, such 
as for instance standard bootstrapping, cross-validation or jackknife, 
assume independent observations (i.e., independent rows in the data 
matrix). However, in real-world scenarios where measurements are 
correlated due to experimental design or inherent structure (e.g., bio
logical replicates, agricultural data, or spatial clusters), failing to ac
count for these dependencies can lead to misleading conclusions. When 
dealing with correlated data in resampling methods, it is essential to use 
techniques that account for the dependencies between observations. 
Methods like block bootstrap [81], cluster bootstrap [82], stratified 
bootstrap [83] or multilevel/hierarchical bootstrap [84] for bootstrap 
resampling, or cluster jackknife [85] or block jackknife [86] for jack
knife resampling, are specifically designed for such cases. Methods that 
assume independent rows, like standard resampling techniques, should 
not be used in cases with correlation between samples, as they can lead 
to biased estimates of variability and model performance.

Other methods where the uncertainty of results may play a major 
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role are soft modelling methods, such as multivariate curve resolution 
(MCR), often used to explore the data. The particularity of these 
methods is that they have intensity and rotational ambiguity and the 
solution they provide is not unique: they offer a range of possible solu
tions that are equally valid, therefore introducing an uncertainty in the 
results, as boundaries of the so called feasible bands [87]. Various ap
proaches have been proposed to estimate the range of the feasible so
lutions, as reviewed by Golshan et al. [88]. Based on this solution 
uncertainty and the measurement error or noise, Dadashi et al. [89] 
proposed using the error propagation approach to estimate the uncer
tainty of results provided by MCR.

4.2. Predictive models

As with exploratory models, the importance of assessing reliability, 
variability, and figures of merit is of great interest in predictive models 
as well. In fact, in predictive (and classification) models, the significance 
of evaluating and characterizing models through validation steps is 
crucial. Proper validation is fundamental to assess both the robustness of 
the calibration model and its predictive power when applied to future 
samples [90,91]. Although validation has been extensively discussed in 
the literature and goes beyond the scope of this review, it is important to 
mention that there is a general consensus that robustness—or model 
reliability—refers to a model’s ability to maintain stable performance 
under varying conditions, such as changes in data quality, noise, or 
minor input variations. Assessing robustness is key, and internal vali
dation techniques, such as cross-validation or bootstrapping, are 
commonly employed to evaluate this aspect [92]. Additionally, evalu
ating model performance on external test sets is essential for assessing 
predictive power. It is crucial to carefully consider the sample selection 
method, as findings and chemical insights can be influenced by the type 
of validation and data analysis methods used.

In multivariate calibration methods, such as multiple linear regres
sion (MLR), principal component regression (PCR) and partial least 

squares (PLS), errors in the training data impact the estimation of 
regression coefficients and model parameters. These errors can arise 
from variations in sample composition, instrumental noise, or other 
sources. The model is trained to establish the relationship between 
spectroscopic features and the target variable. When the trained model 
is applied to new data for prediction (new data that are also affected by 
errors), the multivariate errors from the training phase are carried for
ward. The propagated errors manifest as uncertainty in the predicted 
values. This uncertainty may be expressed as a confidence interval, 
providing a range within which the true value is likely to fall. Under
standing and communicating this uncertainty is crucial for offering 
adequate analytical methods [45] and for decision-making based on the 
predicted values.

If the uncertainty associated with a predicted result is very high, 
reasonable doubts may arise about the validity of this predicted value. 
Probably no doubts would stem from the same predicted result using the 
same prediction model if the uncertainty is not calculated. In this way, a 
predicted value of ‘30 ppm’ would be accepted, but some red flags could 
be crossed with a result of ‘30 ± 20 ppm’. There are two main ap
proaches to assess the uncertainty of prediction results from regression 
models: error propagation and resampling.

Often rooted in statistical principles, error propagation quantifies 
and propagates uncertainties from input variables to the final predicted 
values (Fig. 5). These sources of error may include the inputs to the 
model or the modelling itself [42]. The error propagation approach 
leads to closed-form expressions, which are highly convenient to spe
cifically consider or neglect different error sources, for the calculation of 
sample-specific prediction uncertainty, or other figures of merit such as 
detection and quantification limits [93].

Researchers already started working on error propagation in multi
variate methods in the late 1980s. One of the first proposals using error 
propagation to estimate the prediction uncertainty in regression models 
(first Ordinary Least Squares, OLS, then extended to PCR and PLS), as 
described by Bano et al. [25], is the back-propagation approach of 

Fig. 5. Scheme showing how the errors introduced in the model calibration step propagate to the prediction of a new sample, its uncertainty and other figures of merit. Adapted 
from Bauer et al. [94].
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uncertainty. This is, estimating a new X-set for the target y-values using 
the model, and taking the estimation of the uncertainty to propagate it 
again to the y-values. This was done by first estimating the uncertainties 
in the loadings and scores of the new X-set and then extending them to 
the prediction error including other error sources. However, as esti
mating both scores and loadings uncertainties at the same time can be 
complicated (as they are inter-dependant), one of them could be 
neglected. Another pioneering option is averaging the uncertainties of 
the scores and the loadings, as CAMO did with the version 5.5 of their 
‘The Unscrambler’ software, using an empirical correction [95]. This 
approach was criticized by De Vries and Ter Braak [96] for being 
over-optimistic, and they proposed a new correction, included in version 
7.0 of The Unscrambler. However, this proposal was further criticized by 
Faber and Kowalski [97], as measurement errors in the response and 
predictor variables (e.g. concentration and spectra, respectively) were 
neglected, and they proposed an error-in-variables approach that con
siders them.

After the received critiques, CAMO reviewed the different proposals, 
as described by Høy et al. [98]. They compared the different methods by 
using Monte Carlo simulations on synthetic datasets and concluded that 
the original CAMO method [95] was indeed over-optimistic, but that the 
approach proposed by Faber and Kowalski [97] requires knowledge 
about the data that is not always available, such as the variance of the 
noise. They also concluded that the empirical correction proposed by De 
Vries and Ter Braak [96] and previously mentioned, worked reasonably 
well with low noise levels as an estimator of the prediction uncertainty, 
so they continued implementing it.

Based on the previous work of Lorber and Kowalski [9], as also did 
Karstang et al. [99], Faber and Kowalski [100] postulated a new and 
more comprehensive formulation for the estimation of the uncertainty 
or variance of prediction error (s2

i ), which was further expanded by 
Andersen and Bro [42] and is described in Fig. 6.

In Fig. 6, N is the number of samples in calibration, hi, is the leverage 
of sample i, se

2 is the variance of the model error (which can be calculated 
as suggested by Faber et al. [101]), s2

Δy is the variance of errors in the 
y-measurements, b is the regression coefficient vector and s2

ΔX is the 
variance of errors in the X-measurements (which are assumed to be iid). 
Andersen and Bro [42] proposed this calculation to differentiate be
tween the actual prediction error (proposed by Faber and Kowalski 
[100]) and the apparent prediction error, which includes the error in y.

However, for the sake of practicality, usually not all sources of un
certainty are considered and the equation shown in Fig. 6 is simplified. 
For instance, Faber and Kowalski [100] considered a simplified calcu
lation to estimate the uncertainty of a prediction. By neglecting the 
signal measurement errors and the measurement error in the reference 
concentration, the calculation only needs the root mean squared error of 
calibration (RMSEC) and the leverage of the unknown sample (hi, scaled 
by the number of samples in calibration): 

s2
i ≈ RMSEC2(1+ hi) [Eq. 5] 

Starting from this approach, the calculation of the confidence in
terval for a prediction can be extended, introducing the Student’s t 
distribution, as described by Boqué et al. [102] and Faber et al. [103]: yi 

± tα,v⋅ s2
i , where yi is the predicted value for the ith sample and tα,ν is the 

t-statistic for α confidence level and ν degrees of freedom (ν = N-r-1, 
where r is the number of components of the model). Other simplifica
tions that arrive at a similar estimation have also been proposed, such as 
the one proposed by Faber and Bro [104], which suggests not neglecting 
the reference concentration error. This simplification has been used in 
real infrared spectroscopy applications. For instance, Skou et al. [105] 
applied it on predictions of water quality using near infrared spectros
copy and PLS. Bu et al. [31] tested and compared several of the 
mentioned proposals on the prediction of pharmaceutical tablet quality 
using near infrared and PLS, stating the advantages and disadvantages of 
each method.

More recent studies on this topic have focused on measurement er
rors and their propagation. A unification of the available proposals for 
uncertainty estimation was published by the IUPAC (International 
Union of Pure and Applied Chemistry), in a technical report by Olivieri 
et al. [45]. Allegrini and Olivieri [17,19] took this report as a basis to 
propose other simplifications based on measurement errors and their 
heteroscedasticity or fulfilment of the iid assumption. These errors and 
their propagation were described more in depth by Allegrini et al. [30].

Using the error propagation approach, some authors have also pro
posed the calculation of different figures of merit. The figures of merit, 
metrics that quantitatively evaluate model performance, can be key 
parameters to assess the reliability of regression models, since they offer 
a deeper understanding of the predictive capabilities of a regression 
model [93]. For instance, an expression that addresses the measurement 
uncertainty in the calculation of sensitivity has been proposed by Fra
goso et al. [21]. Additionally, expressions that consider the uncertainties 
of the model have been proposed for calculating the selectivity of a 
method for an analyte, as summarized by Valderrama et al. [106]. For 
more extensive description of figures of merit of a multivariate model, 
the reader is directed to recent reviews such as the ones by Olivieri [93,
107], Olivieri et al. [57] or Allegrini and Olivieri [17,108], that offer a 
holistic view of these metrics, their calculation and presentation.

However, the figure of merit that has been more prominently studied 
is the limit of detection (LOD) of a multivariate regression model, as it is 
a natural extension of the prediction uncertainty, but for zero concen
tration. The LOD is defined as the minimum detectable concentration for 
an analytical method and is considered “a fundamental performance 
characteristic of a chemical measurement process” by the IUPAC [45]. 
The LOD can be estimated in different ways considering the uncertainty 
of predictive models, as shown by Boqué and Rius [109]. These authors 
previously reviewed the diverse approaches for the LOD calculations up 
to 1996 [110]: the net analytical signal approach [111], the confidence 
interval of the predicted concentration approach (proposed by Faber 
and Kowalski [100]) and the error propagation approach.

Combining the use of the predicted concentration and error propa
gation approaches, Boqué et al. [102,112] defined the LOD by testing 
the hypothesis that the 0 value and the predicted concentration are 
statistically equal or statistically different (using a Student’s t-test), 
determining the probabilities of type I and type II errors (Fig. 7). This 
method has been widely used in real spectroscopic applications, such as 
the ones described by Wu et al. [113] and Du et al. [27].

In a parallel way, based on the simplified calculation of the predic
tion uncertainty proposed by Faber and Bro [104], Alcalà et al. [114] 
extended these calculations to the LOD and applied it to a prediction 

Fig. 6. General equation for the estimation of the uncertainty of a prediction for a multivariate regression model, adapted from Andersen and Bro [42].
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method of a pharmaceutical tablet dose using near infrared spectros
copy. Following a similar method, Allegrini and Olivieri [17–19] 
extended the calculation of the LOD from the definition of prediction 
uncertainty proposed by Olivieri et al. [45].

The other approach to calculate the uncertainty of prediction results 
involve the use of resampling. As mentioned above, resampling tech
niques can cope with complex statistics where no analytical equation is 
available, and they have proven useful to estimate the uncertainty 
associated with predicted values [115]. Denham [116] used bootstrap 
and cross-validation to calculate the intervals of the predicted values 
obtained using a PLS model. The bootstrapped samples for the training 
set and for the test or validation set were constructed by bootstrapping 
the residuals from the PLS model calculated with the training set. Each 
set of bootstrapped samples was used to calculate a new PLS model, a 
new set of predictions of the future samples and therefore a new set of 
prediction errors (the difference between the new predictions of the 
future samples and the bootstrapped future samples). The empirical 
distribution function of the prediction errors (G̃), which can be calcu
lated in the bootstrapping process, is an estimate of the cumulative 
distribution function of the prediction errors for the y-predicted value. 
Finally, this cumulative distribution function of the prediction errors for 
a certain level of confidence is used to calculate the prediction interval 
for the y-values of new samples. In the same paper [116], 
cross-validation was used in a resampling procedure to estimate a stu
dentized residuals [117] used in the prediction interval for the y-values 
of new samples. The authors compared the intervals of the predicted 
values obtained using bootstrap and cross-validation with naive pre
diction intervals (prediction intervals that are calculated without 
considering the uncertainty in the estimates of the model parameters 
[118]) and local linearization prediction intervals. It is important to 
mention that the choice of the number of PLS factors significantly affects 
the prediction intervals. Real and simulated data were used to compare 
the reliability of the different prediction intervals. The performance of 
bootstrap confidence intervals was globally poor. The performance was 
worse in cases with a few number of samples, which is not surprising due 
to the resampling procedure, since only a good approximation to the 
structure of the errors would be possible for moderately large number of 
observations. Cross-validation prediction intervals underestimated 
coverage for large number of factors while overestimated coverage for 
small number of factors. The article was published more than 25 years 
ago, at a time when computing power was much less developed than 
today, and some of the conclusions drawn refer to these computational 
difficulties, which would not be so relevant today.

Zhang and Garcia-Munoz [10] proposed a simpler procedure 
including bootstrap resampling. The authors used bootstrapping by re
siduals to generate B = 10,000 bootstrapped sets of X and y data to 
estimate a PLS regression coefficient vector ̂βb for each one of the 10,000 
bootstrapped data sets. After the B iterations, the covariance matrix of 
the estimate of the regression coefficient vector β̂ can be calculated as: 

var(β̂) = 1
B − 1

∑B

b=1
(β̂b − β)(β̂b − β)’ [Eq. 6] 

where β is the average of the bootstrapped PLS values. The covariance 
matrix can then be used to calculate the variance of the PLS prediction 
error, and then, using the error propagation theory, the confidence in
terval (assuming a Student’s t-distribution) can be found. The authors 
also mentioned the importance of estimating the correct number of 
degrees of freedom, since this is a key parameter in the calculation of the 
prediction uncertainty. Three approaches for the estimation of degrees 
of freedom were considered: naive approach (which globally estimated 
the degrees of freedom inaccurately), pseudo degrees of freedom and 
generalized degrees of freedom. The authors applied the bootstrapped 
prediction intervals, together with three other methods to four data sets 
from the pharmaceutical industry. The other three methods applied 
were an approximation method using ordinary least squares type ex
pressions [97], linearization-based methods with three different pro
posals for the estimation of the Jacobian matrix [116,119,120] and the 
U-deviation method used in ‘The Unscrambler’ chemometrics software 
(CAMO, Trondheim, Norway) [95]. Globally speaking, and according to 
the authors [10], the best uncertainty estimates were obtained with the 
approximation method using ordinary least squares type expressions, 
with bootstrap uncertainties being slightly larger than expected. One of 
the reasons for this overestimation may be the estimation of the variance 
associated to the y-values. The authors used the RMSEC as this estima
tion, and they claim that RMSECs obtained from reference testing 
methods tend to overestimate this variance.

Faber [121] also used resampling techniques to estimate the uncer
tainty of the regression coefficients, which also play a significant role in 
the estimation of the uncertainty associated to the prediction results. An 
approximate variance expression was compared with four resampling 
methods: jackknife, bootstrapping objects, bootstrapping residuals and 
noise addition with the Monte-Carlo simulation technique, using real 
and simulated data sets. The best results were obtained with the 
approximate formula, bootstrapping residuals and noise addition, 
stressing that the best resampling methods for uncertainty estimation 

Fig. 7. Estimation of the Limit of Detection (LOD) based on the minimal predicted value that is significantly different from zero considering both uncertainties, where Lc is the 
critical limit. Adapted from Olivieri et al. [45].
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are those that work with noise, not with objects.

4.3. Classification models

Multivariate classification models stand as powerful tools for 
discerning patterns, making predictions about the membership of a 
sample to a class, and categorizing complex datasets [122]. From 
medical diagnostics to food authentication or industrial quality control, 
the applications of these models are vast and impactful.

As in the case of multivariate calibration, the outcomes of multi
variate classification models should also be accompanied by an esti
mation of their uncertainty, or reliability. The reliability or uncertainty 
of a classification result refers to the degree of confidence or doubt 
associated with the correctness of the predicted class assignment made 
by a classification model. Understanding the uncertainty of classifica
tion results is essential for making informed decisions based on model 
predictions, as it provides additional information beyond accuracy, 
especially in situations where misclassifications may have significant 
consequences.

However, unlike multivariate calibration, where the predictions are 
continuous values (e.g. concentrations), in multivariate classification 
the predictions are discrete, or categorical (e.g. class 1 vs class 2 in a 
two-class classification scenario). This leads to a different estimation of 
the classification uncertainty, usually in the form of a probability of 
correct classification.

Beyond global measures of classification performance like sensi
tivity, specificity, and accuracy [123], specific measures of classification 
uncertainty have not been so much studied in the chemometric litera
ture. However, some approximations can be found, which can be 
divided, as in the case of multivariate calibration, in two groups: those 
using equations and those based on resampling methods.

In the first group, the most popular classification method is the one 
based on the Bayes theorem [124]: 

P(ωc|ŷ)=
p(ŷ|ωc) × P(ωc)

∑C

c=1
p(ŷ|ωc) × P(ωc)

[Eq. 7] 

where the summation goes from class c = 1 to C, the total number of 
classes. P(ωc|ŷ) is the (a posteriori) probability that a sample with pre
diction ŷ belongs to the class ωc. p (ŷ|ωc) is the conditional probability, 
that is, the probability of observing a value of ̂y given a sample from class 
ωc. Finally, P (ωc) is the prior probability, that is, the probability of 
observing class ωc in the future, without any given conditions. For a 
binary classification (i.e. two classes: 0 and 1), the probability of clas
sification of a sample in class 0 given a prediction ̂y can be formulated as: 

P(ω0|ŷ)=
p(ŷ|ω0) × P(ω0)

p(ŷ|ω0) × P(ω0) + p(ŷ|ω1) × P(ω1)
[Eq. 8] 

Prior probabilities for each class, P (ωc), are usually taken as the 
proportion of samples of each class in the calibration set, that is, the 
number of samples of a given class divided by the total number of 
samples in the calibration set. In some cases, if no prior information is 
available, it is common to assume all classes are equally likely. This is 
called a uniform prior, where all classes are assigned equal probability, 
that is, P (ωc) = 1/C. Therefore, to calculate the probability of a classi
fication, P(ωc|ŷ), the problem reduces to calculate the conditional 
probabilities, p (ŷ|ωc), for each class.

The Bayes’ rule is closely connected to two important figures of merit 
in classification, the positive predicted value (PPV), also known as 
precision, and the negative predicted value (NPV). PPV measures the 
proportion of positive predictions (i.e. predicted as class 1) that are 
actually correct. NPV measures the proportion of negative predictions (i. 
e. predicted in class 0) that are actually correct. These metrics directly 
measure the probability of a predicted class being correct and can be 
seen as the application of Bayes’ rule for updating probabilities based on 

test results. PPV tells us how likely a positive test result is correct given 
the prior probability and the performance (sensitivity and specificity) of 
the test. NPV tells us how likely a negative test result is correct given the 
same factors. In many practical scenarios, Bayes’ rule allows to adjust 
these predictive values based on prior knowledge. For example, in cases 
with very low prevalence (low prior probability of the positive class, rare 
conditions), even a test with high sensitivity and specificity can have a 
low PPV, meaning a positive result is not very reliable.

By using Bayes’ rule, predictive values (PPV, NPV) can be updated to 
reflect changes in prevalence or other factors affecting prior probabili
ties, leading to a more accurate understanding of test results or model 
predictions.

Following with the binary classification problem and if we take a 
very well-known classification method, PLS-DA, the problem can be 
stated as follows. Given two classes, ω0 and ω1, the PLS-DA model seeks 
to separate the two classes using a y-block where samples of class ω0 are 
assigned values of zero and samples of ω1 are assigned values of one. 
After building and validating the PLS-DA model, y-values predicted (ŷ) 
on the calibration set for each class are obtained. In the absence of 
outliers, and if the classification model is correct, those values range 
around zero and one, respectively. In the simplest scenario, we can fit 
those predicted values using two separate Gaussian distribution func
tions, by taking the mean and standard deviation of the ̂y values for each 
class. Those Gaussian distributions allow to compute the conditional 
probabilities of an individual ŷ value for classes, ω0 (p (ŷ|ω0)) and ω1 (p 
(ŷ|ω1), respectively, with the assumption that the Gaussian distributions 
are representative of the true distributions of all samples in the pop
ulations of ω0 and ω1. The approach described is the one used in the 
PLS_Toolbox (Eigenvector Inc.) for MATLAB (MathWorks Inc.) [125].

For binary classifications, a refinement of the previous method was 
proposed by Pérez et al. [126], who calculated a potential (kernel) 
function for each calibration sample, with the shape of a Gaussian curve, 
a commonly used kernel function, centered at ŷ (the fitted value of each 
calibration sample predicted by the model) and with standard deviation 
(smoothing parameter) equal to SEPi (what corresponds to si in equation 
(5)). Then, the probability density function (PDF) of each class, p (ŷ|ωc) 
was obtained by averaging the potential functions of the I0 and I1 
training samples of class ω0 and class ω1, respectively. Finally, the 
reliability of the classification was calculated from the area under the 
curve p (ŷu|ωc) × P (ωc), taking into account the standard error of pre
diction of ŷu, where ŷu is the prediction for the unknown sample 
calculated with the optimal PLS-DA model.

This method was adapted by Botella et al. [127], who used micro
array data and PLS-DA with the option to reject classification of bio
logical samples. The method used kernel-based PDFs and the Bayes rule 
to classify samples while keeping the option of not classifying a sample if 
this could not be done with sufficient confidence. With this approach, 
only those samples having the highest probability of being correctly 
classified are indeed classified, whereas doubtful samples are rejected. 
The reject option tackles situations where the strict application of the 
Bayes rule may be questioned. In addition, the optimal model was found 
by simultaneously minimizing the misclassification and rejection costs, 
so the methodology involves evaluating the probability of each classi
fication together with the overall cost.

Finally, the method was extended to multi-class classification [128]. 
In this case, the multi-classification problem was split into binary clas
sification problems using probabilistic PLS-DA models. The results of 
these models were combined to obtain the final classification using the 
strategy one-against-one and the principle of winner-takes-all. The 
classification criterion used the position of an object in the multivariate 
space and its prediction uncertainty to estimate the reliability of the 
classification.

A somewhat similar approach but using the spectra instead of the 
predicted ŷ values, has recently been proposed by Fearn et al. [129]. 
There, multivariate normal distributions were used to fit the spectral 
data, previously reduced in dimension using PCA. The procedure was 
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used to classify animal feed ingredients using NIR spectroscopy. More 
recently, the same authors performed an interesting comparison be
tween four discriminant methods that produce classification probabili
ties to quantify the uncertainty of the results: Linear Discriminant 
Analysis (LDA), Quadratic Discriminant Analysis (QDA), Kernel Bayes 
and Logistic Regression [130]. Logistic regression directly models the 
probability, expressed as log odds, of class membership as a linear 
function of the vector of spectral data [131]. Kernel Bayes builds 
within-class distribution models by centering a Gaussian distribution (a 
kernel) on each data point of the training set and then averaging these 
distributions over each class to construct the probability distributions 
[129]. The authors applied the different methods to the in situ authen
tication of Iberian pig carcasses using NIR spectroscopy, and showed 
that LDA was the best classification model providing accurate classifi
cation uncertainties.

Toher et al. [132] compared different model-based classification 
methods, including LDA and QDA, to PLS-DA to classify pure and 
adulterated honey samples, and concluded that both types of discrimi
nant analysis methods showed good classification results.

Another popular classification method is SIMCA (Soft Independent 
Modelling of Class Analogy). The first attempt to make SIMCA proba
bilistic, that is, able to provide the uncertainty of classification, was 
made by Van der Voet and Doornbos [133]. The authors applied kernel 
density estimation to the scores of the PCA class models and then 
transforming the probability densities to posterior probabilities for class 
membership using the Bayes equation.

In SIMCA, two distance metrics are usually calculated to evaluate the 
membership of a new object to a given class: the orthogonal distance 
(OD or Q), that is, the squared Euclidean distance from the measurement 
vector (i.e. spectrum) to its projection onto the PCA class subspace and 
the score distance (SD), that is, the squared Mahalanobis distance be
tween this projection and the center of the PCA class model [134]. In 
other words, each sample is characterized by two statistics, Q and 
Hotelling T2, which measure the information not included or included in 
the model, respectively. Class limits for both statistics can be calculated 
for each predefined class at a specific significance level (α). From these 
metrics, whether taken individually or combined, SIMCA computes the 
probability of each sample to belong to each possible class. From a 
sample to be classified, the confidence level associated to its T2 and/or Q 
values is estimated from the distributions in the calibration data and 
then the confidence limits are converted into probabilities of classifi
cation. Different options exist, depending on the metric used, as for 
instance implemented in the PLS_Toolbox (Eigenvector Inc.) [125].

At this point, some words are needed to highlight the importance of 
sample sizes (both in training and validation sets) when evaluating the 
performance of classification models. The topic has been studied by 
Beleites et al. [135], who evaluated performance using learning curves, 
which graphically represent how a classification model’s performance 
(i.e. sensitivity in their study) improves or stabilizes as the amount of 
training and/or test data increases. Learning curves are crucial for 
diagnosing model behavior, assessing capacity, and determining 
whether more data or parameter tuning is required for optimal perfor
mance. The authors also calculated the necessary test sample sizes for 
various testing scenarios, focusing on defining acceptable confidence 
interval widths for true sensitivity and the number of test samples 
required to demonstrate the superiority of one classifier over another. 
The other large group of methods for calculating the probability of 
classification includes those that use resampling. Resampling techniques 
have been described in the previous section and we will not give more 
details here. The most relevant applications for different classification 
techniques will simply be reviewed and discussed. A difference of using 
resampling methods for the estimation of the uncertainty associated 
with classification models is that resampling methods usually provide a 
confidence interval associated to the classification results, and not a 
probability of correct classification.

An interesting work was proposed back in 2008 by Preisner et al. 

[26]. The authors compared three classical methods: PCA, PLS-DA and 
SIMCA, for bacteria discrimination based on FT-IR spectra (despite PCA 
not being a classification method but an exploratory method). In all 
cases, the uncertainty of classification was calculated using two 
non-parametric resampling methods: jackknife and bootstrap.

For PLS-DA it is worth remarking on the work done by Almeida et al. 
[136], who discriminated between authentic and counterfeit banknotes 
using Raman spectroscopy and calculated the uncertainty of classifica
tion using residual bootstrap. The residuals are bootstrap generated 
from random substitutions with replacement of the initial values and 
added to the predicted ŷ values to generate new y values, from which a 
new PLS-DA model is calculated and new residuals obtained. The pro
cess is repeated B times and the percentiles of the F-distribution, for a 
given significant level α, are used to estimate the confidence interval of 
the predicted ŷ values.

A similar approach was applied by Rocha and Sheen [137] for a 
QSAR (Quantitative Structure–Activity Relationship) model to predict 
biodegradability for a set of substances, and by Rocha et al. [138] to 
estimate the uncertainty of the scores of PCA models and the uncertainty 
of classification of PLS-DA models to separate and classify environ
mental metabolomics NMR spectra. Finally, Morais et al. [139] used the 
same approach to estimate misclassification probabilities for PCA-LDA, 
PCA-QDA and PCA-SVM models.

For kNN (k-nearest neighbors) classification, the most common way 
to estimate the probability of a given object to belong to class ωc is to 
calculate the ratio kc/k, where kc is the number of nearest neighbors of 
class ωc and k is the number of neighbors considered for classification 
[124]. An improvement of the method was developed by Villa et al. 
[140], who proposed the probabilistic bagged kNN (PBkNN) method, 
combining kNN and bootstrap, to calculate the reliability of classifica
tion as a posterior probability. The method was applied to different 
public datasets and successfully compared to standard methods such as 
Bayes rule and LDA.

5. Turning errors into insights: redefining model development 
through error

As presented before, literature provides evidence that hetero
scedastic and correlated measurement errors are widespread in analyt
ical measurements, with the extent of deviation being a significant 
factor. Therefore, while it is common practice to assume homoscedastic 
noise in measurements, this assumption does not hold true for analytical 
instruments in many instances and also the assumption of independence 
in measurement errors is often violated since there is correlation and 
covariance between channels [34,64].

When measurement errors follow a normal distribution and are in
dependent and identically distributed, models that maximize total 
variance are usually best for pinpointing chemical sources of variance, 
assuming no other information is available. However, in cases where 
errors are more complex including information about the type and the 
magnitude of the errors in the models could help extract chemical in
formation better by focusing on variance components less likely to be 
noise-related. This idea of dealing with the measurement error before 
applying classical chemometrics methodology is sort of hinted when 
data are preprocessed. Indeed, preprocessing is often used to remove 
sources of variability in the data that could not be attributed to the study 
goal [29]. Preprocessing methods that consider error structures have 
been proposed [58]. One such method, introduced by Paatero et al. in 
1993, involves weighted data scaling before PCA modeling [141]. This 
preprocessing approach has also been investigated for multivariate 
curve resolution (MCR) analysis of data affected by heteroscedastic 
noise [39].

Even if in practical terms, it is often assumed that the variance 
stemming from analytical uncertainty is negligible compared to the 
variance across samples, leading to its omission in data analysis, alter
native data analysis methods have been suggested to account for the 
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noise structure within the data [142]. Especially throughout the 1990s, 
various modified algorithms emerged in the literature, some of which 
have been applied to chemical data [47]. However, the diffusion of such 
methods is limited since, up to date there is no such software solutions 
that enable to estimate exploration or calibration models with methods 
that could take into account different errors. Some of the articles cited in 
this paragraph include MATLAB codes for using the models proposed. 
Some codes and a multivariate noise simulation software are present at 
the website: http://groupwentzell.chemistry.dal.ca/software.html.

In exploratory analysis, maximum likelihood principal component 
analysis (MLPCA) has been proposed as an extension of PCA for data 
exhibiting non-homoscedastic noise structures [47]. MLPCA requires 
prior knowledge of the noise structure of the data. Mathematically, 
MLPCA has also been shown to be equivalent to total least squares (TLS) 
[143]. From a practical perspective, MLPCA is not a single method but 
rather a set of methods applicable to different scenarios. Several appli
cations were explored for these methods [37]. In a general manner, PCA 
typically provides more reliable estimates when measurement error 
variance is uniform (homoscedastic noise), whereas MLPCA performs 
better when the error covariance matrix is explicitly known. A com
parison within results obtained with PCA and with MLPCA in presence of 
heteroscedastic error can be seen in Fig. 8.

Other factor analysis methods, such as maximum likelihood common 
factor analysis (MLFA) and principal axis factoring (PAF), are valuable 
for handling errors. They offer the advantage of providing information 
about measurement uncertainty and can adapt to situations involving 
unknown heteroscedastic errors, eliminating the need for scaling [145,
146]. An example of application is presented in Fig. 9. The dataset 
represented consists of spectral data with high degree of hetero
scedasticity (a). In Fig. 9(b) scores plots are represented by four methods 
assuming three factors’ models: MLPCA (using the error variance esti
mated from replicate measurements), PAF, MLFA and PCA. Not sur
prisingly, PCA performed poorly in this regard since the heteroscedastic 
noise had a significant influence on the results. However, it is surprising 
that PAF also did not reproduce the design matrix well, given the sim
ilarity of its results with MLFA in the simulations.

Traditionally, when developing multivariate calibration models, it is 
common to assume that the instrumental noise structure follows an iid 
pattern, although this assumption seems to be more of an exception than 
a rule. Maximum likelihood principal components regression (MLPCR) 
serves as the calibration counterpart to MLPCA. MLPCR differs from 
standard PCR models in two main aspects: first, it employs maximum 
likelihood principal component analysis (MLPCA) rather than PCA for 
decomposing the calibration data matrix. Second, it utilizes a maximum 

likelihood projection instead of an orthogonal projection into the PCA 
subspace during the prediction step. By incorporating information from 
the measurement error covariance matrix, MLPCR can effectively 
distinguish chemical variance from other sources, resulting in a more 
dependable model [41]. In fact, MLPCR has demonstrated notably su
perior predictive capability compared to PCR and PLS, especially in 
spectroscopic applications where heteroscedastic and/or correlated 
measurements are prevalent [147].

In 2018, Allegrini et al. [35] introduced and evaluated a new 
penalized regression model that integrates the error covariance matrix 
as information in the calibration algorithm. This approach, called error 
covariance penalized regression (ECPR), employs the error covariance 
matrix (ECM) as a penalization term, and it has been tested on both 
simulated and experimental datasets. ECPR outperforms traditional 
first-order multivariate methods like ridge regression (RR), principal 
component regression (PCR), and partial least-squares regression (PLS), 
particularly under non-iid conditions.

Calibration models using latent variables find extensive application 
in process monitoring scenarios [148]. Here, errors can exhibit highly 
complex structures due to various sources such as sampling error, 
sampling bias, operator variability, intricate analytical protocols, and 
instrumentation uncertainty that influence the overall errors. In 
response, other alternative approaches to PLS that account for errors 
have been developed by Reis et al. [13,23,33].

Subsequently, the maximum likelihood treatment of measurement 
errors has been extended to multiway methods like parallel factor 
analysis (MLPARAFAC) [149] and maximum likelihood via iterative 
least squares estimation (MILES) [150]. Nevertheless, these extensions 
become complex since additional orders are introduced, leading to an 
expansion of potential error covariance structures to be considered and 
requiring greater memory usage to manage error covariance matrices in 
unfolded data.

In a broader context, Bayesian statistics can significantly enhance the 
ability to incorporate domain-specific knowledge for obtaining more 
accurate and useful models, presenting numerous research opportunities 
along with challenges. While tutorial articles demonstrate the potential 
benefits for various experimental chemical data [151–153], widespread 
adoption remains challenging for the average user due to the lack of 
available software capable of incorporating error structures during the 
modeling phases.

6. Conclusions

Chemometrics is a field within Analytical Chemistry that focuses on 
the application of mathematical and statistical methods to multivariate 
chemical data. However, for its complete integration into Analytical 
Chemistry, it must adopt practices consistent with the field. This implies 
providing the uncertainty of analytical results and the figures of merit of 
the multivariate methods developed, which are often neglected in many 
chemometric applications documented in the literature.

Nowadays, many researchers and people in industries apply multi
variate analysis methods. But a method without, for example, an esti
mate of its bias or limit of detection may be of no use. In Analytical 
Chemistry, these aspects are routine, but not in chemometrics. For 
chemometrics to incorporate to routine methods, reference methods or 
standardized methods, it must offer the possibility of providing every
thing that an analytical method based on univariate statistics does.

Furthermore, the study of the measurement error of multivariate raw 
data is often underestimated, while it is fundamental for the under
standing of the data itself. Just as in analytical methods using univariate 
calibration models the measurement error is evaluated (e.g. by studying 
the residuals of the calibration line), when using multivariate methods 
this is even more important, since measurement errors can be hetero
scedastic but also correlated. Not taking this into account can lead to the 
choice of an inappropriate multivariate method and, in the long run, to a 
loss of accuracy in the results.

Fig. 8. Left) Paired scores plots from principal components analysis of sample mean 
spectra after column mean-centering, with species identified as in the legend. Right) 
Scores plots from maximum likelihood principal components analysis (MLPCA) of 
NIR spectra. (a) Rank 2 MLPCA results using class specific error covariance matrices 
(ECMs). (b) Rank 2 MLPCA results using a global average ECM. (c) Rank 3 MLPCA 
results using a global average ECM. Reproduced with permission from Ref. [144].
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For all that, this review basically aims for two things. First, it urges 
scientific community that develops and applies multivariate methods of 
analysis to study the measurement error both in the predictor and pre
dicted variables. Such errors have significant implications for pre
processing spectral data and selecting appropriate modelling methods. 
Second, it calls for the scientific community presenting analytical results 
obtained with multivariate methods somehow calculate the uncertainty 
of those results. Results without uncertainty lack comparability and 
undermine their significance.

This review offers different alternatives to achieve this, adapted to 
different types of errors in the data and to different types of multivariate 
analysis methods (exploratory, classification or quantification).
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[67] Marc Norman Léger, Measurement Errors and Signal Preprocessing in 
Spectroscopy, Dalhousie university, 2004.

[68] G. Gorla, P. Taborelli, B. Giussani, A multivariate analysis-driven workflow to 
tackle uncertainties in miniaturized NIR data, Molecules 28 (2023), https://doi. 
org/10.3390/molecules28247999.

[69] F. Matinrad, M. Kompany-Zareh, N. Omidikia, M. Dadashi, Systematic 
investigation of the measurement error structure in a smartphone-based 
spectrophotometer, Anal. Chim. Acta 1129 (2020) 98–107, https://doi.org/ 
10.1016/j.aca.2020.06.066.

[70] R. Todeschini, V. Consonni, A. Maiocchi, The K correlation index: theory 
development and its application in chemometrics, Chemometr. Intell. Lab. Syst. 
46 (1999) 13–29, https://doi.org/10.1016/S0169-7439(98)00124-5.

[71] C.A. Meza Ramirez, M. Greenop, L. Ashton, I. ur Rehman, Applications of 
machine learning in spectroscopy, Appl. Spectrosc. Rev. 56 (2021) 733–763, 
https://doi.org/10.1080/05704928.2020.1859525.

[72] J.C. Castura, D.N. Rutledge, C.F. Ross, T. Næs, Discriminability and uncertainty in 
principal component analysis (PCA) of temporal check-all-that-apply (TCATA) 
data, Food Qual. Prefer. 96 (2022) 104370, https://doi.org/10.1016/J. 
FOODQUAL.2021.104370.

[73] G. James, D. Witten, T. Hastie, R. Tibshirani, J. Taylor, Resampling methods, in: 
An Introduction to Statistical Learning, Springer, Cham, Cham, Switzerland, 
2023, https://doi.org/10.1007/978-3-031-38747-0_5.

[74] R. Wehrens, H. Putter, L.M.C. Buydens, The bootstrap: a tutorial, Chemometr. 
Intell. Lab. Syst. 54 (2000) 35–52, https://doi.org/10.1016/S0169-7439(00) 
00102-7.

[75] C.F.J. Wu, Jackknife, bootstrap and other resampling methods in regression 
analysis, Ann. Stat. 14 (1986) 1261–1295, https://doi.org/10.1214/aos/ 
1176350142.

[76] J. Shao, D. Tu, The Jackknife and Bootstrap, Springer, New York, New York, NY, 
1995, https://doi.org/10.1007/978-1-4612-0795-5.

[77] J. Josse, S. Wager, F. Husson, Confidence areas for fixed-effects PCA, J. Comput. 
Graph Stat. 25 (2016) 28–48, https://doi.org/10.1080/10618600.2014.950871.

[78] B. Efron, R.J. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall, New 
York, 1993.

[79] C. Beleites, R. Salzer, Assessing and improving the stability of chemometric 
models in small sample size situations, Anal. Bioanal. Chem. 390 (2008) 
1261–1271, https://doi.org/10.1007/s00216-007-1818-6.

[80] D.K. Barrow, S.F. Crone, Crogging (cross-validation aggregation) for forecasting - 
a novel algorithm of neural network ensembles on time series subsamples, in: The 
2013 International Joint Conference on Neural Networks (IJCNN), IEEE, 2013, 
pp. 1–8, https://doi.org/10.1109/IJCNN.2013.6706740.

[81] Y.-W. Lin, B.-C. Deng, L.-L. Wang, Q.-S. Xu, L. Liu, Y.-Z. Liang, Fisher optimal 
subspace shrinkage for block variable selection with applications to NIR 
spectroscopic analysis, Chemometr. Intell. Lab. Syst. 159 (2016) 196–204, 
https://doi.org/10.1016/j.chemolab.2016.11.002.

[82] C.A. Field, A.H. Welsh, Bootstrapping clustered data, J R Stat Soc Series B Stat 
Methodol 69 (2007) 369–390, https://doi.org/10.1111/j.1467- 
9868.2007.00593.x.

[83] C. Beleites, R. Baumgartner, C. Bowman, R. Somorjai, G. Steiner, R. Salzer, M. 
G. Sowa, Variance reduction in estimating classification error using sparse 
datasets, Chemometr. Intell. Lab. Syst. 79 (2005) 91–100, https://doi.org/ 
10.1016/j.chemolab.2005.04.008.

[84] L.C. Groff, J.N. Grossman, A. Kruve, J.M. Minucci, C.N. Lowe, J.P. McCord, D. 
F. Kapraun, K.A. Phillips, S.T. Purucker, A. Chao, C.L. Ring, A.J. Williams, J. 
R. Sobus, Uncertainty estimation strategies for quantitative non-targeted analysis, 
Anal. Bioanal. Chem. 414 (2022) 4919–4933, https://doi.org/10.1007/s00216- 
022-04118-z.

[85] J.G. MacKinnon, M.Ø. Nielsen, M.D. Webb, Fast and reliable jackknife and 
bootstrap methods for cluster-robust inference, J. Appl. Econom. 38 (2023) 
671–694, https://doi.org/10.1002/jae.2969.

[86] S. Fang, G. Hemani, T.G. Richardson, T.R. Gaunt, G. Davey Smith, Evaluating and 
implementing block jackknife resampling Mendelian randomization to mitigate 
bias induced by overlapping samples, Hum. Mol. Genet. 32 (2023) 192–203, 
https://doi.org/10.1093/hmg/ddac186.

[87] J. Jaumot, R. Tauler, MCR-BANDS: a user friendly MATLAB program for the 
evaluation of rotation ambiguities in Multivariate Curve Resolution, Chemometr. 
Intell. Lab. Syst. 103 (2010) 96–107, https://doi.org/10.1016/j. 
chemolab.2010.05.020.

[88] A. Golshan, H. Abdollahi, S. Beyramysoltan, M. Maeder, K. Neymeyr, R. Rajkó, 
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