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ASYMPTOTICS OF Z-CONVEX POLYOMINOES

Anthony J. Guttmann1 and Paolo Massazza2,∗

Abstract. The degree of convexity of a convex polyomino P is the smallest integer k such that any
two cells of P can be joined by a monotone path inside P with at most k changes of direction. In
this paper we show that one can compute in polynomial time the number of polyominoes of area n
and degree of convexity at most 2 (the so-called Z-convex polyominoes). The integer sequence that we
have computed allows us to conjecture the asymptotic number an of Z-convex polyominoes of area n,

an ∼ C·exp(π
√

11n/4)

n3/2 .
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1. Introduction

A polyomino is a geometrical figure consisting of a finite set of connected unitary squares (called cells) in
the plane Z×Z, considered up to translations. Polyominoes gained popularity after the paper of S. Golomb [1].
Nowadays they are widely studied by physicists, mathematicians, computer scientists and also by biologists.

The problem of counting the number cn of polyominoes with n cells (i.e. of area n) is probably one of the
fundamental open problems in combinatorial geometry (see problem (37) in [2]). The problem has been solved
up to n ≤ 56 [3] and no closed-form expression for cn is known. Due to the difficulty of the problem, simpler
classes of polyominoes have been introduced and widely studied. In particular, the class of convex polyominoes
(polyominoes where the intersection with an infinite horizontal or vertical stripe is a finite segment) and some
of its subclasses have been thoroughly investigated [4–7].

For some classes C of polyominoes the generating function ϕC(x) =
∑

n≥0 cnx
n is known, either explicitly

(by means of a closed-form expression) or implicitly (by means of a non-closed-form expression, or a functional
equation satisfied by ϕC(x)), see for instance [8]. This usually allows one to get an estimate of the asymptotic
growth of cn (the number of polyominoes of area n in C) using standard analytical methods.

Unfortunately, there are classes of polyominoes for which no information about ϕC(x) is known. In these cases
one can exploit an efficient algorithm for the exhaustive generation of C in order to compute cn for small (but
still significant) values of n. For example, Constant Amortized Time (CAT) algorithms for generating several
classes of polyominoes have been recently developed, where the exhaustive generation is done by semiperimeter
[9, 10] or by area [11, 12].
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In this paper we consider a particular class containing all convex polyominoes P with the property that any
two cells of P can be joined by a path in P with at most two changes of direction. This is the class of Z-convex
polyominoes introduced in [13] (Z resembles the shape of the path connecting two cells) and studied in [14]. Its
generating function with respect to the area is still unknown and the only way to enumerate it (up to now) is to
use the CAT algorithm presented in [15]. We recall that in [13] the generating function of Z-convex polyominoes
with respect to the semiperimeter has been computed.

We show how to decompose Z-convex polyominoes in order to obtain a set of formulas that can be used for
computing the number of Z-convex polyominoes of area n in polynomial time (under the uniform cost model).
We have also developed a C++ program that produces the series of coefficients. This series is analysed in order
to obtain a conjecture on the number of Z-convex polyominoes of area n. More precisely, we conjecture that

cn ∼ C·exp(π
√

11n/4)

n3/2 with C = 0.095± 0.003.

2. Notation and preliminaries

Let P be a polyomino with an r × c minimal bounding rectangle. The r rows (resp., c columns) of P are
numbered from bottom to top (resp., from left to right). The area of P is the number of its cells, denoted
by A(P ). We say that P is null (that is, P = ϵ) if A(P ) = 0. A cell of P is identified by a pair of integers
(i, j), where i (resp., j) is the row (resp., column) index. Two cells a = (i, j) and a′ = (i′, j′) are adjacent if
|i− i′|+ |j − j′| = 1. Given two cells a and b of P , a path in P from a to b is a sequence q1, q2, . . . , qk of cells of
P , with q1 = a and qk = b, such that qi and qi+1 are adjacent for all i with 1 ≤ i < k. A step is a sequence of
two adjacent cells (i, j), (i′, j′). More precisely, a step is called a

North step if j′ = j and i′ = i+ 1;
West step if i′ = i and j′ = j − 1;
South step if i′ = i− 1 and j′ = j;
East step if j′ = j + 1 and i′ = i.

A path in P is uniquely identified by a pair (q, β), where q is the starting cell and β is a string in {N,W,S,E}⋆.
The number of changes of direction in a path β = β1β2 · · ·βr is defined as the number of indices i such that
βi ̸= βi+1, with 1 ≤ i < r. A path is monotone if β ∈ {N,W}+ (NW-path) or β ∈ {N,E}+ (NE-path) or
β ∈ {S,E}+ (SE-path) or β ∈ {S,W}+ (SW-path).

A polyomino P is horizontally convex (resp., vertically convex ) if any row (resp. column) of P consists
of exactly one segment. The class of convex polyominoes contains all polyominoes that are horizontally and
vertically convex. It has been proved [16], Proposition 1, that a polyomino P is convex if and only if any two
cells of P are joined by a monotone path in P .

The degree of convexity of a convex polyomino P , denoted by degc(P ), is defined as the least integer k such
that any two cells of P can be joined by a monotone path with at most k changes of direction. A convex
polyomino is called k-convex if its degree of convexity is at most k. When k = 2 we have the class of Z-convex
polyominoes, denoted by ZConv and introduced in [13] (Z resembles the shape of a monotone path with two
changes of directions).

In the following, we consider a Z-convex polyomino as the result of the concatenation of polyominoes belong-
ing to well-known subclasses of convex polyominoes. Given a convex polyomino P and its bounding rectangle
B, we say that P is a stack (resp., Ferrers diagram, parallelogram, rectangle) if it shares exactly two adjacent
(resp., three, two opposite, four) vertices with B. A stack P is a left (resp., right) stack if the column with the
largest area is the last (resp., first) one. Analogously, in a left (resp., right) Ferrers diagram the largest column
is the last (resp., first) one. We denote by L (resp., R) the set of left (resp., right) stacks. The set of left (resp.,
right) Ferrers diagrams is FL (resp., FR). Furthermore, we indicate by C (resp., T) the set of parallelograms
(resp., rectangles). For a class A of polyominoes, A(n) indicates the set of P ∈ A of area n. Lastly, the height of
a polyomino P in L ∪ R ∪ FL ∪ FR ∪ T, denoted by height(P ), is the area of its largest column.

Let j be a column of P , by low(j) (resp., high(j)) we denote the row index of the bottom cell (resp., top
cell) of j. Lastly, first(P ) (resp., last(P )) indicates the first (resp., last) column of P . The following definition
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Figure 1. A polyomino in LR.

introduces some binary relations on the set of columns of a convex polyomino. These relations play a special
role in the decomposition of a Z-convex polyomino.

Definition 2.1. Let i and j be two columns of a convex polyomino P . We say that

� i includes j, denoted by j ⊆ i, if and only if low(i) ≤ low(j) and high(i) ≥ high(j), see Figure 2a;
� i and j are overlapping, denoted by i ⇄ j, if and only if low(j) < low(i) ≤ high(j) < high(i) or low(i) <
low(j) ≤ high(i) < high(j), see Figure 2b;

� i and j are disjoint, denoted by i ≍ j, if and only if low(i) > high(j) or low(j) > high(i), see Figure 2c.

We also write j ⊊ i if j ⊆ i and j ̸= i. Given a convex polyomino P , let e be the rightmost column of P
such that c ⊆ e for all columns c to the left of e. Then, P is called descending (resp., ascending) if the leftmost
column j of P such that j ⇄ e satisfies low(e) > low(j) (resp., low(e) < low(j)), see Figure 2d (resp., e).

The set of descending convex polyominoes is indicated by DConv. If P is neither descending nor ascending
(that is, there is not a column j such that j ⇄ e, hence j ⊆ e for all j) then P is in T∪FL ∪FR ∪ L∪R or belongs
to the class LR containing all convex polyominoes that are the concatenation of two polyominoes, P = P1 · P2,
where P1 ∈ L ∪ FL, P2 ∈ T ∪ R ∪ FR and first(P2) ⊊ last(P1). Since any P in LR contains a column ȷ̄ such
that j ⊆ ȷ̄ for all columns j, one has degc(P ) ≤ 2. Indeed, for any two cells a ∈ P1 and b ∈ P2 there is always
a path from a to b with at most two changes of direction occurring on ȷ̄, see Figure 1. The set of Z-convex
polyominoes can be characterized in terms of inclusion between columns. This characterization is the basis of
the decompositions that we introduce in the sequel.

Theorem 2.2. A convex polyomino P is in ZConv if and only if for any two disjoint columns i and j of P
there exist a column k, with 1 ≤ i < k < j ≤ last(P ), such that i ⊊ k and j ⊊ k.

Proof. See [15], Theorem 1.

We denote by DConv2 (resp., AConv2) the set of descending (resp., ascending) polyominoes of degree of
convexity 2, see Figure 2d (resp., e). Clearly, one has

ZConv = T ∪ FL ∪ FR ∪ L ∪ R ∪ LR ∪ AConv2 ∪ DConv2,

where the unions are disjoint. Because of symmetry one has |DConv2(n)| = |AConv2(n)|, hence from here on we
consider only descending polyominoes. Thus, for any n ≥ 0 one has

|ZConv(n)| = |T(n)|+ 2 · |FL(n)|+ 2 · |L(n)|+ |LR(n)|+ 2 · |DConv2(n)|, (2.1)

and the counting problem for ZConv is reduced to the counting problem for DConv2 and to some other simpler
counting problems (easily solved in polynomial time, see Sect. 5).
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Figure 2. An included column (a), two overlapping columns (b), two disjoint columns (c), a
polyomino in DConv2 (d), a polyomino in AConv2 (e) and a polyomino in LR (f).

3. Polyominoes decomposition

Computing |DConv2(n)| is not immediate. Our approach is based on breaking a polyomino in DConv down
into simpler polyominoes. As a matter of fact, a descending convex polyomino is the concatenation of at most
four simple polyominoes. We introduce a decomposition that is the first of many steps leading to a set of
formulas for computing |DConv(n)|.

Definition 3.1. [standard decomposition] Let P ∈ DConv. Then, we can decompose P as P = L · F ·C ·R for
suitable polyominoes L ∈ L ∪ T ∪ FL, F ∈ FR ∪ T ∪ {ϵ}, C ∈ C ∪ T ∪ FR, and R ∈ R ∪ T ∪ FR ∪ {ϵ} such that

� if F ̸= ϵ then first(F ) ⊊ last(L), low(last(L)) = low(last(F )) and last(F ) ⇄ first(C);
� last(L) ⇄ first(C) and low(last(L)) > low(first(C));
� if R ̸= ϵ then first(R) ⊊ last(C) and low(last(C)) < low(first(R)).

The standard decomposition of a polyomino P ∈ DConv is unique. Indeed:

� last(L) is the rightmost column ȷ̄ of P such that j ⊆ ȷ̄ for all columns j the the left of ȷ̄;
� first(C) is the first column e to the right of last(L) such that last(L) ⇄ e;
� all columns between last(L) and first(C) belong to F ;
� first(R) is the first column j to the right of first(C) such that low(j) > low(j − 1).

Figure 3 illustrates the standard decomposition of some descending convex polyominoes. Given P ∈ DConv2,
we point out that by Theorem 2.2, each column c of P to the right of last(L) satisfies the relation c ⇄ last(L)
or c ⊆ last(L).

The following Lemma provides a property used to define some subclasses of DConv2. These classes appear in
the refinements of the standard decomposition that we do to compute |DConv2(n)|.

Lemma 3.2. Let P ∈ DConv and consider its standard decomposition, P = L · F · C · R. Then, P belongs to
DConv2 if and only if for any two disjoint columns j1, j2 of P (with j1 < j2) one has j1 ∈ L ∧ (j2 ⊆ last(L) ∨
j2 ⊆ ȷ̄), where ȷ̄ is the rightmost column of C that includes j1.

Proof. (⇒) Let P ∈ DConv2 and suppose that there exist two disjoint columns j1 and j2 with j1 /∈ L and
j1 < j2. Obviously, j1 cannot belong to R, since this implies j2 ⊆ j1. If j1 is a column of F or C, then any
column j2 to its right such that j1 ≍ j2 also satisfies j2 ≍ j′ for all j′ < j1 (since P is descending). In particular,
one has j2 ≍ last(L), which implies degc(P ) > 2, since no column in P includes both j2 and last(L).
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Figure 3. The standard decomposition of some polyominoes in DConv2.

Thus, j1 must be in L. By Definition 3.1, j2 can only belong to C or R. If j2 belongs to C there exists (by
Thm. 2.2) at least one column j, with j1 < j < j2, that includes both j1 and j2. It is immediate that column
j is in C since for all columns c in L or F one has low(c) > low(j2). Thus, we simply consider the rightmost
column ȷ̄ with that property. Otherwise, j2 is in R. If low(j2) < low(last(L)) the column including j2 must
be in C and we apply the above reasoning to get ȷ̄. Lastly, if low(j2) ≥ low(last(L)) both j1 and j2 are
included in last(L).

(⇐) The hypotheses of Theorem 2.2 are satisfied hence P ∈ DConv2.

We indicate by LCR2 (resp., LC2, LFCR2, LFC2) the subset of DConv2 containing polyominoes whose standard
decomposition is L · C ·R (resp., L · C, L · F · C ·R, L · F · C). Furthermore, we introduce a subset of DConv2
called Z2. This subset is one of the components we need when we think to a polyomino in DConv as the result
of some combinatorial operations applied to polyominoes that are easier to count.

Definition 3.3 (Z2). Z2 is the set of all P in LCR2 ∪ LC2 such that:

1. l ⊊ first(C) for all columns l of L, with A(l) < A(last(L));
2. c ⇄ last(L) for all columns c of R (if R ̸= ϵ).

In the sequel, polyominoes with disjoint columns will be recursively decomposed into simpler polyominoes.
Thus, given a class A of polyominoes we consider the partition A = A• ∪A◦, where A• (resp., A◦) contains those
polyominoes in A that have (resp., do not have) disjoint columns. In particular, there is a subset of Z•

2 which
plays a special role in the decomposition of a polyomino in DConv•2.

Definition 3.4 (s-Z•
2). The set s-Z

•
2 contains all P ∈ Z•

2 that can be written as P = L ·C ·R with L ∈ L∪T∪FL,
C ∈ C ∪ T ∪ FR, R ∈ R ∪ T ∪ FR and:

� l ⊊ last(C) for all columns l of L, with A(l) < A(last(L));
� low(last(C)) ≤ low(first(R));
� first(R) ⊊ last(C);
� first(L) ≍ first(R).
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Figure 4. Standard decomposition vs. decomposition in Definition 3.4.

Figure 5. From left to right: a polyomino in Z•
2 \ s-Z•

2, a polyomino in Z◦
2 and a polyomino in

s-Z•
2.

We point out that polyominoes C and R in Definition 3.4 are not necessarily the same C and R that appear
in the standard decomposition of P . More precisely, if we consider the standard decomposition P = L′ · C ′ ·R′

compared to P = L ·C ·R given by Definition 3.4, one might have C ̸= C ′, R ̸= R′, with L = L′, and C ′ ·R′ =
C ·R, see Figure 4. Figure 5 shows examples of polyominoes in the above defined sets.

4. Operations on polyominoes

In this section we introduce two operations used to obtain polyominoes in DConv2 by appropriately combining
polyominoes belonging to classes that are easier to count.

We start by refining the standard decomposition P = L · F · C · R of a polyomino P in DConv2. Write L
as L = L′ · D, with D ∈ T and last(L′) ⊊ first(D), and consider the leftmost column c of L such that
c ⇄ first(C) (possibly c = first(D)). Notice that L cannot contain a column c such that c ≍ first(C), and
P cannot contain a column e such that e ≍ last(L). Indeed, in both cases the degree of convexity of P would
be at least 3 (by Thm. 2.2). Now, let e be the leftmost column of R such that e ⊊ last(D) (remark: P ∈ Z2 if
e = ϵ and c = first(D)). Columns c and e lead to the decomposition

P = L′ ·D · F · C ·R (if c = first(D) ∧ e = ϵ) or (4.1)

P = L1 · c · L2 ·D · F · C ·R1 · e ·R2 (if c ̸= first(D) ∧ e ̸= ϵ) or (4.2)

P = L1 · c · L2 ·D · F · C ·R (if c ̸= first(D) ∧ e = ϵ) or (4.3)

P = L′ ·D · F · C ·R1 · e ·R2 (if c = first(D) ∧ e ̸= ϵ) (4.4)

(remark: L1, L2, F,R,R1, R2 might be null). See Figure 6 for an example, where c, e, R2 are red, D is black,
L1, C,R1 are yellow and L2 is null.

It is immediate that the polyominoes c ·L2 ·D · e ·R2 (case 4.2), c ·L2 ·D (case 4.3) and D · e ·R2 (case 4.4)
belong to T ∪ L ∪ R ∪ FL ∪ LR, whereas the polyominoes L′ · D · C · R (case 4.1), L1 · D · C · R1 (case 4.2),
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Figure 6. The refinement of the standard decomposition of a polyomino in DConv2 \ Z2.

L1 ·D · C · R (case 4.3) and L′ ·D · C · R1 (case 4.4) are in Z2 (concatenation is done by keeping the position
low(f) of each column f fixed).

This refinement of the standard decomposition suggests us to define a partial function ⊕ : (FR ∪ {ϵ}) ×
(T ∪ L ∪ R ∪ FL ∪ LR)× Z2 7→ DConv2 ∪ {⊥} (see Fig. 7) that is used to write the main equation for counting
DConv2. This definition is rather technical as it comprises a lot of conditions, used to ensure that the particular
concatenation of polyominoes provides a polyomino in DConv2.

Definition 4.1 (⊕). Let F ∈ FR∪{ϵ}, P ∈ T∪L∪R∪FL∪FR∪LR and Q ∈ Z2. Write P as P = L ·D ·R where
D ∈ T and g ⊊ first(D) for g in L or R (L and R possibly null). Furthermore, write Q as Q = L′ ·D′ ·C ′ ·R′,
with D′ ∈ T, first(C ′) ⇄ last(D

′) and last(L′) ⊊ first(D′) (L′ ·D′ ∈ T ∪ FL ∪ L, C ′ ∈ C ∪ T ∪ FR, R
′ ∈

R ∪ FR ∪ T ∪ {ϵ}). Then, ⊕(F, P,Q) is a polyomino W in DConv2, with

W = L′ · L ·D′ · F · C ′ ·R′ ·R,

if and only if D = D′ and for d = last(D), d′ = last(D′), all the following conditions are satisfied:
(if L,L′ ̸= ϵ)

1. high(d)− high(first(L)) < high(d′)− high(last(L′));
2. high(d)− low(first(L)) ≥ high(d′)− low(last(L′));

(if F ̸= ϵ)

3. A(first(F )) < A(d′);
4. A(last(F )) ≥ A(d′)− (high(d′)− high(first(C ′)));

(if R,R′ ̸= ϵ)

5. high(d)− high(first(R)) ≥ high(d′)− high(last(R′)).

If F , P and Q do not satisfy conditions 1–5 we set ⊕(F, P,Q) = ⊥ (undefined).

Notice that ⊕(F, P,Q) = Q if and only if F = ϵ, P = D and Q = L ·D · C ·R. Moreover, ⊕ is immediately
extended to sets of polyominoes by setting

⊕(A,B,D) = {⊕(F, P,Q) | F ∈ A, P ∈ B, Q ∈ D}.
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Figure 7. The function ⊕ .

Figure 8. The decomposition of a polyomino in Z•
2, case (4.6).

By decompositions (4.2), (4.3), (4.4) and Definition 4.1 it follows that

DConv2 =
⋃

F∈FR∪{ϵ}
P∈T∪L∪R∪FL∪FR∪LR,P ̸=ϵ

Q∈Z2,Q ̸=ϵ

⊕(F, P,Q). (4.5)

We point out that all unions in (4.5) are disjoint. Indeed, if both ⊕(F, P,Q) and ⊕(F ′, P ′, Q′) are defined, the
polyomino ⊕(F, P,Q) is equal to ⊕(F ′, P ′, Q′) if and only if F = F ′, P = P ′ and Q = Q′. In the next section
we proceed further, and we show how to obtain a formula for computing |DConv2(n)|, from (4.5).

From (4.5) it is clear that the main subproblem is computing |Z2(n)|, since |FL(n)| and |T(n) ∪ L(n) ∪
R(n) ∪ FL(n) ∪ FR(n) ∪ LR(n)| are easily computed in polynomial time (see Sect. 5). So, we focus on the most
difficult problem, that is, the computation of |Z•

2(n)| (a formula for |Z◦
2(n)| can be obtained quite easily, see

Section 5). To this aim, we introduce a particular refinement (see Fig. 8) of the standard decomposition L ·C ·R
(R possibly null) of a given P ∈ Z•

2.
Write L as L = L′ ·D, where D is a rectangle such that A(last(L′)) < A(first(D)). Let e be the rightmost

column of C such that last(L′) ⊊ e (e exists by Def. 3.3). If e = last(C) set c = first(L), otherwise let c be
the leftmost column in L′ such that c is included in e but not in column e + 1. Lastly, consider the leftmost
column f in C ·R such that f ≍ c.

We stress that if f belongs to C one has low(f ′) = low(e) for any column f ′ of C to the right of e. Indeed,
if low(f ′) < low(e) no column of P includes both f ′ and c, and so degc(P ) > 2 by Theorem 2.2. So, there
exist two right Ferrers diagrams F1, F2, two parallelograms (or rectangles) C1, C2, and two right stacks (or
Ferrers diagrams) R1, R2 such that

P = L2 · c · L1 ·D · C1 · e · F2 · f · F1 ·R (if f ∈ C) (4.6)
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Figure 9. The decomposition of P in Z•
2 gives rise to P ′′ ∈ s-Z•

2 (red) and Q′′ ∈ Z2 (yellow)
such that P = P ′′ ∥ Q′′.

or

P = L2 · c · L1 ·D · C1 · e · C2 ·R2 · f ·R1 (if f ∈ R), (4.7)

where g ⇄ c for any column g in F2 and low(h) = low(e) for all h in F2 or in F1 (in case (4.6)), and where
no column of C2 · R2 is disjoint from c (in case (4.7)). In particular, in case (4.7) e could be the last column
of C and then L2 and C2 would be null. Moreover, C2 = ϵ implies L2 = ϵ, since one has last(L2) ≍ f and so
there must be a column to the right of e that includes both last(L2) and f . Similarly, in case (4.6) one has
that L2 ̸= ϵ implies F2 ̸= ϵ, since last(L2) ≍ f implies the existence of a column including both last(L2) and
f . See Figure 8 for an example of the decomposition of a polyomino in Z•

2.
We associate with case (4.6) the two polyominoes P ′ = c · L1 ·D · C1 · e · f · F1 ·R and Q′ = L2 ·D · F2, see

Figure 8 (we recall that concatenation is done by keeping the row index of the bottom cell of each column).
Similarly, in case (4.7) we consider P ′′ = c · L1 ·D · C1 · e · f ·R1 and Q′′ = L2 ·D · C2 ·R2. By construction it
follows that P ′ and P ′′ belong to s-Z•

2, whereas Q
′ and Q′′ are in ∈ Z2 ∪T. Indeed, by definition of c, last(L2)

is included in first(F2) (in case (4.6)) or in first(C2) (in case (4.7)). Moreover, Q′ and Q′′ are in T if and
only if P ∈ s-Z2.

Figure 9 illustrates case (4.7). Here, P ′′ consists of 8 red columns and 1 black column (joined to form a single
polyomino) whereas Q′′ consists of 12 yellow columns and 1 black column.

The idea we exploit to count Z•
2 is to obtain a polyomino P in Z•

2 \ s-Z•
2 by somehow combining two polyomi-

noes that are uniquely determined by the decomposition of P seen above. In other words, we define an operator
∥: Z2 × s-Z•

2 7→ Z•
2, that we call a pseudo-shuffle, see Figure 9.

Definition 4.2 (pseudo-shuffle ∥). Let P ∈ Z2 and P ′ ∈ s-Z•
2. Consider the standard decomposition of P ,

P = L · C · R or P = L · C, and write P ′ as in Definition 3.4, P ′ = L′ · C ′ · R′. Lastly, let L = L1 · D and
L′ = L2 ·D′, with D,D′ ∈ T and last(L1) ⊊ last(D), last(L2) ⊊ last(D′).

Let d = last(D) and d′ = last(D′), then

P ∥ P ′ = L1 · L2 ·D′ · C ′ · C ·R ·R′

is a polyomino in Z•
2 if and only if D = D′ and (if L2 ̸= ϵ)
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Figure 10. The first two steps in the decomposition of a polyomino P ∈ DConv•2, P =
⊕(ϵ,Q, P̄ ∥ P1), with Q ∈ LR, P̄ ∈ Z•

2, P1 ∈ s-Z•
2.

1. high(d)− high(last(L1)) > high(d′)− high(first(L2));
2. high(d)− low(last(L1)) ≤ high(d′)− low(first(L2));

and (if C ̸= ϵ)

3. high(d′)− high(last(C ′)) < high(d)− high(first(C));
4. high(d)− low(last(C ′)) ≤ high(d′)− low(first(C));

and (if R ̸= ϵ)

4. high(d)− high(last(R)) < high(d′)− high(first(R′));
5. high(d)− low(last(R)) ≥ high(d′)− low(first(R′));
6. high(d)− high(last(R)) < high(d′)− low(first(L2));

or (if R = ϵ and C ̸= ϵ)

7. high(d)− high(first(C)) < high(d′)− high(first(L2)).

We set P ∥ Q = ⊥ if P and Q do not satisfy all conditions of Definition 4.2. By Definition 4.2 it follows that
a polyomino P ∈ Z•

2 is in s-Z•
2 or can be uniquely written as the pseudo-shuffle of finitely many polyominoes,

P = (· · · (︸ ︷︷ ︸
k−1

Pk ∥ Pk−1) ∥ Pk−2) ∥ · · · ) ∥ P2) ∥ P1, (4.8)

with Pi ∈ s-Z•
2 for 1 ≤ i < k, and Pk ∈ Z◦

2 ∪ s-Z•
2. Figure 10 illustrates the first two steps in the decomposition

of a polyomino in DConv•2 (then, we consider the decomposition P̄ = ¯̄P ∥ P2, and so on, see Figure 11 for the
full decomposition of P̄ ).

The pseudo-shuffle is immediately extended to sets of polyominoes by setting

A ∥ B = {P ∥ Q | P ∈ A, Q ∈ B}.

From here on we denote by FR(n, h, e) (resp., LR(n, h, e), T(n, h, e), L(n, h, e)) the set of right Ferrers diagrams
(resp., polyominoes in LR, rectangles, left stacks) of area n, height h and with e columns of area h. We also
consider the set Z2(n, h, e) of all P ∈ Z2(n) where the polyomino L in the standard decomposition of P ,
P = L · C · R, can be written as L = L1 · D where D is a rectangle with e columns of height h such that
height(L1) < h. From the previous definitions and (4.5) it follows that

DConv•2(n) =
⋃

m,d,e,a,c

⊕ (FR(a, c),G(n−m− a+ d · e, d, e),Z•
2(m, d, e)) (4.9)
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Figure 11. The pseudo-shuffle decomposition of the polyomino P̄ in Figure 10.

Figure 12. The polyominoes of smallest area in Z•
2 (left) and Z◦

2 (right).

where G(b, d, e) = L(b, d, e)∪FL(b, d, e)∪FR(b, d, e)∪R(b, d, e)∪T(b, d, e)∪LR(b, d, e), FR(a, c) =
∑⌊a/c⌋

i=1 FR(a, c, i)
and the union is taken on all a, c, d, e such that:

� 9 ≤ m ≤ n (Z•
2(m, d, e) = ∅ for m < 9, see Fig. 12);

� 3 ≤ d ≤ m− 6 (for d < 3 there can be no disjoint columns, the sum of the areas of the two disjoint columns
with the area of the column including them is at least 6, see Fig. 12);

� 1 ≤ e ≤ ⌊(m− 6)/d⌋;
� 0 ≤ a ≤ n−m;
� 0 ≤ c ≤ a and c < d.

Analogously, one has

DConv◦(n) =
⋃

m,d,e,a,c

⊕ (FR(a, c),G(n−m− a+ d · e, d, e),Z◦
2(m, d, e)) , (4.10)

with

� 4 ≤ m ≤ n;
� 2 ≤ d ≤ m− 2;
� 1 ≤ e ≤ ⌊(m− 2)/d⌋ (at least two cells for first(C));
� 0 ≤ a ≤ n−m;
� 0 ≤ c ≤ a and c < d.

Lastly, from (4.8) one has

Z•
2(n, d, e) = s-Z•

2(n, d, e) ∪
⋃

m,d,e

Z2(n−m+ d · e, d, e) ∥ s-Z•
2(m, d, e), (4.11)

where 9 ≤ m ≤ n− 2, 3 ≤ d ≤ m− 6 and 1 ≤ e ≤ ⌊(m− 6)/d⌋. Notice that in (4.11) m is at most n− 2 since
the area of A in A ∥ B is at least d · e+ 2 (the area of first(C) is at least 2).
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5. Computing |ZConv(n)|
We have seen in the previous section that a polyomino P in DConv2 can be obtained by exploiting the

functions ⊕ and ∥, see (4.9), (4.10) and (4.11). Definitions 4.1 and 4.2 state some conditions that are closely
related to the decomposition of P . More precisely, these conditions refer to the area and to the (relative) position
of some suitable columns of each polyomino used in the decomposition. So, in order to compute |DConv2(n)| from
(4.9), (4.10) and (4.11) we need to introduce some functions that count (with respect some suitable parameters)
the polyominoes that appear in the decomposition.

Let SL(n, h) (resp., SR(n, h)) be the number of polyominoes of height h in L(n) ∪ FL(n) ∪ T(n) (resp.,
R(n) ∪ FR(n) ∪ T(n)). Obviously one has SL(n, h) = SR(n, h). It is immediate that

SL(n, h) =
∑

1≤i≤h

(h− i+ 1) · SL(n− h, i),

with SL(i, i) = 1 and SL(j, i) = 0 for i > j. Notice that SL(n, h) is also the of number of unimodal sequences of

weight n with largest term h. This is the coefficient of qn in qh

(1−q)2(1−q2)2···(1−qh−1)2(1−qh)2
, see [17], Section 2.5.

In the sequel, we indicate by S(n, h) the number of polyominoes of height h in L(n) ∪ FL(n). Obviously, one
has S(n, h) = SL(n, h)−max(1− (n mod h), 0).

We also denote by SL(m, p, q, y) (resp., SR(m, p, q, y)) the number of polyominoes P counted by SL(m, p)
(resp., SR(m, p)) with smallest column of area q and |low(first(P ))− low(last(P )) | = y (see Fig. 13). We
point out that the number of right Ferrers diagrams of area m, height p and smallest column of area q is
SL(m, p, q, 0). This number is easily computed by means of the following equation,

SL(m, p, q, 0) =

p∑
e=q

SL(m− p, e, q, 0) (if m > p),

with SL(m, p, q, 0) = 0 if p ̸= q and p+ q > m, and SL(m, p, q, 0) = 1 if m = p = q or m = p+ q.
Figure 13 suggests us how to compute SL(m, p, q, y) when y > 0. Indeed, if a polyomino P counted by

SL(m, p, q, y) has at least three columns one necessarily has m− p− q > 0, and then

SL(m, p, q, y) =

γ1∑
i=0

γ2∑
z=0

SL(m− p, q + i+ z, q, i),

where γ1 = min(y,m− p− 2q) and γ2 = min(p− q − y,m− p− 2q − i).
Otherwise, the polyomino P has at most two columns, which means m − p − q ≤ 0. Thus, we have

SL(m, p, q, y) = 1 if m = p+ q ∧ y ≤ p− q or p = q = m ∧ y = 0, and SL(m, p, q, y) = 0 if m ̸= p+ q ∧ p ̸= q or
y > p− q.

Lastly, we indicate by S2
L (m, p, q, y, e) the number of polyominoes in R(m, p, e)∪ FR(m, p, e)∪T(m, p, e) that

are counted by SL(m, p, q, y). It is immediate that for e > 0 one has

S2
L (m, p, q, y, e) =

p−1∑
r=q

δ2∑
i=δ1

SL(m− p · e, r, q, i),

where δ1 = max(0, r− q− (p− q− y)) and δ2 = min(y, r− q) (see Fig. 13 and consider the second to last column
as the column of area r). The function S2

R(m, p, q, y, e) is defined similarly.
Functions SL and S allow us to easily compute |LR(n)|, one of the values that appear in the formula for

|ZConv(n)|, see (2.1). Indeed, since any polyomino P ∈ LR is (uniquely) decomposed as the concatenation
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Figure 13. The recursive decomposition of a polyomino counted by SL(m, p, q, y).

Figure 14. The recursive decomposition of a polyomino counted by C(n, h1, h2, i).

P = P1 ·P2 of two polyominoes P1 ∈ L∪FL and P2 ∈ R∪FR ∪T with first(P2) ⊆ last(P1) and height(P1) >
height(P2), it follows that for n > 3 one has:

|LR(n)| =
n−2∑
h=2

n−1∑
a=h+1

min(h−1,n−a)∑
k=1

(h− k + 1) · SL(a, h) · S(n− a, k).

In the sequel we need to know the number C(n, h1, h2, i) of descending parallelograms P of area n with
A(first(P )) = h1, A(last(P )) = h2 and low(first(P ))− low(last(P )) = i. From Figure 14 it follows that

C(n, h1, h2, i) =

i∑
j=0

h1+i−j∑
k=i−j+1

C(n− h1, k, h2, j),

with C(n, h1, h2, i) = 1 if h1 = h2 = n∧ i = 0 or h1+h2 = n∧max(0, h2−h1) ≤ i ≤ h2−1, and C(n, h1, h2, i) =
0 if n < h1 or h1 ̸= h2 ∧ h1 + h2 > n or h1 ̸= h2 ∧ h1 + h2 = n ∧ (i < max(0, h2 − h1) ∨ i > h2 − 1) or n = h1 =
h2 ∧ i > 0.

The functions introduced so far refer to the components that are easier to count. Now we focus on the most
difficult part and let Z•

2 (n, h1, h2, h3, h4, δ1, δ2, δ3, e) (resp., Z◦
2 (n, h1, h2, h3, h4, δ1, δ2, δ3, e)) be the number of

polyominoes P in Z•
2(n, h1, e) (resp., P ∈ Z◦

2(n, h1, e)) whose standard decomposition P = L ·C or P = L ·C ·R
satisfies the following conditions (see Fig. 15):

� L = L1 ·D where D is a rectangle of height h1 with e columns;
� A(last(L1)) = h2, h2 < h1, A(first(C)) = h3, A(last(P )) = h4;
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Figure 15. A polyomino counted by Z•
2(n, h1, h2, h3, h4, i1, δ1, δ2, δ3, 1).

Figure 16. Computing |DConv•2(n)|: see (5.1). The grey column and the red columns form
the polyomino counted by Z•

2 (a1, h1, h3, h4, h5, δ2, δ3, δ4, e), blue columns form a polyomino in
FR ∪T (counted by SR(a3, h2, l2, 0)), green columns form the polyomino in R∪FR ∪T (counted
by SR(n − a1 − a2 − a3, h6)). Lastly, if we rotate clockwise by 180 degrees the polyomino
consisting of the grey column and the yellow columns we obtain a polyomino counted by
S2
R(a2 + h1, h1, l1, δ1, 1).

� high(last(L)) − high(last(L1)) = δ1, high(last(L)) − high(first(C)) = δ2, high(last(L)) −
high(last(P )) = δ3.

From (4.9) and Definition 4.1 we get the following formula (see Fig. 16 for the meaning of indices of summations):

|DConv•2(n)| =
∑

h1,e,a1,h3,δ2
h4,δ3,h5,δ4

Z•
2 (a1, h1, h3, h4, h5, δ2, δ3, δ4, e)·

∑
a2,l1,δ1

S2
R(a2 + h1, h1, l1, δ1, 1) ·

∑
a3,h2,l2

SR(a3, h2, l2, 0)·∑
h6

(h1 − δ4 − h6 + 1) · SR(n− a1 − a2 − a3, h6), (5.1)

where the sums are taken on all a1, a2, a3, h1, h2, h3, h4, h5, h6, l1, l2, δ1, δ2, δ3, δ4, e such that (we refer to
decompositions (4.1)–(4.4) of P ∈ DConv•2 and to the standard decomposition L′ · C ′ or L′ · C ′ · R′ (with
L′ = L1 ·D′, D′ ∈ T) of a polyomino P ′ counted by Z•

2 (a1, h1, h3, h4, h5, δ2, δ3, δ4, e), see Fig. 16):
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� 3 ≤ h1 ≤ n− 6 (for h1 < 3 there can be no disjoint columns, and at least 6 cells are needed for two disjoint
columns and the column including them, see Fig. 12);

� 1 ≤ e ≤ ⌊(n− 6)/h1⌋;
� a1 ≥ h1 · e+ 6;
� 1 ≤ h3 < h1;
� 1 ≤ δ2 ≤ h1 − h3;
� h1 − δ2 < h4 ≤ a1 − h3 − 2 (first(C ′) must include last(L1), and the area of any column c in C ′ ·R′ is
at least 2 since c ⇄ last(L) and low(c) < low(last(L)));

� max(h1 − h4 − 1, 1) ≤ δ3 ≤ δ2 (since first(C ′) ⇄ last(L
′) and last(L1) ⊆ first(C ′));

� 2 ≤ h5 ≤ a1 − h3 − h4 (remark: C ′ ·R′ has at least two columns);
� δ2 < δ4 < h1;
� a2 = 0 or h3 + δ2 − δ3 < a2 ≤ n− a1;
� h3 + δ2 − δ3 < l1 ≤ a2;
� δ2 + h3 − l1 ≤ δ1 < δ3;
� a3 = 0 or h1 − δ3 ≤ a3 ≤ n− a1 − a2;
� h1 − δ3 ≤ h2 ≤ min(a3, h1 − 1);
� h1 − δ3 ≤ l2 ≤ h2;
� h6 ≤ h1 − δ4 (the first column c of the polyomino counted by SR(n − a1 − a2 − a3, h6) is included in
the segment of last(P ′) of area h1 − δ4 overlapping last(L′). Thus, the number of ways of placing c is
(h1 − δ4 − h6 + 1)).

Now, the problem becomes computing Z•
2 (n, h1, h2, h3, h4, i1, i2, i3, e). Without loss of generality we suppose

e = 1. Indeed, for e > 1 one has

Z•
2 (n, h1, h2, h3, h4, i1, i2, i3, e) = Z•

2 (n− h1 · (e− 1), h1, h2, h3, h4, i1, i2, i3, 1).

Let α = n, h1, h2, h3, h4, i1, i2, i3, 1 and β = n − a1 − a2 − a3, h1, k2, k3, k4, e1, e2, e3, 1. From (4.11) and
Definition 4.2 we immediately obtain a recurrence equation. Indeed (see Fig. 17),

Z•
2 (α) = s-Z•

2 (α) +
∑

a1,x1,j1

SR(a1, h2, x1, j1) ·
∑

a2,j2,x2

C(a2, x2, h3, j2) ·∑
a3,j3,x3

SL(a3, x3, h4, j3) ·
∑

e1,k2,e2
k3,e3,k4

Z•
2 (β) + Z◦

2 (β). (5.2)

Indeed, a polyomino P counted by Z•
2 (α) is either in s-Z•

2 (and then counted by s-Z•
2 (α)) or is the pseudo-

shuffle of two polyominoes, P = P ′ ∥ P ′′, with P ′′ ∈ s-Z•
2 and P ′ ∈ Z2. Thus, the first three sums in equation (5.2)

count the number of P ′′ ∈ s-Z•
2(a1 + a2 + a3 + h1, h1, 1) (for specific values of the variables used to identify the

components L, C and R in the decomposition of P ′′), whereas the fourth sum counts the number of P ′ ∈
Z2(n− a1 − a2 − a3, h1, 1) such that P ′ ∥ P ′′ is defined (and then belongs to Z•

2 (α)). To ensure this, we refer to
the decompositions L′ ·D′ ·C ′ ·R′ or L′ ·D′ ·C ′ of P ′ ∈ Z2, and to L′′ ·D′′ ·C ′′ ·R′′ (remark:D′ = D′′) of P ′′ ∈ s-Z•

2

(see Fig. 17), and we take the sums on all nonnegative integers a1, a2, a3, x1, x2, x3, k2, k3, k4, j1, j2, j3, e1, e2, e3
such that (remark: the order of nested sums in (5.2) follows the order of the conditions below):

� h2 ≤ a1 < n− h1 − h3 − h4;
� x1 ≤ h2;
� 0 ≤ j1 ≤ h2 − x1;
� h3 ≤ a2 < n− a1 − h1 − h4;
� 0 ≤ j2 ≤ i1 − i2 (since last(L′′) ⊊ last(C ′′));
� h3 − j2 ≤ x2 ≤ a2 − h3 (if a2 ̸= h3) or x2 = h3 (if a2 = h3 and j2 = 0);
� h4 ≤ a3 < n− h1 − a1 − a2 (a1 + a2 + a3 + h1 < n since P ′ ̸= ϵ);
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Figure 17. A polyomino P counted by Z•
2 (α). The green column and the yellow columns

form the polyomino P ′ ∈ Z2 (counted by Z•
2 (β)), red columns form the polyomino P1 ∈ L ∪

FL ∪ T (counted by SL(a1, h2, x1, j1)), blue columns form the polyomino P2 ∈ C (counted by
C(a2, h3, x2, j2)), whereas pink columns form the polyomino P3 ∈ R ∪ FR ∪ T (counted by
SR(a3, x3, h4, j3)) . One has P ′′ = P1 · P2 · P3 ∈ s-Z•

2 and P = P ′ ∥ P ′′.

� 0 ≤ j3 ≤ i3 − i1 − j1 − x1 (since first(R′′) ≍ first(L′′));
� x3 = h4 (if j3 = 0) or j3 + h4 ≤ x3 ≤ min(n − h1 · e − a1 − a2 − h4 − 1, i2 + j2 + x2 − i3 + j3) (since
first(R′′) ⊊ last(C ′′));

� i1 + j1 < e1 < i1 + j1 + x1;
� 0 ≤ k2 ≤ i1 + j1 + x1 − e1;
� i1 + j1 < e2 ≤ e1(since last(L′) ⊆ first(C ′));
� i3 − j3 + x3 − e2 ≤ k3 ≤ n− k1 − a1 − a2 − a3 (since first(R′′) ⊊ first(C ′));
� e2 ≤ e3 < i1 + j1 + x1 (since first(R′′) ⇄ last(C

′));
� i3 − j3 + x3 − e3 ≤ k4 ≤ n− k1 − a1 − a2 − a3.

We point out that all the previous conditions derive from definitions 3.3, 3.4 and 4.2. Furthermore, Definition 3.4
immediately leads to the following formula for s-Z•

2 (α) (that holds only for i1 ≥ i2, i1 + h2 ≤ h1, 0 < i2 < h1,
i2 + h3 > h1, and i3 < h1, otherwise s-Z•

2 (n, h1, h2, h3, h4, i1, i2, i3, 1) is equal to 0),

s-Z•
2 (n, h1, h2, h3, h4, i1, i2, i3, 1) =

∑
a1,j1,x1

SR(a1, h2, x1, j1) ·∑
a2,j2,x2

C(a2, x2, h3, j2) ·
∑
j3,x3

SL(n− h1 − a1 − a2, x3, h4, j3). (5.3)

Here, we refer to the decomposition P = L · C · R (with L = L1 ·D) given in Definition 3.4, and we take the
sums on all nonnegative integers a1, a2, x1, x2, x3, j1, j2, j3 such that (see Fig. 18):

� h2 ≤ a1 ≤ n− h1 − h3 − h4;
� 0 ≤ j1 < i3 − i1 (since first(R) ≍ first(L1));
� 1 ≤ x1 ≤ min(i3 − i1 − j1, h2);
� h3 ≤ a2 ≤ n− h1 − a1 − h4;
� 0 ≤ j2 ≤ i1 − i2 (since last(L1) ⊊ last(C));
� x2 = h3 (if j2 = 0) or h3 − j2 ≤ x2 ≤ n− h1 − a1 − h3 − h4;
� 0 ≤ j3 ≤ i3 − i1 − j1 − x1 (since first(R) ≍ first(L));



ASYMPTOTICS OF Z-CONVEX POLYOMINOES 17

Figure 18. A polyomino counted by s-Z•
2 (n, h1, h2, h3, h4, i1, i2, i3).

Figure 19. A polyomino in DConv◦.

� j3 + h4 ≤ x3 ≤ i2 + j2 + x2 − i3 + j3 (since first(R) ⊊ last(C)).

Notice that the previous conditions ensure that P1 counted by SL(a1, h2, x1, j1) (rotated 180 degrees clockwise),
P2 counted by C(a2, x2, h3, j2) (rotated 180 degrees clockwise) and P3 counted by SR(n−h1−a1−a2, x3, h4, j3)
are such that P1 · P2 · P3 is in s-Z•

2 (n, h1, h2, h3, h4, i1, i2, i3, e).
So far we have dealt with counting polyominoes with disjoint columns. Now, let’s face the problem of com-

puting the number of descending convex polyominoes without disjoint columns. By considering the standard
decomposition L · C · F ·R (possibly F,R = ϵ) one has: (see Fig. 19):

|DConv◦2(n)| =
∑

h1,e,a1,i1,h2

S2
R(a1, h1, h2, i1, e) ·

(
1 +

∑
a2,h3,h4

SR(a2, h3, h4, 0) ·

∑
a3,h5,h6,i2,j

C(a3, h6, h5, i2) · (1 +
∑

k,h7,h8,i3

SL(n− a1 − a2 − a3, h7, h8, i3))

)
(5.4)

where the sums are taken on all nonnegative integers a1, a2, a3, h1, h2, h3, h4, h5, h6, h7, h8, i1, i2, i3, j, k, e such
that:

� 2 ≤ h1 ≤ n− 2, since A(C) ≥ 2;
� 1 ≤ e ≤ ⌊(n− 2)/h1⌋;
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� h1 · e ≤ a1 ≤ n− 2;
� 0 ≤ i1 < h1;
� h2 ≤ h1 − i1 and h1 ≥ 1 (if i1 > 0) or h2 ≥ 2 (if i1 = 0), since h1 = 1 and i1 = 0 implies first(L) ≍
first(C);

� h1− i1−h2 < a2 < n− a1− (h1− i1−h2), since C ̸= ϵ and first(C) ⇄ first(L) (remark: the case a2 = 0
corresponds to the first addend 1 in (5.4)) ;

� h1 − i1 − h2 < h3 < h1, since first(F ) ⇄ first(L);
� h1 − i1 − h2 < h4 ≤ h3, since last(F ) ⇄ first(L);
� 1 ≤ j < i1 + h2 (if a2 = 0) or h1 − h4 ≤ j < i1 + h2 (if a2 > 0);
� h1 − j < a3 ≤ n− a1 − a2;
� h1 − j < h5 ≤ a3;
� 0 ≤ i2 < i1 + h2 − j since last(C) ⇄ first(L);
� h6 = h5 (if a3 = h5) or h5 − i2 ≤ h6 ≤ a3 − h5 (if a3 > h5);
� j + i2 ≤ k < i1 + h2;
� 1 ≤ h7 ≤ min(n− a1 − a2 − a3, j + i2 + h6 − k), since first(R) ⊊ last(C);
� 0 ≤ i3 < i1 + h2 − k;
� 1 ≤ h8 ≤ h7 − i3.

The last step consists of computing Z◦
2 (α) (α = n, h1, h2, h3, h4, i1, i2, i3, 1), that is used in equation (5.2).

By Definition 3.3 and Figure 20 it follows that

Z◦
2 (α) =

∑
a1,j1,x1

SL(a1, h2, x1, j1) ·
(
C(n− h1 − a1, h4, h3, i3 − i2) +∑

a2,j2,x2

C(a2, x2, h3, j2) ·
∑
j3,x3

SL(n− h1 · e− a1 − a2, x3, h4, j3))), (5.5)

where the sums are taken over all non-negative integers a1, a2, x1, x2, x3, j1, j2, j3 (see Fig. 20) such that (we
refer to the standard decomposition of P ∈ Z◦

2 , P = L · C ·R or P = L · C, with L = L1 ·D):

� h2 ≤ a1 ≤ n− h1 − h3 − h4 (if h3 ̸= h4 or i2 ̸= i3) or h2 ≤ a1 ≤ n− h1 − h3 (if h3 = h4 and i2 = i3);
� 0 ≤ j1 < h2;
� i3 − i1 − j1 < x1 ≤ h2, since last(P ) ⇄ first(L);
� a2 ≤ n− h1 − a1 − h4 (remark: A(R) ≥ h4) and a2 ≥ h3 (if i2 + h3 ≥ i3 + h4) or a2 > h3 + h4 (if i2 + h3 <
i3 + h4);

� 0 ≤ j2 < i1 + j1 + x1 − i2, since last(C) ⇄ first(L);
� x2 = h3 (if a2 = h3) or max(h3 − j2, i3 + h4 − i2 − j2) ≤ x2 ≤ a2 − h3, since last(R) ⊊ last(C);
� 0 ≤ j3 ≤ i3 − i2 − j2;
� j3 + h4 ≤ x3 < j3 − i3 + i2 + j2 + x2 (to ensure that low(last(C)) < low(first(R)));

Finally, we exploit the previous formulas to compute the number of Z-convex polyominoes,

|ZConv(n)| = |T(n)|+ 2 · |FL(n)|+ 2 · |L(n)|+ |LR(n)|+ 2 · (|DConv•2(n)|+ |DConv◦2(n)|).

We point out that the value |ZConv(n)| can be computed in polynomial time. Indeed, by applying dynamic
programming one can develop a program that uses O(1) tables of size O(n8) to store all intermediate results
for the sets of values defined above.

The previous formulas are the basis of a C++ program under development. The goal is to compute the
counting sequence {cn} of Z-convex polyominoes for n ≤ N , where N is an integer that is large enough to
obtain the most accurate estimation of the asymptotic form of the coefficients, as has been done for L-convex
polyominoes [18]. At the moment, we have a β-version of the program (that uses a non-optimized data structure)
that produced the coefficients in Table 1. We point out that this integer sequence does not currently appear in
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Figure 20. A polyomino counted by Z◦
2 (n, h1, h2, h3, h4, i1, i2, i3, 1).

Table 1. |ZConv(n)| for 0 ≤ n ≤ 70.

0, 1, 2, 6, 19, 55, 148, 370, 874, 1966, 4240, 8816, 17773, 34858, 66734, 125014, 229647, 414412
735762, 1286908, 2220035, 3781065, 6363460, 10591124, 17444763, 28453652, 45984090,

73671398, 117061785, 184562194, 288836144, 448846754, 692828996, 1062596751,
1619750728, 2454592300, 3698861168, 5543870866, 8266217558, 12264097608, 18108408216,

26614409924,38941858286,56734472110,82313536326, 118945843908, 171213356406,
245521741732, 350797907519, 499444170806, 708639882712, 1002112444338, 1412540714209,

1984808599052, 2780398734144, 3883311845028, 5408022969255, 7510151515584, 10400739110270,
14365314313088, 19789295317410, 27191768575390, 37270314602040, 50960377670716,

69513746774069, 94602105582945, 128453407239846, 174031156719558,235269684178159,
317382363101408,427264704189028

OEIS and is long enough to obtain an estimate of the number of Z-convex polyominoes of area n, as shown in
Section 6.

6. Analysis of series

In [18] it was conjectured, with compelling evidence, that the asymptotics of 1-convex (otherwise called
L-convex) polyominoes, enumerated by area is

[qn]A(q) ∼ 13
√
2

768 · n3/2
exp(π

√
13n/6),

where A(q) is the area generating function. We expect similar behaviour for k-convex polyominoes, enumerated
by area. That is to say, if Ak(q) is the area generating function of k-convex polyominoes, then

[qn]Ak(q) ∼
Ck

nαk
exp(π

√
βkn),

where Ck is expected to be an algebraic number and αk and βk are expected to be k-dependent rational
constants.

The analysis of series with asymptotics of this type is described in detail in [19], and demonstrated in the
case of L-convex polyominoes in [18], so we will not repeat the discussion here, but simply apply the methods
described there.

We currently have 70 exact terms of the generating function A2(q). Using the method of series extension [20]
we have obtained a further 155 approximate terms.
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Figure 21. Ratios vs. 1/n.

Figure 22. Ratios vs. 1/
√
n.

As we are only considering 2-convex polyominoes in the following analysis, we will drop the subscripts, and
write an = [qn]A2(q) ∼ C

nα exp(π
√
βn).

First, we consider the ratios of successive coefficients, rn = an/an−1. For a power-law singularity, one expects
the sequence of ratios to approach the growth constant linearly when plotted against 1/n. In our case the growth
constant is 1. That is to say, there is no exponential growth.

For a singularity of the assumed type, which is called a stretched exponential, the ratio of coefficients behaves
as

rn =
an

an−1
= 1 +

π
√
β

2
√
n

+O

(
1

n

)
, (6.1)

so we expect the ratios to approach a limit of 1 linearly when plotted against 1/
√
n, and to display curvature

when plotted against 1/n.
We show the ratios plotted against 1/n and 1/

√
n in Figures 21 and 22 respectively. These plots are behaving

as expected, with the plot against 1/n displaying considerable curvature, while the plot against 1/
√
n is closer

to linear, but still displays some curvature, presumably due to the presence of an O(1/n) term. We can eliminate
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Figure 23. Linear intercepts vs. 1/
√
n.

Figure 24. Log-log plot of rn − 1 against n.

this term by considering the linear intercepts,

ln = n · rn − (n− 1) · rn−1,

which eliminates that term. These are shown in Figure 23, which plot is seen to be convincingly linear, and
going to the expected value of 1.

We can readily obtain further evidence that the power inside the exponential term is indeed a square root.
From (6.1), one sees that

rn − 1 =
π
√
β

2
√
n

+O

(
1

n

)
. (6.2)

Accordingly, a plot of log(rn − 1) versus log n should be linear, with gradient −1/2. In Figure 24, we show the
log-log plot, and in Figure 25 we show the local gradient plotted against 1/

√
n. The linearity of the first plot is

obvious, while the second is convincingly going to a limit of −0.5 as n → ∞.
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Figure 25. Gradient of log-log plot.

Figure 26. log(µ1) vs. 1/
√
n.

Having convincingly established that the relevant exponent is a square-root, just as for stack polyominoes,
it remains to determine the other parameters. There are several ways one might proceed, but here is one that
works quite well.

Recall that (rn − 1) ∼ log µ1

2
√
n
, where µ1 = exp(π

√
β), so 2

√
n · (rn − 1) ∼ logµ1. We show the relevant plot in

Figure 26. The second plot, Figure 27, eliminates the presumed sub-dominant O(1/n) term.
The plot suggests log µ1 ≈ 5.20. Linear extrapolation gives 5.210± 0.005. Recall that L-convex polyominoes

grow as exp(2π
√

13n/6), so if we guess that these grow as exp(π
√
βn), then π

√
β ≈ 5.210, implying β ≈ 2.750.

It seems reasonable to conjecture that β = 11/4 exactly.
So at this stage we have

an ∼ C · exp(π
√
βn)

nα
,

with the conjecture that β = 11/4.
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Figure 27. log(µ1) vs. 1/
√
n, eliminating O(1/n) term.

Figure 28. Ratios am/am−1 vs. 1/m.

To estimate α, we set m = n2, so

am ∼ C · exp(nπ
√
β)

n2α
.

This is of the form Cµnng, so we can use the usual ratio method. In particular,

rm ≡ am
am−1

∼ exp(π
√
β)

(
1− 2α

m
+ o(1/m)

)
In Figure 28, we show the ratios plotted against 1/m, and estimate that exp(πβ) ≈ 183, implying β = 2.7497,

in excellent agreement with our previous conjecture β = 11/4.
In Figure 29, we show the exponent estimates, obtained by rearranging the above equation to give

2α ∼ (1− rm · exp(−π
√
β))m.
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Figure 29. Estimators of 2α against 1/m.

Figure 30. Estimates of C vs. 1/
√
n.

We have plotted estimators of 2α against 1/m, and 2α is estimated to be −3, or α = −3/2, exactly the same
value as for L-convex polyominoes.

So at this stage we can reasonably conjecture that

an ∼ C ·
exp(π

√
11n/4)

n3/2
.

In order to calculate the constant C, we form the sequence

Cn ≡ an · n3/2

exp(π
√
11n/4)

,

and extrapolate the sequence Cn using any of a variety of standard methods. In Figure 30, we show the sequence
Cn plotted against 1/

√
n, after having eliminated the O(1/n) term. In Figure 31, we show the sequence Cn

plotted against 1/
√
n, after having eliminated the O(1/n) term and the O(1/n3/2) term. From the latter plot

we estimate C = 0.095± 0.003.
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Figure 31. Refined estimates of C vs. 1/
√
n.

We conclude with the conjecture that the asymptotic form of the coefficients of Z-convex polyominoes is

an ∼
C · exp(π

√
11n/4)

n3/2
, (6.3)

with C = 0.095 ± 0.003. Unfortunately, this estimate is insufficiently precise to conjecture an exact value for

the constant C, though C = 11
√
3

200 = 0.09526 · · · is a useful mnemonic.

7. Conclusion and perspectives

We have shown that the counting problem for Z-convex polyominoes is in P (the class of problem solved in
polynomial time under the uniform cost model). The sequence of coefficients provided by the C++ program
has been analyzed in order to obtain a conjecture on the asymptotic form of coefficients. We plan to develop an
optimized program to produce a longer sequence, with the goal of obtaining a conjecture for the exact value of
the constant C in (6.3).

Furthermore, we think that the idea of decomposing a convex polyomino into simpler pieces could be applied
also to efficiently enumerate other classes of convex polyominoes. In particular, in [21] the standard decompo-
sition is the basis of a different technique used to count convex polyominoes of degree of convexity at most k,
for k > 2.

Acknowledgements. AJG wishes to thank the ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS) for
support.
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