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ABSTRACT Functional size measures are often used as the basis for estimating development effort, because
they are available in the early stages of software development. Several simplifiedmeasurement methods have
also been proposed, both to decrease the cost of measurement and to make functional size measurement
applicable when functional user requirements are not yet known in full detail. Lately, machine learning
techniques have been successfully used for software development effort estimation, but the usage of machine
learning techniques in combination with simplified functional size measures has not yet been empirically
evaluated. This paper aims to fill this gap: it reports to what extent functional size measures can be simplified,
without decreasing the accuracy of effort estimates obtained via machine learning techniques. The reported
evaluation addresses separately the effort models concerning (i) new software developed from scratch, (ii)
software extensions obtained by adding new functionality, and (iii) software modifications that required
also changing and possibly removing functionalities. We carried out an empirical study, in which effort
estimation models were built via multiple Machine Learning techniques, using both traditional full-fledged
functional size measures and simplified measures. Our study shows that using simplified functional size
measures in place of traditional functional size measures for effort estimation does not yield practically
relevant differences in accuracy. Therefore, software project managers can consider analyzing only a small
and specific part of functional user requirements to get measures that effectively support effort estimation.

INDEX TERMS Software effort estimation, functional size measurement, function point analysis, machine
learning.

I. INTRODUCTION
Function Point Analysis (FPA) was introduced to yield a
measure of software size based exclusively on functional
requirements specifications [1]. Accordingly, functional size
measures (FSMs) are widely used for estimating software
development effort, mainly because they are available in the
early stages of development, when effort estimates are most
needed.

The associate editor coordinating the review of this manuscript and

approving it for publication was Pinjia Zhang .

However, deriving FSMs requires that complete and
detailed specifications are available; in addition, the measure-
ment takes a relatively long time and requires highly qualified
measurers. For all these reasons, a few ‘‘simplified’’measures
have been proposed. These measures are simpler and quicker,
and applicable when fully detailed software specifications are
not yet available. Among the simplified measures are Simple
Function Points (SFP) [2] (formerly known as SiFP [3]) and
the sheer number of transaction functions.

Simplified measures consider a smaller amount of infor-
mation than traditional Function Points, hence they may
be used to approximate traditional measures of functional
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size. Previous research has shown that this approximation
is relatively accurate [4]. However, in principle, even
small inaccuracies in the measurement of functional size
could negatively affect the accuracy of effort estimation.
Some evidence against this hypothesis has been produced,
but only when effort models are built using traditional
statistical instruments [5], [6]. In addition, such evidence was
incomplete, since it did not cover projects aiming to extend
existing software.

In the recent past, machine learning (ML) has been
increasingly used to successfully build effort models [7], [8],
[9], [10], [11], [12], and is now a sort of de-facto standard
technique for building effort estimation models.

The ever-increasing importance of machine learning
techniques in software effort estimation challenges the
conclusions of previous work concerning simplified FSMs:
when using ML for effort estimation, is it still true that
simplified FSMs can be used in place of full-fledged
measures without any practically relevant loss of accuracy?
Is this true for all types of projects (i.e., new developments,
enhancements and extensions)?

In this paper, we address these problems, by means of
an empirical study. Specifically, we address the following
research questions:

RQ1 Is it possible to build ML models that are able to
predict development effort using just a subset of the
information needed to compute traditional full-fledged
functional size measure?

RQ2 In case RQ1 provides a positive answer, is there a
ML technique that appears to provide more accurate
estimates than other techniques?

RQ3 In case RQ1 provides a positive answer, are there
models (involving a specific ML technique and a
simplified measure) that yield effort estimates as
accurate as the estimates obtained from traditional
full-fledged functional size measures?

RQ4 What is, if any, the most basic (i.e., most simplified)
functional measure that supports estimation with
acceptable accuracy, with respect to estimates obtained
from traditional full-fledged functional size measures?

The study is based on the analysis of the ISBSG
dataset [13], which has been widely used for studies
concerning software functional size.

The main contribution of the paper does not consist only in
studying the joint application of ML methods and simplified
FSMs to build effort estimation models. In fact, the presented
study evaluates the usage of FSMs that require different
levels of knowledge of requirements specification: hence,
the available FSMs are are not only evaluated, but also
compared to each other, with respect to their ability to
support accurate effort estimation. This comparison has a
great practical importance for software project managers,
who need to know how to build development effort estimation
models having acceptable prediction accuracy in the early
development stages.

The results of our empirical study show that—for
all types of projects (new developments, extensions and
enhancements)—Support Vector Regression appears to pro-
vide the most accurate estimates, and different types of
metrics yield extremely similar effort estimation errors.
These results support the idea that FSMs can be used in
practice for effort estimation instead of full-fledged metrics,
with no penalties with respect to accuracy. Since simplified
FSMs are easier and cheaper to collect, and are available
earlier than full-fledged FSMs, our results are potentially of
great interest for project managers who need estimates of
development effort even before functional requirements have
been described in full detail.

The remainder of this paper is organized as follows.
Section II provides some background on functional size
measurement. The empirical study is described in Section III
and its results are illustrated in Section IV. In Section V
we answer the Research Questions. The threats to the
validity of the empirical study are discussed in Section VI.
Section VII accounts for related work. Section VIII illustrates
the conclusions and outlines future work. Appendix provides
further details about building prediction models via ML.

II. BACKGROUND
To make the paper as self-contained as possible, this section
provides a brief introduction to functional size measurement.

A. FUNCTION POINT ANALYSIS
Function Point Analysis was conceived to measure the size
of software systems from the end-users’ point of view, with
the goal of providing a basis for estimating the development
effort [1].
The official documentation of FPA [15] is maintained

by the IFPUG (International Function Points User Group):
readers are referred to such documentation for further details,
guidelines and examples.

Currently, the IFPUG promotes two FSMs: Function
Points (from the original proposal by Albrecht [1]) and
Simple Function Points (the simplified measure proposed by
Meli [3]).

The basic idea of FPA is that the ‘‘amount of functionality’’
made available to users can be quantified by taking into
account two aspects of software: data and ‘transactions’
(i.e., operations that involve data exchanged through the
boundaries of the application). The data and transactions that
are considered for measurement are those that are relevant
to the user, i.e., no implementation-dependent factors are
taken into account. In fact, IFPUG Function Points are
counted on the basis of functional user requirements (FURs)
specifications.

FURs are modeled as a set of measurable elements, named
base functional components (BFCs). IFPUG BFCs are data
functions (or ‘logical files’) and transaction functions. Data
functions are distinguished in internal logical files (ILF),
which are managed within the application, and external
interface files (EIF), which are created and maintained
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outside the considered application. Transaction functions are
classified, based on some characteristics of the activities
carried out within the transaction, into external outputs (EO),
external inquiries (EQ), and external inputs (EI).

The functional size measured in unadjusted Function
Points is the sum of the sizes of data and transaction functions.
The size of each data function or transaction function is
determined by its complexity, which is classified as high,
medium or low. Readers interested in the evaluation of
complexity are referred to the official documentation [15].
For our purposes, it is sufficient to know that the exact
determination of complexity according to FPA requires a
rather deep knowledge of functions. Specifically, complexity
of data functions requires that data are specified at the
level of detail provided by Entity-Relationship diagrams or
UML class diagrams; complexity of transaction functions
requires that transactions are specified at the level of detail
of data-flow diagrams of UML sequence diagrams [16].
The core of FPA involves the following main activities:

1) Identifying data functions and transaction functions.
2) Classifying data functions as ILF or EIF and

transactions functions as EO, EQ, or EI.
3) Evaluating the complexity of data functions and

transaction functions.

The first two of these activities can be carried out even
if the FURs have not yet been fully detailed. On the
contrary, the last one requires a detailed specification of
FURs. Simplified functional size measurement methods aim
at providing estimates of FSMs by skipping one or more
of the activities listed above. Specifically, simplified mea-
surement methods tend to skip at least the evaluation of the
complexity of functions, since these activities are time- and
effort-consuming [17].

B. THE SIMPLE FUNCTION POINT METHOD
The Simple Function Point measurement method [2], [3]
has been designed by Meli and subsequently evolved by
IFPUG to be lightweight and easy to use. Like IFPUG FPA,
it yields a size measure that does not depend on design,
implementation or technology-related characteristics of the
measured software.

SFP requires only the identification of Logical Files
(LF) and Elementary Processes (EP), i.e., unclassified
transactions, the basic assumption being that the size of a
BFC does not account for details concerning its internal
organization. As a consequence, measurement is quicker
and easier, and can be performed before the analysis of
requirements provides a completely detailed description of
FURs.

SFP assigns a numeric value directly to BFCs, as follows:

SizeSFP = 7 #LF + 4.6 #EP

The weights for each BFC (i.e., 7 for #LF and 4.6 for
#EP) were originally defined to achieve the best possible
approximation of FPA. However, since SFP is a measurement

method, those weights are constants, i.e., they are not subject
to update or change for better approximating measures in
Function Points. Instead, weights are now crystallized, thus
making measures expressed in SFP stable, comparable and
repeatable.

It is worth noting that #EP is the number of transactions,
i.e., #EI+#EO+ #EQ, which is denoted as #TF in the
following sections. Therefore, the transactional part of SFP
differs from #TF only by the constant 4.6. Hence, using #TF
for building effort predictionmodels is equivalent to using the
transactional part of SFP.

As a final observation, functional transactions are defined
identically in IFPUG FPA and SFP: accordingly, the identi-
fication and usage of #TF (alias #EP) exploits the existing
standard methodologies and rules.

C. TRADITIONAL APPROACHES TO EFFORT ESTIMATION
1) COCOMO
The Constructive Cost Model (COCOMO) is one of the first
and best known software effort estimation models. It was
developed by Boehm in 1981 [23], by fitting a regression
formula using historical data from 63 projects. The basic
model relates Effort (expressed in PersonMonths) and Size
(expressed in KLoC, i.e., thousands lines of code) as follows:

Effort = a (Size)b

where the values of a and b depend on the type of project
(organic, semi-detached, embedded). Since the basic model
was not very accurate, Boehm introduced an effort adjustment
factor (EAF) that accounts for 15 multipliers representing
properties of the software product, the platform, the project
and the involved developers: Effort = a (Size)b EAF .
In 2000, COCOMO II was published as a replacement for

COCOMO 81. COCOMO II aimed to better estimating mod-
ern software projects, accounting for more recent software
development processes. It was derived from a dataset of over
160 projects.

COCOMO has inspired many software development
models. Specifically, one of the main shortcoming of
COCOMO was that it was based on data that could be hardly
representative of the development process of organizations
that needed to estimate the development effort of their
projects. However, the relative simplicity of the COCOMO
model allowed organizations that owned historical data to
develop COCOMO-like models based on their own data,
thus obtaining models that represented more faithfully the
organizations’ characteristics and capabilities.

2) STATISTICAL MODELS USING SIMPLIFIED FUNCTIONAL
SIZE MEASURES
Regression-based analysis of historical data was used to build
effort models that used simplified FSMs [6], on the strand of
COCOMO and similar methodologies. Specifically, Lavazza
andMeli found the following COCOMO-like models for new
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development projects:

Effort = 34.84 UFP0.77

Effort = 214.9 #TF0.693

Similar models were found for enhancement projects, but no
statistically significant models could be found for extension
projects.

The obtained models supported the hypothesis that using
simplified FSMs instead of full-fledged measures yielded
similar accuracy: namely, simplified measures yielded
slightly (3%) less accurate estimates for new developments
and slightly better (less than 1%) estimates for enhancements.

However, the results described above were not conclusive,
since they were limited to using statistical methods. In this
paper, the usage of machine learning lets us complete
the previous work and derive more general indications on
the usability of simplified FSMs as replacements of the
traditional full-fledged ones.

III. THE EMPIRICAL STUDY
This section describes the empirical study that was car-
ried out to answer the research questions given in the
introduction. Specifically, Section III-A describes the data
used in the study, their characteristics and how they were
split into three subsets, each corresponding to the different
types of development—New development, Enhancement,
Extension—that were studied. Section III-B describes the
research method, namely the functional measures used
as independent variables in effort estimation models, the
machine learning techniques used (additional details are in
Appendix), and the metrics used to evaluate the quality of the
obtained estimation models.

A. THE DATASET
For the empirical study, we used the ISBSG dataset [13], [14],
which has been widely used in studies involving Functional
Size Measures.

The ISBSG dataset is usually released without FSM data
at the fine level of granularity that we need.1 Specifically,
to carry out the analyses reported here, we needed the number
of base functional components per type (EI, EO, EQ, ILF,
EIF), per complexity (low, medium, high), and per activity
(added, changed, deleted). Luckily, we were able to obtain
a custom view of the ISBSG repository that includes the
mentioned data. This view includes fewer records than the
commercially released versions; namely, it contains data from
1,314 projects, while the ‘‘regular’’ ISBSG dataset includes
several thousand records.

Among the data that characterize each project are the
‘‘Data quality rating’’ (concerning the completeness and
reliability of the data) and ‘‘UFP rating’’ (concerning the
trustworthiness of the UFP counting). Both are graded ‘‘A’’

1A sample of the ISBSG dataset illustrating the available
data can be obtained from https://481470c2.rocketcdn.me/wp-
content/uploads/2022/01/ISBSG-DE-Data-ReleaseMay-2021-Sample.zip

(best) to ‘‘D’’ (worst), and ISBSG itself suggests to use
only data rated ‘‘A’’ or ‘‘B’’. Following a consolidated
practice [18], we used only the records rated ‘‘A’’ or ‘‘B.’’

The dataset includes data from real-life software develop-
ment projects. Specifically, the dataset contains data from
both projects addressing the development of new software
products and projects addressing the enhancement of existing
projects. For each project, we used the following data:

• The type of project, i.e., new development or
enhancement.

• The effort spent, expressed in Person Hours.
• The size, expressed in UFP, split in added, deleted and
changed size.

• The size of all ILF, EIF, EI, EO, and EQ.
• #ILF, #EIF, #EI, #EO, and #EQ, each split per com-
plexity (high, medium, low) and activity type (added,
changed, deleted).

1) THE TYPES OF PROJECTS
The relationship between effort and size depends on the
type of activity performed; for instance, changing 200 FP
in a 2000 FP program usually requires more effort than
developing a 200 FP program from scratch. Therefore, in our
study we considered three types of development activities:

• New developments, i.e., developments from scratch.
• Extensions, i.e., projects that are classified as ‘enhance-
ment’ by the ISBSG, but involve no changes or
deletions. These are projects that just add function to
existing projects.

• Enhancement, i.e., projects that are classified as
‘enhancement’ by the ISBSG, and involve changes or
deletions.

In practice, we split the set of projects that are classified
as ‘enhancement’ by the ISBSG into extensions and proper
enhancements, which we call simply ‘enhancements’ in what
follows.

2) DESCRIPTIVE STATISTICS
Descriptive statistics concerning the size of projects in the
ISBSG dataset are given in Table 1.

TABLE 1. Descriptive statistics of the ISBSG project sizes (values are
rounded).

Fig. 1 illustrates the boxplot of projects’ sizes, per type of
development: New development (‘‘NEW’’), Enhancements
(‘‘ENH’’) and Extensions (‘‘EXT’’). Sizes are given in UFP
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FIGURE 1. Distribution of projects per Size with (top) and without
(bottom) outliers.

and SFP. For the sake of clarity, the boxplots are given both
with and without outliers.

B. METHOD
Each type of project required using a different set of data:
Section III-B1 describes the data used for each type of
development project; Section III-B2 describes the types of
MLmodels built; finally, Section III-B3 describes the metrics
used to evaluate the accuracy of the obtained effort estimates.

1) MEASURES USED
To evaluate whether simplified measures can be used in place
of traditional full-fledged measures, we have to compare
effort estimates based on simplified measures with estimates
based on traditional full-fledged measures. To this end,
we built effort estimation models based on the two Functional
Size Measures that are currently proposed by the IFPUG:
Function Points (FP) and Simple Function Points (SFP).

Note that IFPUG defines both unadjusted FP (UFP) and
adjusted FP. The former are a measure of functional require-
ments. The latter are obtained by correcting unadjusted FP to
obtain an indicator that is better correlated to development
effort. Noticeably, the ISO standardized only unadjusted
FP, recognizing UFP as a proper measure of functional
requirements [19]. Following the ISO, in this paper we deal
only with UFP, even when we speak generically of Function
Points or FP. Also, when we refer to ‘‘traditional full-fledged
FSMs,’’ we mean IFPUG UFP.

As described in Section II, FP and SFP are aggregatedmea-
sures, obtained as weighted sums of more basic measures.
In our study we consider the sets of basic measures that are
used to compute FP and SFP: we use the entire set as well as
subsets, looking for the minimum amount of information that
supports effort estimation with acceptable accuracy.

For new developments, we tried the following sets of
measures:

• {#ILF, #EIF, #EI, #EO, #EQ}
• {#EI, #EO, #EQ}
• {#TF, #DF}, where #TF = #EI+#EO+#EQ and #DF =
#EIF+#ILF.

• {#TF}
For enhancements, we tried the following sets of measures

(note that we retained ISBSG names, as far as possible):
• {#AddTF, #ChgTF, #DelTF, #AddDF, #ChgDF, #DelDF}
• {#AddTF, #ChgTF, #AddDF, #ChgDF}
• {#AddTF, #ChgTF, #DelTF}
• {#AddTF, #ChgTF}
• {#UpdTF, #UpdDF}
• {#UpdTF}
• {UpdUFP}
• {UpdSFP}
• {AddChgUFP}
• {AddChgSFP}
• {UpdSTF}

#AddTF, #ChgTF, #DelTF are the numbers of transaction
functions (EI, EO, and EQ) that are added, changed
or deleted, respectively. #AddDF, #ChgDF, #DelDF are
the numbers of data functions (ILF and EIF) that
are added, changed or deleted, respectively. #UpdTF is
the number of transaction functions that are updated
(i.e., added, changed or deleted); hence, #UpdTF =

#AddTF+#ChgTF+#DelTF. #UpdDF is the number of data
functions that are updated (i.e., added, changed or deleted);
hence, #UpdDF = #AddDF+#ChgDF+#DelDF. UpdUFP is
the measure in UFP of the updated (i.e., added, changed or
deleted) FUR. UpdSFP is the measure in SFP of the updated
FUR. AddChgUFP is the measure in UFP of the added or
changed FUR. AddChgSFP is the measure in SFP of the
added or changed FUR. UpdSTF is the measure in SFP of
the updated transaction functions. Note that this measure
is defined as UpdSTF=4.6 #TF, hence it is essentially
equivalent to #TF.

For extensions, we tried the following sets of measures (we
retained ISBSG names, as far as possible):
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• {#AddILF, #AddEIF, #AddEI, #AddEO, #AddEQ}
• {#AddTF, #AddDF}
• {#AddTF}
• {AddSFP}
• {AddUFP}

#AddILF, #AddEIF, #AddEI, #AddEO and #AddEQ are the
numbers of ILF, EIF, EI, EO, and EQ, respectively, that were
added. #AddTF and #AddDF are the numbers of transaction
and data functions that were added, respectively. AddSFP is
the measure in SFP of the added functions (both transactions
and data). AddUFP is the measure in UFP of the added
functions (both transactions and data).

2) MODEL BUILDING
To address the research questions, we built models that
predict development effort based on the measures described
in Section III-B1. Specifically, we built models using a
few machine learning techniques, namely Support Vector
Regression (SVR), Neural Networks (NN), Random Forests
(RF), and K-nearest neighbours (KNN). The choice of these
techniques was made also considering the results of previous
studies [10], which found that SVR and NN yield the most
accurate effort models, in general. The details concerning the
construction of ML models are given in Appendix.

Specifically, we used each of the aforementioned ML
techniques to build models for each type of project, using
all the measure combinations described in Section III-B1.
Predictive models were evaluated via 10-times 10-fold
cross-validation.

3) ACCURACY MEASURES
The accuracy of the obtained estimates was evaluated via
the mean of absolute residuals (MAR)—also known as the
mean absolute error (MAE)—which is an unbiased indicator,
recommended by several authors (e.g., [20]). Given a set of
observations Y = {yi} with i ∈ [1, n], the residual (or error)
of the ith estimate ŷi is yi − ŷi, where yi is the ith observation
(i.e., the actual effort) and ŷi is the estimate for yi. TheMAR is
then computed as the mean of absolute residuals, as follows:

MAR =
1
n

n∑
i=1

|yi − ŷi|

The MAR values obtained for different datasets are not
comparable. To make our results comparable with those
possibly obtained using different datasets, we also compute
a normalized measure by dividing estimation errors by the
mean actual value of effort. Specifically, we proceed as
follows: given a set of observations Y ,
– The residual of the ith estimate ŷi is yi − ŷi, where yi is

the ith’s project actual effort.
– The mean actual value ȳ is ȳ =

1
n

∑n
i=1 yi, where n is the

number of observations in Y , i.e., the number of projects
in the datasets.

– We consider the ratio (RR) between absolute residuals
and the mean of actuals: RRi =

|yi−ŷi|
ȳ .

– Then, we compute MR, the mean of RR, as follows:

MR=
1
n

n∑
i=1

RRi=
1
n

n∑
i=1

|yi − ŷi|
ȳ

=
1
ȳ
1
n

n∑
i=1

|yi − ŷi|=
MAR
ȳ

In this way, we get MR values that are comparable across
datasets. UnlikeMMRE, i.e., theMeanMagnitude of Relative
Errors, defined as 1

n

∑n
i=1

|yi−ŷi|
yi

, MR is not biased, since
in the computation of MR the absolute residuals of a given
dataset are all divided by the same number (ȳ).

Now, we have to consider that our data tend to be skewed,
since many of the projects that produced the data were
fairly small. Therefore, to provide a more representative
evaluation, we also computed indicators that are less sensitive
to skewness than MAR and MR. Specifically, we computed
the median of absolute residuals (MdAR) and the ratio MdR
between MdAR and the median absolute value of effort.

We must also consider that we can find that two models
obtain similar MAR values. In those cases, it is important to
evaluate to what extent a prediction is better than the other
one. To perform this type of evaluation, we also computed
the effect size on absolute residuals. The effect size was
computed via Hedges’s g, i.e., via Cohen’s d statistics [21]
with Hedges correction [22].

C. OVERVIEW OF THE PROCESS
The process we followed to carry out the empirical study is
schematically described in Fig. 2.

The first step concerned data preparation: we selected from
the ISBSG dataset the subsets of data concerning each of the
considered types of project (NEW, EXT, ENH): this resulted
in three datasets, which were then analysed separately. Each
dataset contained a different set of metrics, as described in
detail in Section III-B1.
The second step was repeated for each type of project.

An effort model was developed using each one of the
considered machine learning methods, as specified in
Section III-B2.
Finally, the third and last step consisted in applying the

model obtained at step 2 to get effort estimates, which
were then compared to the actual effort data. The obtained
errors were evaluated using the accuracy metrics described in
Section III-B3.

IV. RESULTS
In this section, we report about the models built to answer
the research questions. Specifically, results concerning
new development projects are given in Section IV-A;
results concerning enhancement projects are given in
Section IV-B; results concerning extension projects are given
in Section IV-C.

A. RESULTS CONCERNING NEW DEVELOPMENT
PROJECTS
As stated in Section III above, we tried building effort
models using different sets of features (as specified in
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FIGURE 2. Overview of the evaluation process.

TABLE 2. MR of models for new developments, obtained using various
sets of features and different ML techniques.

Section III-B1) with a few different ML techniques (specified
in Section III-B2).

All the used ML techniques were able to provide effort
models with all the considered sets of features. As described
in Section III-B2 above, we carried out 10-times 10-fold
cross validations, to compute the accuracy of the effort
models. The results are summarized in Tables 2 and 3.
Specifically, Tables 2 provides the MR (i.e., the mean of
RR, the ratio between absolute residuals and the mean of
actuals: see Section III-B1), while Table 3 provides MdR
(i.e., the median of RR), for all the combinations of ML
techniques and features sets. To keep Tables and Figures
readable, throughout this section features subsets are not
given explicitly, instead they are labeled, as follows:

• FSn1: {UFP}
• FSn2: {SFP}
• FSn3: {#ILF, #EIF, #EI, #EO, #EQ}
• FSn4: {#EI, #EO, #EQ}
• FSn5: {#TF , #DF}
• FSn6: {#TF}
It can be noticed that the estimation errors illustrated in

Tables 2 and 3 (as well as in the next sections) are not
small. In fact, since the seminal work by Barry Boehm [23],
we know that development effort depends on the size
of the software to be developed as well as on many
other factors, concerning the software product (complexity,

TABLE 3. MdR of models for new developments, obtained using various
sets of features and different ML techniques.

non-functional requirements, etc.), the process (developers’
experience and skill, methods and tools used, etc.) and the
environment (schedule constraints, requirements changes,
etc.). The projects represented in the ISBSG dataset have
heterogeneous origins and characteristics, hence they are
characterized by a variety of the aforementioned factors.
However, these factors are not suitably represented in the
ISBSG dataset: for instance, there is no indication of the
complexity of the code being developed, of the experience
and skill of developers, of non-functional requirements, etc.
So, we could not use any of thementioned features in building
effort models. To this respect, it is important to notice that:

• Our analysis focuses on the ability of different size
measures to affect effort estimation, thus considering
other features might introduce a confounding effect.

• Our research questions concern the difference of accu-
racy achieved by different FSMs and model building
techniques, rather the absolute magnitude of estimation
errors.

• At any rate, the models we obtained are fairly accurate,
considering that they are based on size only: COCOMO
base mode, which also estimated effort based on size
only [23], achieved pred(20%)=25%, while our models
achieve pred(20%)=40%.
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In practice, the results illustrated in Tables 2 and 3 are
sufficient to answer RQ1 for new development projects,
as discussed in Section V below.

Looking at Tables 2 and 3, it seems that SVR models are
the most accurate. However, to evaluate which ML technique
provides the best models, we compared ML techniques
via the Wilcoxon signed rank test, applied to the absolute
errors yielded by each pair of models. The obtained results
are given in Table 4. The ‘‘<’’ (respectively, ‘‘>’’) sign
indicates that the model in the row provides significantly
smaller (respectively, greater) absolute errors than the model
in column. All the presented results are significant at the usual
α = 0.05 level.

TABLE 4. Wilcoxon sign rank tests for new development effort models.

Table 4 reports the results for models based on UFP, SFP
and #TF. The results for the models using other sets of
features are not given for space reasons; however, in all cases,
SVR is more accurate than other ML models, according to
Wilcoxon sign rank test.

The results illustrated in Table 4 are sufficient to answer
RQ2 for new development projects, as discussed in Section V
below.

The results illustrated above and Tables 2 and 3 suggest that
all the considered sets of size features support very similar
levels of accuracy, when used for effort estimation. To verify
this hypothesis, we computed the effect size on absolute
errors. The effect size was computed via Hedges’s g, i.e., via
Cohen’s d statistics [21] with Hedges correction [22].

Table 5 reports the values of Hedges’s g for the SVR
models of new development projects’ effort. It can be seen
that all values are very close to zero, indicating negligible
effect sizes.

TABLE 5. Hedges’s g for the absolute residuals of new development SVR
effort models.

The data in Table 5 are sufficient to answer RQ3 for new
development projects, as discussed in Section V below.

As a complement to the analysis illustrated above, the
boxplots or estimation errors, absolute errors and RR are
given in Fig. 3 and 4.

The results given above are sufficient to answer RQ4 for
new development projects, as discussed in Section V below.

FIGURE 3. Boxplots of estimation errors and absolute estimation errors,
for SVR models of new development (outliers not shown).

FIGURE 4. Boxplots of RR (the ratio between absolute estimation errors
and mean actuals), for SVR models of new developments (outliers not
shown).

B. RESULTS CONCERNING ENHANCEMENT PROJECTS
In this section, we report about the effort models for
projects involving the enhancement of existing software.
As already mentioned, we consider as enhancement projects
those involving changes or deletions, and possibly extensions.

All the considered ML techniques provided effort models
with all the considered sets of features. The results of
10-times 10-fold cross validations are summarized in Tables 6
and 7, which report the MR andMdR, respectively, for all the
combinations of ML techniques and features sets.

To keep Tables and Figures readable, throughout this
section features subsets are not given explicitly, instead they
are labeled as follows:

• FSe1: {UFP}
• FSe2: {#AddTF, #ChgTF, #DelTF, #AddDF, #ChgDF,
#DelDF}

• FSe3: {#AddTF, #ChgTF, #AddDF, #ChgDF}
• FSe4: {#AddTF, #ChgTF, #DelTF}
• FSe5: {#AddTF, #ChgTF}
• FSe6: {#UpdTF, #UpdDF}
• FSe7:] {#UpdTF}
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TABLE 6. MR of models for enhancements, obtained using various sets of
features and different ML techniques.

TABLE 7. MdR of models for enhancements, obtained using various sets
of features and different ML techniques.

• FSe8: {AddChgUFP}
• FSe9: {UpdUFP}
• FSe10: {UpdSFP}
• FSe11: {AddChgSFP}
The results illustrated in Tables 6 and 7 are sufficient

to answer RQ1 for enhancement projects, as discussed in
Section V below. Tables 6 and 7 seem to confirm that SVR
models are the most accurate, as with new developments.
However, to evaluate which ML technique provides the best
models, we compared ML techniques via the Wilcoxon
signed rank test, applied to the absolute errors yielded by each
pair of models. The obtained results are given in Table 8.

TABLE 8. Wilcoxon sign rank tests for enhancement effort models.

Table 8 reports the results for models based on UFP,
#UpdTF, UpdUFP and UpdSFP. The results for the models
using other sets of features are not given for space reasons;
however, in all cases, SVR appears more accurate than other
ML models, according to Wilcoxon sign rank test.

The results illustrated in Table 8 are sufficient to answer
RQ2 for enhancement projects, as discussed in Section V
below.

As for new developments, the results given in Tables 6
and 7 suggest that all the considered sets of size features
support very similar levels of accuracy, when used for effort
estimation. To verify this hypothesis, we computed the effect
size on absolute errors. Table 9 reports the values of Hedges’s
g for the SVR models of enhancement projects’ effort. It can
be seen that all values are very close to zero, indicating
negligible effect sizes.

The data in Table 9 are sufficient to answer RQ3 for
enhancement projects, as discussed in Section V below.

TABLE 9. Hedges’s g for the absolute residuals of enhancement SVR
effort models.

FIGURE 5. Boxplots of estimation errors and absolute estimation errors,
for SVR models of enhancements (outliers not shown).

FIGURE 6. Boxplots of RR, for SVR models of enhancements (outliers not
shown).

As a complement to the analysis illustrated above, the
boxplots or estimation errors, absolute errors and RR are
given in Fig. 5 and 6, respectively.

C. RESULTS CONCERNING EXTENSION PROJECTS
In this section, we report about the effort models for projects
involving the extension of existing software, without any
change or deletion of existing functionality.

All the considered ML techniques yielded effort models
with all the considered sets of features. The results of 10-
times 10-fold cross validations are summarized in Tables 10
and 11, which report the MR and MdR, respectively, for all
the combinations of ML techniques and features sets.

To keep Tables and Figures readable, subsets are not given
explicitly, instead they are labeled as follows:

• FSx1: {AddUFP}
• FSx2: {AddSFP}
• FSx3: {#AddILF, #AddEIF, #AddEI, #AddEO, #AddEQ}
• FSx4: {#AddTF, #AddDF}
• FSx5: {#AddTF}
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TABLE 10. MR of models for extensions, obtained using various sets of
features and different ML techniques.

TABLE 11. MdR of models for extensions, obtained using various sets of
features and different ML techniques.

The results illustrated in Tables 10 and 11 are sufficient
to answer RQ1 for extension projects, as discussed in
Section V below. Tables 10 and 11 seem to confirm that SVR
models are the most accurate, as with new developments and
enhancements. However, to evaluate which ML technique
provides the best models, we compared ML techniques via
the Wilcoxon signed rank test, applied to the absolute errors
yielded by each pair of models. The obtained results are given
in Table 12.

TABLE 12. Wilcoxon sign rank tests for enhancement effort models.

Table 12 reports the results for models based on AddUFP,
AddSFP, and #AddTF. The results for the models using other
sets of features are not given for space reasons; however, in
all cases, SVR appears more accurate than other ML models,
according toWilcoxon sign rank test. The results illustrated in
Table 12 are sufficient to answer RQ2 for extension projects,
as discussed in Section V below.

As for new developments and enhancements, the results
given in Tables 10 and 11 suggest that all the considered
sets of size features support very similar levels of accuracy,
when used for effort estimation. To verify this hypothesis,
we computed the effect size on absolute errors. Table 13
reports the values of Hedges’s g for the SVR models of
extension projects’ effort. It can be seen that all values are
very close to zero, indicating negligible effect sizes.

TABLE 13. Hedges’s g for the absolute residuals of extension SVR effort
models.

The data in Table 13 are sufficient to answer RQ3 for
extension projects, as discussed in Section V below.

FIGURE 7. Boxplots of estimation errors, for SVR models of extensions
(outliers not shown).

FIGURE 8. Boxplots of RR, for SVR models of extensions (outliers not
shown).

As a complement to the analysis illustrated above, the
boxplots or estimation errors, absolute errors and RR are
given in Fig. 7 and 8.

D. SUMMARY OF RESULTS
The results obtained through Section IV are summarized
in Table 14: for each type of projects (NEW, EXT, ENH)
the most accurate effort estimates achieved by different
types of FSMs are given (the most accurate is in boldface).
Specifically, Table 14 shows the best results achieved
with UFP (i.e., the traditional IFPUG standard full-fledged
metric), SFP (i.e., the IFPUG standard simplified metric),
and combinations of basic unweighted measures. For each
type of metric, the machine learning method that yielded
the best results and the MR measure of errors are given.
In addition, the specific subset of basic unweighted measures
that supported the most accurate effort estimation is given.

It is worth noting that the best results were always obtained
via Support Vector Regression. It is also quite interesting
that i) for a given type of project, different types of metrics
supported extremely similar effort estimation errors, and ii)
for each project type, a different metric supports the most
accurate estimation: for instance, UFP supported the most
accurate model for NEW projects, while SFP yielded the best
estimates for EXT projects. These observations support the
idea that FSMs can be used in practice for effort estimation
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TABLE 14. Summary of results: best ML method and metrics class for each project type.

instead of full-fledged metrics with no penalties with respect
to accuracy.

V. EVALUATION OF RESULTS
In this section, we provide answers to the research questions
and we discuss the consequences of our findings.

A. ANSWER TO RESEARCH QUESTION RQ1
RQ1 asks whether it is possible to build ML models that are
able to predict development effort, based on a subset of the
information needed to compute traditional full-fledged FSM.

Based on the results given in Section IV, the answer to RQ1
is definitely positive. In fact, we obtained models for all types
of projects, with all the considered ML techniques and with
all the considered measure subsets.

B. ANSWER TO RESEARCH QUESTION RQ2
RQ2 asks if there is any ML technique that yields substan-
tially better estimates than other techniques.

Based on the results given in Section IV, we can state
that SVR models provide estimates that are more accurate
than those yielded by RF, NN and KNN models. Noticeably,
this is true for all the types of projects considered (New
developments, Enhancements and Extensions) and for all the
considered sets of measures.

C. ANSWER TO RESEARCH QUESTION RQ3
RQ3 asks whether there are models using simple measures
that yield effort estimates not substantially worse than
estimates obtained from traditional, full-fledged FSMs.

Based on the MR, MdR and effect size evaluations given
in Section IV, we can state that all effort models, i.e.,
those using traditional IFPUG measures and those using
subsets of simpler size measures, yield effort estimates
having substantially equivalent accuracy. Specifically, the
differences in MR and MdR are so small to be deemed
irrelevant by most project managers, while effect size
confirms that the observed differences are of negligible
magnitude.

D. ANSWER TO RESEARCH QUESTION RQ4
RQ4 asks what is, if any, the most basic feature that supports
estimationwith acceptable accuracy, with respect to estimates
obtained from traditional, full-fledged FSMs.

For all types of projects, we built effort models based
exclusively on the number of transaction functions. Namely,
we used #TF for new development projects, #UpdTF for

enhancement projects, and #AddTF for extension projects:
these are by far the simplest measures we used.

According to the evaluations reported in Section IV, the
models based on the number of transaction functions proved
as accurate as the models based on other measures, including
those accounting for all the available features of FUR. It is
noticeable that for enhancements and extensions, the model
based on the number of transaction functions were, though
marginally, more accurate than those based on IFPUG UFP.

E. DISCUSSION OF RESULTS
1) IMMEDIATELY USEFUL RESULTS
As already mentioned in the introduction, functional size
measurement is useful because it can be applied in the early
stages of development, based on requirements specifications,
and it provides the basis for effort estimation, which is also
an activity carried out at the beginning of software projects.

In many cases, project managers need a rough estimate
of development effort even before functional requirements
have been described in full detail. This led to the proposal
of many simplified measurement methods (also known as
approximate measurement methods) [3], [4], [24], [25], [26],
[27], [28], [29], [30]. It is worth mentioning that simplified
measures not only anticipate the availability of functional
measures; they also make the measurement process faster and
less expensive, a fact that is clearly appreciated by software
project managers, as long as the inherent approximation of
simplified measures does not decrease too much the accuracy
of effort estimates.

In this paper, we have described a study that shows that
even ‘‘extreme’’ simplification of functional size measure-
ment seems not to affect effort estimation accuracy. This
is good news for software project managers, who can start
using (or at least can start experimenting with) the number of
transactions as the measure of functional size.

2) FUNCTIONAL MEASUREMENT FOR AGILE PROCESSES
Standard functional size measurement methods—like IFPUG
UFP and SFP—define precisely the element to be considered
(e.g., the elementary processes), and yield measures that
are independent on technological and environmental factors.
Therefore, in principle these methods could be beneficial also
in agile processes, where the identification, description and
measurement of requirements are often performed in ad-hoc
manners: so, for instance, the granularity of user stories can
vary, even in the same organization.

However, traditional full-fledged FSMs are hardly used in
agile contexts [31]. In fact, traditional FSM methods (like
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FPA or the COSMIC method [32]) require that functional
requirements are documented in detail, which is seldom the
case in agile processes. Even when FUR have been specified
completely and at the needed detail level, performing the
measurement process is perceived as a ‘‘heavy’’ activity that
does not fit well in agile processes.

However, simplified measures could play a role in agile
processes; in fact, the usage of SiFP in agile processes has
already been reported [33]. Also the number of transactions
#TF could be effectively employed in agile processes. In fact,
usually a sprint addresses a piece of the product backlog,
named the sprint backlog, concerning the realization of
a set of stories. Implementing a story usually involves
adding some functionalities, i.e., in FPA terms, adding some
transactions, and possibly changing the related data and
transactions as well. Now, predicting what data needs to be
changed while implementing the new functionality is not
always obvious, and finding that information would need a
detailed analysis that is out of the scope of agile processes.
Instead, characterizing the work to be done in a sprint in
terms of transaction functions is possible and easy, because
transactions can usually be identified from user stories.

The projects from the ISBSG dataset are mostly carried out
using traditional, not agile, processes; hence the quantitative
results presented in the previous sections are not directly
applicable to agile processes, especially concerning estima-
tion accuracy. However, our results show that it is possible to
estimate effort using #TF as the only measure of functional
size; hence, in principle #TF is usable to estimate the effort
for implementing functional stories at the sprint level in agile
contexts. Such practice is definitely worth exploring.

3) TOWARDS MORE SOPHISTICATED EFFORT MODELS
Development effort does not depend exclusively on the
size of the software to be developed: even the earliest
effort estimation methods accounted for additional factors,
involving, for instance, the development environment, the
characteristics of developers, etc. [23].

However, all effort estimation models include the size
of software as one of the independent variables. Earliest
methods used the number of lines of code (LOC) as the
preferred size metric, while more recent methods tend to
use FSMs. Unfortunately, FSMs represent effectively only a
few aspects of ‘‘functionality’’: both FPA and COSMIC [32]
measure the amount of data used to implement a functionality,
as well as the amount of data exchanged with the user, but
they do not address the complexity or amount (extension) of
elaboration required to implement the required functionality.
It has been shown that the amount and complexity of
elaboration can affect the effort required for development to
a large extent [34].

These considerations, together with the results of this
study, suggest that traditional functional size measurement
methods are unnecessarily complex, since a very straight-
forward measure like #TF provides equivalent performance.

Nonetheless, they do not capture essential information
concerning the amount or complexity of elaboration required
to implement FURs; specifically, neither IFPUG UFP nor
COSMIC Function Points represent the difference between
the functionality needed to compute a chess move or a
tic-tac-toe move. Therefore, it is advisable that researchers
address the problem of measuring the amount and complexity
of elaboration involved in user requirements, since such
information in combination with even very simple functional
measures is likely to improve estimation accuracy, possibly
to a large extent.

VI. THREATS TO VALIDITY
In this section we discuss the threats to the validity
of the study. Note that we follow the indications by
Verdecchia et al. [35]: accordingly, instead of providing a
comprehensive list of all the threats that could possibly affect
a study like this, we focus on those threats that are relevant in
our specific case, and that we have addressed and mitigated
as possible.

A. INTERNAL VALIDITY
Apossibly relevant threat concerns the correctness of the used
data. In fact, in empirical studies like ours, the quality of
data determines the quality of results. To mitigate the risks
deriving from the usage of bad quality data, we selected from
the ISBSG dataset only the data having high quality ratings
(see details in Section III-A), as is common practice [18].

B. CONSTRUCTION VALIDITY
Themain issues with construction validitymay concern 1) the
methods through which the machine learning models were
obtained and used, and 2) the way effort estimation errors
were measures and evaluated.

Concerning the first threat, we used widely adopted
methods via thoroughly tested implementations (as described
in Section III-B2 and Appendix). To mitigate the possible
residual threats, particular attention was put in configuring
the models via hyper-parameters, as described in Appendix.

Concerning the evaluation of the obtained effort esti-
mates, we addressed potential threats by using multiple
complementary metrics:

• MAR and MdAR were used to evaluate absolute
estimation errors;

• MR and MdR were used to evaluate relative estimation
errors. Note that these metrics were preferred toMMRE
and MdMRE because the latter are biased [20].

• Wilcoxon signed rank test was used to compare effort
estimation errors obtained by different models.

• Hedges’s g was used to evaluate the importance of
differences between errors.

The fact that all the mentioned metrics provided mutually
coherent results increases our confidence that the evaluations
are correct.

A possible concern with the representativeness of the set of
projects that supplied ISBSG data is with the size and effort
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distribution. As shown by Fig. 1, most projects are relatively
small. This is a quite common characteristic of software
engineering datasets, and it is not actually worrying, because
in practice smaller projects are definitely more frequent than
larger ones.

C. EXTERNAL VALIDITY
Concerning external validity, we need to consider whether
we can generalize the results of our study. To this end,
we can observe that—as described in Section III-A2—the
ISBSG dataset we used includes data from projects that
have different characteristics. Specifically, the datasets we
analyzed accounts for projects developed in 16 different
industrial sectors, in a 25 year range. The projects have vari-
ous size: e.g., our enhancement project involve functionality
in the [4, 7134] UFP range. Accordingly, the considered
projects required quite different effort (from 21 PersonHours
to over 300 PersonMonths) and were carried out by teams
having various sizes (1 to 49 members). The multiplicity of
development situations represented in the used data supports
some confidence that the presented results are generalizable.

At any rate, there are some possible limitations to the
generalizability of the obtained results. For instance, our
data did not account for any very large project (10,000 UFP
or more): accordingly, our results could not apply to very
large projects. Nonetheless, where evidence based on data is
lacking, conceptual considerations can be used. For instance,
when reasoning about very large projects, we can note that
simple measures are as good as full-fledged measures in
representing economies of scale. Similarly, larger project
size is generally due to the number of transactions and data
functions, which are the base of simple measures. Simple
measures could fall short in estimating development effort of
very large projects only if those projects were characterized
by higher complexity of transactions and data functions: an
unlikely situation that can be easily checked by analyzing in
detail a function sample.

It can be noted that several of the mentioned threats
derive from the nature and characteristics of the the ISBSG
dataset. In this respect, it must be observed that the ISBSG
dataset is the largest publicly available dataset providing data
concerning software development and functional sizes. It is
also the most widely used. As a consequence, several of the
aforementioned threats are shared with the other scientific
papers that analyzed ISBSG data.

VII. RELATED WORK
Effort estimation has always been a hot topic in software
engineering. Thousands of papers have been published, many
concerning the usage of FSMs and simplified measures.
However, of these many papers, only a small subset addresses
topics that are somewhat related to our research. Specifically,
we have identified the following categories:

• Papers that use simplified FSMs for estimating
development effort;

• Papers that use alternative size measures for estimating
development effort in the early stages of development;

• Paper that deal with using machine learning techniques
for building effort estimation models;

• Papers that deal with using (not necessarily simplified)
FSMs for effort estimation in agile processes.

We retrieved the relevant papers in the aforementioned
categories and selected the most relevant ones using popular
techniques used for systematic literature reviews (SLR) [36],
[37]. The papers recognized as relevant and related to our
research are discussed in the following sections.

A. EFFORT ESTIMATION WITH SIMPLIFIED FUNCTIONAL
SIZE MEASURES
Although FSMs can be used for several purposes, their
most common application is for effort estimation. When
a new simplified functional size measurement method is
introduced, its effectiveness for effort prediction is not
known; therefore, empirical evaluations are necessary to
verify if the approximate sizing approach fails to capture
factors affecting software development effort.

In 2011, Simple Function Points (SiFP) were introduced as
a simple alternative to IFPUG Function Points [3]. In 2014,
Lavazza and Meli [5] tested the ability of SiFP to support
estimates as accurate as those obtained with IFPUG UFP,
using a version of the ISBSG dataset. Effort models were
built using linear regression after log-log transformation. The
obtained results showed that SiFP and IFPUG UFP achieved
the same level of accuracy.

In 2016, the study by Lavazza and Meli was replicated
by Ferrucci et al. [38], who used a dataset that accounted
for of 25 Web applications developed by a single software
company. The study showed that SiFP and IFPUG UFP are
equally accurate in predicting the development effort of Web
applications.

In 2020, Lavazza and Meli replicated the study they
performed in 2014, using a more recent version of the ISBSG
dataset (dated 2019) [6]. They performed the evaluation
separately for new development, enhancement and extension
projects. For the first time, they used the sheer number of
transactions as an effort estimator. The study showed that
the difference in accuracy is negligible for new development
projects and extensions, while no statistically significant
conclusion could be drawn for enhancement projects.

While SFP (formerly known as SiFP) is a simple FSM that
was proposed as an alternative to IFPUG UFP, some methods
were proposed to estimate the size of software expressed
in IFPUG UFP. Among these methods, the most popular is
probably the NESMA estimated method [26], also known as
High-Level FPA [40].
An early evaluation by Ohiwa et al. [41] found a good

linear correlation between NESMA estimated function point
count and software development effort. For the evaluation,
they used the software development data of 36 projects (dated
2008 through 2012) extracted from a larger software repos-
itory maintained by the Economic Research Association.
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Ohiwa et al. did not provide any measure of the effort
estimation accuracy, though.

In 2012, Popović and Bojić used several size mea-
sures to estimate effort in various phases of software
development [42]. They analyzed a set of 50 small and
medium size real-world Web based projects, all carried out
from 2004 to 2010 by a company at CMMI level 2. They
built effort estimation models using regression, after log-
log transformation. They found that the NESMA estimated
method featured good accuracy in the elaboration phase.
Specifically, MMRE was 13–16%, depending on the model
used, slightly worse than the MMRE in the 10–12% range,
achieved when using IFPUG FP.

In 2020, DiMartino et al. [43] evaluatedmeasures obtained
via the NESMA estimate method as effort predictors. They
used a dataset accounting for 25 Web applications form a
single company, and built regression models. They found that
effort models based on measures obtained via the NESMA
estimated method are effective, providing a prediction
accuracy comparable to the one of IFPUG measures.

In all the aforementioned studies, effort estimation was
performed via regression models.

In 2023, a new study [44] addressed the problem,
using elementary effort estimation models: Estimated
effort= Size

Productivity , where Productivity is the mean Size
Effort

ratio in the considered dataset, excluding the project to be
estimated. Size and Productivitywere evaluated using IFPUG
UFP, SFP and #TF; the ISBSG dataset was used. As before,
estimates based on IFPUG UFP and SFP appear similar.
Some difference in the effort estimates was found only when
#TF is used, or transaction complexity at the projects level is
taken into account.

In conclusion, the literature seems to support the idea that
using simplified FSMs instead of IFPUG UFP does not cause
the accuracy of effort estimates to decrease. However, none of
the papers published so far performed this kind of evaluation
using ML to build effort models.

B. EFFORT ESTIMATION WITH ‘‘ALTERNATIVE’’ SIZE
MEASURES
Functional size measurement methods can be applied inde-
pendently from the formalisms and methods used to specify
software requirements. Hence, they can be applied in any
software development process, in principle.

Other size measures have been proposed, based on
concepts and constructs that are specific of the considered
software requirements specification formalisms andmethods.
These measures are conceived to be relatively easy to obtain;
however, they are applicable only to software specifications
obtained through the corresponding method.

Two process-specific measures are fairly popular: use-case
points [45] and story points [46]. From our point of view,
it is interesting to know is simplified FSMs could be used for
effort estimation in place of use-case points or story points
without loss of accuracy.

1) EFFORT ESTIMATION VIA USE-CASE POINTS
Use-case points (UCP) [45] were proposed to estimate
the resources needed to develop a software system with
the Objectory process [47]. The size of the specified
system is first computed as a weighted sum of actors
and use cases, where the weight is the ‘‘complexity’’
of each actor and use case. The resulting number is
then ‘‘adjusted’’ considering technical complexity factors
(mainly non-functional characteristics of the system) and
environmental factors (characteristics of the developers and
the development process). Parts of the Objectory process,
namely the description of the responsibilities of the system
via use cases, were later integrated in UML, thus contributing
to the popularity of use cases and UCP.

The software systems specified via use case diagrams
can be measured via Function Point Analysis, as shown
by Fetcke et al. [48], who mapped the elements of UCP
measurement onto the elements of FPA. As for functional
size measurement, the main usage of UCP is for effort
estimation; hence, it would be interesting to know whether
UCP-based effort estimation is as accurate as IFPUG
UFP-based estimation.

Recently, Azzeh et al. surveyed the papers dealing with the
usage of UCP for effort estimation in a Systematic Literature
Review [49]. According to this SLR, UCP are reported
to perform better than expert judgment, and better than
algorithmic models at early stage of software development.
Also, several papers addressed the construction ofUCP-based
effort estimationmodels usingML techniques. However, very
little was done to compare the accuracy of UCP-based effort
estimates with those obtained using other measures.

In 2009, Braz and Vergilio [50] proposed a new classi-
fication of complexity for computing UCP, and the usage
of fuzzy theory for gradually changing complexity. In their
paper, they also compared the effort estimates obtained with
their method with those obtained with UCP and with IFPUG
FP. Their results show that IFPUG FP appear to support
more accurate effort estimation than UCP. However, the
evaluation was based on a dataset of only 5 software modules,
hence it is hardly generalizable. In fact, Sholiq et al. [51]
reached opposite conclusions, by analyzing a dataset of only
4 projects.

In conclusion, we were not able to find reliable evidence
concerning the effort estimation accuracy level that can be
achieved via UCP, especially in comparison with IFPUG
UFP.

2) EFFORT ESTIMATION VIA STORY POINTS
‘‘Story points are units of measure for expressing an estimate
of the overall effort required to fully implement a product
backlog item’’ [52]. That is, Story Points are not a proper
size measure. They are used to represent a dimension of
software that correlates to development effort, but only within
a specific development organization, or even within a single
team. Therefore, measures expressed in Story Points are
not comparable among different organizations. Nonetheless,
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TABLE 15. Overview and classification of related work.

it could be interesting to know if, in a given organization,
Story Points are better effort predictors than FSMs.

Fernandez et al. surveyed effort estimation in agile
environments via a SLR [33]. They found that Planning
poker and Story Points are by far the most used effort
estimation method and size metric, respectively. According
to Fernandez et al., when planning poker and Story Points
are used for effort estimation, the mean MMRE reported
by primary studies is 41%. However, no comparison with
estimates based on FSMs was reported.

Salmanoglu et al. [53] compared effort estimation activities
carried out using Story Points and COSMIC Function Points,
and found that the two considered measure achieve similar
estimate accuracy. Although they did not consider IFPUG
FP, COSMIC FP are a FSM that is quite well correlated with
IFPUG FP [54], hence their results could be of some interest
for our purposes. However, Salmanoglu et al. performed their
evaluation on three projects only, thus it is not guaranteed that
their conclusions can be generalized.

In conclusion, UCP and Story Points can be used for
effort estimation in specific cases, but there is no reliable
evidence-based evaluation of the difference of accuracy
obtained by using these metrics instead of FSMs.

C. MACHINE LEARNING MODELS FOR EFFORT
ESTIMATION
A great deal of research has been dedicated to ML-based
effort estimation. Ali and Gravino performed a Systematic
Literature Review of articles concerning software effort
estimation using ML techniques, published up to December
2017 [10]. They observed that the most frequently used
ML approaches are neural networks and SVM, while also
regression techniques appear to be widely used. Overall,
NN and SVM performed better than other ML approaches.
In this respect, our study confirms that SVM provided good
performance, while NN were not as accurate as could be
expected. Although the SLR by Ali and Gravino did not
mention the measures used by ML models, they investigated
the datasets used for ML model building: none of these
datasets includes simplified FSMs.

More recently, Rashid et al. surveyed the current
approaches in effort estimation [55]. Even though they did
not focus specifically on ML techniques, they accounted
for multiple studies that used ML techniques. Like Ali and

Gravino, Rashid et al. did not address directly the measures
used to build effort estimation models; nonetheless they
reported about the datasets used for model building: none
of these datasets includes simplified FSMs. This situation is
further supported by a SLR by Halimawan et al. [56].

D. EFFORT ESTIMATION WITH FUNCTIONAL SIZE
MEASURES IN AGILE CONTEXTS
Functional size measurement is generally considered a rather
heavyweight activity, which is not suitable for agile software
development. This belief was confirmed by Hacaloglu and
Demirors [31]: in 2018, they reported that among the reasons
that prevent the wide adoption of FSMs in agile processes
are i) measurement processes are cumbersome to follow, and
ii) there is a mismatch between agility and the need for
detailed requirements. These issues do not apply to simplified
functional measures, which are perceived as lightweight,
hence particularly suitable for usage in an agile context.
In fact, Fernández-Diego et al. [33] report that SiFP have been
used in agile processes.

E. CONCLUSIONS ABOUT RELATED WORK
Table 14 presents the most relevant related work, classified
according to the dimensions that are relevant to answer
our research questions: using ML techniques, dealing with
simplified FSMs, performing a comparison of simplified
FSMs and full-fledged FSMswith respect to effort estimation
accuracy. In Table 14, we have also highlighted what papers
are systematic literature reviews (SLR).

Table 15 shows that there are many papers that dealt with
topics that are related—to some extent—to the goals of our
work. However, none of the identified papers covers all the
topics that are necessary to answer our research questions.
Therefore, we can state that, to the best of our knowledge, the
study reported here is the first one that (i) usesML techniques
to build effort models using full-fledged FSMs (IFPUGUFP),
simplified FSMs (IFPUG SFP) and sets of extremely simple,
unweighted measures (the building blocks of FSMs), and
(ii) performs a comparison of the accuracy of the obtained
estimates.

VIII. CONCLUSION AND FUTURE WORK
Simplified functional size measures (FSMs) have several
advantages over traditional full-fledged FSMs, like IFPUG
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Function Points. Specifically, they are available earlier
than full-fledged metrics, because less details concern-
ing requirements specifications are needed; because of
the same reason, simplified metrics are also easier and
cheaper to collect. However, it is possible that simplified
FSMs neglect some information that affects development
effort, so that estimates based on simplified measures are
less accurate than those based on full-fledged functional
measures. So, before using simplified measures for effort
estimation, we need some evidence based on experimental
data that we do not risk to get excessively inaccurate effort
estimates.

Earlier work [6] evaluated the effort estimation accuracy
that can be achieved using simplified FSMs. However, such
work considered only effort models built via statistical
technique. In this paper, we addressed such evaluation
via an empirical study, in which effort estimation models
were built using multiple Machine Learning. The study
addressed three types of projects: developments from scratch
(NEW), enhancements (ENH) and extensions, i.e., additions
to existing software that did not requirechanges (EXT).

Using ML techniques let us extend our knowledge: for
instance, we built ML models of effort for extension projects,
which was not possible using plain regression [6].

Among the ML technique used (Support Vector Regres-
sion, Random Forests, Neural Networks and K-nearest
Neighbors), SVR provided the most accurate models, with
all the metrics and for all project types.

The results we obtained indicate that all the FSMs that were
used—UFP (i.e., the traditional IFPUG standard full-fledged
metric), SFP (i.e., the IFPUG standard simplifiedmetric), and
sets of basic unweighted measures—appear equally accurate.
More precisely: the observed differences (which for ENH and
EXT projects were in favor of simplified metrics) are very
small, and practically irrelevant.

Based on our results, software project managers can
consider analyzing only a small and specific part of
Functional User Requirements, to get measures that support
effort estimationwith no appreciable differences in prediction
accuracy.

The study reported in this paper considers effort models
based exclusively on the size of the software to be developed
or maintained. This choice was motivated by the need to
limit the possible confounding effect deriving from the usage
of multiple parameters. Nonetheless, it is well-known that
development effort depends on several other factors, besides
size, including the characteristics of software (complexity,
non-functional requirements, etc.), of developers (experi-
ence, domain knowledge, code knowledge, etc.) and the
development environment (tools, methods, processes, etc.).
Accordingly, we plan to extend the work reported here by
building more comprehensive effort models, depending on
the availability of data.

We also plan to explore how Large Language Models
(LLMs) can contribute to functional size measurement and
effort estimation.

APPENDIX
DETAILS ON THE CONSTRUCTION OF ML MODELS
Data analysis was carried out using the R programming
language and environment [57]. Specifically, we used
the e1071 library (https://cran.r-project.org/
web/packages/e1071/index.html).

A. SUPPORT VECTOR REGRESSION (SVR) MODELS
Since the used datasets contain predictors and a dependent
variable, and values are all continuous, we used a supervised
and computationally not demanding method like SVR. Also
the small size of the datasets was a criterion for choosing a
robust approach like SVR. Finally, considering the problem
at hand, we used a radial kernel.

To build models, a fundamental step was the configuration
of the model with proper parameters (i.e., the so-called
hyperparameters of the model). To this end, we exploited the
tune.svm function of the e1071 library. The tune.svm
functionwas designed to find the best set of parameters for the
data in a ranged or full parameter space for each parameter;
we used this function passing a proper hyperparameter range
for each tuning parameter:

cost is a regularization parameter used when transform-
ing mathematically the problem into a Lagrangian
formulation. We provided the tuning function with
the [2−3,26] range.

epsilon is the margin of tolerance for not penalizing errors.
We provided the tuning function with the set of
values {0.1, 0.01, 0.001}.

gamma controls the distance of the influence of a
single training point. Low (respectively, large)
values of gamma indicate a large (respectively,
small) similarity radius which results in more
(respectively, fewer) points being grouped together.
We provided the tuning function with the [2−1,23]
range, which does not include large gamma values
that could cause overfitting.

In addition, the tune.svm function has a tune.
control argument, which enables the choice of com-
mon parameters like the sampling method, the size of
the bootstrap samples, the returning of the error mea-
sure, and the returning of the performance of all the
parameters combined at each tuning iteration. Among the
tune.control arguments,cross allows the programmer
to instruct the tuning function to look for the best param-
eters via an internal cross-fold cross validation: we set
cross=5.

Since the tune.svm function explores only a subset of
the parameters space, we executed it ten times for each
dataset, computing the resulting MAR; we then selected the
parameters that obtained the lowest MAR.

B. NEURAL NETWORK (NN) MODELS
We used Neural Networks because this method is considered
general purpose and it often outperforms other methods
in common tasks such as machine translation and image
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recognition, as well as in effort prediction [10]. Furthermore,
it is robust to small samples, and it is sophisticated and
flexible enough to provide meaningful tradeoffs between
overfitting vs. underfitting model configuration. In partic-
ular, we chose this method with our dataset, to obtain
independent variables weights and take their weighted
combination to train an NN and see how independent
variables contribute to the choice of the dependent variable
value.

We used the tune.nn function of the e1071 library to
get the best NN model for our problem. In particular, the
R nnet package, upon which the function tune.nn is
built, models a single hidden layer neural network. To train
the best NN for our problem We set the hyperparameters of
the NN as follows:

linout for yielding a linear output instead of logistic
output, which must be set to true.

rang is the initial random weights interval and was set to
the interval [-rang, rang], with value rang=0.1.

The returning model was queried for the best parameter
space of the hyperparameter size, which quantifies the
ideal number of units in the hidden layer to be considered
in the final model, and decay, a factor by which the
minimization of the loss function procedure is affected,
in that it ‘‘regularizes’’ the value of the node weights at each
step.

As for the SVR method, also the NN method presents
a tune.control argument, which enables the choice
of common parameters like the sampling method, the
size of the bootstrap samples, the returning of the error
measure, and the returning of the performance of all the
parameters combined at each tuning iteration. Among the
tune.control arguments,cross allows the programmer
to instruct the tuning function to look for the best param-
eters via an internal cross-fold cross validation: we set
cross=5.

C. RANDOM FOREST (RF) MODELS
Random Forest is an evolution of the models based on
Decision Trees. We chose a method of this kind for our
dataset, as the independent variables values can be used as
decision rules to obtain the final value of the dependent
variable. In order to yield the best model based on RF for
our problem we used the tune.rf function of the e1071
library. As usual, the hyperparameters space was configured
without any restriction, whereas the best parameter space
considered for exploiting the best RF model on our dataset
were:

nodesize is the number of minimum nodes in each tree to
be considered.

mtry is the number of predictors considered at each node
split (decision).

ntree is the number of trees in the model.
Also the RF method presents a tune.control argu-

ment. Among the tune.control arguments, we set
cross=5.

D. GENERALIZED K-NEAREST NEIGHBOURS (GKNN)
MODELS
The last method used was the so called Generalized
K-Nearest Neighbour model. This model is an implemen-
tation of the k-nearest neighbour algorithm making use of
general distance measures among neighbours. This value
can be, for example, the average of the values of k nearest
neighbors. A technique is the assignment of weights to the
contributions of the neighbors, so that the nearer neighbors
contribute more to the average than the more distant ones.
The neighbors are taken from a set of objects for which the
object property value is known. This can be thought of as the
training set for the algorithm, though no explicit training step
is required. A peculiarity of the k-NN algorithm is that it is
more sensitive to the local structure of the data with respect
to other ML models.

The e1071 library provided a tune.gknn function for
configuring hyperparameters and yielding the best KNN
model for the problem at hand. The function was used with
the following configuration:

k is the number of neighbours to be considered.
We set this value as the interval [1,3].

use.allcontrols handling of ties. If true, all distances equal
to the k th largest are included. If false, a random
selection of distances equal to the k th is chosen
to use exactly k neighbours. We set use.all to
true.

FUN is the function used to aggregate the k nearest target
values in case of regression. We chose the mean.

Also the gKNN method presents a tune.control
argument. Among the tune.control arguments, we set
cross=5.
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