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Abstract
Algebraic multigrid (AMG) is one of the most efficient iterative methods for solving
large structured systems of equations.However, how to build/check restriction and pro-
longation operators in practicalAMGmethods for nonsymmetric structured systems is
still an interesting open question in its full generality. The present paper deals with the
block-structured dense and Toeplitz-like-plus-cross systems, including nonsymmetric
indefinite and symmetric positive definite (SPD) ones, arising from nonlocal diffu-
sion problems. The simple (traditional) restriction operator and prolongation operator
are employed in order to handle such block-structured dense and Toeplitz-like-plus-
cross systems, which are convenient and efficient when employing a fast AMG. We
provide a detailed proof of the two-grid convergence of the method for the consid-
ered SPD structures. The numerical experiments are performed in order to verify the
convergence with a computational cost of only O(N logN ) arithmetic operations, by
exploiting the fast Fourier transform, where N is the number of the grid points. To the
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best of our knowledge, this is the first contribution regarding Toeplitz-like-plus-cross
linear systems solved by means of a fast AMG.

Keywords Algebraic multigrid · Nonlocal diffusion problem · Block-structured
dense system · Toeplitz-like-plus-cross system · Fast Fourier transform

Mathematics Subject Classification 65N55 · 65N35 · 15B05 · 15A18 · 65T50

1 Introduction

Large, sparse, block-structured linear systems arise in a wide variety of applications
throughout computational science and engineering including advection–diffusion flow
[48], image processing [37], Markov chains [49], Biot’s consolidation model [40],
specific saddle point problems arising e.g. inNavier-Stokes equations [8]. In the current
paper we study fast algebraic multigrid methods for solving block-structured dense
linear systems, stemming from nonlocal problems [2, 6, 15, 21, 29, 30, 47]. The
continuous problem is discretized via piecewise quadratic polynomial collocation
approximations, whose associated coefficient matrices can be expressed as 2 × 2
block structures

A u =
[
A B
C D

] [
v

w

]
=
[
b f

bg

]
, (1)

with coefficient matrices A ∈ R
M×M , B ∈ R

M×N , C ∈ R
N×M and D ∈ R

N×N and
where the size M may not necessarily be smaller than N .

Algebraic multigrid (AMG) is one of the most efficient iterative methods for solv-
ing large-scale system of equations [41, 54]. In the past decades, AMG methods
for linear systems having Toeplitz coefficient matrices with scalar entries have been
widely studied [19] including elliptic PDEs [41, 44, 53, 54], fractional PDEs [25,
28, 39] and nonlocal PDEs [20, 22]. Few works have investigated the case of block
entries, where the entries are small generic matrices of fixed size instead of scalars
[10, 11, 23, 27, 31] especially in the case where the spectral information of the related
large matrices are encoded in a spectral symbol [33]. We observe that only a limited
number of papers have studied block-structured linear systems of the form (1), when
dense blocks occur. For example, by defining partial prolongations operators in con-
nection with a Galerkin coarse grid matrix, in [38] the authors design a new AMG
approach for the Stokes problem. Furthermore paper [52] contains a fully aggregation-
based AMG for nonlinear contact problems of saddle point type, where ad hoc transfer
operators are constructed. Using approximate ideal restriction (AIR) operators, in [48]
AIRAMGmethods for space-time hybridizable discontinuous Galerkin discretization
of advection-dominated flows are investigated. By defining the interpolation matrix
with the coarse coefficient vector, the authors in [49] propose and study multilevel
Markov chain Monte Carlo AMG algorithms. When involving sparse integral trans-
fer operators towards adaptive smoothed aggregation, in [14] specialized AMG for
nonsymmetric problems are considered. Finally transfer operator based on fractional
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approximation properties and two-grid methods convergence in norm of nonsymmet-
ric algebraic multigrid are presented in the work [36]. However, how to build/check
restriction and prolongation operators in the practice of AMG methods for nonsym-
metric sparse systems is still an interesting open question [14, 36]. In particular, how to
develop/design fast AMG for block-structured dense linear systems (1) is still a prob-
lem to be explored further, since the above special prolongation/transfer operators are
not easy to be employed in connection with the fast Fourier transform.

In the current work, the simple (traditional) restriction operator and prolongation
operator are used in order to handle such block-structured dense systems (1), includ-
ing nonsymmetric indefinite systems, symmetric positive definite (SPD) systems,
Toeplitz-plus-diagonal systems, which derive from the nonlocal problems discussed
in [2, 15, 24, 29]. In general, it is still not at all easy to analyse AMG for dense stiffness
matrices [3, 4, 12, 22], unless we can reduce the problem to the Toeplitz setting and
we know the symbol, its zeros, and their orders [44]. Instead we focus our attention on
answering such a question for a two-grid setting, since it is useful from a theoretical
point of view as first step: in fact the study of the AMG convergence usually begins
from the convergence analysis of the two-grid method (TGM) [39, 41, 54]. We focus
our attention in providing a detailed proof of the convergence of TGM for the con-
sidered SPD linear systems. To the best of our knowledge, following previous ideas
in [22], this is the first time that a fast AMG is studied for the block-structured dense
linear systems as those reported in (1).

The outline of this paper is as follows. In Sect. 2, we introduce block-structured
dense systems, including applications in nonlocal diffusion problems by the piecewise
quadratic polynomial collocation. In Sect. 3, block-structuredV-cycle AMGalgorithm
using fast Fourier transforms are designed for Toeplitz-like-plus-cross systems. The
convergence rate of the two-grid method is analyzed in Sect. 4. To show the effective-
ness of the presented schemes, results of numerical experiments are reported in Sect. 5,
including a comparison with a Krylov technique. Finally, in Sect. 6 we conclude our
study with relevant remarks and open problems.

2 Block-structured dense systems applications

Nonlocal diffusion problems have been used to model very different scientific phe-
nomena occurring in various applied fields, for example in biology, particle systems,
image processing, coagulation models, mathematical finance, etc. [2, 29]. Recently,
the nonlocal volume-constrained diffusion problems, the so-called nonlocal model for
distinguishing the nonlocal diffusion problems, attracted a wide interest of scientists
[29], where the linear scalar peridynamic model can be considered as a special case
[29, 47]. For example, the nonlocal peridynamic (PD) model has become an attractive
emerging tool for the multiscale material simulations of crack nucleation and growth,
fracture, and failure of composites [47].
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Let us consider the following time-dependent nonlocal volume-constrained diffu-
sion problem [22, 29, 47]

⎧⎪⎨
⎪⎩
ut − Lδu = f on �, t > 0,

u(x, 0) = u0 on � ∪ �I ,

u = g on �I , t > 0,

(2)

where u is a sufficiently smooth function of x and t with ut = ∂u
∂t . The nonlocal

operator Lδ is defined by [29]

Lδu(x, t) =
∫
Bδ(x)

γδ(|x − y|) [u(y, t) − u(x, t)] dy, ∀x ∈ �, t ∈ [0, T ],

with Bδ(x) = {y ∈ R : |y−x | < δ} denoting a neighborhood centered at x of radius δ,
which is the horizon parameter and represents the size of nonlocality. The symmetric
nonlocal kernel is defined as γδ(|x − y|) = 0 if y /∈ Bδ(x).

Before starting to discuss problem (2), we briefly review few preliminary notions
regarding the piecewise quadratic polynomial collocation approximations for the cor-
responding stationary problem

{
−Lδu = f on �,

u = g on �I ,
(3)

where u = g denotes a volumetric constraint imposed on a volume �I that has a
nonzero volume and is made to be disjoint from �. In order to keep the expression
simple, below we assume the � = [0, 1] with the volumetric constraint domain
�I = [−δ, 0]∪[1, 1+δ], but everything can be shifted to an arbitrary interval [a, b].
For convenience, we focus on the special case where the kernel γδ(s) is taken to be a
constant, i.e., γδ(s) = 3δ−3 [22, 29, 50]. More general kernel types [29, 50] can be
studied in a similar manner.

Consider the nonlocal model on the interval � = [a, b] with the volumetric con-
straint domain �I = [a − δ, a] ∪ [b, b + δ], 0 ≤ δ < b. Define the mesh grid with
uniform spatial stepsize h = (b − a)/N and with mesh points

x−r < x−r+ 1
2

< · · · < x− 1
2

< a = x0 < x 1
2

< x1 < · · · (4)

· · · < xN− 1
2

< xN = b < xN+ 1
2

< · · · < xN+r ,

where

r =

⎧⎪⎨
⎪⎩

⌊
δ/h

⌋
, δ > h,⌈

δ/h
⌉
, 0 < δ ≤ h,

0, δ = 0.

Here �δ/h� denotes the greatest integer that is less than or equal to δ/h and �δ/h	
denotes the smallest integer that is greater than or equal to δ/h.
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Let the piecewise quadratic base functions φi (x) and φi− 1
2
(x) be defined as in [5,

p. 37]. Then the piecewise Lagrange quadratic interpolant of u(x) is given in [15] in
the following way

uQ(x) =
N+r∑
j=−r

u
(
x j
)
φ j (x) +

N+r−1∑
j=−r

u
(
x j+ 1

2

)
φ j+ 1

2
(x), (5)

which is used in dealing the nonlocal model in (2), leading to the block-structured
dense systems expressed in (1).

Now, we introduce and discuss the discretization scheme of (3). According to the
mesh grid (4), we set

N =
{
−r ,−r + 1

2
, . . . ,−1

2
, 0,

1

2
, . . . , N − 1

2
, N , . . . , N + r − 1

2
, N + r

}
,

Nin =
{
1

2
, 1,

3

2
, . . . , N − 1, N − 1

2

}
, Nout = N \ Nin .

Define ui as the approximate value of u(xi ), fi = f (xi ) and gi = g(xi ). For conve-
nience of implementation, we use the matrix form of the grid functions as follows

Uh =
[
u1, u2, . . . , uN−1, u 1

2
, u 3

2
, . . . , uN− 1

2

]T
,

Fh =
[
f1, f2, . . . , fN−1, f 1

2
, f 3

2
, . . . , fN− 1

2

]T
.

2.1 Nonsymmetric indefinite block-structured dense systems

By the piecewise quadratic polynomial collocation (5), it is easy to check that the
standard collocation method of stationary problem (3) has the following form [16]

{
−Lδui = fi , i ∈ Nin,

ui = gi , i ∈ Nout .
(6)

As a consequence the numerical scheme (6) can be recast as

A N
h Uh = ηh F

N
h with A N

h =
[
A B
C D

]
, ηh = 2δ3/h. (7)

Here the discrete source function FS
h absorbs the boundary conditions, which can be

treated as in [22].
Note that the above matrices A ∈ R

(N−1)×(N−1), B ∈ R
(N−1)×N , C ∈ R

N×(N−1)

and D ∈ R
N×N are all Toeplitzmatrices [13, 33].Amatrix X is Toeplitz if it is constant

along the diagonals that is Xs,t = xs−t with xl complex coefficients and l ranging
according to the sizes of X . The latter implies that Xs,t = Xs+�,t+� for every �

123



57 Page 6 of 27 M. Chen et al.

compatible with the dimensions of X : from the previous property of invariance under
shift, these matrices are named also shift-invariant, especially in signal processing and
operator theory. In our case we use the notation toeplitz([c]), c ∈ C

m , for a square
complex symmetric Toeplitz matrix of orderm whose first column is the vector c, and
the notation toeplitz([c], [d]), c ∈ C

m1 , d ∈ C
m2 , c1 = d1, for a generic matrix of

sizes m1 × m2, with first column c and first row d.
Furthermore if φ ∈ L1(−π, π) by Tn( f ) we denote the Toeplitz matrix generated

by φ, i.e. (Tn(φ))s,t = φ̂s−t , s, t = 1, . . . , n, with φ̂k being the k-th Fourier coefficient
of f , that is

φ̂k = 1

2π

∫ π

−π

φ(θ) e−ikθ dθ, i2 = −1, k ∈ Z.

In that case φ is called the generating function of Tn(φ) [13, 33].Moreover Tn(φ) coin-
cideswith thematrix toeplitz([c], [d]), whenever c contains the Fourier coefficients φ̂k ,
k = 0, 1, . . . , n − 1 and d contains the Fourier coefficients φ̂k , k = 0,−1, . . . , 1− n.
Below we report in detail the matrices A ∈ R

(N−1)×(N−1), B ∈ R
(N−1)×N ,

C ∈ R
N×(N−1), D ∈ R

N×N , which, in accordance to the previous notations, are
expressed as

A = toeplitz
([a0, a1, a2, · · · , ar , 01×(N−r−2)]

)
,

B = toeplitz
([

a 1
2
, a 3

2
, · · · , ar− 1

2
, 01×(N−1−r)

]
,
[
a 1
2
, a 1

2
, a 3

2
, · · · , ar− 1

2
, 01×(N−r−1)

])
,

C = toeplitz
([c0, c0, c1, c2, · · · , cr , 01×(N−r−2)], [c0, c1, c2, · · · , cr , 01×(N−r−2)]

)
,

D = toeplitz
([d0, d1, d2, · · · , dr , 01×(N−r−1)]

)
,

with the coefficients [16]

a0 = 12r − 2, am = −2, ar = −1, 1 ≤ m ≤ r − 1,

am+ 1
2

= −4, 0 ≤ m ≤ r − 1,

and

cm = −2, cr−1 = −9

4
, cr = 1

4
, 0 ≤ m ≤ r − 2,

d0 = 12r − 4, dm = −4, dr = −2, 1 ≤ m ≤ r − 1.

Since all the reported coefficients are real, the square Toeplitz matrices A and D are
both real and symmetric.

2.2 Symmetric positive definite block-structured dense systems

In Remark 2.2 of [16], it is shown that the discrete maximum principle is not satisfied
for the above nonsymmetric indefinite system (7), which might be trickier for the
stability analysis of the high-order numerical schemes [26, 35]. As a consequence, the
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shifted-symmetric piecewise quadratic polynomial collocation method for nonlocal
model (3) has been considered in [16], which satisfies the discrete maximum principle
and admits symmetric positive definite block-structured dense coefficient matrices.
Namely, the shifted-symmetric system of (6) can be recast as [16]

A S
h Uh = ηh F

S
h with A S

h =
[

A B
BT Â

]
, ηh = 2δ3/h. (8)

Here the function FS
h is computed as done in (6), the Toeplitz matrices A ∈

R
(N−1)×(N−1), B ∈ R

(N−1)×N , and Â ∈ R
N×N are defined by

A = toeplitz
([a0, a1, a2, · · · , ar , 01×(N−r−2)]

)
,

B = toeplitz
([

a 1
2
, a 3

2
, · · · , ar− 1

2
, 01×(N−1−r)

]
,
[
a 1
2
, a 1

2
, a 3

2
, · · · , ar− 1

2
, 01×(N−r−1)

])
,

Â = toeplitz
([a0, a1, a2, · · · , ar , 01×(N−r−1)]

)
,

with

a0 = 12r − 2, am = −2, ar = −1, 1 ≤ m ≤ r − 1,

am+ 1
2

= −4, 0 ≤ m ≤ r − 1.
(9)

3 Fast AMG for block-structured dense systems

Multigrid methods are among the most efficient iterative methods for solving large
scale systems of equations [41, 54]. To the best of our knowledge, there is no fast
AMG for block-structured dense linear systems of the type in (1), since the special
prolongation/transfer operators are not easy to be employed in connection with the
fast Fourier transform. Here, the simple (traditional) transfer operator are employed
in order to handle such block-structured dense systems to ensure a fast AMG showing
a O(N logN ) complexity.

3.1 Multigrid methods

Let us first review the basic multigrid technique when applied to a scalar algebraic
linear system, having in mind that our target is the efficient solution of the block-
structured dense linear systems as those reported in (1). Let the finest mesh points be
xi = a + ih, h = (b − a)/N , N = 2K , i = 1 : N , with � = (a, b). Define the
multiple levels of grids Bk , k = 1, . . . , K , as follows

Bk =
{
xki = a + i

2k
(b − a), i = 1 : Nk

}
with Nk = 2k − 1, k = 1, . . . , K ,

where Bk represents not only the grid with grid spacing hk = 2K−kh, but also the
space of vectors defined on that grid.
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Given an algebraic system of the form

Ahu
h = bh, (10)

we define a sequence of subsystems on different levels

Aku
k = bk, uk ∈ Bk, k = 1, . . . ,K .

Here K is the total number of levels, with k = K being the finest level, i.e., AK = Ah .
The traditional restriction operator I k−1

k : RNk → RNk−1 and prolongation operator
I kk−1 : RNk−1 → RNk are defined by [42, pp. 438–454]

I k−1
k = 1

4

⎡
⎢⎢⎣
1 2 1

1 2 1
· · · · · ·

1 2 1

⎤
⎥⎥⎦

Nk−1×Nk

and I kk−1 = 2
(
I k−1
k

)T
, (11)

which should be convenient and efficient for block-structured dense linear systems as
those in (1), using AMG and fast Fourier transform. Let

νk−1 = I k−1
k νk with νk−1 = 1

4

(
νk2i−1 + 2νk2i + νk2i+1

)
, i = 1, . . . , Nk,

and

νk = I kk−1ν
k−1.

It may be more useful to define the linear system by using the Galerkin projection in
the AMG method, where the coarse grid problem is defined by

Ak−1 = I k−1
k Ak I

k
k−1, (12)

and the intermediate (k, k − 1) coarse grid correction operator is

Tk = Ik − I kk−1A
−1
k−1 I

k−1
k Ak .

We introduce the damped Jacobi iterative operator

Sk = I − ωD−1
k Ak (13)

with a weighting factor ω, as the smoothing operator, and Dk being the diagonal of
Ak . Then the V-cycle multigrid algorithm can be designed similarly to Algorithm 1 in
[22]: see also [53].

The basic AMG idea for solving the block-structured dense linear systems in (1) is
the same as in the scalar case (10). Define a sequence of block-structured subsystems

Aku
k = bk, uk ∈ Mk, k = 1, . . . ,K ,
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with the multiple level of grids

Mk =
{
xki/2 = a + i/2

2k
(b − a), i = 1 : 2Nk + 1

}
with Nk = 2k − 1, k = 1, . . . , K .

(14)

We have

Ak =
[
A(k) B(k)

C (k) D(k)

]
, uk =

[
vk

wk

]
, bk =

[
bkf
bkg

]
.

Moreover, we define the intermediate (k, k − 1) coarse grid correction operator as

Tk = Ik − I kk−1A
−1
k−1 I

k−1
k Ak . (15)

Following (13), the smoothing operator is chosen to be

Sk = I − ωD−1
k Ak (16)

with weighting factor ω, and Dk being the diagonal matrix of Ak . Hence the block-
structured dense V-cycle multigrid method is developed in Algorithm 1, with m1
pre-smoothing steps, m2 post-smoothing steps, m1 + m2 ≥ 1, m1,m2 nonnegative
integers independent of the matrix order.

3.2 Fast Fourier transform for block-structured dense systems

It is well-known that for any N -by-1 vector x, the product of a Toeplitz matrix TN and
a vector x can be computed by the fast Fourier transform (FFT) with the computational
cost of O (N log N ) arithmetic operations [17, p. 12]. Indeed, given a Toeplitz matrix
TN , it can be embedded in a circulant matrix CN of size 2N -by-2N as follows:

[
TN ∗
∗ TN

] [
x
0

]
=
[
TNx
‡

]
with CN =

[
TN ∗
∗ TN

]
. (17)

Let us consider the fast Fourier transform algorithm for block-structured dense systems
(1) at the finest level, namely,

Ahu =
[
A B
C D

] [
v

w

]
=
[
Av + Bw

Cv + Dw

]
(18)

with Toeplitz matrices A ∈ R
M×M , B ∈ R

M×N , C ∈ R
N×M and D ∈ R

N×N ,
M < N .

Note that a few early works onmatrix–vector multiplication with Toeplitz algebraic
system were focused on square matrices by fast Fourier transform (FFT) [17, 18]. As
reported in [15, 17], the FFT algorithm for the rectangular matrices B and C in (18)
also can be realized, which leads to the computational cost of O(N log N ) arithmetic
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Algorithm 1 Block-structured dense V-cycle multigrid method: Define B1 = A −1
1 .

Assume that Bk−1 : Mk−1 → Mk−1 is defined. We now define Bk : Mk → Mk as
an approximate iterative solver for the equation associated with Akuk = bk .

1: Pre-smooth: LetSk,ωpre be defined by (16) and

[
vk0
wk
0

]
= 0; for l = 1 : m1,

[
vkl
wk
l

]
=
[

vkl−1
wk
l−1

]
+ Sk,ωpre

([
bkf
bkg

]
− Ak

[
vkl−1
wk
l−1

])

2: Coarse grid correction: Denote ek−1 =
[
ek−1
v

ek−1
w

]
∈ Mk−1 as the approximate solution of the residual

equation Ak−1e = I k−1
k

([
bkf
bkg

]
− Ak

[
vkm1
wk
m1

])
with the iterator Bk−1 an approximate inverse of

Ak−1,

[
ek−1
u
ek−1
v

]
= Bk−1 I

k−1
k

([
fk
gk

]
− Ak

[
ukm1
vkm1

])

3: Post-smooth:

[
vkm1+1
wk
m1+1

]
=
[

vkm1
wk
m1

]
+ I kk−1

[
ek−1
v

ek−1
w

]
andSk,ωpost is defined by (16),

[
vkl
wk
l

]
=
[

vkl−1
wk
l−1

]
+ Sk,ωpost

([
bkf
bkg

]
− Ak

[
vkl−1
wk
l−1

])
, l = m1 + 2 : m1 + m2

4: Define: Bk

[
bkf
bkg

]
=
[

vkm1+m2
wk
m1+m2

]
.

operations and a required O(N ) storage: indeed, this is an old idea already present in
the classical book by Bini and Pan (see [9] [Chapter 3, Problem 5.1]).

In fact, the technique of embedding rectangular matrices B and C in (18) into
the square Toeplitz matrices is invalid for the coarser level, since it does not keep
block-structured Toeplitz properties, see Example 1 below. Let

Ak

[
uk

vk

]
=
[
A(k)uk + B(k)vk

C (k)uk + D(k)vk

]
.

In AMG, the coarse problem at the level k < K is typically defined using the Galerkin
approach, i.e., the coefficient matrix on the coarser grid can be computed by

Ak−1 = I k−1
k Ak I

k
k−1. (19)

More concretely,

Ak−1=
[
A(k−1) B(k−1)

C(k−1) D(k−1)

]
(2Nk−1+1)×(2Nk−1+1)

= I k−1
k

[
A(k) B(k)

C(k) D(k)

]
(2Nk+1)×(2Nk+1)

I kk−1,
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where I k−1
k ∈ R

Nk×(2Nk+1) is given in (11).
It should be noted that A(k), B(k),C (k), D(k) are Toeplitz matrices if k = K , which

corresponds to the block-structured dense system (18) at the finest level with the
computational count of O(N log N ) arithmetic operations. However, there exists a
substantial difference forAk−1 at the coarser level, namely, it does not preserve block-
structured Toeplitz properties, see Example 1. In fact, the resulting cross structure at
the coarser level is not only dependent on the cross structure at the fine level but also
dependent on the Toeplitz blocks.

Example 1 Choose the identity matrices A(k) ∈ R
7×7, D(k) ∈ R

8×8 and the rectan-
gular matrices B(k) ∈ R

7×8, C (k) ∈ R
8×7 with all the entries equal to 1. Using the

Galerkin approximation (19), we deduce

[
A(k−1) B(k−1)

C (k−1) D(k−1)

]
= I k−1

k Ak I
k
k−1 = 1

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 1 0
1 6 1
0 1 6

12
12
13

16 16 16
16 16 16
16 16 16

12 12 13 12 5 4 4
16 16 16
16 16 16
16 16 16

5
4
4

6 1 0
1 6 1
0 1 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

[
A(k−2) B(k−2)

C (k−2) D(k−2)

]
= I k−2

k−1 I k−1
k Ak I

k
k−1︸ ︷︷ ︸

Ak−1

I k−1
k−2 = 1

64

⎡
⎣ 44 170 256
170 164 106
256 106 44

⎤
⎦.

We next design fast Fourier transform for block-structured dense systems at the
coarser level in AMG. Let

Ak =
⎡
⎣ A(k) 0 B̄(k)

0 ′ 0 0 ′
C̄ (k) 0 D̄(k)

⎤
⎦

(2Nk+1)×(2Nk+1)

+
⎡
⎣ 0 p(k) 0
q(k) o(k) ζ (k)

0 ξ (k) 0

⎤
⎦

(2Nk+1)×(2Nk+1)

, (20)

where A(k), B̄(k), C̄ (k), D̄(k) are the square matrices with

B(k) = [
p(k) B̄(k)

]
, C (k) =

[
q(k)

C̄ (k)

]
, D(k) =

[
o(k) ζ (k)

ξ (k) D̄(k)

]
.

The symbol o(k) is a real number, 0 denotes a zero number, and the bold 0 denotes a
zero matrix/vector with the corresponding size. The coefficients p(k), ξ (k) denote the
column vectors and q(k), ζ (k) denote the row vectors.Wemay call it the cross-splitting
technique, since we mainly focus on the fast Fourier transform for cross-type matrix
in (20).
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From (20), we find

Ak

[
vk

wk

]
=
⎛
⎝
⎡
⎣ A(k) 0 B̄(k)

0 ′ 0 0 ′
C̄ (k) 0 D̄(k)

⎤
⎦+

⎡
⎣ 0 p(k) 0
q(k) o(k) ζ (k)

0 ξ (k) 0

⎤
⎦
⎞
⎠
⎡
⎣ vk

wk
o

w̄k

⎤
⎦

=
⎡
⎣ A(k)vk + B̄(k)w̄k

0
C̄ (k)vk + D̄(k)w̄k

⎤
⎦+

⎡
⎣ p(k)wk

o
q(k)vk + o(k)wk

o + ζ (k)w̄k

ξ (k)wk
o

⎤
⎦ .

Obviously, since A(k), B̄(k), C̄ (k), D̄(k) are Toeplitz matrices, the computation of
A(k)vk , B̄(k)w̄k , C̄ (k)vk , and D̄(k)w̄k by FFT needs O(Nk logNk), and with required
storage O(Nk). For the cross matrix, see p(k), q(k), ζ (k), ξ (k) and o(k), we deduce
O(Nk) complexity and storage operations.

Let the stiffness matrix of the coarser level be

Ak−1 =
⎡
⎣ A(k−1) 0 B̄(k−1)

0 ′ 0 0 ′
C̄ (k−1) 0 D̄(k−1)

⎤
⎦

Nk×Nk

+
⎡
⎣ 0 p(k−1) 0
q(k−1) o(k−1) ζ (k−1)

0 ξ (k−1) 0

⎤
⎦

Nk×Nk

. (21)

Then using (20), (21), and aGalerkin approach in (19), it is easy to obtain the following
results.

Lemma 1 Let A(k) = {a(k)
i, j }Nk

i, j=1 with a(k)
i, j = a(k)

j−i be a Toeplitz matrix in (20). Then

the elements of A(k−1) in (21) can be computed by

8a(k−1)
0 = a(k)

−2 + 4a(k)
−1 + 6a(k)

0 + 4a(k)
1 + a(k)

2 ,

and

8a(k−1)
i = a(k)

2i−2 + 4a(k)
2i−1 + 6a(k)

2i + 4a(k)
2i+1 + a(k)

2i+2,

8a(k−1)
−i = a(k)

−2i−2 + 4a(k)
−2i−1 + 6a(k)

−2i + 4a(k)
−2i+1 + a(k)

−2i+2, i ≥ 1.

Moreover, when B̄(k), C̄ (k), D̄(k) are similarly defined as A(k), assume p(k) =
{p(k)

i }Nk
i=1, and ξ (k), q(k) and ζ (k) similarly ordered, with a given o(k). Then the cross

matrix on the coarser level Nk−1 can be computed as follows

8p(k−1)
i =

(
a(k)
Nk−2i + 2a(k)

Nk−2i−1 + a(k)
Nk−2i−2

)
+ 2

(
p(k)
2i−1 + 2p(k)

2i + p(k)
2i+1

)

+
(
b(k)
−2i+2 + 2b(k)

−2i+1 + b(k)
−2i

)
,

8q(k−1)
i =

(
a(k)
−Nk+2i + 2a(k)

−Nk+2i+1 + a(k)
−Nk+2i+2

)
+ 2

(
q(k)
2i−1 + 2q(k)

2i + q(k)
2i+1

)

+
(
c(k)2i−2 + 2c(k)2i−1 + c(k)2i

)
,

8o(k−1) =
(
a(k)
0 + 2p(k)

Nk−1 + b(k)
−Nk+2

)
+ 2

(
q(k)
Nk−1 + 2o(k) + ζ

(k)
1

)

+
(
c(k)Nk−2 + 2ξ(k)

1 + d(k)
0

)
,
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and

8ξ (k−1)
i =

(
c(k)
Nk−2i + 2c(k)

Nk−2i−1 + c(k)
Nk−2i−2

)
+ 2

(
ξ

(k)
2i−1 + 2ξ (k)

2i + ξ
(k)
2i+1

)

+
(
d(k)
−2i+2 + 2d(k)

−2i+1 + d(k)
−2i

)
,

8ζ (k−1)
i =

(
b(k)
−Nk+2i + 2b(k)

−Nk+2i+1 + b(k)
−Nk+2i+2

)
+ 2

(
ζ

(k)
2i−1 + 2ζ (k)

2i + ζ
(k)
2i+1

)

+
(
d(k)
2i−2 + 2d(k)

2i−1 + d(k)
2i

)
.

Proof The formulas above are derived by using the Galerkin projection in (19) in order
to obtain a fast computation. ��

3.3 The operation count and storage requirement

We now study the computational complexity by the fast Fourier transform and the
required storage for the block-structured dense system (18) in AMG, arising from the
nonlocal problems in Section 2.

From (18), we know that the matrix Ah is a block-structured Toeplitz-like system.
Then,we only need to store the first (last) column, first (last) row and principal diagonal
Ah , which haveO(N ) parameters, instead of the full matrixAh with N 2 entries. From
Example 1 and Lemma 1, we know that {Ak} represents a sequence of matrices with
Toeplitz-like-plus-cross structure requiring a 2k−KO(N ) storage. Adding these terms
together, we deduce

Storage = O(N ) ·
(
1 + 1

2
+ 1

22
+ · · · + 1

2K−1

)
=
(
2 − 21−K

)
O(N ) = O(N ).

Regarding the computational complexity, thematrix–vector product associatedwith
the matrixAh can be computed by discrete convolutions, i.e., by a few FFTs. Indeed,
the cost of a cross matrix–vector product is of O(N ) arithmetic operations by using
its algebraic expression, while the cost of a dense Toeplitz matrix–vector product is
of O(N log N ) arithmetic operations using FFTs. Thus, the total per V-cycle AMG
operation count is

Operation count = O(N log N ) ·
(
1 + 1

2
+ 1

22
+ · · · + 1

2K−1

)
= O(N log N ),

with the constant hidden in the big O being moderate due to the complexity of the
FFT.

4 Convergence of TGM for block-structured dense system (8)

The TGM is rarely used in practice since the coarse grid operator may still be too
large to be solved exactly. However, from a theoretical point of view, its study is
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useful as first step for evaluating the AMG convergence speed, whose analysis usually
begins from that of the TGM [3, 4, 39, 41, 42, 44]. In the following we consider the
convergence of the TGM for symmetric block-structured dense system (8). For any
symmetric positive definite matrixS we can define the associated energy norm with
the Euclidean inner product ||u||2S = (S u, u). Since the matrix A := Ah := AK is
symmetric positive definite, its diagonal D is a diagonal positive definite matrix and
hence ||u||2D = (Du, u) is well defined. If we replace D withAD−1A , we observe

||u||2AD−1A = (A u,A v)D−1 .

First, we give some Lemmas to be used later.

Lemma 2 [53, p. 7] Let AK be a symmetric positive definite matrix. Then
(1) the Jacobi method converges if and only if 2DK − AK is symmetric positive

definite;
(2) the damped Jacobi method converges if and only if 0 < ω < 2/λmax(D

−1
K AK ).

Lemma 3 [41, p. 84] Let AK be a symmetric positive definite matrix. Let η ≤ ω(2 −
ωη0) with 0 < ω < 2/η0, η0 ≥ λmax(D

−1
K AK ). Then the smoothing operator SK in

(16) satisfies

||SK νK ||2AK
≤ ||νK ||2AK

− η||AK νK ||2
D−1

K
, ∀νK ∈ MK (22)

withMK in (14).

Lemma 4 [41, p. 89] Let AK be a symmetric positive definite matrix and smoothing
operator SK in (16) satisfies (22) and

min
νK−1∈MK−1

||νK − I KK−1ν
K−1||2DK

≤ μ||νK ||2AK
, ∀νK ∈ MK (23)

with μ > 0 independent of νK . Then, μ ≥ η > 0 and the convergence factor of TGM
satisfies

||SKTK ||AK ≤ √
1 − η/μ, ∀νK ∈ MK ,

where TK is the coarse grid correction operator defined in (15).

Next we need to check the smoothing condition (22) and approximation property
(23), respectively. We use the notion of weakly and strictly diagonal dominant matrix.
A matrix is weakly diagonal dominant if the modulus of any diagonal element of the
considered matrix is at least as large as the sum of the absolute value of off-diagonal
elements in the same row or column and at least one diagonal element has modulus
strictly larger. Along the same lines, a matrix is strictly diagonal dominant if the
modulus of any diagonal element of the considered matrix is larger than the sum of
the absolute value of off-diagonal elements in the same row or column.
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Lemma 5 [51, p. 23] Let AK ∈ R
N×N be a symmetric matrix. If AK is a strictly

diagonally dominant or irreducibly weakly diagonally dominant matrix with positive
real diagonal entries, then AK is positive definite.

Lemma 6 Let AK := A S
h be defined by (8) and (9). Then AK is a weakly diagonally

dominant symmetric matrix with positive entries on the diagonal and nonpositive
off-diagonal entries.

Proof From (9), we have

a0 > 0, am < 0, 1 ≤ m ≤ r and am+ 1
2

< 0, 0 ≤ m ≤ r − 1,

and

a0 + 2
r∑

m=1

am + 2
r−1∑
m=0

am+ 1
2

= 0. (24)

The proof is completed. ��
We now prove the positive definiteness of the matrix AK .

Lemma 7 LetAK := A S
h be defined by (8). ThenAK is a symmetric positive definite

matrix with positive entries on the diagonal and nonpositive off-diagonal entries.

Proof Let LN = tridiag(−1, 2,−1) ∈ R
N×N be the discrete Laplacian operator. Let

AK = Ares − a1Amain with Amain =
[
LN−1 O
O LN

]
. (25)

We can check the matrix −a1Amain with a1 < 0 is positive definite. We next prove
Ares is a semi-positive definite matrix. From (25), we observeAres = AK+a1Amain,
which implies that the principal diagonal elements are positive and the off-diagonal
are non-positive of the matrix Ares. Using Lemma 6, we know Ares is a weakly
diagonally dominant symmetric matrix. Thus, Ares is a semi-positive definite matrix
by the Geršgorin disc theorem [34, p. 388]. The proof is completed. ��
Remark 1 Regarding Lemma 7, an alternative proof of the positive definite character
of the matrix AK can rely completely on Lemma 5. The positivity of the diagonal
entries and AK and its weak diagonal dominance are established in Lemma 6.

First we observe that a matrix of the form
[
X Y
Z V

]

with square diagonal blocks X , V is not necessarily irreducible, even in presence of
irreducible diagonal blocks X , V . Indeed the latter is obvious if one takes either Y or
Z equal to the null block. In our setting, i.e. (8), we see that X = A and V = Â are
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irreducible since their tridiagonal parts are irreducible (as in can be plainly checked
looking at the coefficients in (9)).

For checking the irreducible character ofAK , we consider its directed graph starting
from node 1 in G (A), G (A) being the direct graph of A, and visiting all nodes of G (A)

with repetitions and ending in node 2. From node 2 we can jump to node N +1 thanks
to the fact that all diagonal entries of the rectangular matrix Y = B are equal to−4, as
in can be checked at the end of Subsection 2.1. Node N +1 refers to the block V = Â
which is irreducible and hence from it we can visit with repetitions all nodes of G ( Â),
G ( Â) being the direct graph of Â, stopping at node N . From node N we can jump to
node 1 owing to the relation Z = BT so that all the diagonal entries of BT are again
equal to −4.

Hence the directed graph associated to the matrixAK is strongly connected that is
AK is irreducible. In conclusion the matrix AK is symmetric positive definite thanks
to Lemma 5.

Lemma 8 Let the discrete Laplacian-like operators {LM
j }M−1

j=1 ∈ RM×M and discrete
block-structured Laplacian operators L j be, respectively, defined by

LM
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

j−1 zeros︷︸︸︷· · · −1
...

. . .
. . .

. . .

−1
. . .

. . .
. . . −1

. . .
. . .

. . .
...

−1 · · · 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M×M

and L j =
[
LM
j 0
0 LN

j

]
.

Assume that the integer parameter l belongs to the interval [1, M − 1]. Then the
matrices

⎛
⎝2

l

l∑
j=1

LM
j

⎞
⎠− LM

1 ,

⎛
⎝2

l

l∑
j=1

L j

⎞
⎠− L1 and 2L1 − LM+N

1 (26)

are all positive definite.

Proof The first results of this lemma can be seen in Lemma 3.10 of [22], which implies
that the second one is also satisfied, since

⎛
⎝2

l

l∑
j=1

L j

⎞
⎠− L1 = 2

l

l∑
j=1

[
LM
j 0
0 LN

j

]
−
[
LM
1 0
0 LN

1

]

=
⎡
⎣
(
2
l

∑l
j=1 L

M
j

)
− LM

1 0

0
(
2
l

∑l
j=1 L

N
j

)
− LN

1

⎤
⎦ .
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On the other hand, we can check that 2L1 − LM+N
1 is an irreducible and weakly

diagonally dominant symmetric matrix, which means that it is positive definite by
Lemma 5. The proof is completed. ��
Remark 2 In order to understand the spectral features of the matrices considered in
Lemma 8, we can adopt the analysis via the related generating functions, since all
the matrices in Lemma 8 are of real symmetric banded Toeplitz type, so they admit
real-valued trigonometric polynomials as generating functions (see [44] and references
therein): on the other hand the matricesL j are block diagonal and hence their spectral
analysis reduces to the Toeplitz setting. For instance, according to the notation in
[44] concisely recalled in Sect. 2.1, LM

j = TM (2 − 2 cos( jθ)) that is the function

2 − 2 cos( jθ) is the generating function of LM
j . From classical results, we know

that TM ( f ) is positive definite for any matrix-size M if f is essentially bounded and
nonnegative, with positive essential supremum. In the present setting, the maximum
of 2 − 2 cos( jθ) is 4 and its minimum is zero and hence LM

j = TM (2 − 2 cos( jθ))

is positive definite. Not only this: if the nonnegative generating function f has a
unique zero of order α > 0 then the minimal eigenvalue of TM ( f ) is positive and, for
M → ∞, converges monotonically to zero as c/Mα with c depending on the second
derivative of f at the zero if it is positive. Based on these results, we can deduce that
LM
j is positive definite, has minimal eigenvalue positive converging monotonically

to zero as c j/M2 with positive c j independent of M , and c j related to the second
derivative of 2 − 2 cos( jθ) at θ = 0.

Of course, by linearity, the Toeplitz matrix, i.e., the first one in (26), has generat-

ing function given by fl(θ) ≡
(

2
l

l∑
j=1

[2 − 2 cos( jθ)]

)
− (2 − 2 cos(θ)) and hence

by studying this generating function, we deduce that this Toeplitz matrix is positive
definite, has minimal eigenvalue positive converging monotonically to zero as c/M2

with positive c independent of M . Hence its condition number grow exactly as M2

and since the related generating function has a unique zero of order 2 at θ = 0, there is
a formal justification in using standard projectors and restriction operators, like those
employed in the standard AMG, for the classical discrete Laplacian (see [3, 32, 44]
and references therein).

Lemma 9 Let AK := A S
h be defined by (8). Then the damped Jacobi iteration con-

vergences with relaxation parameter 0 < ω ≤ 1, and the smoothing operator SK in
(16) satisfies

||SK νK ||2AK
≤ ||νK ||2AK

− 1

2
||AK νK ||2

D−1
K

, ∀νK ∈ MK .

Proof According to (8) and (9), using Lemma 6,we know that thematrixAK is weakly
diagonal dominant, since

a0 + 2
r∑

m=1

am + 2
r−1∑
m=0

am+ 1
2

= 0.
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Ordering the entries in AK and taking AK =
{
a(K )
i, j

}2N−1

i, j=1
, we find

r (K )
i :=

∑
j �=i

|a(K )
i, j | ≤ a(K )

i,i = a0.

Using the Geršgorin disc theorem [34, p. 388], the eigenvalues of AK belong to the
union of the disks centered at a(K )

i,i with radius r (K )
i . Namely, the eigenvalues λ of the

matrix AK satisfy

|λ − a(K )
i,i | ≤ r (K )

i ,

which leads to λmax(AK ) ≤ a(K )
i,i + r (K )

i < 2a(K )
i,i = 2a(K )

1,1 = 2a0.
From Rayleigh theorem [34, p. 235], we deduce

λmax(AK ) = max
x �=0

xTAK x

xT x
, ∀x ∈ R

n .

Take x = [1, 0, . . . , 0]T . Then

λmax(AK ) ≥ xTAK x

xT x
= a(K )

1,1 = a0,

and

λmax

(
(DK )−1AK

)
= λmax(AK )

a(K )
1,1

= λmax(AK )

a0
∈ [1, 2],

where DK is the diagonal part of AK .
From Lemma 2, the damped Jacobi method converges with 0 < ω < 1. By follow-

ing either a similar proof as in Lemma 7 or using the arguments in Remark 1, we can
check that 2DK −AK is symmetric positive definite. Then using Lemma 2 again, the
Jacobi method converges. Hence, the damped Jacobi iteration with relaxation param-
eter 0 < ω ≤ 1 converges. As a consequence, the desired results are obtained by
employing Lemma 3. ��
Lemma 10 Let AK = A S

h be defined by (8). Then

min
νK−1∈MK−1

||νK − I KK−1ν
K−1||2DK

≤ 24||νK ||2AK
, ∀νK ∈ MK .

Proof Let the discrete block-structured Laplacian-like operators be defined by

L j =
[
LN−1
j 0
0 LN

j

]
=
[
LN−1
j 0
0 0

]
+
[
0 0
0 LN

j

]
, j = 1, 2, . . . , r ,
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where the discrete Laplacian-like operators {LN−1
j }rj=1 ∈ R(N−1)×(N−1), {LN

j }rj=1 ∈
RN×N are given in Lemma 8.

From (8), the block-structured dense matrix AK can be denoted as the series sum
with Laplacian-like operators L j , i.e.,

AK =
[

A B
BT Â

]
= −

r∑
j=1

a jL j + B and B =
⎛
⎝a0 + 2

r∑
j=1

a j

⎞
⎠ I +

[
0 B
BT 0

]

(27)

with I an identity matrix.
Using (9), we obtain a0 + 2

∑r
m=1 am + 2

∑r−1
m=0 am+ 1

2
= 0, which implies that

B is a weakly diagonally dominant symmetric matrix with positive entries on the
diagonal part and nonpositive off-diagonal entries. As a consequence, by applying
the Geršgorin disc theorem, we deduce that the matrix B is symmetric and semi-
positive definite.

From (27), (9) and Lemma 8, we obtain

∣∣∣∣∣∣νK
∣∣∣∣∣∣2
AK

=
(
AK νK , νK

)
≥ −a1

2

⎛
⎝ r∑

j=1

L jν
K , νK

⎞
⎠ ≥ −ra1

4

(
L1ν

K , νK
)

≥ −ra1
8

(
L2N−1
1 νK , νK

)
≥ a0

48

(
L2N−1
1 νK , νK

)

≥ a0
24

∣∣∣
∣∣∣νK − I KK−1ν

K
∣∣∣
∣∣∣2 = 1

24

∣∣∣
∣∣∣νK − I KK−1ν

J
∣∣∣
∣∣∣2
DK

.

The proof is completed. ��

Theorem 1 LetAK = A S
h be defined by (8). Then the convergence factor of the TGM

satisfies

||SKTK ||AK
≤ √

47/48 < 1.

Proof By combining the results in Lemmas 3, 4, 9 and 10, the desired result follows.
��

Remark 3 The problem treated in the present work is one-dimensional. when pure
Toeplitz structures appear or even GLT matrix-sequences are considered the d dimen-
sional AMG design is somehow guided by the symbol and and hence d dimensional
problems are not a problem with d ≥ 2; see [10, 11, 27] and references therein. Here
the mixture of block and cross structures is more delicate and more work is required
for a d-dimensional generalization.
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5 Numerical results

We employ the V-cycle block-structured AMG described in Algorithm 1 to solve the
time-dependent nonlocal problems in Section 2. The stopping criterion is taken as

||r (i)||
||r0|| < 10−15,

where r (i) is the residual vector after i iterations, the number of pre-smoothing step
m1 = 1 and post-smoothing step m2 = 1, and the weighted Jacobi relaxation
(wpre, wpost ) = (1, 1/2). In all tables, N denotes the number of spatial grid points,
and the numerical errors (“Error”) are measured by the l∞ (maximum) vector norm,
which is computed exactly since we know the analytic solution in our example, “Rate”
denotes the convergence order, i.e.,

Rate =
ln
(
||UNt

2h −UNt
h ||∞/||UNt

h −UNt
h/2||∞

)
ln 2

.

“CPU” denotes the total CPU time in seconds (s) for solving the discretized systems,
“Iter” denotes the average number of iterations required to solve algebraic systems
at each time step. Here, uni denotes the approximated value of u(xi , tn) and f ni =
f (xi , tn) with the mesh points 0 = t0 < t1 < · · · < tNt = T and τ = T /Nt .
All numerical experiments are programmed in Matlab, and the computations are

carried out on a desktop computer with the configuration: Intel(R) Core(TM) i7-7700
3.60 GHZ and 8 GB RAM and a 64 bit Windows 10 operating system.

First we consider the time-dependent nonlocal models (2) in Section 2. The initial
value and the forcing term are chosen such that the exact solution of the considered
equations is

u(x, t) = et (1 + x)6 , 0 � x � 1, 0 � t � 1.

We apply the following BDF4 method to such nonlocal models

(
25

12
I + τA

)
Un = 4Un−1 − 3Un−2 + 4

3
Un−3 − 1

4
Un−4 + τ Fn, n = 4, 5, . . . , Nt .

(28)

Here the operator A denotes the block-structured systems (7) and (8), respectively.
It should be noted that the convergence analysis of time-dependent nonlocal model
(2) with O

(
τ 4 + hmax{2,4−2β}), δ = O

(
hβ
)
, β ≥ 0 can be found in [1, 16]. The

convergence rate of the two-grid method for time-dependent block-structured systems
(8) can be directly obtained by Theorem 1 and [25].

Remark 4 Regarding the approximation error we observe that the formula

O
(
τ 4 + hmax{2,4−2β}) , δ = O

(
hβ
)
, β ≥ 0,
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implies that the optimal relation between τ and h is of the form τ = √
h for β ≥ 1,

while for β ∈ [0, 1) the best choice is τ = h1−β/2. Hence when selecting a constant
δ we would have τ = h, while for δ = √

h we would have τ = h3/4. In the following
numerical experiments, for δ = 1/4 (β = 0) and δ = √

h (β = 1/2), we have
uniformly chosen τ = h, since it is optimal in the first case and not far from the
optimal choice even in the case δ = √

h.

Remark 5 Regarding the linear systems in (28), with τ going to zero as the matrix-size
tends to infinity, we deduce that the related matrix-sequence has spectrum clustered
at 25/12 and this makes the related linear systems not difficult to solve.

We further extend the V-cycle block-structured algebraic multigrid Algorithm 1 to
simulate the nonlocal models with nonsymmetric indefinite block-structured dense
systems and symmetric positive definite block-structured dense systems, respectively.

5.1 Nonsymmetric indefinite block-structured dense systems

Table 1 shows that fast algebraic multigrid (FAMG) proposed for the BDF4 scheme
(28) stemming from time-dependent nonlocal model (2) with nonsymmetric indefinite
block-structured dense systems is efficient and robust. Indeed, the proposed method
requires a computational cost of O(N logN ) arithmetic operations. This can be seen
by combining the O(N logN ) cost per iteration proven in Sect. 3.3 and a number of
iteration which is uniformly bounded. In fact the number of iterations decreases mildly
and this agreewithRemark 5.Wealso observe a favorableCPU time following a almost
linear growth with the matrix-size. We also present for comparison the performances
of the fast conjugate gradient least squaremethod (FCGS) for nonsymmetric indefinite
systems (7), the result shows that the convergence rate is the same as that simulated
by FAMG. However for δ = √

h, the CPU time is not competitive- Furthermore, the
optimality is lost because the number of iterations grows with the matrix-size. Hence
the related overall cost is not longer of O(N logN ) arithmetic operations, at least for
the FCGS method.

Finally in order to check the robustness of our technique and taking into account
Remark 5, we consider a variation of the linear systems in (28) where the constant
25/12 is replaced with α = 1, 1/10, 1/100. In fact, the smaller α > 0 is, the more
the system is ill-conditioned. With this setting of parameters the algorithm FAMG is
robust while we observe a certain increase in the iteration count for FCGS (Table 2).

5.2 Symmetric positive definite block-structured dense systems

Table 3 shows that the proposed FAMG for solving the BDF4 scheme (28) with
symmetric block-structured dense systems is robust, which implies aO(N logN ) com-
plexity and a very good CPU time. As comparative tests, Table 3 presents the results
of solving symmetric indefinite systems (8) by means of FCGS. Again we observe
that the CPU timing deteriorates with the matrix-size, since the method is not optimal
and the iteration number grows when increasing the dimension and when δ = √

h, at
least for the FCGS method.
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Table 2 Nonsymmetric
indefinite block-structured dense
systems performed as (28): here
25/12 is replaced with
α = 1, 1/10, 1/100,
respectively, δ = 1/4 and
stopping criterion is taken as
10−6; for FAMG and FCGS we
have τ = h = 1/N

N α = 1 α = 1/10 α = 1/100

CPU Iter CPU Iter CPU Iter

FAMG 25 0.1332s 3 0.1928s 5 0.2028s 5

26 0.3307s 3 0.4293s 4 0.5313s 5

27 0.6399s 2 0.8627s 3 1.4893s 5

FCGS 25 0.0767s 8 0.1598s 18 0.1612s 16

26 0.2348s 9 0.4054s 17 0.3670s 20

27 0.7737s 15 2.5597s 52 2.5330s 51

6 Conclusions

In this paper, we considered the solutions of block-structured dense and Toeplitz-like-
plus-cross systems arising from nonlocal diffusion problem.We designed an AMG for
block-structured dense and Toeplitz-like-plus-cross systems, by making also use of
fast Fourier transform, and we provided an estimate of the TGM convergence rate for
the nonlocal problem with symmetric positive definite block-structured dense linear
systems. In this specific context, we answered the question on how to define coarsening
and interpolation operators, when the stiffness matrix leads to nonsymmetric systems
[14, 36]. The simple (traditional) restriction operator and prolongation operator are
employed for such Toeplitz-like-plus-cross systems, so that the entries of the sequence
of subsystems are explicitly determined on different levels.

For the future, at least three questions arise and we plan to investigate them. More
precisely:

• since the structures arising from the same type of problems but in d dimensions,
d ≥ 2, are definitely more involved due to the simultaneous presence of tensor
and cross operations, the related design of efficient AMG solvers is not trivial and
it represents a subject to be investigated;

• we would like to consider the study of the TGM convergence analysis for non-
symmetric block-structured dense systems and the analysis of the full AMG for
symmetric block-structured dense systems, based on the ideas presented in [20,
22];

• we plan amore complete comparisonwith preconditionedKrylov solvers designed
for block problems [7, 8] and indefinite structured problems [43], taking into
account the theoretical barriers in the multilevel setting [45, 46].
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