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Abstract

Algebraic multigrid (AMG) is one of the most efficient iterative methods for solving
large structured systems of equations. However, how to build/check restriction and pro-
longation operators in practical AMG methods for nonsymmetric structured systems is
still an interesting open question in its full generality. The present paper deals with the
block-structured dense and Toeplitz-like-plus-cross systems, including nonsymmetric
indefinite and symmetric positive definite (SPD) ones, arising from nonlocal diffu-
sion problems. The simple (traditional) restriction operator and prolongation operator
are employed in order to handle such block-structured dense and Toeplitz-like-plus-
cross systems, which are convenient and efficient when employing a fast AMG. We
provide a detailed proof of the two-grid convergence of the method for the consid-
ered SPD structures. The numerical experiments are performed in order to verify the
convergence with a computational cost of only &'(NlogN) arithmetic operations, by
exploiting the fast Fourier transform, where N is the number of the grid points. To the
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best of our knowledge, this is the first contribution regarding Toeplitz-like-plus-cross
linear systems solved by means of a fast AMG.
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1 Introduction

Large, sparse, block-structured linear systems arise in a wide variety of applications
throughout computational science and engineering including advection—diffusion flow
[48], image processing [37], Markov chains [49], Biot’s consolidation model [40],
specific saddle point problems arising e.g. in Navier-Stokes equations [8]. In the current
paper we study fast algebraic multigrid methods for solving block-structured dense
linear systems, stemming from nonlocal problems [2, 6, 15, 21, 29, 30, 47]. The
continuous problem is discretized via piecewise quadratic polynomial collocation
approximations, whose associated coefficient matrices can be expressed as 2 x 2

block structures
. A B v bf
au=[en][u]=[5] o

with coefficient matrices A € RM*M B ¢ RMXN ¢ ¢ RN>*M 359 D € RV*N and
where the size M may not necessarily be smaller than N.

Algebraic multigrid (AMG) is one of the most efficient iterative methods for solv-
ing large-scale system of equations [41, 54]. In the past decades, AMG methods
for linear systems having Toeplitz coefficient matrices with scalar entries have been
widely studied [19] including elliptic PDEs [41, 44, 53, 54], fractional PDEs [25,
28, 39] and nonlocal PDEs [20, 22]. Few works have investigated the case of block
entries, where the entries are small generic matrices of fixed size instead of scalars
[10, 11,23,27,31] especially in the case where the spectral information of the related
large matrices are encoded in a spectral symbol [33]. We observe that only a limited
number of papers have studied block-structured linear systems of the form (1), when
dense blocks occur. For example, by defining partial prolongations operators in con-
nection with a Galerkin coarse grid matrix, in [38] the authors design a new AMG
approach for the Stokes problem. Furthermore paper [52] contains a fully aggregation-
based AMG for nonlinear contact problems of saddle point type, where ad hoc transfer
operators are constructed. Using approximate ideal restriction (AIR) operators, in [48]
AIR AMG methods for space-time hybridizable discontinuous Galerkin discretization
of advection-dominated flows are investigated. By defining the interpolation matrix
with the coarse coefficient vector, the authors in [49] propose and study multilevel
Markov chain Monte Carlo AMG algorithms. When involving sparse integral trans-
fer operators towards adaptive smoothed aggregation, in [14] specialized AMG for
nonsymmetric problems are considered. Finally transfer operator based on fractional
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approximation properties and two-grid methods convergence in norm of nonsymmet-
ric algebraic multigrid are presented in the work [36]. However, how to build/check
restriction and prolongation operators in the practice of AMG methods for nonsym-
metric sparse systems is still an interesting open question [14, 36]. In particular, how to
develop/design fast AMG for block-structured dense linear systems (1) is still a prob-
lem to be explored further, since the above special prolongation/transfer operators are
not easy to be employed in connection with the fast Fourier transform.

In the current work, the simple (traditional) restriction operator and prolongation
operator are used in order to handle such block-structured dense systems (1), includ-
ing nonsymmetric indefinite systems, symmetric positive definite (SPD) systems,
Toeplitz-plus-diagonal systems, which derive from the nonlocal problems discussed
in [2, 15, 24,29]. In general, it is still not at all easy to analyse AMG for dense stiffness
matrices [3, 4, 12, 22], unless we can reduce the problem to the Toeplitz setting and
we know the symbol, its zeros, and their orders [44]. Instead we focus our attention on
answering such a question for a two-grid setting, since it is useful from a theoretical
point of view as first step: in fact the study of the AMG convergence usually begins
from the convergence analysis of the two-grid method (TGM) [39, 41, 54]. We focus
our attention in providing a detailed proof of the convergence of TGM for the con-
sidered SPD linear systems. To the best of our knowledge, following previous ideas
in [22], this is the first time that a fast AMG is studied for the block-structured dense
linear systems as those reported in (1).

The outline of this paper is as follows. In Sect.2, we introduce block-structured
dense systems, including applications in nonlocal diffusion problems by the piecewise
quadratic polynomial collocation. In Sect. 3, block-structured V-cycle AMG algorithm
using fast Fourier transforms are designed for Toeplitz-like-plus-cross systems. The
convergence rate of the two-grid method is analyzed in Sect. 4. To show the effective-
ness of the presented schemes, results of numerical experiments are reported in Sect. 5,
including a comparison with a Krylov technique. Finally, in Sect.6 we conclude our
study with relevant remarks and open problems.

2 Block-structured dense systems applications

Nonlocal diffusion problems have been used to model very different scientific phe-
nomena occurring in various applied fields, for example in biology, particle systems,
image processing, coagulation models, mathematical finance, etc. [2, 29]. Recently,
the nonlocal volume-constrained diffusion problems, the so-called nonlocal model for
distinguishing the nonlocal diffusion problems, attracted a wide interest of scientists
[29], where the linear scalar peridynamic model can be considered as a special case
[29, 47]. For example, the nonlocal peridynamic (PD) model has become an attractive
emerging tool for the multiscale material simulations of crack nucleation and growth,
fracture, and failure of composites [47].
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Let us consider the following time-dependent nonlocal volume-constrained diffu-
sion problem [22, 29, 47]

uy— Lsu=f on 2,1t >0,
ux,0)=uy on QU ~, 2)
u=g on Qgz,t >0,

where u is a sufficiently smooth function of x and ¢ with u, = 83—’;. The nonlocal
operator % is defined by [29]

zgu(x,z)=/3()ya<|x—y|)[u(y,r>—u(x,o]dy, VxeQ, 1el0,T],

with Bs(x) = {y € R : |y—x| < 8} denoting a neighborhood centered at x of radius §,
which is the horizon parameter and represents the size of nonlocality. The symmetric
nonlocal kernel is defined as ys(|x — y|) = 0if y ¢ Bs(x).

Before starting to discuss problem (2), we briefly review few preliminary notions
regarding the piecewise quadratic polynomial collocation approximations for the cor-
responding stationary problem

ZLsu = f on Q, 3)
u=g on Qyg,
where u = g denotes a volumetric constraint imposed on a volume 2 » that has a
nonzero volume and is made to be disjoint from 2. In order to keep the expression
simple, below we assume the Q = [0, 1] with the volumetric constraint domain
Qs =[-8,0]U[1, 1+4], but everything can be shifted to an arbitrary interval [a, b].
For convenience, we focus on the special case where the kernel y;(s) is taken to be a
constant, i.e., ys(s) = 3863 [22, 29, 50]. More general kernel types [29, 50] can be
studied in a similar manner.
Consider the nonlocal model on the interval 2 = [a, b] with the volumetric con-
straint domain Q 4 = [a — §,a] U [b, b + 6], 0 < § < b. Define the mesh grid with
uniform spatial stepsize h = (b — a)/N and with mesh points

Xp <X_ .1 <--<X

r+x —

<a=Xx)<X1 <X| <--- “4)
2

D=

TSyt <xN:b<xN+% <ot < XN4rs

where
|8/h], &> h,
r= [S/h], 0<d<h,
0, §=0.

Here |§/h] denotes the greatest integer that is less than or equal to §/k and [§/h]
denotes the smallest integer that is greater than or equal to §/A.
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Let the piecewise quadratic base functions ¢; (x) and ¢, _ 1 (x) be defined as in [5,
p.37]. Then the piecewise Lagrange quadratic interpolant of u(x) is given in [15] in
the following way

N+r N4r—1

ug(x) = Z u(xj')fﬁj(x)-i- Z M<Xj+%) ¢j+%(x), (5)

j==r j==r

which is used in dealing the nonlocal model in (2), leading to the block-structured
dense systems expressed in (1).

Now, we introduce and discuss the discretization scheme of (3). According to the
mesh grid (4), we set

JV:{—r,—r+l,...,—l,0,1,...,N—l,N,...,N+r—1,N+r},
2 2 2 2 2
JI{HZ{1715§7-"7N_15N_1}9 %M{Z‘/‘/\JI{}’['

2 2 2

Define u; as the approximate value of u(x;), fi = f(x;) and g; = g(x;). For conve-
nience of implementation, we use the matrix form of the grid functions as follows

T
Up=|uy,up,...,uy_q,u1,u3,....uy 1| ,
2 2 N_Z

Fp = [fl, fosoos -1 f1 3, -~-,fN_%]T

2.1 Nonsymmetric indefinite block-structured dense systems

By the piecewise quadratic polynomial collocation (5), it is easy to check that the
standard collocation method of stationary problem (3) has the following form [16]

_%ui:‘fia l:ef/%nv (6)
Ui =gi, i € Nous.
As a consequence the numerical scheme (6) can be recast as
N N N A B 3
o, Uy = Fp' with o))" = cpl ™ =28"/h. @)

Here the discrete source function F, hS absorbs the boundary conditions, which can be
treated as in [22].

Note that the above matrices A € RN-DxN=D ' p c RIN-DxN ' o RNx(N=1)
and D € RV*V are all Toeplitz matrices [13, 33]. A matrix X is Toeplitz if it is constant
along the diagonals that is X, ; = x,—; with x; complex coefficients and [/ ranging
according to the sizes of X. The latter implies that X;; = XA :4+a for every A
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compatible with the dimensions of X: from the previous property of invariance under
shift, these matrices are named also shift-invariant, especially in signal processing and
operator theory. In our case we use the notation toeplitz([c]), ¢ € C™, for a square
complex symmetric Toeplitz matrix of order m whose first column is the vector ¢, and
the notation toeplitz([c], [d]), c € C™,d € C™, ¢; = d,, for a generic matrix of
sizes m X my, with first column ¢ and first row d.

Furthermore if ¢ € L (—m,m) by T, ( f ) we denote the Toeplitz matrix generated
by ¢,ie. (Tn(@))s, = ¢)é s, t=1,...,n,with d)k being the k-th Fourier coefficient
of f, thatis

g

~ 1 .
b= $©) e %49, iP=—1, kel
T J—xn

In that case ¢ is called the generating function of 7, (¢) [13, 33]. Moreover T, (¢) coin-
cides with the matrix toeplitz([c], [d]), whenever ¢ contains the Fourier coefficients <¢3k,
k=0,1,...,n—1andd contains the Fourier coefficients qgk, k=0,—-1,...,1—n.
Below we report in detail the matrices A € RWN-Dx(N=D p ¢ RWN=DxN
C € RVxWN _1), D e RNVXN , which, in accordance to the previous notations, are
expressed as

A = toeplitz ([a(), aj,az, - ,dar, 01x(N—r—2)]) ,
= toeplitz [a%,a%, cee ,ar_%, 01X(N71,r)i| s [a%,a%, a%, cee ,ar_%, le(N,,.,l)]) s
tOCplltZ ([COa €0, C1,C25 " 5 Cry 01X(N—r—2)]7 [CO’ C1,€2, " Cr, OIX(N—V—Z)]) ’
= toeplitz ([do,d1 dy,--- ;draolx(N—r—l)])!

with the coefficients [16]

ap=12r -2, ap=-2, a=-—1, 1 <m<r—1,
am+%=—4, O0<m<r—1,
and
9 1
=-2, ¢_1=——, ¢=—, 0<m<r-—2,
4 4

do=12r —4, dp=—4, d,

-2, 1 <m<r-—1.

Since all the reported coefficients are real, the square Toeplitz matrices A and D are
both real and symmetric.

2.2 Symmetric positive definite block-structured dense systems
In Remark 2.2 of [16], it is shown that the discrete maximum principle is not satisfied

for the above nonsymmetric indefinite system (7), which might be trickier for the
stability analysis of the high-order numerical schemes [26, 35]. As a consequence, the
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shifted-symmetric piecewise quadratic polynomial collocation method for nonlocal
model (3) has been considered in [16], which satisfies the discrete maximum principle
and admits symmetric positive definite block-structured dense coefficient matrices.
Namely, the shifted-symmetric system of (6) can be recast as [16]

. A B
Ay Up =y with ) = [ BT g] nn =267 /h. ®)

Here the function F}f is computed as done in (6), the Toeplitz matrices A €
RWN-Dx(N=1) p ¢ RIN-DxN "3nq A € RVXN are defined by

A = toeplitz ([ag, at, az, -+ . ar, 01 x (N—r—2)]) »
B = toeplitz ([a%,a%,... ,ar_%,olx(N_l_,)] , [a%,a%,a%,u. ’ar_%’OIX(N—r—l):I)v
A = toeplitz ([ag, a1, az, -+, ar, O (N —r—1)])
with
ay=12r-2, ap=-2, a=-1, 1<m<r—1,
am+%=—4,05m§r—1. ®)

3 Fast AMG for block-structured dense systems

Multigrid methods are among the most efficient iterative methods for solving large
scale systems of equations [41, 54]. To the best of our knowledge, there is no fast
AMG for block-structured dense linear systems of the type in (1), since the special
prolongation/transfer operators are not easy to be employed in connection with the
fast Fourier transform. Here, the simple (traditional) transfer operator are employed
in order to handle such block-structured dense systems to ensure a fast AMG showing
a O (NlogN) complexity.

3.1 Multigrid methods

Let us first review the basic multigrid technique when applied to a scalar algebraic
linear system, having in mind that our target is the efficient solution of the block-
structured dense linear systems as those reported in (1). Let the finest mesh points be
xi =a-+ih,h = (b —a)/N, N = 2K i =1:N,with Q = (a, b). Define the
multiple levels of grids SB]‘, k=1,..., K, as follows

sB":{xf=a+zl—k(b—a),i=1:1vk} with Ny =2K—1, k=1,...,K,

where B* represents not only the grid with grid spacing h; = 2X=*h, but also the
space of vectors defined on that grid.
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Given an algebraic system of the form
Apu =", (10)
we define a sequence of subsystems on different levels
Ak =bF, ut e k=1,... K.

Here K is the total number of levels, with k = K being the finest level, i.e., Ax = Aj.
The traditional restriction operator / ,f 1 RN — RNe-1and prolongation operator
I,ffl : RM—1 — RNk are defined by [42, pp. 438-454]

121
1 121

T
= and 7 =2(1f7") L an
Ni—1 X Ng

which should be convenient and efficient for block-structured dense linear systems as
those in (1), using AMG and fast Fourier transform. Let

1
k—1 k—1_ k . k—1 k k k .
v = I, v with v =Z(v2i71+2v2i+v2i+1>, i=1,..., Ng,
and
vk = I,fflvk_l.

It may be more useful to define the linear system by using the Galerkin projection in
the AMG method, where the coarse grid problem is defined by

Ao = I Al (12)

and the intermediate (k, k — 1) coarse grid correction operator is
T = I — Ilf—lAk_—llllf_lAk'

We introduce the damped Jacobi iterative operator

Sk =1—wD; Ay (13)
with a weighting factor w, as the smoothing operator, and Dy being the diagonal of
Ay. Then the V-cycle multigrid algorithm can be designed similarly to Algorithm 1 in
[22]: see also [53].

The basic AMG idea for solving the block-structured dense linear systems in (1) is

the same as in the scalar case (10). Define a sequence of block-structured subsystems

du* =bk, Wk ek, k=1,... K,
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with the multiple level of grids

i 2
mkz{%9=a+%%@—ayi=1QNk+l}quNkzﬁ—J,kzlpn,K

(14)

We have
A® g® e [o* . [P

Moreover, we define the intermediate (k, k — 1) coarse grid correction operator as
T = I — IE_ 7\ 1 o (15)
Following (13), the smoothing operator is chosen to be
S =1— 09 o (16)

with weighting factor w, and Z being the diagonal matrix of .o7. Hence the block-
structured dense V-cycle multigrid method is developed in Algorithm 1, with m
pre-smoothing steps, my post-smoothing steps, m| + mp > 1, m, m> nonnegative
integers independent of the matrix order.

3.2 Fast Fourier transform for block-structured dense systems

It is well-known that for any N-by-1 vector x, the product of a Toeplitz matrix 7 and
a vector x can be computed by the fast Fourier transform (FFT) with the computational
cost of & (N log N) arithmetic operations [17, p. 12]. Indeed, given a Toeplitz matrix
Ty, it can be embedded in a circulant matrix Cy of size 2N-by-2N as follows:

Ty * X| | Tnx . | ITn =*
] = a7
Let us consider the fast Fourier transform algorithm for block-structured dense systems
(1) at the finest level, namely,

A B v Av + Bw
%MZ[CD] [w]:[cUJer} (18)

with Toeplitz matrices A € RM*M B ¢ RM*N ¢ ¢ RV*M and D ¢ RV*V,
M < N.

Note that a few early works on matrix—vector multiplication with Toeplitz algebraic
system were focused on square matrices by fast Fourier transform (FFT) [17, 18]. As
reported in [15, 17], the FFT algorithm for the rectangular matrices B and C in (18)
also can be realized, which leads to the computational cost of &' (N log N) arithmetic
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Algorithm 1 Block-structured dense V-cycle multigrid method: Define %, = ,;afl_l.
Assume that Zy_1 : 91— k1 is defined. We now define % : 9tF > M as
an approximate iterative solver for the equation associated with o uf = b.

k
1: Pre-smooth: Let y’k!wmg be defined by (16) and [ Uq( :| =0;forl=1:mq,
w
0

k k bk k
Ul =| V-1 | e [ =g | U
[“’f} |:wlkl:| koopre b Lk,

k—
. . _ e . . .
2: Coarse grid correction: Denote ek—1 = [ Y—1 | € Mi—1 as the approximate solution of the residual
e

_ bk vk
equation o7 _1e = [ /f ! <|: bf: :| — |: e with the iterator %) _| an approximate inverse of
4 mi

Dhe—1s
k—1 k
€y — 3 11 |:fk] — o Uiy
[ ]t ([
K k k-1
vm1+1 Um, k
3: Post-smooth: & = Wk + 1, k 1 | and F% @ post is defined by (16),
my+1 mi
k k hk k
v v
|: lk:|={ 3 :|+Sﬂkwpmr<|:b{:| Q{k|: 3 1})’l:m1+2:m1+m2
Wy wi_y g wi_y

k
4: Define: %y |: {:| |: my-Hmy j|
by m1+Vn2

operations and a required &'(N) storage: indeed, this is an old idea already present in
the classical book by Bini and Pan (see [9] [Chapter 3, Problem 5.1]).

In fact, the technique of embedding rectangular matrices B and C in (18) into
the square Toeplitz matrices is invalid for the coarser level, since it does not keep
block-structured Toeplitz properties, see Example 1 below. Let

uk A® Kk 4 gk
¥e78 k| T c®yk 1 phoyk |-

In AMG, the coarse problem at the level k < K is typically defined using the Galerkin
approach, i.e., the coefficient matrix on the coarser grid can be computed by

ot = I AR (19)
More concretely,

A=) gk—1)
i 1—[C<k D pk-1

| |:A(/<) B®)

Ik
c® p k=1-

j|(2Nk1+l)><(2Nk1+l) ](ZNk+l)x(2Nk+l)
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where I,f_l € RMXCNe+D s oiven in (11).

It should be noted that A®), B® c® D& are Toeplitz matrices if k = K, which
corresponds to the block-structured dense system (18) at the finest level with the
computational count of & (N log N) arithmetic operations. However, there exists a
substantial difference for <7 _ at the coarser level, namely, it does not preserve block-
structured Toeplitz properties, see Example 1. In fact, the resulting cross structure at
the coarser level is not only dependent on the cross structure at the fine level but also
dependent on the Toeplitz blocks.

Example 1 Choose the identity matrices A® ¢ R™7 DK ¢ R8*8 and the rectan-
gular matrices B® € R78, c® ¢ R8*7 with all the entries equal to 1. Using the
Galerkin approximation (19), we deduce

6 1 0112,161616 ]
1 61 12:161616
TP 01 6|13'161616
[Son{pey | = ety = g | 2Ts2)s 4 s |
161616576 1 0
161616|4 11 6 1
| 161616410 1 6 |

and

44 [170' 256
*-2)| pk—2) | |
A(—) B(-) =12 el 1) = — | 170 1641 106 |.
C D 64 | e P =
— 256 [106' 44

o7

We next design fast Fourier transform for block-structured dense systems at the
coarser level in AMG. Let

A® o g® 0 p® 0
d=|0 00 + | g® o® ¢ ® , (20)
c® o p® 0 £® o

QN+ x 2Ng+1) QN+ x 2N +1)

where A B® C® DK are the square matrices with

*) ® Bk w _ | 4% w _ | o® @
BY =[p® BO]. ¢V =] ¢ | PV = gk ph |-

The symbol 0® is a real number, 0 denotes a zero number, and the bold 0 denotes a
zero matrix/vector with the corresponding size. The coefficients p®, £® denote the
column vectors and ¢ ®, ¢ ® denote the row vectors. We may call it the cross-splitting

technique, since we mainly focus on the fast Fourier transform for cross-type matrix
in (20).
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From (20), we find

o A(/:) 0 B(/j) 0 p(k) 0 v’;{
g/ |:wk] = _() 0 9 + q(k) o® C(k) wk
c® o p® 0 f(k) 0 wk
ARk 4 pEopk pPwk
= 0 + | gWvk + oW wk 4 ¢ Bk
OVt + DOk £k

Obviously, since A® pr c® P are Toeplitz matrices, the computation of
ABpk BRI gk €Kk and DK @k by FFT needs &' (NilogNy), and with required
storage ¢'(Ny). For the cross matrix, see p(k), q(k), g“(k), S(k) and o(k), we deduce
O (Ny) complexity and storage operations.

Let the stiffness matrix of the coarser level be

Ak=1) ¢ pk=1) 0 p(k—l) 0

1= 0" 0 0 + | gD pk=D) g l=D) . 2D
Ak—1) ¢ Hk—1 -1
C 0D Nex Ve 0 kD 9 NexNe

Then using (20), (21), and a Galerkin approach in (19), it is easy to obtain the following
results.

Lemmal Let A = {a(k)} _j With a(k) = a;k_)i be a Toeplitz matrix in (20). Then
the elements of A*=V in (2 1 ) can be computed by

Sa(()kfl) (k)+4a(k)+6a(k)+4aik)+a(k)
and

k—1 k k , § ;
8a D = o, + 40l | + 60l + 40l +al),.

(k—1) (k) (k) (k) (k) (k) .
8aZ; " =aly_,+4aly  +6a’y +4aZy Fasy . =1

Moreover, when B®, C® DO are similarly defined as A®, assume p® =
{ p(k) }N" > and £® g® and ¢® similarly ordered, with a given o®. Then the cross
matrix on the coarser level Ny_1 can be computed as follows

D (2 ) 2 )
+ (bng + 2b(k%l+l +5%, ) .

8¢V ( (kz)v Lo + 24 1)Vk+2z+l +a" 1)\1k+21+2> + 2( ) +2ay) +‘1§]f)+1>
+ (cgf) + 2c(k) 1t cgf)) )

801 = (uf? + 250, +bg{1)vk+2)+2< © 4200 1 ()

“) ® 40
+ (), + 260 +a0),
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and

(k=1) (k) (k) (k) (k) (k) (k)
8¢; = (CNk—Zi + 20N, oi1 T CNk—Zi—Z) +2 (521'—1 +2§, + §2i+1)
k) (k) (k)
+ (d72i+2 +2d 5t d72i) .
(k=1) (k) (k) (k) (k) (k) (k)
8 = (b—Nk+2i 2 Nq2in + b—Nk+2i+2> +2 (§2i—1 T2 §2i+1)

k) ® o a®
+ (dZi—2 + 2d2i—1 + dZi ) :

Proof The formulas above are derived by using the Galerkin projection in (19) in order
to obtain a fast computation. O

3.3 The operation count and storage requirement

We now study the computational complexity by the fast Fourier transform and the
required storage for the block-structured dense system (18) in AMG, arising from the
nonlocal problems in Section 2.

From (18), we know that the matrix <7, is a block-structured Toeplitz-like system.
Then, we only need to store the first (last) column, first (last) row and principal diagonal
), which have &' (N) parameters, instead of the full matrix .7, with N 2 entries. From
Example 1 and Lemma 1, we know that {Ay} represents a sequence of matrices with
Toeplitz-like-plus-cross structure requiring a 28~X ¢&’(N) storage. Adding these terms
together, we deduce

St =0O(N)-|(1
orage ()(—}—2 B

11 1 _ 1-K _
_+_+...+2K__1>_<2_2 )ﬁ(N)_ﬁ(N).

Regarding the computational complexity, the matrix—vector product associated with
the matrix <7, can be computed by discrete convolutions, i.e., by a few FFTs. Indeed,
the cost of a cross matrix—vector product is of O(N) arithmetic operations by using
its algebraic expression, while the cost of a dense Toeplitz matrix—vector product is
of O(N log N) arithmetic operations using FFTs. Thus, the total per V-cycle AMG
operation count is

1 1
I

Operation count = &(N log N) - <l + ) = O(Nlog N),

2K-1

with the constant hidden in the big &' being moderate due to the complexity of the
FFT.

4 Convergence of TGM for block-structured dense system (8)

The TGM is rarely used in practice since the coarse grid operator may still be too
large to be solved exactly. However, from a theoretical point of view, its study is
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useful as first step for evaluating the AMG convergence speed, whose analysis usually
begins from that of the TGM [3, 4, 39, 41, 42, 44]. In the following we consider the
convergence of the TGM for symmetric block-structured dense system (8). For any
symmetric positive definite matrix . we can define the associated energy norm with
the Euclidean inner product ||u| |§ﬂ = (Su, u). Since the matrix &7 := &), := Wk is
symmetric positive definite, its diagonal & is a diagonal positive definite matrix and
hence ||u||20j = (Qu, u) is well defined. If we replace Z with &7 2.7, we observe

2
||u||_ﬂ@71£{ = (JZ{M, Jz{v)@_l_

First, we give some Lemmas to be used later.

Lemma 2 [53, p.7] Let <k be a symmetric positive definite matrix. Then

(1) the Jacobi method converges if and only if 29k — <k is symmetric positive
definite;

(2) the damped Jacobi method converges if and only if 0 < w < 2/ )Lmax(.@I}I ).

Lemma 3 [41, p.84] Let @7k be a symmetric positive definite matrix. Let n < w(2 —
wnp) with0 < w < 2/no, no > )Lmax(.@glﬂilg). Then the smoothing operator Sk in
(16) satisfies

1750 g = IVEIE = nllakvE I, 0 wwf e (22)

with MK in (14).

Lemma4 [41, p.89] Let <7y be a symmetric positive definite matrix and smoothing
operator Sk in (16) satisfies (22) and

. K K K—1,2 K2 K K
min vt — 1 v < v , Yvh oeM 23
L min KX NE, < uvKi%, (23)

with 1 > 0 independent of vK. Then, i > 1 > 0 and the convergence factor of TGM
satisfies

|k Tk \lee <1 —n/p, Y& e mK,

where Tk is the coarse grid correction operator defined in (15).

Next we need to check the smoothing condition (22) and approximation property
(23), respectively. We use the notion of weakly and strictly diagonal dominant matrix.
A matrix is weakly diagonal dominant if the modulus of any diagonal element of the
considered matrix is at least as large as the sum of the absolute value of off-diagonal
elements in the same row or column and at least one diagonal element has modulus
strictly larger. Along the same lines, a matrix is strictly diagonal dominant if the
modulus of any diagonal element of the considered matrix is larger than the sum of
the absolute value of off-diagonal elements in the same row or column.
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Lemma5 [51, p.23] Let o7k € RV*N pe symmetric matrix. If <k is a strictly
diagonally dominant or irreducibly weakly diagonally dominant matrix with positive
real diagonal entries, then <k is positive definite.

Lemma 6 Let ok = ,ths be defined by (8) and (9). Then oIk is a weakly diagonally
dominant symmetric matrix with positive entries on the diagonal and nonpositive
off-diagonal entries.

Proof From (9), we have

l<09 Ofmfr_l,

ay >0, a, <0, 1<m<r and A,
2

and

r r—1
ao—i-ZZam—i—ZZaer%:O. (24)
m=1 m=0

The proof is completed. O
We now prove the positive definiteness of the matrix <7 .

Lemma7 Let @k := ,ths be defined by (8). Then <7k is a symmetric positive definite
matrix with positive entries on the diagonal and nonpositive off-diagonal entries.

Proof Let Ly = tridiag(—1,2, —1) € R¥*¥ be the discrete Laplacian operator. Let

. Ly_1 O
g = Hhes — A1 main With Hnain = |: Ié ! LN] . (25)

We can check the matrix —a|&pain With a; < 0 is positive definite. We next prove
es 1 @ semi-positive definite matrix. From (25), we observe @es = 9k +a| Pnain,
which implies that the principal diagonal elements are positive and the off-diagonal
are non-positive of the matrix o%.s. Using Lemma 6, we know s is a weakly
diagonally dominant symmetric matrix. Thus, 2% is a semi-positive definite matrix
by the GerSgorin disc theorem [34, p.388]. The proof is completed. O

Remark 1 Regarding Lemma 7, an alternative proof of the positive definite character
of the matrix o’k can rely completely on Lemma 5. The positivity of the diagonal
entries and <7k and its weak diagonal dominance are established in Lemma 6.

First we observe that a matrix of the form

XY
zVv
with square diagonal blocks X, V is not necessarily irreducible, even in presence of

irreducible diagonal blocks X, V. Indeed the latter is obvious if one takes eitherj or
Z equal to the null block. In our setting, i.e. (8), we see that X = A and V = A are
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irreducible since their tridiagonal parts are irreducible (as in can be plainly checked
looking at the coefficients in (9)).

For checking the irreducible character of <7k , we consider its directed graph starting
fromnode 1in ¥ (A), 4 (A) being the direct graph of A, and visiting all nodes of 4 (A)
with repetitions and ending in node 2. From node 2 we can jump to node N + 1 thanks
to the fact that all diagonal entries of the rectangular matrix ¥ = B are equal to —4, as
in can be checked at the end of Subsection 2.1. Node N + 1 refers to the block V = ;4\
Wthh is irreducible and hence from it we can visit with repetitions all nodes of ¢ (A)
9 (A) being the direct graph of A, stopping at node N. From node N we can jump to
node 1 owing to the relation Z = B so that all the diagonal entries of BT are again
equal to —4.

Hence the directed graph associated to the matrix @7k is strongly connected that is
ok 1s irreducible. In conclusion the matrix <7k is symmetric positive definite thanks
to Lemma 5.

M— 1 E]RM><M

Lemma 8 Let the discrete Laplacian-like operators {LM } and discrete

block-structured Laplacian operators £ be, respectlvely, deﬁned by

Jj—1 zeros

~T

M _ R B
L and Z; [ 0 Lﬁ.v:|'

| —1... 2—M><M

Assume that the integer parameter | belongs to the interval [1, M — 1]. Then the
matrices

[ l
2 2 M+N
7 2 L -y, 7} | -4 and 2.4 — LT (26)

are all positive definite.

Proof The first results of this lemma can be seen in Lemma 3.10 of [22], which implies
that the second one is also satisfied, since
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On the other hand, we can check that 2.¥] — lew *N s an irreducible and weakly
diagonally dominant symmetric matrix, which means that it is positive definite by
Lemma 5. The proof is completed. O

Remark 2 In order to understand the spectral features of the matrices considered in
Lemma 8, we can adopt the analysis via the related generating functions, since all
the matrices in Lemma 8 are of real symmetric banded Toeplitz type, so they admit
real-valued trigonometric polynomials as generating functions (see [44] and references
therein): on the other hand the matrices .Z; are block diagonal and hence their spectral
analysis reduces to the Toeplitz setting. For instance, according to the notation in
[44] concisely recalled in Sect.?2.1, L?’I = Ty (2 — 2cos(j6O)) that is the function

2 — 2cos(j#@) is the generating function of L?’I . From classical results, we know
that Tys (f) is positive definite for any matrix-size M if f is essentially bounded and
nonnegative, with positive essential supremum. In the present setting, the maximum
of 2 — 2cos(j#O) is 4 and its minimum is zero and hence L?” =Ty (2 —2cos(jh))
is positive definite. Not only this: if the nonnegative generating function f has a
unique zero of order & > 0 then the minimal eigenvalue of Tj;( f) is positive and, for
M — o0, converges monotonically to zero as ¢/ M with ¢ depending on the second
derivative of f at the zero if it is positive. Based on these results, we can deduce that
L?” is positive definite, has minimal eigenvalue positive converging monotonically

to zero as ¢;/M? with positive ¢, independent of M, and c; related to the second
derivative of 2 — 2 cos(j6) at 6 = 0.
Of course, by linearity, the Toeplitz matrix, i.e., the first one in (26), has generat-
!
ing function given by f;(0) = % > [2—=2cos(jO)] ) — (2 —2cos()) and hence
Jj=1
by studying this generating function, we deduce that this Toeplitz matrix is positive
definite, has minimal eigenvalue positive converging monotonically to zero as ¢/M?
with positive ¢ independent of M. Hence its condition number grow exactly as M?
and since the related generating function has a unique zero of order 2 at = 0, there is
a formal justification in using standard projectors and restriction operators, like those
employed in the standard AMG, for the classical discrete Laplacian (see [3, 32, 44]
and references therein).

Lemma9 Let o = szhs be defined by (8). Then the damped Jacobi iteration con-
vergences with relaxation parameter 0 < w < 1, and the smoothing operator Sk in

(16) satisfies

1
K2 K2 K2 K K
1505 1y < 10511, = S 110 I, WK e,
K

Proof Accordingto (8)and (9), using Lemma 6, we know that the matrix <7 is weakly
diagonal dominant, since

r r—1
a0+22am+22am+% =0.
m=0

m=1
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2N-1
Ordering the entries in </ and taking «7x = { (&) o ve find
i,j=

Z|a(1<)| - a(K) a.
J#F

Using the Ger$gorin disc theorem [34, p.388], the eigenvalues of <7k belong to the

union of the disks centered at a( ) with radius rl.(K). Namely, the eigenvalues A of the
matrix o7k satisfy

K K

|)\—al.(’i)| < rl.( )

’

(K) (K)

which leads to Amax (k) < aj) +r{*) <24 = 2a{%) = 24y.
From Rayleigh theorem [34 p 235] we deduce
T
Amax (k) = max ———, Vx € R".

x#0  x'Xx

Take x = [1,0,...,0]". Then
T
x' Ay x
Amax (k) > T = aiﬁ) = ao,

and

Amax (7] Amax (<]

s (7000 et ) = PtR) BTy g

a1 4o
where Pk is the diagonal part of o7k .

From Lemma 2, the damped Jacobi method converges with 0 < @ < 1. By follow-
ing either a similar proof as in Lemma 7 or using the arguments in Remark 1, we can
check that 29k — @/ is symmetric positive definite. Then using Lemma 2 again, the
Jacobi method converges. Hence, the damped Jacobi iteration with relaxation param-
eter 0 < w < 1 converges. As a consequence, the desired results are obtained by
employing Lemma 3. O

Lemma 10 Let o7 = ,27}15 be defined by (8). Then

. K K . K—1,2 K2 K K
min vt —1 v < 24|lv vt e IM*.
L min oK NE, < 24052,

Proof Let the discrete block-structured Laplacian-like operators be defined by

Lo L1071 [0 0
P = J — j -
o [ 0 Lﬁ‘v} [ 0 0]*[0 L;.Vi|’ j=1.20r,
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where the discrete Laplacian-like operators {Li.v_l};:1 € RW=Dx(N=D, {Li.v}’/:1 €
RN*N are given in Lemma 8.
From (8), the block-structured dense matrix 2/x can be denoted as the series sum

with Laplacian-like operators .Z, i.e.,

A B - - 0 B
%KZ[BTX]Z__X;W‘ZJ-’_% and # = ao+22;aj I+|:BT 0i|
Jj= Jj=

27)

with / an identity matrix.

Using (9), we obtain ag +2 Y, _ am +2 Y 10 a,,. 1 = 0, which implies that
A is a weakly diagonally dominant symmetric matrix with positive entries on the
diagonal part and nonpositive off-diagonal entries. As a consequence, by applying
the GerSgorin disc theorem, we deduce that the matrix % is symmetric and semi-
positive definite.

From (27), (9) and Lemma 8, we obtain

A = o2 (S 88 -2
> _% (L%Nfvi’ vK) > Z_g (L%Nflvl(, VK)
= ;—Z HVK - I,I((fviH2 = i HUK - Illgflvj ;K .
The proof is completed. O

Theorem 1 Let o/ = %S be defined by (8). Then the convergence factor of the TGM
satisfies

IIYK%(IIWK </47/48 < 1.

Proof By combining the results in Lemmas 3, 4, 9 and 10, the desired result follows.
O

Remark 3 The problem treated in the present work is one-dimensional. when pure
Toeplitz structures appear or even GLT matrix-sequences are considered the d dimen-
sional AMG design is somehow guided by the symbol and and hence d dimensional
problems are not a problem with d > 2; see [10, 11, 27] and references therein. Here
the mixture of block and cross structures is more delicate and more work is required
for a d-dimensional generalization.
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5 Numerical results

We employ the V-cycle block-structured AMG described in Algorithm 1 to solve the
time-dependent nonlocal problems in Section 2. The stopping criterion is taken as

||r(l)|| ~15
[1r0]]

where r® is the residual vector after i iterations, the number of pre-smoothing step
m1 = 1 and post-smoothing step my = 1, and the weighted Jacobi relaxation

(Wpre, Wposr) = (1,1/2). In all tables, N denotes the number of spatial grid points,
and the numerical errors (“Error”) are measured by the /o, (maximum) vector norm,
which is computed exactly since we know the analytic solution in our example, “Rate”
denotes the convergence order, i.e.,

I (1103 = U lloe/ 11U, = Upl1oo)
In2 '

Rate =

“CPU” denotes the total CPU time in seconds (s) for solving the discretized systems,
“Iter” denotes the average number of iterations required to solve algebraic systems
at each time step. Here, u} denotes the approximated value of u(x;, #,) and f" =
f(xi, t,) withthe meshpoints O =1y <t <--- <ty, =T andt =T/N;.

All numerical experiments are programmed in Matlab, and the computations are
carried out on a desktop computer with the configuration: Intel(R) Core(TM) i7-7700
3.60 GHZ and 8 GB RAM and a 64 bit Windows 10 operating system.

First we consider the time-dependent nonlocal models (2) in Section 2. The initial
value and the forcing term are chosen such that the exact solution of the considered
equations is

ux,H=e 1+x° 0<x<1, 0<r<1.
We apply the following BDF4 method to such nonlocal models

25 4 1
(El + mf) Ut =4u" — 3y 4 gU"_3 - ZU"_4 +TF", n=4,5,..., N;.

(28)

Here the operator <7 denotes the block-structured systems (7) and (8), respectively.
It should be noted that the convergence analysis of time-dependent nonlocal model
(2) with @ (¢* + hmx(24728Y) s = ¢ (h?), B > 0 can be found in [1, 16]. The
convergence rate of the two-grid method for time-dependent block-structured systems
(8) can be directly obtained by Theorem 1 and [25].

Remark 4 Regarding the approximation error we observe that the formula
Y <T4 n hmax{2,4—2ﬁ}>’ 5=0(hP), p =0,

@ Springer



Fast algebraic multigrid... Page 210f27 57

implies that the optimal relation between t and # is of the form 7 = Vh for B=>1,
while for 8 € [0, 1) the best choice is T = h!~#/2. Hence when selecting a constant
& we would have T = h, while for § = 'l we would have T = h3/4. In the following
numerical experiments, for § = 1/4 (8 = 0) and § = N (B = 1/2), we have
uniformly chosen T = #h, since it is optimal in the first case and not far from the
optimal choice even in the case § = /.

Remark 5 Regarding the linear systems in (28), with t going to zero as the matrix-size
tends to infinity, we deduce that the related matrix-sequence has spectrum clustered
at 25/12 and this makes the related linear systems not difficult to solve.

We further extend the V-cycle block-structured algebraic multigrid Algorithm 1 to
simulate the nonlocal models with nonsymmetric indefinite block-structured dense
systems and symmetric positive definite block-structured dense systems, respectively.

5.1 Nonsymmetric indefinite block-structured dense systems

Table 1 shows that fast algebraic multigrid (FAMG) proposed for the BDF4 scheme
(28) stemming from time-dependent nonlocal model (2) with nonsymmetric indefinite
block-structured dense systems is efficient and robust. Indeed, the proposed method
requires a computational cost of &'(NlogN) arithmetic operations. This can be seen
by combining the &'(NlogN) cost per iteration proven in Sect.3.3 and a number of
iteration which is uniformly bounded. In fact the number of iterations decreases mildly
and this agree with Remark 5. We also observe a favorable CPU time following a almost
linear growth with the matrix-size. We also present for comparison the performances
of the fast conjugate gradient least square method (FCGS) for nonsymmetric indefinite
systems (7), the result shows that the convergence rate is the same as that simulated
by FAMG. However for § = Jh , the CPU time is not competitive- Furthermore, the
optimality is lost because the number of iterations grows with the matrix-size. Hence
the related overall cost is not longer of &'(NlogN) arithmetic operations, at least for
the FCGS method.

Finally in order to check the robustness of our technique and taking into account
Remark 5, we consider a variation of the linear systems in (28) where the constant
25/12 is replaced with « = 1, 1/10, 1/100. In fact, the smaller « > 0 is, the more
the system is ill-conditioned. With this setting of parameters the algorithm FAMG is
robust while we observe a certain increase in the iteration count for FCGS (Table 2).

5.2 Symmetric positive definite block-structured dense systems

Table 3 shows that the proposed FAMG for solving the BDF4 scheme (28) with
symmetric block-structured dense systems is robust, which implies a &'(Nlog/N) com-
plexity and a very good CPU time. As comparative tests, Table 3 presents the results
of solving symmetric indefinite systems (8) by means of FCGS. Again we observe
that the CPU timing deteriorates with the matrix-size, since the method is not optimal
and the iteration number grows when increasing the dimension and when § = /7, at
least for the FCGS method.
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Table 2 Nonsymmetric — _ —

indefinite block-structured dense Noa=l @ =1/10 o = 1/100

systems performed as (28): here CPU Iter  CPU Iter  CPU Iter

25/12 is replaced with

o =1,1/10, 1/100, FAMG 25 0.1332s 3 0.1928s 5 0.2028s 5

respectively, § = 1/4 and 26033075 3 0.4293s 4 0.5313s 5

. iterion is taken a:

o MG OGS we 27 0.6399s 2 0.8627s 3 14893 5

haver =h =1/N FCGS 25 00767s 8 0.1598s 18  0.1612s 16
20 02348 9 0.4054s 17  0.3670s 20

27 07737s 15 2.5597s 52 2.5330s 51

6 Conclusions

In this paper, we considered the solutions of block-structured dense and Toeplitz-like-
plus-cross systems arising from nonlocal diffusion problem. We designed an AMG for
block-structured dense and Toeplitz-like-plus-cross systems, by making also use of
fast Fourier transform, and we provided an estimate of the TGM convergence rate for
the nonlocal problem with symmetric positive definite block-structured dense linear
systems. In this specific context, we answered the question on how to define coarsening
and interpolation operators, when the stiffness matrix leads to nonsymmetric systems
[14, 36]. The simple (traditional) restriction operator and prolongation operator are
employed for such Toeplitz-like-plus-cross systems, so that the entries of the sequence
of subsystems are explicitly determined on different levels.

For the future, at least three questions arise and we plan to investigate them. More
precisely:

e since the structures arising from the same type of problems but in d dimensions,
d > 2, are definitely more involved due to the simultaneous presence of tensor
and cross operations, the related design of efficient AMG solvers is not trivial and
it represents a subject to be investigated;

e we would like to consider the study of the TGM convergence analysis for non-
symmetric block-structured dense systems and the analysis of the full AMG for
symmetric block-structured dense systems, based on the ideas presented in [20,
22];

e we plan a more complete comparison with preconditioned Krylov solvers designed
for block problems [7, 8] and indefinite structured problems [43], taking into
account the theoretical barriers in the multilevel setting [45, 46].
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