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Abstract

This doctoral dissertation addresses a spectrum of research topics, unified by the
general objective of unfolding factors that shape well-being at the national and
individual levels. The ambition is that findings from this study might improve policy
decision-making and, therefore, boost societal and individual well-being. However,
it is crucial to perceive each chapter as a standalone article. As such, they delve
into unique research questions, each requiring distinct data and methodological
approaches.

Chapter 1 – Predicting Depression in Old Age: Combining Life Course
Data with Machine Learning. Published in Economics & Human Biology. With
ageing populations, understanding life course factors that raise the risk of depres-
sion in old age may help anticipate needs and reduce healthcare costs in the long run.
In this Chapter, we estimate the risk of depression in old age by combining adult life
biographies and childhood conditions in supervised machine learning algorithms.
Using data from the Survey of Health, Ageing and Retirement in Europe (SHARE),
we implement and compare the performance of six alternative machine learning
algorithms. We analyse the performance of the algorithms using different life-course
data configurations. While we obtain similar predictive abilities between algorithms,
we achieve the highest predictive performance when employing semi-structured
representations of life courses using sequence data. We use the Shapley Additive
Explanations method to extract the most decisive predictive patterns. Age, health,
childhood conditions, and low education predict most depression risk later in life.
Still, we identify new predictive patterns in indicators of life course instability and
low utilization of dental care services.
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Chapter 2 – The Old Folks at Home: Parental Retirement and Adult
Children Well-Being. Submitted. In this Chapter, we appeal to changes in the
UK State Pension eligibility age to establish the causal effect of parental retirement
on adult children’s well-being. In a Fuzzy Regression Discontinuity Design analy-
sis, maternal retirement increases adult children’s life and income satisfaction by
0.20 standard deviations in the short run. In Differences-in-Difference regressions,
fathers’ delayed retirement increases adult sons’ life and income satisfaction by
0.14 and 0.12 standard deviations. These impacts are stronger for adult children
with lower incomes, with young dependents of their own, and who live close to their
retired parents. We emphasize the critical role of intergenerational time transfers
from retired mothers in enhancing their adult children’s well-being.

Chapter 3 – Small Pictures, Big Biases: The Adverse Effect of an Airbnb
Anti-discrimination Policy. Using scraped data from the Airbnb platform in
New York City alongside state-of-the-art Vision Transformers models for image
classification, this Chapter investigates the magnitude of ethnic disparities in the
Airbnb platform and the impact of a policy to address them. First, we show that
Black hosts have a 7.2 percentage points lower occupancy rate than their White
counterparts despite no differences in pricing. For Asian and Hispanic hosts, the
difference from Whites is small and mostly insignificant for both occupancy rate
and prices. Second, using difference-in-differences and event studies approaches,
we show that the Airbnb anti-discrimination policy, which reduced the size of users’
profile pictures on the platform, unexpectedly increased the Black-White disparity
by about 4 percentage points. As a reaction to the adverse impact of the new policy,
Black hosts start offering more basic amenities for their listings. We argue that
a potential mechanism for the increase in Black-White disparity stems from the
increasing guests’ uncertainty in discerning facial features that positively correlate
with occupancy rates from the smaller profile pictures. As a result, guests focus
more on skin color.

Chapter 4 – Spatial Comprehensive Well-Being Composite Indicators
based on Bayesian Latent Factor Model: Evidence from Italian provinces.
Published in Social Indicators Research. This Chapter proposes spatial comprehen-
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sive composite indicators to evaluate the well-being levels and ranking of Italian
provinces with data from the Equitable and Sustainable Well-Being dashboard.
We use a method based on Bayesian latent factor models, which allow us to in-
clude spatial dependence across the units of analysis, quantify uncertainty in the
resulting estimates, and estimate data-driven weights for elementary indicators.
The results reveal that our data-driven approach changes the resulting composite
indicator rankings compared to traditional composite indicator approaches. Esti-
mated social and economic well-being is unequally distributed among southern and
northern Italian provinces. In contrast, the environmental dimension appears less
spatially clustered, and its composite indicators also reach above-average levels in
the southern provinces. The time series of well-being composite indicators of Italian
macro-areas shows clustering and macro-areas discrimination on larger territorial
units.

Chapter 5 – Quality of Government for Environmental Well-Being? Sub-
national Evidence from European Regions. Submitted. This Chapter investi-
gates the relationship between quality of government and environmental well-being
in European regions at the NUTS-2 level. First, we quantified a significant spatial
correlation in subnational environmental data. Therefore, we construct a set of
composite indicators of environmental well-being through Bayesian spatial factor
analysis. Finally, we use these composite indicators in spatial regression analysis
and find that institutional quality is a key determinant of environmental well-being.
We also find heterogeneity in the institutions-environment nexus across dimensions
of environmental wellbeing —institutions matter especially for air and soil quality.
Policymakers should be aware that environmental destruction can be tackled by
building more effective regional institutions.

iii
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General Introduction

What This Dissertation Is About

Well-being is a multi-dimensional and expanding concept. As a consequence, well-
being research is an interdisciplinary field where economics analysis pairs with
psychology, moral philosophy, and, more recently, computer science and advanced
statistical methods. Findings from this blend of disciplines have marked many
academic milestones. Happiness does not correlate with income after a certain
high threshold (Easterlin, 1973), and it tends to return to a stable set-point over
time (Brickman et al., 1978). Unemployment modified this set point in the long
run, affecting life satisfaction for those who remain employed (Lucas et al., 2004),
and reducing air pollution improves children’s health (Simeonova et al., 2021).
More recently, advanced machine learning models could predict early mortality
and personality traits (Savcisens et al., 2024). Yet, the field is not saturated, and
researchers are still discussing what well-being entails, how to measure it, predict it,
and what contributes to it. This ongoing debate underscores the need for continuing
research on well-being to inform policy and improve quality of life.

This dissertation contributes to the current debate on well-being by focusing on
three cross-cutting research areas: predictive analytics and machine learning in
well-being research, inter-generational spillovers on well-being, and the impact of
policies and institutional quality on well-being. Within these macro areas, each
chapter addresses current policy priorities: mental health, population aging, ethnic
discrimination, going beyond GDP measure, and environmental degradation.

In this introduction, I zoom into each of these three focal areas and highlight
the distinctive contributions of this thesis. First, I explore how advanced computa-
tional methods can guide optimal resource allocation and advance the knowledge

1



of well-being determinants. Second, I present the relevance of spillover and inter-
generational studies. Then, I discuss the crucial role of effective governance and
policy design in shaping well-being outcomes. Finally, I present the outline of this
dissertation.

Predictive Models in Well-Being Research

Recent advancements in predictive modeling, improved computer capabilities, and
higher accessibility have boosted the expansion of machine-learning applications
in all spheres, including economics. Here, machine learning tools have proven to
accurately predict socio-economic outcomes, such as pupil school dropouts (Sansone,
2019) and economic developments (Ahn et al., 2023). In well-being research, there
is growing yet sometimes contrasting evidence of machine learning models’ abilities
to predict subjective well-being outcomes, such as quality of life (Jannani et al.,
2021), life satisfaction (Oparina et al., 2022), or mental health (Garriga et al., 2022).
But first, one natural question arises: What is the need to obtain machine learning
predictions in well-being research?

In any field of economics, the choice between traditional causal approaches and
machine learning always hinges on a critical trade-off: prioritizing identifying the
cause of an event or obtaining precise out-of-sample predictions of the likelihood
of such events occurring. Causal approaches are essential for understanding the
underlying factors that drive well-being outcomes, enabling policymakers to design
interventions that precisely target specific causes. In contrast, machine learning
excels in processing large, complex datasets and finding hidden patterns to accu-
rately predict outcomes, which is invaluable for identifying targets and optimizing
resource allocation (Kleinberg et al., 2015).

In the economics of well-being, machine learning models can predict which
populations are most at risk of ill-being, allowing resources to be directed more
efficiently toward preventive measures. Together, these approaches complement
each other: causal analysis provides the ”why,” while machine learning offers the
”who,” creating a robust framework for informed policymaking and effective resource
allocation.

Compared to other subjective well-being outcomes, mental health is among the
most challenging but most relevant nowadays to target (WHO, 2021), especially in
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old age. Poor mental health might indeed turn into severe chronic diseases, such as
depression, anxiety, dementia, and many more, which are all hard to diagnose and
even harder to prevent and treat. In old age, the problem of detecting who is at risk
of mental illnesses is magnified by the stigma associated with aging, which leads to
confounding symptoms of mental disorders with symptoms of aging. If policymakers
aim to guarantee happier and healthier lives for all its citizens, including the elderly,
targeting mental health is a critical starting point.

The complexity of predicting depression lies in the highly dimensional arrays of
potential triggers and their interactions, both observable, such as parental divorce
(Cherlin et al., 1998) and financial distress (Guan et al., 2022), and unobservable,
like genetics and phenotypical traits. These underlying complexities motivate using
machine learning algorithms to predict the risk of depression outbreaks and, if
successful, complement human practitioners in their diagnosis. Still, a question
remains open: Can depression be predicted from socioeconomic information?

Chapter 1 of this dissertation answers this question by applying machine learning
techniques to predict the risk of clinical depression in old age from socioeconomic life
course information. It proves that socio-economic biographical information paired
with a machine learning algorithm can help identify vulnerable individuals. It also
reveals new insights into the life course factors influencing mental health. These
findings highlight the potential of predictive models in identifying who is at risk of
potential ill-being and revealing neglected determinants of mental well-being.

Inter-Generational and Spillover Effects

Government interventions often have far-reaching consequences that extend beyond
their immediate targets, influencing not only the direct recipients but also their
families and broader communities (Angelucci & Di Maro, 2010). These effects,
known as spillover effects, are critical for understanding the full impact of public
policies. By examining these effects, researchers can uncover how policies aimed at
one target population can ripple through to affect the well-being of future generations
and other groups within society.

Positive and negative spillover effects of public interventions have been found
across several fields. For example, deworming programs in Kenya significantly
improved the educational outcomes of untreated pupils (Miguel & Kremer, 2004).
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Older siblings’ educational choices causally impacted the younger’ (Altmejd et al.,
2021). Retirement choices spillover across spouses (Garcı́a-Miralles & Leganza,
2024). Most existing studies focus on spillover among siblings or peers, spouses
or coworkers. Less attention has been given to inter-generational spillover effects,
i.e., how public policies targeting one generation influence the youngest. Among
them, only a few look at the spillover effect of old age public intervention (see, e.g.,
Ilciukas, 2023), and none look at subjective well-being outcomes.

This oversight is partly due to population aging becoming a prominent phe-
nomenon in most wealthy countries only in recent decades.

Population aging, paired with decreasing fertility rates, is challenging the finan-
cial sustainability of the pension system in many OECD countries. As such, many
governments in the OECD countries have gradually modified some of the elements
of their pension systems, and postponing the statutory retirement age is among the
most common intervention (OECD, 2023).

To fully gauge the potential impacts of such direct intervention, a crucial question
is whether retirement is good or bad for retirees’ well-being. Therefore, what would
the impact of postponing retirement be? At the same time, policymakers must
consider potential intergenerational spillover effects and how retirement affects the
well-being of other family members, including their adult children in the workforce.

Chapter 2 provides answers to these questions by adopting a causal approach.
It investigates the direct causal effect of parental retirement on retirees and their
adult children’s well-being (aged 25-45). It reveals significant retirement inter-
generational spillover effects that vary by socioeconomic status and proximity to
parents. These findings underscore the importance of considering the broader
consequences of retirement interventions, as they often extend beyond the intended
beneficiaries and can contribute to widening social inequalities.

Impact of Policies and Institutional Quality on Well-being

Well-designed policies and well-functioning institutions are essential for fostering
environments where well-being can thrive. Conversely, poor institutional quality
and ineffective policies can exacerbate inequalities, reduce trust in public systems,
and ultimately undermine societal well-being. This section delves into these three
facets and explains the specific criticality this thesis addresses.
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Anti-Discrimination policies Discrimination, defined as treating someone dif-
ferently based on traits like gender, ethnicity, or age, remains a crucial barrier to
reaching equality in market outcomes. It limits opportunities, damages self-esteem
(Jackson et al., 2019), and undermines societal efficiency by wasting talent and
fostering segregation (Feagin and McKinney, 2005).

Designing effective policies to curb the socioeconomic harms of discrimination
is challenging. Since Gary Becker’s seminal work in 1957 (Becker, 1957), various
economic models have attempted to explain the persistence and evolution of dis-
crimination, revealing that its causes and forms are diverse and context-dependent.
This diversity requires tailored anti-discrimination intervention; otherwise, such
policies risk backfiring and worsening the issues they aim to address (see, e.g., Agan
and Starr, 2018; Doleac and Hansen, 2020).

The rise of digital platforms like Airbnb has brought about new challenges in
combating discrimination. While these platforms have implemented design changes
to reduce discrimination, the core feature of sharing personal information—such as
profile pictures and names—can inadvertently facilitate discriminatory behaviors.

Chapter 3 of this dissertation quantifies ethnic disparities in Airbnb market
outcomes and assesses the effectiveness of an anti-discrimination policy introduced
in October 2018. First, it describes a striking disparity in occupancy rates between
minority hosts, especially Black hosts, and whites, which is not explained by apart-
ment location or other observable characteristics. Second, the anti-discrimination
policy evaluation surprisingly reveals backfiring effects that significantly increased
the Black-White gap the 6-month after its implementation.

Composite indicators Well-being is multidimensional; the different yet related
outcomes presented so far reflect this idea. Analyzing single proxies of well-being
has advantages for effective policy-making, such as narrowing potential policy recom-
mendations and facilitating analytical approaches, as most standard econometrics
models assume a one-dimensional outcome. However, this uni-dimensional approach
naturally lacks a holistic perspective on well-being evolving dimensions. As such,
focusing on a single outcome might lead to underestimating or overestimating the
actual well-being response and bias the resource allocation process in policymaking.

One growing well-being research area focuses on developing composite indicators
(CIs) to address this issue. Composite Indicators are numerical measures that
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simultaneously synthesize multiple dimensions. A notable example is the Human
Development Index, introduced in 1990, which combines life expectancy, education,
and income into a single measure, setting a precedent for development studies.

The 2009 report by the Commission on the Measurement of Economic Perfor-
mance and Social Progress, led by Stiglitz, Sen, and Fitoussi, underscored the
limitations of GDP as a measure of social progress, advocating for new indicators
that “Going beyond GDP” to assess quality of life (Stiglitz et al., 2009). This report
catalyzed the creation of new well-being frameworks, such as the Better Life Index.

Despite these advances, well-known composite indicators face limitations, in-
cluding the arbitrary selection of indicators and weights, a lack of uncertainty
measures, and failure to account for spatial spillovers. Addressing these issues
is essential for improving the precision, transparency, and relevance of well-being
measures for optimal resource allocation. Chapter 4 of this dissertation applies
a new Bayesian statistical methodology to overcome these challenges and create
more comprehensive and reliable well-being composite indicators that better inform
policymakers.

Quality of Governance Governance quality refers to effectiveness, transparency,
and accountability, including the legal framework, efficiency, and the rule of law, and
is strictly related to institutions’ quality (Kaufmann et al., 2009). Good governance
boosts effective policies that protect individual rights, ensure equitable resource dis-
tribution, and maintain social stability, all foundational to promoting well-being. On
the other hand, lousy governance often struggles with corruption, inefficiency, and
poor service delivery, which can lead to adverse outcomes for well-being (Acemoglu
et al., 2005).

Environmental degradation is among the key challenges many governments
worldwide are attempting to solve. Here, striking heterogeneity appears within and
across countries. A key question is the role of government quality in explaining
these disparities and how to provide a comprehensive measure of environmental
quality.

Chapter 5 explores the role of institutional quality in environmental well-being.
It quantifies a robust positive correlation between effective governance and better
environmental outcomes at the European subnational level. Despite the risk of
reverse causality, these findings suggest that improving the quality of governance
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might be a first step toward enhancing environmental well-being.

Dissertation outline

This dissertation explores three cross-cutting dimensions of well-being research:
predictive analytics and machine learning, intergenerational and spillover effects,
and the impact of policy design and governance quality on well-being. Developing
in five different but complementary chapters, the research investigates explicitly (1)
machine learning tools to predict depression in old age, highlighting the potential
of predictive analytics in well-being studies, (2) parental retirement spillover effects
on adult children’s subjective well-being, (3) ethnic disparities and the impact of
anti-discrimination policies in the digital platform context, (4) Bayesian spatial
models for well-being composite indicators constructions, (5) the role of governance
quality for environmental well-being.

Chapter 1, “Predicting Depression in Old Age: Combining Life Course Data with
Machine Learning,” assesses the predictive power of individual socioeconomic life
biographies combined with machine learning algorithms in predicting depression
in old age. We derive life biographies and depression measurements in later life
from retrospective data collected in the Survey of Health Aging and Retirement in
Europe. We operationalize adult life biographies using a sequence analysis approach.
We then optimize six machine learning algorithms with increasing flexibility, i.e.,
Logistics Regression, three Regularized Regressions, Extreme Gradient Boosting,
and Artificial Neural Network, on four different representations of life biographies.
These various data representations reflect the increasing complexity of the input
dataset given to the model.

Moreover, we stratify the sample by sex to investigate whether the predictive
ability of these algorithms differs based on sex. We then apply the SHAP framework
to identify the most critical predictors among the many that were used.

We show that depression is indeed predictable, better in women than in men.
The Extreme Gradient Boosting performs best among the various algorithms, and
the optimal performance is reached using a semi-structured data configuration.
New predictors emerged for both sexes. Going regularly to the dentist throughout
life decreases the likelihood of depression in old age, while higher emotional life
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entropy increases the risk of depression. More broadly, these results show that
depression is predictable from socioeconomic characteristics and that machine
learning models can broaden the boundaries of knowledge by identifying previously
neglected predictive factors.

Chapter 2, “The Old Folks at Home: Parental Retirement and Adult Children
Well-being,” investigates the causal effects of retirement on the well-being of older
parents and their adult children in the United Kingdom. Using data from two
nationally representative household surveys, the British Household Panel (BHPS)
and the UK Household Longitudinal Study (UKHLS), we construct a panel of parent-
child dyads to track changes in their socioeconomic characteristics and well-being
around parental retirement.

We employ two causal identification strategies. The first uses the Statutory
Pension Age, at 60 for women and 65 for men, as an exogenous cutoff in a Fuzzy
Regression Discontinuity design. Our second-stage results indicate that retirement
positively affects retirees’ well-being, increasing life and leisure satisfaction and
mental health while decreasing financial well-being. Maternal retirement positively
impacts adult children’s well-being, improving life and income satisfaction. This
spillover effect is most pronounced among adult children with young children, those
in lower income percentiles, and those living closer to their mothers.

The second strategy exploits two UK Pension Acts, implemented in 2010 and
2018, which raised the Statutory Pension Age from 60 to 66 for women and from 65
to 66 for men, using a difference-in-difference approach. We found no significant
spillover effects of maternal retirement on adult children’s well-being but observed
negative effects from paternal retirement. Our key finding is that public policies can
have inter-generational spillover effects with significant distributional consequences,
emphasizing the importance of both financial and time transfers. These spillovers
should be considered when designing policies that alter retirement behaviour.

Chapter 3, “Small Pictures, Big Biases: the Adverse Effects of an Airbnb Anti-
discrimination Policy,” examines the issue of ethnic discrimination against service
providers in the emerging digital platforms market, using Airbnb as a case study.
Combining scraped data from Airbnb with a state-of-the-art Vision Transformer
for image classification, we first explore ethnic disparities in two market outcomes:
occupancy rates and prices. Ordinary least square regression estimates, controlling
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for a wide range of traditional and novel covariates, reveal that Black hosts have
lower occupancy rates than comparable White hosts. Still, there is no significant
difference in pricing. The disparity between Asian and White hosts is smaller but
still significant for both outcomes, while no disparity is found for Hispanic hosts.

Next, we evaluate the impact of an anti-discrimination intervention introduced
in October 2018, utilizing difference-in-differences and event study methodologies.
The intervention involved reducing the size of profile photos from 225 to 109 square
pixels. Surprisingly, our findings indicate a significant and robust negative causal
effect of the policy, which increased the ethnic disparity in occupancy rates between
Black and White hosts by approximately four percentage points. We interpret
this outcome as resulting from the policy’s reduction of positive signals potentially
inferred by Airbnb guests from profile pictures, which inadvertently led them to
rely more heavily on skin color when assessing a host’s quality.

Chapter 4, “Spatial Comprehensive Well-Being Composite Indicators based on
Bayesian Latent Factor Model: evidence from Italian Provinces,” argues that Well-
Being, as a macro indicator for policymakers, requires precise and informative
statistical constructs while remaining interpretable. It, therefore, explores an
innovative Bayesian approach to constructing Well-Being composite indicators that
leverage the spatial correlation among the units of analysis, which improves the
estimate’s precision and provides a more informative estimate through uncertainty
quantification.

We use this method on data from the Italian “Equitable and Sustainable well-
being dashboard”, which measures several elementary well-being indicators over
time in the 110 Italian municipalities. We first group the elementary indicator
into three macro Well-Being dimensions: Social, Economic and Environmental.
Therefore, we apply the Bayesian Latent Factor model to obtain a composite indicator
for each Italian municipality in each well-being dimension. We then descriptively
assess the resulting provinces’ well-being ranking through maps and bar plots and
compare these rankings to the one produced by the widely adopted Mazziotta-Pareto
approach. We show that our proposed methodology results in similar but more
informative estimates with respect to this last approach. Moreover, this approach is
also practical for dealing with missing data in the elementary indicators.

Chapter 5, “Quality of government for environmental Well-Being? Subnational
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Evidence from European Regions”, tackles some limitations of Chapter 4, namely the
shortage of elementary indicators for the precise quantification of the Environmental
dimension of Well-Being. It also delves into an empirical question, exploring the role
of institutional quality in influencing environmental well-being at the sub-national
level in Europe.

A dashboard of sixteen elementary environmental indicators divided into four
macro groups is collected: air, soil, water, and energy quality, measured in 233
European regions (NUTS-2), and the quality of government index for three years:
2010, 2013, and 2017. Government quality is defined as “the extent to which states
perform their required activities and administer public services in an impartial and
uncorrupted manner”. Therefore, we construct composite indicators of environmen-
tal well-being by adopting the same methodology as in the previous chapter for each
environmental macro dimension. First, we highlight significant inequalities within
countries regarding environmental well-being levels. Then, we estimate a battery
of spatially lag regression models, where the dependent variable is the composite
indicators of environmental well-being and the independent variable is the quality
of governments measured with a lagged time. We show a robust and significant
positive correlation between the quality of governments and each dimension of
environmental well-being.
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Chapter 1

Predicting Depression in Old Age:
Combining Life Course Data with
Machine Learning

Montorsi, C., Fusco, A., Van Kerm, P., & Bordas, S. P. (2024). Predicting depression in old age:
Combining life course data with machine learning. Economics & Human Biology, 52, 101331.



1.1 Introduction

Population ageing is one of the critical challenges of our times (United Nations,
Department of Economic and Social Affairs, 2019). The share of the EU population
above the age of 65 will reach almost 30% by 2050 (starting from 19.2 % in 2016).
Understanding well-being in old age is therefore a priority. Mental health is a crucial
aspect of it, with mental illness having detrimental individual consequences – such
as a negative impact on productivity (Beck et al., 2011) – and bearing important
costs for society – the annual cost of depression and anxiety amounts to USD 1
trillion for the global economy (OECD and European Union, 2018; The Lancet Global
Health, 2020). To date however, mental health in old age surprisingly received less
attention than in other age groups. Due to discrimination and stigma associated
with ageing, mental disorders in old age are under-treated and under-diagnosed in
primary care settings (WHO, 2017). From a policy perspective, it appears crucial
to provide preventive tools to help identify at-risk populations and anticipate the
onset of depression in old age.

Predicting depression is, however, a challenging task. A non-linear combination
of individual biographies, predetermined genetic and epigenetic factors, and possibly
cultural influences likely shape depression risks (Kennedy, 2001).

Previous research has shown that mental disorders threatening successful age-
ing may result from complex combinations of circumstances and events taking place
throughout the entire life span, as well as exposure to different institutions (Colman
& Ataullahjan, 2010; Currie & Almond, 2011; Falkingham et al., 2020; Layard et al.,
2014; Pakpahan et al., 2017). Central to life course epidemiology theories is that
health-related states are shaped by endogenous and exogenous forces interacting
through time. Notably, the effect of these forces is different along the life cycle, with
‘sensitive’ periods of development where specific experiences may exert a marked
influence over future history (Bornstein, 1989). The complexity and high dimen-
sionality of the mechanisms at play when we examine how life course experiences
influence old age outcomes challenge traditional modelling techniques.

Against this background, this paper exploits supervised machine learning algo-
rithms (SML) to assess how much individual life course data can predict clinical
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measures of depression in old age. We employ life course biographies of individuals
aged 50+ contained in a dedicated module of the Survey of Health, Ageing, and
Retirement in Europe (SHARE) collected in nineteen European countries. The
data contain both clinical measures of depression at the time of interview and
retrospective data collected in a different wave of the survey. The retrospective
data records livelihood information during childhood and tracks rich biographical
information related to employment and activity status, marital status and family
composition, location of residence, housing status, general health conditions, and
periods of financial stress.

The predictive performance of such biographical information on old-age depres-
sion is informative in two ways. First, it indicates the potential long-term impacts of
(the absence of) life events on future mental health conditions. Of course, predictive
performance does not imply direct causation. Nonetheless, given the relatively rich
set of past life course variables (and of contemporaneous variables) that we consider
and because of the way we extract potentially meaningful signals from sequences
of events, we trust the predictive power of biographies on old-age depression is
plausibly informative of long-term health effects of life events and conditions. Sec-
ond – even in the absence of identification of causal relationships – the ability of
biographical data to predict depression and identify individuals at a heightened
health risk can be useful from an epidemiological and prevention perspective. This
may complement existing approaches that mine, e.g., electronic health records or
medical screening (Nemesure et al., 2021 and Garriga et al., 2022).

Our raw biographical data contain, for each respondent, annual status infor-
mation from the ages of 15 to 49 across six domains of life (activity status, health,
location of residence, home ownership status, family situation and financial situa-

There is a growing literature using SML in economics and social sciences focusing on objective
outcomes: in the fields of criminal justice (Berk, 2012), economic well-being measurement at a
granular level using mobile data or satellite imagery (Engstrom et al., 2016), means testing in
developing countries (McBride & Nichols, 2018), high school dropouts (Sansone, 2019) or inequality
of opportunity measurement (Brunori & Neidhöfer, 2021). SML models have also been used with
subjective data in the context of analysis of affective forecasting (Wilson & Gilbert, 2005), prediction of
happiness, health, and depression from a combination of high-frequency data and surveys (Jaques et
al., 2015 and Oparina et al., 2022), daily stress prediction from mobile phone and weather conditions
data (Bogomolov et al., 2014), and to predict depression among university students (Choudhury
et al., 2019).

Notably, clinical information included in electronic health records are not harmonized across
countries (Bincoletto, 2020) and may therefore limit possibilities to learn from cross-national popu-
lation records. Medical screening may be costly and invasive. Biographical data, on the contrary,
may potentially be collected relatively easily – especially when few biographical markers are of
importance, as we find.
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tion). In their most flexible forms, SML algorithms can be fed with raw, unstructured
input data – here all respondents’ 34 annual statuses in all 6 dimensions – and
algorithmically extract the most predictive combination of input. Such models,
however, risk producing predictions based on combinations of statuses that are hard
to interpret. Therefore, we also examine the predictive performance of models run
on alternative, more structured encodings of biographical information. Predictions
obtained from structured encodings of biographies can lead to outcomes with clearer
interpretation. If rolled out for clinical predictions, that may lead to more straight-
forward data collection requirements. This can also enhance the performance of
simple off-the-shelf algorithms by reducing the dimensionality of the prediction task
(Christodoulou et al., 2019).

Our structured data encoding strategy is based on sequence analysis (Abbott,
1995). Similarly to DNA molecules representation, this approach represents an
individual life history as an ordered string of characters – a sequence – representing
each life domain. Following the methodology proposed in Wahrendorf et al., 2013,
Studer and Ritschard, 2016 and Bolano and Studer, 2020, we extract interpretable
information from the sequences in two ways of increasing dimensionality: (i) by
grouping similar sequences into a small number of groups (by cluster analysis),
and (ii) by summarizing sequences by a set of sequence attributes (timing of events,
ordering of events, duration of states and entropy of the sequence). As we show,
using the latter as input to SML models outperforms both the coarse clustering
approach and the fully unstructured raw input for predicting depression later in
life and highlights easily interpretable sequence attributes as markers of risk.

Machine learning models have proved to excel at capturing complex non-linear
interactions and generally outperform conventional linear prediction models for
health outcomes (Leist et al., 2022). As mentioned above, recent studies have focused
on symptoms of depression (Librenza-Garcia et al., 2021) predicted from electronic
health records (EHR) or medical screening (Garriga et al., 2022; Nemesure et al.,
2021), or have looked at post-therapeutic-treatment outcomes (Sajjadian et al.,
2021). We therefore benchmark the predictive capacity of life course information
with two different predictor sets. The first is a minimal predictor set including

We focus on these life domains because they are all the ones whose life sequences we could
construct from the SHARELIFE questionnaire. In addition, we chose this specific lifetime frame to
capture as much information about adulthood as possible but excluding socio-economic circumstances
that might co-occur with the depression measurement.
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only demographic variables, e.g., country of residence, age, birth cohort, interview
year, educational level, age at first childbirth, and migration status. The second is
the predictive capacity of clinical studies targeting depression risk (Garriga et al.,
2022).

A shortcoming of many SML approaches is the difficulty of interpreting predic-
tions. Lack of interpretability might result from the intrinsic black box character
of SML methods such as neural networks or ensemble methods such as Gradient
Boosting. To obtain insights about predictor roles, we follow the recent literature
on ”interpretable machine learning” (Lundberg & Lee, 2017) and use the Shapley
additive explanations (SHAP) to assess the predictive power of the input variables.

The results highlight well-known predictors of depression, such as age, health,
childhood conditions, and education level, for both sexes. Additionally, we identify
two biographical predictors for depression risk. The first is the entropy of the
general life trajectory. The general life trajectory collects information about periods
of happiness, stress, financial strain, and hunger that individuals experience at
one or more moments. The entropy in the trajectory indicates how many of these
periods have happened throughout the life course.

The higher the number of remarkable periods (positive or negative), the greater
the likelihood of depression in later life. This reveals the potentially detrimental
impact of instability in life trajectories. The literature on depression epidemiology
has so far neglected this lifetime measure.

The second is low lifetime utilization of dental care services, which stands out as
a key predictor of later-life depression. Although a direct causal impact is plausible
– e.g., through persistent pain due to poor dental health or aesthetics impacts of
poor dentition – it is likely that low lifetime dental care captures limited access to
general, non-essential healthcare services or poor self-care.

On the technical side, we find that more complex SML algorithms do not system-
atically outperform standard logistic models in our data. We achieve the highest pre-
dictive performance when we use semi-structured input data based on life sequence
attributes combined with a Gradient Boosting model. Compared to the minimal
benchmark, the predictive accuracy, judged by the Area Under the Precision-Recall
curve (PR-AUC), increases by around ten percentage points for the Gradient Boost-
ing when using sequence attributes as input. This improvement confirms that
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biographical data matters for predicting accuracy. Moreover, we find a difference
of around five percentage points in predictive accuracy between the structured
and unstructured sequences’ encoding. Our results confirm that imposing some
structure on the underlying input data both enhances interpretability and improves
predictive performance.

Independently of the algorithm, a PR-AUC of 0.77 for females and 0.65 for
males is a reliable maximum given the type of available information (Saito and
Rehmsmeier, 2015). These predictive results are consistent with other studies
targeting similar outcomes (Bogomolov et al., 2014; Garriga et al., 2022).

The remainder of the article is organized as follows. Section 1.2 describes the
source survey, and Section 1.3 outlines the methods. Section 1.4 elaborates on the
predictive findings. Section 1.5 provides a discussion of the results, while section
1.6 concludes the paper.

1.2 Data

1.2.1 The sample

Our analysis draws data from the bi-annual Survey of Health, Ageing, and Re-
tirement in Europe (SHARE). The SHARE survey has collected individual-level
data on health, socio-economic status, and social and family networks of more than
123,000 individuals aged 50+ from 2004 to 2020 (Börsch-Supan, 2019). A feature of
SHARE that makes it particularly suitable for our application is the retrospective
questionnaire SHARELIFE. The questionnaire was included in the third (2008 –
2009) and the seventh waves (2017) and includes modules on several individual
life dimensions, such as childhood conditions, partnerships and parenting, employ-
ment trajectories, migration, housing, and financial histories. SHARELIFE collects
retrospective information using the so-called ”life-grid approach”. The life-grid
approach supplements the interviewers’ questions with a graphical longitudinal
representation of the respondents’ lives. The interviewer fills the grid during the
interview, ending with information for each respondent’s age.

A potential problem of retrospective data is the recall bias if respondents sys-
tematically incorrectly remember past life events (Havari & Mazzonna, 2015). To
limit the influence of recall bias, we include only individuals aged 50 to 88 when
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answering the SHARELIFE interviews and exclude individuals who had difficulties
responding to the retrospective questionnaire.

The countries covered are Austria, Belgium, Switzerland, Czech Republic, Ger-
many, Denmark, Spain, France, Greece, Italy, Poland, Sweden, the Netherlands,
Luxembourg, Hungary, Portugal, Slovenia, Estonia, and Croatia. The analysis is
conducted by pooling these countries and stratifying the sample by sex. The final
respondent sample includes 58,323 respondents (32,984 females, 25,339 males).

1.2.2 Measure of depression

The outcome of interest is a binary indicator of clinical depression. We construct this
measure from the 12 EURO-D items of depressive symptoms stored in the mental
health module of SHARE (waves 1 to 6, SHARELIFE waves 3 and 7 are excluded).
The construct, face, and content validity and reliability of this measure have widely
been validated by the literature (Prince et al., 1999; Walker & Schimmack, 2008).
EURO-D scores range between a minimum of 0 and a maximum of 12, with a score
of at least 4 indicating ”clinical depression” and below 4 ”no depression”.

SHARE is a bi-annual panel study. For some individuals, we have repeated
observations. We define them as ‘depressed’ if they have at least one measure of
depression over the observation period, i.e., we selected the individual observation
where depression is positive. If they have more than one depression measurement,
we randomly choose one. This selection criterion results in a relatively high depres-
sion prevalence, 49% for females and 29% for males. Figure 1.1 and Appendix 1.A
illustrate the distribution of depression prevalence within the analyzed countries at
NUTS3 and NUTS2 levels, stratified by sex.

In line with the literature, the depression prevalence is unequally distributed
Another potential threat underlying retrospective data is the influence of depression on memory

tasks (LeMoult & Gotlib, 2019). For example, scholars found that depressed patients recall negative
episodes with disproportionate frequency than non-depressed patients (Dillon & Pizzagalli, 2018).
When it comes to autobiographical memory tasks, depressed individuals tend to over-report positive
autobiographical memories and recall little details (Williams et al., 2007). Studies suggest that
cognitive bias may occur in depressed individuals but do not provide consistent evidence of mem-
ory accuracy loss, where patients misremember specific events. Moreover, these studies target a
population of severely depressed individuals. Our reference sample is representative of the general
population, characterized by mild to low depressive symptoms. The issue is also partially addressed
as the measurement of depression and the collection of retrospective information occurred at years
of distance (see below).

For more information on this depression threshold validation, see Prince et al. (1999). We also
analyzed different threshold values, e.g., 3, 5, and 6 as a sensitivity test. We observe a decrease in
models’ predictive ability at higher threshold values.
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(Van de Velde et al., 2010). First, females display a higher propensity to be de-
pressed than males. Second, except for Croatia, we observe a gradient in depression
prevalence across more economically developed and less economically developed
countries. Croatia, Denmark, the Netherlands, Sweden, and Switzerland have the
lowest depression prevalence. At the top of the distribution are Poland, Portugal,
France, Italy, and Estonia. We address these differences in the analysis by stratify-
ing the sample by sex and including country and macro-region (NUTS1) information
and country-age interactions among the predictors.

Figure 1.1: Map of depression (%) among individuals aged 50+ at the NUTS3 level,
by sex

1.2.3 Predictor sets

Drawing upon a large literature on the determinants of depression risks (e.g.,
Arpino et al., 2018; Atkins et al., 2020; Blazer et al., 1985; Flèche et al., 2021; Kisely,
2016; Zheng et al., 2021), our predictors can be classified into three main groups:
demographic characteristics, descriptors of family background and childhood condi-
tions, and, crucially, adulthood biographies descriptors that we construct from life
sequences.

Demographic characteristics

Demographic characteristics include birth cohort, age at the time of depression
measurement, sex, country and macro-region of residence, educational achievement,
migration status, and age at first childbirth (see Appendix 1.B for details).

We also incorporate three predictors pertaining to adulthood that we did not
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directly mine from life sequences: two indicators of health – whether the respondent
has ever measured blood pressure during their lifetime and whether they regularly
visited the dentist – and an indicator of an individual’s socioeconomic status between
20 and 30 (Wahrendorf et al., 2013).

Childhood conditions

Childhood variables come from the childhood retrospective module of SHARELIFE.
We include childhood conditions that, according to the literature, influence later-life
well-being: childhood socioeconomic position, material deprivation, childhood health
and family composition (Arpino et al., 2018; Clark & Lee, 2021; Flèche et al., 2021;
Wood et al., 2017). See Appendix 1.B for details.

Adulthood biographies

We encodes adulthood biographical information over the ages 15 to 49 following
the literature on sequence analysis. Sequences are objects of an ordered list of
successive elements chosen from a finite list of states, named alphabet (Abbott,
1995). Sequences’ strength relies on their holistic perspective over the life course,
which enables capturing complex dynamics and life transitions. Notwithstanding
the extolled potential highlighted in their first formulation, their use in scientific
applications has been limited (Aisenbrey & Fasang, 2010; Liao et al., 2022; Studer
& Ritschard, 2016).

We constructed life sequences for six variables: work status, housing arrange-
ment, family, health, residence location, and general life events. The family sequence
combines information on partner history, children’s history, and cohabitation his-
tory. We obtained the work, health, and housing arrangement sequences from
the gateway portal harmonized sequences (Program on Global Aging, Health, and
Policy, 2021). We added additional states in case of missing data. We constructed
sequences and corresponding figures in R using the TraMineR package (Gabadinho
et al., 2011). Figure 1.2 exemplifies the six life sequences we constructed for each

This analysis uses information from the Harmonized SHARE Life History dataset and codebook,
Version B as of February 2020, developed by the Gateway to Global Aging Data in collaboration
with the University of DD̈usseldorf. The development of the Harmonized SHARE Life History was
funded by the National Institute on Ageing (R01 AG030153, RC2 AG036619, R03 AG043052).

Missing information in the life trajectories is rare except for the location of residence. Appendix
1.C reports the alphabet and definitions for the six variables.
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individual in our sample.
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Figure 1.2: Representation of six life dimensions for an individual. Each rectangle represents an age and each colour represents a
different state
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Different ways of coding sequences can be used to construct sets of variables
input to the SML models. The first and lowest dimensional sequence representation
is that of sequences’ cluster membership. Clusters categorize sequences based on
similarities in the states and transitions over life sequences. The second set decodes
life history information based on four specific sequence characteristics. Finally, the
third set describes life trajectories in unstructured form where each binary variable
represents a combination of age and life trajectory status.

Sequences’ clusters Typologies or clusters are the most common sequence con-
figuration employed in social science applications. This involves grouping similar
sequences in a small number of clusters. To construct clusters, we follow a stan-
dardized procedure. We start by creating individual sequences for each life course
variable. Next, we assess the dissimilarities between sequences for each life dimen-
sion and create a distance matrix. Several measures exist to estimate dissimilarities
among sequences (Gabadinho et al., 2011). In our empirical application, we use
the Dynamic Hamming Distance (DHD) proposed by Lesnard, 2010. Once we get a
matrix of sequences’ dissimilarities, we perform cluster analysis (Ward methods) to
regroup the more similar sequences into clusters. To select the number of clusters,
we used the nbClust package in R (Charrad et al., 2014) and retained the solution
that maximizes the silhouette index (Kaufman & Rousseeuw, 2009). The optimal
number of clusters differs among the analyzed dimensions and across sexes. In the
family trajectories, the algorithm detected four clusters for both females and males;
in the work trajectories, the algorithm detected two clusters for males and four
clusters for females; in health trajectories, the algorithm identified three groups for
both sexes; in the residence location trajectory, it detected five clusters for both sexes;
lastly, in the general life trajectories, the algorithm finds two clusters for males
and three clusters for females. This predictor set contains around 180 variables.
(Appendix 1.D provides detailed information on the adopted clusters.)

This measure belongs to the class of ”edit” distances, which equates distance to the minimal cost
of transforming one sequence into another. What determines this cost are the number of operations
required to transform one sequence into another and the cost of each operation. There are two
primary operations: substitution and insertion-deletion (indel). The distinct characteristics of the
DHD distance are its state-dependent and time-variant substitution costs (e.g., the cost of changing
from the state of ”in education” to the condition of ”employment” differs whether we are at the
beginning of or at the end of the working career)
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Sequences’ features The second data configuration we employ is that of sequence
features. We extract four well-established features: ordering, duration, timing, and
entropy (Billari et al., 2006; Bolano & Studer, 2020; Studer & Ritschard, 2016).

Ordering refers to the order in which the states appear along the sequence. The
social norms attached to this sequential aspect are well-documented. For example,
the social consequences of having a child before marriage differ from when the first
childbirth occurs after marriage.

To capture indicators of the ordering, we employ ”frequent sub-sequence mining.”
A sub-sequence is frequent if it occurs in more than 10% of sequences. Given a
sequence s, e.g., A-B-C, a sub-sequence z is any subset of s that respects the ordering
of s, e.g., A-B, B-C, A-C, A, B, C is all sub-sequences of s. Frequent sub-sequence
are not mutually exclusive since the pattern A-B-C does not exclude the pattern
A-B. We extract a list of frequent sub-sequences for each life course variable. We
generate indicator variables for each extracted sub-sequence indicating the presence
or absence of the sub-sequence in each trajectory.

The second extracted sequences feature is the spell duration. The duration
represents an individual’s overall time in a specific sequence’s state, for example,
how long it has been married. This sequencing feature mirrors the concept of
exposure to a given event. It has a crucial role in life course studies. For example,
Mossakowski (2009) estimate a negative effect of unemployment spell duration on
mental health and well-being.

The concept of timing refers to the age at which a transition from one state to
another occurred. The timing of events plays a relevant social role, given the presence
of age-related social norms. For example, the critical period model emphasized the
differential impact on the mental health of experiencing unemployment at the
beginning or middle of a working career. The same applies to childbirth or marriage
age. In our analysis, we included a timing indicator that refers to the time of each
transition to different states over five years. For example, if an individual gets
married at age 25, we created an indicator variable ”20-25.married” that captures
the transition to married and the time of its occurrence.

Finally, we included a measurement of within-sequence entropy. The within-
sequence entropy measures the stability of the states along the trajectory. This
measure does not account for states’ order or distinguish between positive and
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adverse conditions. The life course literature has largely overlooked the dimension
of entropy when predicting future life outcomes. However, our definition of entropy
is consistent with the concept of life changes. The entropy is equal to zero when
the individual has experienced no life changes throughout the trajectory and one
when the same amount of time has elapsed in each possible variable’s states. Life
changes were discussed in various areas of research (see Haslam et al., 2021, Lin
and Ensel, 1989 and Rahe, 1975). By increasing uncertainty in life, life changes call
into question the sense of autonomy and self-continuity, possibly impairing wellness
and mental health. Moreover, adverse effects of life changes are more likely to arise
when individuals lack substantial social support (Lin & Ensel, 1989).

Following the literature on sequence analysis, we measure within sequence
entropy (normalized) by the Shannon entropy formula:

h(p1, . . . , pa) =
−
∑a

i=1 pilog2(pi)

log2a

where a is the size of the sequence alphabet and pi is the proportion of occurrence’s
of the ith state in the considered sequence. The sequence features’ configuration
counts around 360 predictors, combining sub-sequencing, duration, timing, and
entropy.

Unstructured sequence Our third input data configuration involves creating
binary columns that represent a combination of age and life trajectory state for
each life dimension. For example, the housing sequence has six potential states
(e.g., owner, tenant, non-private, abroad, parent house, missing) combined with
the 34 years; it results in 6*34 = 204 binary columns for the combination of each
year of age and housing modality. This procedure generates a high-dimensional
predictor set of over a thousand predictors. The resulting configuration is highly
unstructured and sparse but has the potential, in principle, to outperform more
structured configurations when combined with SML algorithms.

Pre-processing

We pre-processed all input data before feeding them into the algorithms. Around
20% of respondents have at least one missing value in the selected childhood, demo-
graphic or life-course variables. We imputed missing values separately by country
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to preserve differences in mean and covariance structures and encode missing val-
ues patterns. As a sensitivity analysis (available upon request), we repeated our
exercise, dropping observations with missing variables; the results were unchanged.

Pre-processing also involved excluding predictors with excessive collinearity. For
more information on pre-processing, see Appendix 1.E.

1.3 Methods: Machine learning predictions

1.3.1 Models

Machine learning algorithms are data-driven methods that help discover patterns
otherwise neglected by traditional models. For an extensive illustration of these
methods, see Hastie et al. (2009). Supervised Machine learning (SML) algorithms
automatically build a predictive function F that maps X ∈ X , the predictor set, to a
prediction ŷ ∈ Y. The predictive function F is what we estimate from the data.

As Athey (2019) pointed out, estimating a range of machine learning models is
advisable as the predictive performance of different models differs with alternative
input data configurations. Accordingly, we considered four types of standard, largely
off-the-shelf, models. We started from the simplest approach based on logistic
regression models fit by maximum likelihood. We then proceeded along the trade-off
between model complexity and interpretability by applying regularization methods
(logistic regression with lasso, ridge and elastic-net penalties), a tree-based method
(Extreme Gradient Boosting XGBoost), and an artificial neural network. (Appendix
1.F describes each of these four models in more details.) Figure 1.3 illustrates
the input configurations and machine learning models explored. Moving along
the diagonal, from the top left to the bottom right, learning models and input
configurations increase their complexity.

We imputed missing data with the R package missForest (Stekhoven & Bühlmann, 2012), which
relies on an iterative method based on the Random Forest algorithm. This non-parametric algorithm
has the advantage that it can handle mixed types of variables
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Figure 1.3: Models-Inputs framework

1.3.2 Hyperparameter selection and assessment of predictive

performance

All our models were trained to maximize the Area Under the Precision-Recall curve
(PR-AUC). When predicting health outcomes, the recall (sensitivity or true positive
rate) and the Area Under the Precision-Recall curve (PR-AUC) are standard model
selection and evaluation criteria (Steyerberg et al., 2010). These metrics overcome
the accuracy paradox and train the models to maximize their depression detection.

The recall represents the proportion of depressed people that the model correctly
identifies. It is an essential metric for disease diagnostic tools, as it measures the
reliability of the diagnostic tool in detecting the disease. We optimised this metric
as predicting an individual is not at risk of depression when developing depression
symptoms is more costly than the opposite mistake. The precision represents the
proportion of genuinely depressed among those predicted as depressed.

The PR curve – the orange line in Figure 1.4 – relates, at all possible threshold
probability values, the recall and the precision. The baseline of the PR curve
is the horizontal line with the y-value equal to the depression prevalence in the
sample. The AUC measures the area under the PR curve. When the AUC is near
one, the classifier separates classes perfectly. An AUC near zero indicates the
worst separability measure. Larger values of this metric indicate better model
performance. Optimizing this metric allows achieving the optimal trade-off between
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precision and recall (Saito and Rehmsmeier, 2015).

Figure 1.4: Precision-Recall curve

Prior to model estimation, we divided the sample into a training subsample (80%
of the total sample) and a separate test subsample (20%). The PR-AUC was then
used both to determine model hyperparameters (in the training data) and assess
the final models’ predictive performance (in the test data).

Generally, an SML model requires optimizing two parameters in a training
dataset: structural parameters (e.g., the parameters of the logistic regression) and
model hyper-parameters (e.g., the shrinkage factor in regularisation methods or
the tree depth in tree-based approaches). Optimizing the structural parameters is
embedded in the model estimators and typically involves minimizing a loss function
(aggregate prediction error). To determine the model’s hyper-parameters, we used
stratified ten-fold cross-validation with random or grid search (or both) in the hyper-
parameter space.

Predictive performance measures reported in the next section are the PR-AUC
measures achieved in the test data with the model (hyper-)parameters obtained in
the training data.

We divided the training data set into ten folds of equal size, preserving the percentage of
samples for each target class in each fold. We repeated the same procedure ten times for each fold
and hyper-parameter configuration: keeping out one fold (validation set) and training the model on
the remaining nine folds. We chose the hyper-parameters combination that maximizes the predictive
score across folds. See Appendix 1.G for a description of the hyperparameters obtained for each
model
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1.4 Results

1.4.1 Predictive Performance

Figure 1.5 and 1.6 illustrate the PR-AUC across models, input structures, and sex.
The box plots illustrate the distribution of predictive performances in the training
sample. The red dots indicate the predictive score in the test sample. We benchmark
our models’ performance against two different baselines. The first is a minimal
baseline where we only use demographic information (age, interview year, interview
season, country and macro-region of residence, education, cohort, children, and
migrant status). The second is a model from clinical studies that use health records
and medical screenings.

The first input structure we explore is that of the sequences’ clusters (two-dashed
box plot). The predictor set counts around 180 predictors, remaining relatively small
not to create multicollinearity issues. The best-performing models are the Gradient
Boosting (XGBoost) and regularized regressions, which reach around 0.687 PR-AUC
in the females’ sample and 0.467 PR-AUC in the males’ sample.

We then change the life sequences’ configuration structure from clusters to
sequence features (long-dashed box plot). The predictor set now counts around 360
predictors. The PR-AUC in the training and test sets increases in all classifiers.
The best model is the Gradient Boosting, which settles at a PR-AUC of 0.768 for
females and 0.647 for males.

Finally, we try the unstructured sequence configuration (dot-dashed box plot).
This predictor set counts around 390 predictors. The PR-AUC is slightly higher than
the cluster configuration but smaller than the sequences’ features configuration. In
this highly multicollinear setting, the noise in the input structure increases sub-
stantially. The models find less relevant patterns in the data to improve predictive
performance.

The similarity in predictive performance across different algorithms indicates
that complex algorithms are comparable to the traditional logistic regression model
for the data at hand. Similar conclusions are reached in other clinical studies (for a
systematic review, see Christodoulou et al., 2019).

Differences in predictive performance estimates between the training and test samples reflect
overfitting when the algorithms perform well on the training data but poorly out-of-sample.
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Compared with the baseline predictor set (solid-line box plot), models trained
with life course predictors achieve better predictive performance. The PR-AUC
improves by around ten to twenty percentage points for all algorithms: life course
information does increase the ability for depression risk detection.

Significant differences in predictive performance across sexes emerge. Using the
same type of life course information, the models achieve a PR-AUC of around 10
percentage points higher in the females’ sample than in the males’ sample. This
result highlights a need to differentiate depression diagnosis procedures by sex, as
it would be highly insufficient to look only at socio-demographic factors to detect
male depression.

Figure 1.5: Area-Under-Precision-Recall curve across models and input configura-
tions, female sample
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Figure 1.6: Area-Under-Precision-Recall curve across models and input configura-
tions, male sample
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The comparison of our life-course approach with current medical studies reveals
that biographical data have a similar predicting ability than concurrent medical
screening and health records (see Librenza-Garcia et al., 2021 and Garriga et al.,
2022). These clinical studies reach a ROC-AUC of around 0.71-0.75. We reach a
maximum ROC-AUC of around 0.757 for females and 0.772 for males (see Appendix
1.H for other predictive performance metrics).

We illustrate two potential explanations for these prediction results. The first
explanation targets the inner nature of the target variable we analyzed and the
predictors we included. The expected out-of-sample test error, for a given value
x0 and a given learning algorithm f(x), can always be written as the sum of three
fundamental quantities:

E(y0 − f̂(x0))
2 = Var(f̂(x0))︸ ︷︷ ︸

variance

+ [Bias(f̂(x0))]2︸ ︷︷ ︸
bias

+ Var(ϵ)︸ ︷︷ ︸
irreducible error variance

(1.1)

The variance of the models is given by the changes in the model’s parameter esti-
mates when changing the training set x0. The bias refers to the error in fitting a
real-life problem with an oversimplified function.

In simple terms, the learning procedure aims to create a model that can make
accurate predictions by reducing the number of errors it makes. However, there is a
limit to how accurate predictions can be, given by the element Var(ϵ) in equation
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1.1. Our model-building procedure, based on repeated cross-validations, ensures we
have taken all necessary steps to minimize model errors.

The value of the irreducible component depends on the nature of the data and the
amount of information available. This paper targets a self-reported depression indi-
cator that may be related to unobserved respondents’ characteristics. For example,
respondents can drastically change their depression perception if a dramatic acci-
dent occurs a few days before the interview. This situation will remain unobservable
no matter how many predictors we include in the predictor set. Another element
we do not control for but that correlates with depression is genetic endowment
(Levinson, 2006).

As an extension of the main results presented here we report ML models’ perfor-
mances for different EURO-D depression thresholds, i.e., 3, 5, and 6 in Appendix 1.J.
For all algorithms, increasing the EURO-D depression thresholds deteriorates the
classification performance. The fewer depressed examples in the sample, the less
information is available for the algorithms to learn significant depression patterns.
This reduction affects the models’ detection ability of depressed cases.

1.4.2 SHAP values across sexes

This section sheds light on the complexity behind the ML algorithms’ predictions. We
sought to understand how variables contributed to generating the final individual
predicted probabilities for each sex. We employ the Shapley Additive exPlanations
(SHAP) method for this aim. This method has provided reliable and consistent
results in previous research (Lundberg & Lee, 2017). SHAP relies on the Shapley
values concept, which originates from the collaborative game theory (Shapley, 1953).
Contrary to other variable importance metrics, the SHAP framework is the only
explanation method that can, in principle, explain any predictive model, i.e., it is a
model-agnostic tool (Lundberg et al., 2020; Molnar, 2020).

The general idea underlying the SHAP framework is to estimate, for any given
A second potential explanation addresses the dimensionality of the sample used to train the

algorithms. Black-box SML models typically need big data to exploit their predictive ability fully.
The empirical sample in this analysis counts around 60,000 observations. This relatively small
sample size may limit the model’s detection ability. To test this explanation, we trained our models by
increasing fractions of the training data, from 10% to 90%. For each training fraction, we computed
the test PR-AUC. We observed that with 20% of the training data, the test AUC reaches almost the
same score as the whole training set (see Appendix 1.I), suggesting training-size independence and
ruling out limited sample sizes as a source of the limited ability of models to predict depression
accurately.
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model, a simpler explanation model, which corresponds to an interpretable approxi-
mation of the initial model. Given a vector x of p predictor variables, x = [x1, . . . , xp],
and a trained model f , SHAP approximate the model f with a simple explanation
model g that has the following form:

g(z) = ϕ0 +

p∑
i=1

ϕizi. (1.2)

In equation 1.2, z = [z1, . . . , zp] is a coalition vector, where zi is equal to 1 if the
variable xi is present and 0 if the variable is absent, p is the number of predictors,
and ϕi ∈ R is the variable i contribution to the model predictions, i.e., the Shapley
value. The Shapley value ϕi is then estimated through the following equation:

ϕi(f, x) =
∑
z⊂x

| z |!(p− | z | −1)!

p!
[f(z)− f(z\i)] (1.3)

where | z | is the number of non-zero entries in z.
The exact estimation of each ϕi may be computationally infeasible. However,

Lundberg and Lee (2017) and Lundberg et al. (2018) introduced efficient algorithms
to estimate such values in the case of Gradient Boosting and Neural Networks.
To understand the meaning of SHAP values, Figure 1.7 shows which features
contributed to the model’s prediction for a single randomly selected observation (a
not depressed Slovenian female 59 years old). The bold number -0.42 represents
the predicted odds of being depressed, which translates to 0.39 in probability terms.
We colour the features essential to predicting this observation in lighter and darker
shades. A lighter shade represents features that pushed the model probability
score higher, and a darker shade indicates features that moved the score lower.
Features that had more of an impact on the score locate closer to the dividing
boundary between red and blue. The bar represents the impact size. For this
random individual, what contributes more to the increase in the depression score is
having a low education level, having had a neurological disease in childhood, and
her age at the time of the interview. What pushes down the risk of depression is to
have regularly used dental care.
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Figure 1.7: A SHAP force plot of a single individual

Note: In bold is the predicted odd ratio, corresponding to a 0.39 probability of being depressed.
Light shades represents features that pushed the model probability score higher, and dark shades
represents features that pushed the score lower

We observed a higher predictive power of relying on semi-structured life se-
quences’ features as input data, i.e., timing, duration, ordering, and entropy. In
what follows, we illustrate SHAP values of individual input variables for this data
configuration only. Aggregating the results for all test predictions, Figure 1.8 il-
lustrates the SHAP summary plot for the top twenty predictors for the Gradient
Boosting for males and females. The summary plot combines variable contribution
with variable effects. Each point on the summary plot is a Shapley value for a feature
and an instance. The feature’s position on the y-axis is determined by the absolute
average Shapley value and on the x-axis by the Shapley value. The colour represents
the variable’s value from low (blue) to high (pink). The number on the right of each
variable name corresponds to the average SHAP value across all observations.

Comparing SHAP values across sex highlights idiosyncratic and common factors.
In line with the literature, we found that, for both females and males, material
deprivation in childhood (”childhood: no basic facilities,” and ”childhood: rooms
per capita”), low education and low subjective childhood health predict higher
depression likelihood (Clark & Lee, 2021; Layard et al., 2014). These childhood-
specific variables appear in all input configurations and all predictive algorithms.
No matter the amount and type of adult life course information we provide to train
the algorithms, childhood conditions matter most.

We identify low lifetime utilization of dental care services as a predictor of
depression for both sexes. As discussed earlier, the interpretation of this predictor
is not unequivocal: it may catch the direct effect of dental care across the lifetime
(due to a lack of infrastructure or high dental care costs) but, equally, it may proxy
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unobserved factors related to broader access to health care or self-care behaviours.
Either way, this predictor stands out as a key marker of depression in old-age and
can be collected easily in individual health questionnaires.

For both sexes, the entropy within the general life sequence (”general life entropy”)
increased the prediction of depression later in life. Life entropy refers to the number
of remarkable emotional periods, such as happiness, stress, and financial stress,
adults have undergone across their life courses (see Appendix 1.2.3 for descriptive
statistics). This finding highlights the importance of monitoring emotional stressors
throughout one’s lifetime.

We extracted two distinctive male predictors: the entropy in the work and family
sequences. High-frequency changes in work status and low-frequency changes in
family status predict higher depression risk for males but not females. As idiosyn-
cratic female predictors, we find that low parents’ ISCO and short employment
duration increase the likelihood of depression.

Another finding concerns the heterogeneity in the predicting power of age across
countries. The SHAP values for the age-countries interaction variables are high
in all models and for each sex. However, age’s contribution to the likelihood of
depression differs across countries. In countries such as Italy, Poland, Hungary,
Portugal, and Spain, being older contributes to an increased risk of depression. In
countries such as Sweden, Denmark, and Switzerland, the effect is the opposite,
with higher ages associated with a lower risk of depression. This result also prompts
further investigation of predictors that may vary by country.

To shed some further light on the underlying mechanisms, we examined the SHARELIFE
question: What are the reasons you [have never gone/weren’t going] to a dentist regularly for check-ups
or dental care?. We compare the prevalence of individuals selecting each listed reason (1. Not
affordable — 2. Not enough information about this type of care — 3. Not usual to get this type of
care — 4. No place to receive this type of care close to home — 5. Other reasons). Results suggest
that both dental care cost affordability and individual habits equally explain the low utilization of
dental care services, and this is consistent across countries (see Appendix 1.K for maps).
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Figure 1.8: Shapley values for Gradient Boosting, female (right) and male (left)

Note: Each point on the summary plot is a Shapley value for a feature and an instance. The position
on the y-axis is determined by the feature rank and on the x-axis by the Shapley value. Colours
indicate the relationship between variables and depression probability: dark to light signifies a
positive correlation with depression, while light to dark signifies a negative correlation. The number
on the right of each variable name corresponds to the average SHAP value across all observations

1.5 Discussion and potential limitations

At the heart of this analysis is the assessment and comparison of supervised machine
learning techniques applied to various life course data configurations to predict the
risk of depression in people over fifty years old. Three key findings emerged from
our analysis.

First, biographical information may foreshadow later-life depression outbreaks,
but not perfectly. Second, structuring large-scale life course information is useful to
improve prediction tasks. All models achieved the highest predictive performance
when fed with life course sequence features, considering the duration, timing of
state transitions, the state ordering, and – importantly – entropy within the life
course. With this data configuration, the best-performing models predict depression
risk with a PR-AUC of 0.77 for females and 0.65 for males in the training and test
sample. Compared to the benchmark set of demographic predictors, life course
information improves predictive performance by about ten percentage points for
both sexes. Life course information yields similar predictive performance than
other clinical studies using electronic medical records (Garriga et al., 2022); hence,
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our findings suggest that some life-course-based predictors may be integrated into
clinical data to improve the diagnosis of depression.

The third relevant aspect of this analysis stems from the sex stratification and the
extraction of depression predictors. We merged respondents from nineteen European
countries and trained our models independently for females and males. We did so
because of the substantial gap in depression prevalence. Females suffer almost
twice as much from depression in all the analyzed countries. Stratifying by sex was
a straightforward way to shed light on potential differences in depression patterns.
SHAP feature extraction combined with this stratification revealed established
patterns of depression and new predictor variables. For both females and males
and in all models, material deprivation in childhood, poor health in childhood and
adulthood, and low education predict a higher probability of depression later in life.
The duration of ownership or lease predicts a lower likelihood of depression. As a
new predictive feature, we identify life trajectory entropy. Entropy is the frequency
of changes in condition over the years. Specifically, males and females who go
through multiple periods of happiness, stress, financial stress, or hunger are more
likely to experience depression later in life. Higher entropy in the work sequence and
lower entropy in the family sequence increase the probability of depression for men
only. Similarly to previous well-being studies, our results stress the long-lasting
influence of early childhood conditions on later-life well-being outcomes (Clark &
Lee, 2021; Zheng et al., 2021). Finally, entropy in the life course also stands as a
depression predictor for both sexes– individuals experiencing repeated changes in
life domains throughout the life course are at higher risk of mental health problems
later in life.

The country-age interactions show significant heterogeneity across countries.
In countries like Hungary, Poland, and Italy, increasing age predicts a higher
probability of depression. On the other hand, in Denmark, Switzerland, and Sweden,
increasing age predicts a lower likelihood of depression. This heterogeneous effect
remains unexplained, but it may be related to the differences in social welfare and
pension systems across European countries.

Our findings should be considered in light of some data limitations. First,
our predictive models are based on retrospective life course data. Therefore, they
are subject to potential biases arising from the long-term recall of events and
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circumstances long before the time of the survey. While we took steps to limit the
extent of these issues (focusing on individuals between 50 and 88 years old and
excluding those having difficulties answering the retrospective questionnaire), these
biases challenge the fidelity and accuracy of such information, downward estimating
the overall predictive ability. We used this data source for lack of comparable sources,
covering almost all European countries with such a large set of observations and
information range.

Second, our sample may suffer from survival bias. Indeed, we are analyzing
old-age people. It may be the case that the chronically depressed or ill individuals
died before the time of the survey or refused to answer the questionnaire. Our
sample is, therefore, likely limited to a selection of moderately depressed or healthy
individuals, and our findings may not generalize to the whole population.

Our study shows a promising path in using such life course trajectories to predict
later-life outcomes. Therefore, future research may rely on prospective cohort studies
that track individuals over time to obtain more precise life trajectories, with a high
potential for improving the accuracy of later-life outcomes prediction.

1.6 Conclusion

Most of the existing literature focuses on treatments for depression and uses elec-
tronic health records for predictive tasks. This study set out to look at retrospective
data and test their ability to predict later-life depression. Our analysis shows that
past life trajectories may foreshadow later life depression outbreaks. These results,
which shed light on the relationship between retrospective information and accu-
racy in depression prediction, call for complementing diagnostic tools and electronic
health records with retrospective data on the life course.

We live in a World with high social and economic uncertainties, e.g., the Covid
pandemic, the Ukraine war, and the economic downturn. These macro phenomena
affect individuals by creating financial and work instabilities, displacements, and
insecurities, thus increasing entropy in all life dimensions.

Given our findings on the health risks associated with life instability, future
research could explore how welfare systems’ interventions could mitigate the impact
of sudden and abrupt events.
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1.A Depression

Table 1.A.1: Depression prevalence among people aged 50+ within countries and
across sexes

Female Male

Country N % N %

Austria 1861 42 1275 24

Germany 2339 43 2092 26

Sweden 797 29 738 17

Netherlands 1101 38 918 22

Spain 2390 58 1870 33

Italy 2463 62 2088 37

France 2266 63 1696 39

Denmark 1998 37 1752 22

Greece 1678 46 1314 25

Switzerland 1436 41 1203 24

Belgium 3058 53 2546 33

Czech Republic 2696 46 1781 28

Poland 1093 71 840 53

Luxembourg 584 42 491 24

Hungary 843 42 536 22

Portugal 605 63 448 34

Slovenia 1904 39 1312 23

Estonia 2830 59 1609 39

Croatia 1042 36 830 19

Total 32944 49 25339 29

Note: The depression prevalence (%) indicates the share of respondents with at least one depression
measurement in the observation period. We define Depression as a binary indicator that takes the
value of one when the respondent has more than three EURO-D symptoms. EURO-D symptoms are
sadness, pessimism, suicidality, guilt, sleep, interest, irritability, appetite, fatigue, concentration,
enjoyment, and tearfulness
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1.B Descriptive statistics

In this section, we describe the construction of demographics and childhood condi-
tions variables and provide descriptive statistics.

Specifically, we include five demographics (in addition to sex and country and
macro-region of residence): age, birth cohort, migration status, highest educational
attainment and age at first childbirth. We determine migration status by comparing
individuals’ country of birth to their country of residence at the time of the interview.
The highest educational level is classified according to the International Standard
of Education (ISCED) and is categorized as low, medium, and high.

The childhood variables come from the childhood retrospective module of SHARE-
LIFE. We include childhood conditions that, according to the literature, influence
later-life well-being. These are childhood socioeconomic position, material depriva-
tion, and family composition (see Arpino et al., 2018, Clark and Lee, 2021, Flèche
et al., 2021, Arpino et al., 2018 and Wood et al., 2017). We capture childhood so-
cioeconomic position with parental occupational status, the number of books at
home, and the number of rooms per person. We code material deprivation with
a binary variable indicating whether or not the respondent had the main basic
facilities (i.e., hot and cold water, fixed bathroom, indoor bathroom, and central
heating). We encode family composition as an indicator of living with a biological
father, with siblings, or with grandparents. Regarding health during childhood, we
follow Pakpahan et al. (2017) and encode three childhood health-related variables:
self-rated health, ever in the hospital and ever missed school because of health. In
addition, we include binary variables related to specific diseases (infections, car-
diovascular and neurological diseases). We code the parent’s occupational position
according to the ten main occupational groups of ISCO (see International Labour
Office, 1949). Thus, we reduced the groups to four skill levels following standard
procedure (see Wahrendorf et al., 2013). To fill the missing values in the parents’
occupational position, we retrieve the answers longitudinal respondents provide in
the demographic modules of regular SHARE questionnaires in waves 2, 4, and 5.

In addition to the abovementioned variables, we incorporate three predictors
pertaining to adulthood that we could not directly mine from life sequences. These
entail two indicators of health– whether the respondent has ever measured blood
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pressure during their lifetime and whether they regularly visited the dentist, and
an indicator of an individual’s socioeconomic status between 20 and 30 (Wahrendorf
et al., 2013).

Table 1.B.1: Summary statistics demographic variables, male sample

Depressed Not depressed
Variable N Mean SD N Mean SD
Age at interview 8249 66 9.9 19757 63 8.5
Season interview: 8249 19757

Autumn 1372 17% 4580 23%
Spring 3316 40% 5948 30%
Summer 2243 27% 6874 35%
Winter 1318 16% 2355 12%

Birth cohort: 8249 19757
< 1930 608 7% 803 4%
1930-1939 2000 24% 3607 18%
1940-1949 2636 32% 7083 36%
1950-1959 2528 31% 6735 34%
1960-1969 477 6% 1529 8%

interview year 17608 2011 3.7 18338 2010 3.8
Migrant: 8249 19757

No 7494 91% 18183 92%
Yes 755 9% 1574 8%

Education 8249 19757
High 1562 19% 5192 26%
Low 3216 39% 5919 30%
Medium 3003 36% 7990 40%
No education 468 6% 656 3%

When first child 8249 19757
older 30 years old 1994 24% 5062 26%
before 25 years old 2044 25% 4441 22%
between25-30 years old 3051 37% 7697 39%
no children 1160 14% 2557 13%
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Table 1.B.2: Summary Statistics demographic variables, female sample

Depressed Not depressed
Variable N Mean SD N Mean SD
Age at interview 17608 65 9.7 18338 62 8.7
Season interview 17608 18338

Autumn 3059 17% 4361 24%
Spring 6758 38% 5549 30%
Summer 4972 28% 6364 35%
Winter 2819 16% 2064 11%

Birth cohort 17608 18338
< 1930 1231 7% 693 4%
1930-1939 3921 22% 2975 16%
1940-1949 5605 32% 6072 33%
1950-1959 5659 32% 6547 36%
1960-1969 1192 7% 2051 11%

Migrant 17608 18338
No 15921 90% 16844 92%
Yes 1687 10% 1494 8%

Education 17608 18338
High 2735 16% 4390 24%
Low 7816 44% 6209 34%
Medium 5860 33% 7030 38%
No education 1197 7% 709 4%

When first child 17608 18338
older 30 years old 1921 11% 2241 12%
before 25 years old 9390 53% 8977 49%
between 25-30 years old 4513 26% 5180 28%
no children 1784 10% 1940 11%
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Table 1.B.3: Childhood and adulthood predictors data set. Descriptive statistics by
sex.

Female Male

Variables and categories N. imputed Mean/Freq SD or % N.imputed Mean/Freq SD or %
Childhood conditions
Occupation parents (ISCO) : 6313 5190

Very High 12% 12%
High 12% 12%
Low 22869 0.64 17986 0.64
Very Low 4354 0.12 3182 0.11

Rooms per capita 3347 0.73 0.58 2871 0.76 0.66
Number of books: 2684 2374

1 (0-10 books) 14030 0.39 11307 0.40
2 (11-25 books) 8337 0.23 6461 0.23
3 (26-100 books) 8248 0.23 6407 0.23
4 (101-200 books) 2702 0.08 1846 0.07
5 (more than 200 books) 2640 0.07 1995 0.07

Basic facilities 0 25814 0.72 0 20458 0.73
Ever in hospital 63 2252 0.06 1843 0.07
Ever missed school 344 4014 0.11 192 2925 0.10
No infectious disease 0 5530 0.15 5563 0.20
No neoplastic disease 0 33418 0.93 0 26124 0.93
No neuro disease 33347 0.93 26720 0.95
Childhood self-rated health: 32 23

1 (”Fair, poor, spontaneous”) 4128 0.11 2601 0.09
2 (”Good”) 9484 0.26 6786 0.24
3 (”Very good”) 11431 0.32 8847 0.32
4 (”Excellent”) 10914 0.30 9782 0.35

Live with biological father 2610 31996 0.89 2357 25217 0.90
Live with biological brother 2610 30311 0.84 2357 23518 0.84
Adulthood predictors
Ever blood pressure 24205 0.67 19128 0.68
Regular dentist 41 27596 0.77 25 19547 0.70
General life entropy 0 0.2 0.18 0 0.17 0.17
Housing entropy 0 0.39 0.16 0 0.42 0.15
Work-life entropy 0 0.22 0.17 0 0.18 0.15
Family-life entropy 0 0.39 0.14 0 0.4 0.14
Migration-life entropy 0 0.19 0.2 0 0.2 0.21
SES between 20 and 30: 0

very high 1052 0.03 755 0.03
high 2276 0.06 2358 0.08
low 15806 0.44 11055 0.39
very low 4858 0.14 4759 0.17
not employed 11965 0.33 9089 0.32
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1.C Construction of sequences

We construct life sequences for six variables: work status, housing arrangement,
family, health, residence location, and general life events. We draw three sequences
(work status, health, and housing) from the Gateway to Global Aging portal (Pro-
gram on Global Aging, Health, and Policy, 2021). All the variables come from the
SHARELIFE questionnaire.

To construct the work history, SHARELIFE asked respondents to report when
they finished full-time education and question specific job spells. We used details on
the start and end of respective job spells, and we determined if the gap was because
of being unemployed (both searching and not searching for a job), home or family
work, retirement, or a remaining group of others. The other category includes being
sick or disabled, voluntary work, military services, and traveling.

To construct health history variables, SHARELIFE asked respondents how many
periods of poor health or disability (lasting more than a year) they had in their
life from age 16 onwards. If the number of periods of poor health or disability
was more than three, people were automatically classified as ”Ill most of their life”
throughout their history. In contrast, if the respondent answered three or fewer
periods, respondents were additionally asked to report when the respective periods
were. SHARELIFE respondents reported the precise years when each period started
and ended.

The housing arrangement histories combine details regarding the respondent’s
housing spells, including the reported year they left their parent’s home and re-
ported the year they established their household, if applicable. In SHARELIFE,
respondents could report up to 28 housing spells that lasted six months or longer.
We classify as non-private those types of residences that are hard to classify, such as
rent-free or non-private residences (e.g., boarding schools, hospitals, or prisons). To
classify residences as ”abroad,” we used information on whether the residence was
in the country. We did not distinguish between types of residences abroad because
the number of people who lived abroad was too small.

The family histories combine the children’s, cohabitation, and partner’s histories.
The children’s histories contain information on the age at which the respondent
had or adopted their child and the number of children at each respondent’ age. We
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include information on death in the case that a child dies. The cohabitation history
contains information on cohabitation spells. SHARELIFE asked respondents about
when they started living with a partner (beginning of spell) and, if they stopped
living with the same partner, the age at which they stopped living with them (end
of a spell). The end of cohabitation could be because a partner died, a relationship
broke up, a partner moved into a nursing or care home, or other reasons. The
partner history distinguishes between married or non-married partnership and the
alone status.

The residence location histories inform about the location where respondent
report they had their accommodations. SHARELIFE asked respondents about
housing spells and whether it was in a big city, rural area, large town, or small
village for each period.

Finally, the general life history combines the period of stress, financial stress,
happiness, and hunger. SHARELIFE asked respondents to reflect on their past life
and report whether there was a distinct period during which they were happier, un-
der more stress, with financial hardship, or suffering from hunger. In an affirmative
answer, the respondents must report the starting and stopping years or whether
the period was still ongoing. In a negative response, we classified the history as ”no
events.”
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Table 1.C.1: Sequences alphabet
Work status Health Location Family Event Housing

Employed (E) Not ill Big city

(BC)

Alone (A) Financial

stress (FS)

Owner (O)

Self-Employed (SE) Ill Large town

(LT)

Alone with

children

(AC)

Happy (H) Tenant (T)

Unemployed (U) Ill mostly Rural area

(RA)

Married

(M)

Hunger

(Hu)

Non-

private

(NP)

Family work (FW) Small

town (ST)

Married

with

children

(MC)

No events

(NE)

Abroad

(Ab)

Retired (R) Suburbs

(Sub)

With

partner (P)

Stress (S) Parental

home (Par)

In education (FE) Missing

(NA)

With

partner

and

children

(PC)

Happy and

Stress

(H+S)

Other jobs (Oj) Happy and

fin. stress

(H+FS)

Missing (NA) Other

events (Ot)

Stress and

fin.stress

(S+FS)
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1.D Composition of sequence clustering

Table 1.D.1: Prevalence of cluster solutions and measures of homogeneity for six
the variables analyzed. Females sample.

Work House Family

Cluster N % Homogen. N % Homogen. N % Homogen.

1 26760 67 0.503 7923 20 0.67 2032 5 0.64

2 8017 20 0.634 27880 70 0.45 32178 80 0.62

3 2663 7 0.443 3986 10 0.47 2262 6 0.64

4 2349 6 0.185 3317 8 0.17

Pseudo R2 0.52 0.57 0.58

General Life Health Location

Cluster N % Homogen. N % Homogen. N % Homogen.

1 27026 68 0.62 37669 95 0.98 7196 18 0.7

2 5978 15 -0.17 1187 3 0.40 13339 34 0.7

3 6785 17 0.61 933 2 0.99 8527 21 0.60

4 7367 19 0.53

5 13360 8 0.51

Pseudo R2 0.50 0.93 0.81

Note: We measure homogeneity within clusters through the “Average Silhouette Width.” Comparing
the average distance of an observation from the other members of its cluster and its average weighted
distance from the closest group. Low values indicate low cluster homogeneity. The pseudo R2 informs
to what extent the cluster solution allows explaining sequences’ variability
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Table 1.D.2: Prevalence of cluster solutions and measures of homogeneity for six
the variables analyzed. Males sample.

Work House Family

Cluster N % Homogen. N % Homogen. N % Homogen.

1 26575 86 0.71 8790 28 0.38 24316 79 0.59

2 4394 14 0.55 17473 57 0.57 2289 7 0.69

3 2511 8 0.29 2213 7 0.46

4 2195 7 0.60 2151 7 0.01

Pseudo R2 0.58 0.62 0.58

General Life Health Location

Cluster N % Homogen. N % Homogen. N % Homogen.

1 27026 72 0.73 29602 95 0.98 5500 18 0.63

2 5978 27 0.17 861 3 0.40 10923 34 0.66

3 933 2 0.99 6753 21 0.58

4 5182 19 0.59

5 2611 8 0.48

Pseudo R2 0.44 0.92 0.79

Note: see Table 1.D.1

1.E Data pre-processing

We perform five main pre-processing steps on the three: imputation of missing data,
one-hot encoding of categorical variables, removal of zero-variance and near-zero
variance (sd ¡ 0.015) items, drop perfectly collinear variable and highly collinear
variable (correlation ¿ 0.8) and normalizing predictors through the min-max nor-
malization.

Although we could have performed more data pre-processing operations, e.g.,
eliminating variance inflation factor and variables with very low (but not zero)
variance, we decided to perform only these five basic operations for this first em-
pirical exploration. Indeed, automatic, uncontrolled elimination of variables could
deprive the model of helpful information for learning that would affect the resulting
predictions.
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1.F Description of machine learning algorithms

The analyses uses four standard ML predictive algorithms: (i) logistic regression,
(ii) regularized logistic regression, (iii) random forest (XGBoost) and (iv) artificial
neural networks. These have become off-the-shelf approaches.

1.F.1 Logistic regression

When dealing with classification problems with a binary outcome, logistic regression
models have been largely applied and have been proven to achieve high predictive
performance, especially when compared to other simple probabilistic classification
methods such as linear and quadratic discriminant analysis.

The logistic regression function is

Ŷ =
exp(β̂0+

∑p
j=1 Xj β̂j)

1 + exp(β̂0+
∑p

j=1 Xj β̂j)
(1.4)

where Ŷ is the probability that the target y is positive.
In the logistic regression model, the optimization criterion (loss function) is the

log likelihood:

β̂ = argminβ∈Rp

{
N∑
i=1

yiln(ŷi) + (1− yi)(1− ln(ŷi)
}

(1.5)

The logistic regression model has several advantages. Firstly, the logistic model
allows an interpretation of the regression coefficients in terms of increasing the prob-
ability of a positive outcome. Furthermore, it is very efficient from a computational
point of view. However, when the number of predictors increases, multicollinearity
issues and the course of dimensionality limit the possibility of using logistic regres-
sions. In this case, shrinkage methods such as Ridge, Lasso, and Elastic net can
come to the aid.

1.F.2 Regularized logistic regression – shrinkage

Shrinkage methods act similarly to subset selection methods because they reduce
the number of initial predictors to a subset that has the highest predictive power
while shrinking or setting all the other coefficients to zero.
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Shrinkage methods control for over-fitting by adding a penalization term Eβ(β)

the loss function L. The optimization criteria take the form of:

β̂ = argminβ∈Rp {L(β) + λEβ(β)} (1.6)

where λ is the regularization coefficient that controls the importance of regulariza-
tion; this parameter must be estimated through cross-validation (J. Friedman et al.,
2001).

The form of the regularization term Eβ(β) determines the regularized models.
The Ridge regression imposes the l2-penalty to the coefficients such that Eβ(β) =||

β ||2=
∑p

j=1 β
2
j ; the Lasso regression imposes the l1 norm such that Eβ(β) =|| β ||1=∑p

j=1 | βj |. These two methods have been intensively used, and they differ essentially
in the shrinkage effects they have on the parameters: the ridge regression shrink
less important parameter towards zero while never setting them exactly to zero,
and the lasso method, instead, allows the parameter to be exactly equal to zero thus
implementing real variable selection.

The Elastic net penalty is a convex combination of the lasso and ridge penalties
and takes the following form:

(1− α) || β ||1 +α || β ||2 .

The elastic net solves the inner problem of Lasso and Ridge parameter dimensionality
but requires higher computational power. When α = 0, the elastic net is equal to
the ridge regression. When α = 1, the net Elastic net penalty reduces to the lasso
penalty.

1.F.3 Regression trees and random forests

Decision tree algorithms are non-parametric models that recursively segment the
prediction space X into non-overlapping regions. This procedure gives rise to the
”tree” structure that gives the algorithm its name. The partitioning approach divides
the data into smaller subsets until the algorithm determines that the data within
the subsets are sufficiently homogeneous.
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The model equation for decision trees is

ŷ =
M∑
i=1

cm · 1(X∈Rm);

where R1, . . . , RM are disjoint partitions of the predictor space as resulting in the
terminal nodes and cm is a constant. The optimization criterion, in this case, is the
average log-likelihood.

Various methods can calculate homogeneity within subsets. The Gini entropy
for classification problems is the most widely used for classification problems and
the sum of square errors for regression problems. Moreover, the algorithm requires
tuning other hyper-parameters, namely the maximum depth, the minimum number
of samples at the leaf nodes, and the maximum number of features to consider for
splitting.

Tree-based methods often yield good predictions on the training set but are likely
to overfit the data, resulting in dire out-of-sample predictions. One way to solve
this problem is by relying on ensemble learning. Ensemble learning is a learning
paradigm that, instead of trying to learn one super-accurate model, focuses on
training a large number of low-accuracy models and then combining the predictions
given by those weak models to obtain a high-accuracy meta-model.

The Random Forest is an ensemble method built upon decision trees (Breiman,
2001). The Random Forest optimization procedures first require randomly selecting
an independent subsample (bootstrap) of the training sample. For each random
sub-sample b = 1, . . . , B, it builds a depth tree and estimates a prediction of the
test sample. Finally, it averages over B to obtain a low-variance statistical learning
model. The functional form looks as follows:

ŷavg =
1

B

B∑
b=1

ŷb

So far, the Random Forest procedure follows the ”bagging” procedure. In addition
to bagging, the Random Forest algorithm not only selects a random sub-sample of
the training set but also performs a random selection within the predictor matrix,
choosing at each iteration a subset of the predictor set, X̄ ⊆ X, of size m. In the
presence of a strong predictor, this procedure allows other less significant predictors
to be selected, reducing the correlation among trees and the variance of the learning
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algorithm. The parameter m is a hyper-parameter that we tuned with combined
cross-validation and grid search.

Like the Random Forest, Gradient Boosting is an ensemble of decision trees (for
an in-depth explanation, see J. H. Friedman, 2001). However, contrarily to Random
Forest, which builds each tree independently, the Gradient Boosting procedure
builds the tree sequentially. Each new tree helps correct the error from the previous
by modifying the weight of the misclassified observations. The AdaBoost algorithm
gives the simple version of boosting algorithm. The AdaBoost starts by training a
simple decision tree where each observation has an equal weight. After evaluating
the first prediction error, the algorithm increases the problematic observations’
importance and lowers the easy ones’ weights. Thus, the second tree is grown on
the weighted data. The idea is then to learn and improve from the predictions of the
previous tree. This procedure runs for a specified number of iterations. The final
prediction is then a weighted average of all the predictions of these successive itera-
tions. Extreme Gradient Boosting modifies this procedure by calculating gradients
in the loss function. Thus it can handle any differentiable loss function.

1.F.4 Artificial neural networks

Artificial neural networks (ANN) belong to the algorithmic class of the so-called
”black box” methods. An ANN models the relationship between the set of predictors
and the output in a way that mirrors the process of reaction of the biological brain to
external sensory input. Like the human brain, the ANN structure involves a network
of interconnected artificial neurons that transform the initial input signal into an
output signal. ANNs have shown outstanding performance in image recognition and
detection tasks. They can adapt to classification or numeric prediction problems.
Their flexible structure allows for modelling more complex patterns than nearly any
algorithm. Despite these significant advantages, ANN applications are scarce in
social sciences, mainly due to the impossibility of interpreting the parameters of
the optimized structure. In addition, they require substantial computational and
data requirements.

The typical optimization procedure of ANNs is that of backpropagation. In
its more general form, the backpropagation algorithm iterates several times in
two sequential processes. The completion of this cycle is called an epoch. Each
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epoch consists of a forward phase and a backward phase. In the forward phase, the
input features transmit through the network, transforming themselves through the
combination of activation functions and weights until they reach the output layer,
where a prediction or output signal is produced. All predictions are compared to
the true target value in the training data to estimate a cost given a loss function.
The backward phase consists of adjusting the connection weights by taking the loss
derivative with respect to each connection weight; this technique is called gradient
descent.

Over time, the complex training procedure of an ANN will reduce the total error
of the network, but it is likely to overfit the data. Resulting in bad out-of-sample
performance. Various methods have been proposed to control overfitting in ANN. In
this analysis, we use the skip connections residual connection. The skip connection
allows the construction of regularized deep networks by skipping one layer in the
network and feeding the output of one layer as the input to the next layers.

1.G Optimal hyper-parameters

As explained in the main text, optimal hyper-parameters were obtained by cross-
validation in the training datasets (one for each sex). The resulting parameters are
shown in Tables 1.G.1 and 1.G.2.
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Table 1.G.1: Optimal hyper-parameters selected through stratified 10-folds cross-
validation. Female sample

panel A: Ridge
Hyper-parameter Baseline Cluster Features Unstructured

λ 0.54 0.096 0.06 0.002
α 0 0 0 0

panel B: Lasso

λ 0.37 0.083 0.183 0.147
α 1 1 1 1

panel C: Elastic Net

λ 0.7 0.118 0.431 0.025
α 0.5 0.46 0.46 1

panel D: Gradient Boosting

Max depth 11 11 7 9
Min child weight 5 18 22 24
Max delta step 7 7 6 1
N estimators 50 55 67 74
Learning Rate 0.1 0.7 0.1 0.1

panel E: Neural Network

N. Epochs 50 3 3 4
Learning rate 0.01 0.01 0.01 0.01
N. Neurons 20 20-30 100-250 100-200
Batch size 1024 1024 1024 1024
Activ.function ”sigmoid” ”sigmoid” ”sigmoid” ”sigmoid”
N. Hidden Layers 3 4 5 5
N. Skip connection 1 2 2 2
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Table 1.G.2: Optimal hyper-parameters selected through stratified 10-fold cross-
validation. Male sample

panel A: Ridge
Hyper-parameter Baseline Cluster Features Unstructured

λ 0.014 0.013 0.019 0.026
α 0 0 0 0
threshold 0.27 0.249 0.259 0.268

panel B: Lasso

λ 0.025 0.023 0.023 0.683
α 1 1 1 1

panel C: Elastic Net

λ 0.012 0.135 0.008 0.05
α 0.55 0.37 0.1 0.19

panel D: Gradient Boosting

Max depth 17 8 8 10
Min child weight 9 18 14 14
Max delta step 7 1 7 5
N estimators 60 94 55 65
Learning Rate 0.1 0.2 0.2 0.1

panel E: Neural Network

N. Epochs 50 5 3 5
Learning rate 0.01 0.01 0.01 0.01
N. Neurons 20 20-30 200-250 150-300
Batch size 1024 1024 1024 2048
Activ.function ”sigmoid” ”sigmoid” ”sigmoid” ”sigmoid”
N. Hidden Layers 3 5 4 5
N. Skip connection 1 2 2 2

1.H Predictive performance

We report here additional predictive performance metrics for the sequence features’
predictor set.
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Accuracy is a metric that measures the overall correctness of the model’s predic-
tions. It is the ratio of the correctly predicted cases (both true positives and true
negatives) to the total number of cases. Accuracy provides an overall assessment of
the model’s performance but can be misleading when the dataset is imbalanced.

ROC-AUC, i.e. Receiver Operating Characteristic Area Under the Curve (ROC-
AUC), is a performance metric for binary classification models. It measures the
ability of a model to distinguish between positive and negative classes across various
classification thresholds. The ROC curve plots the true positive rate (recall) against
the false positive rate (1 - specificity) at different threshold values. The AUC
represents the area under the ROC curve and provides a single-value summary of
the model’s performance.

Table 1.H.1: Predictive performance metrics for the sequence features predictor set.
Female sample

model recall accuracy roc-auc pr-auc precision

logistic 0.606 0.663 0.725 0.720 0.675
ridge 0.610 0.663 0.724 0.719 0.675
lasso 0.611 0.664 0.725 0.720 0.676
elnet 0.609 0.662 0.725 0.720 0.674
XGBoost 0.655 0.690 0.757 0.768 0.697
ANN 0.565 0.651 0.704 0.689 0.665

Table 1.H.2: Predictive performance metrics for the sequence features predictor set.
Male sample

model recall accuracy roc-auc pr-auc precision

Logistic 0.363 0.753 0.739 0.581 0.650
Ridge 0.361 0.752 0.739 0.580 0.648
Lasso 0.377 0.751 0.740 0.581 0.634
Elnet 0.369 0.750 0.740 0.581 0.637
XGBoost 0.408 0.778 0.772 0.647 0.721
ANN 0.389 0.748 0.732 0.563 0.596
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1.I Sample size independence test

This section presents the sensitivity of the performance of the best-performing
model (Gradient Boosting) to the training set’s sample size.

First, as the performance of any model may vary when applied to different
datasets or populations, this test helps assess the generalizability of the model’s
performance across different sample sizes. Second, it provides insights into the
stability and robustness of the model’s performance. Results shown in Figure 1.I.1
suggest that, with 20% of the training sample already, the metric remains stable at
around 0.62-0.64, indicating good reliability.

Figure 1.I.1: Test PR-AUC and training data dimensionality. Gradient Boosting
model.
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1.J Robustness to alternative depression measure-

ment

Figure 1.J.1 shows the sensitivity of models’ prediction capacity metrics to changing
the depression threshold, i.e., the number of symptoms an individual must have to
classify depression to 3, 4, 5, and 6. Increasing the depression threshold deteriorates
the predictive accuracy. Indeed, higher thresholds imply a smaller number of
depressed individuals. With fewer depressed individuals, the models have limited
exposure to the patterns and characteristics of depression. Models do not have
enough instances to learn the distinguishing features and nuances of depression.
Consequently, the models have difficulty generalizing well to new, unseen instances
of depression. However, the Gradient Boosting model remains the best-performing
algorithm, achieving the best performance metrics across all threshold values.

Figure 1.J.1: PR-AUC in the test sample for increasing EURO-D depression dis-
crimination thresholds
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1.K Mapping key predictors

This section presents descriptive maps of our two key predictors: regular dentist
attendance and general life entropy. For the regular dentist, we also map the
prevalence of individuals selecting each of the following reasons for not attending
regular dentist: 1. Not affordable, 2. Not enough information about this type of
care, 3. Not usual to get this type of care, 4. No place to receive this type of care
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close to home, 5. Other reasons

Figure 1.K.1: Prevalence of individuals reporting regular dental visits, male (left)
and female (right).

Note: each colour represents ventiles of the pooled distribution. Lighter colours are bottom ventiles.

Figure 1.K.2: Mean entropy in the general life sequence, male (left) and female
(right).

Note: see Figure 1.K.1
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Figure 1.K.3: Prevalence of individuals selecting a given reason for not attending
dental care regularly

Note: Each respondent can select multiple responses. In the maps, each colour represents a ventiles
of the pooled distribution. Numbers in square brackets represent percentages (%). Lighter colours
are bottom ventiles.
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Chapter 2

The Old Folks at Home: Parental
Retirement and Adult Children
Well-being



2.1 Introduction

Population aging is a major challenge faced by many OECD countries, including
the United Kingdom. With life expectancy on the rise, UK projections suggest
that 24% of the population will be aged 65 and over by 2043 (Lewis, 2021). While
greater longevity is one of the benefits of development, it puts significant pressure
on modern welfare states, and in particular on pension systems that rely on current
contributions to fund the pension benefits of those who are currently retired (see
Lewis et al., 2021). In response to this fiscal imbalance, governments worldwide
have started to implement reforms increasing the age at which workers are eligible
for State Pensions.

The postponement of statutory retirement is an effective tool to improve the sus-
tainability of pension systems amidst population aging. However, this intervention
raises a number of concerns about the effect of later retirement both on the individ-
uals concerned (Clark and Zhu, 2024; Zhu and He, 2015) and their family members
(Atalay & Zhu, 2018). We here examine potential inter-generational spillover effects
between older parents and their adult children, as parental retirement will likely
affect the transfer of both resources and non-pecuniary support between parents
and children. In this spirit, we here ask first whether parental retirement affects
the well-being of adult children, and if so why?

Our research draws upon and contributes to several strands of the existing
literature. The first relates to the informal exchanges between parents and adult
children, and we consider both time and financial transfers (OECD, 2012). Both
of these transfers vary over the life course, and therefore may well change at the
time of parental retirement (see Cox, 1987 and Coe and Zamarro, 2011). There
is, however, only little research on the impact of retirement on adult children’s
well-being, and the mediating role of these transfers. If parental retirement reduces
financial transfers but increases time transfers, the net effect on adult children’s
well-being will be ambiguous.

First, as parents age, they may experience health issues, disabilities, and reduced
financial resources. Retirement may exacerbate these physical (Filomena & Picchio,
2023) and financial challenges (see Mazzonna and Peracchi, 2012, Cribb et al.,
2016 and Gorry et al., 2018). The greater demands of older parents on their adult
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children, either through financial transfers or informal caregiving (Van Houtven
et al., 2013, Van den Berg et al., 2014), may in turn negatively affect adult children’s
well-being.

At the same time, grandparents play a crucial caring role in many OECD coun-
tries. With retirement, they likely have more time to engage with their grandchildren
and provide more-substantial care. In the UK, around 40% of grandparents regularly
provide childcare for their grandchildren, helping working parents save an estimated
£7 billion in childcare costs (see Buchanan and Rotkirch, 2018). Grandmothers
provide most of this care, from occasional babysitting to formal arrangements of
regularly caring for their grandchildren.

A second recent literature has explored the impact of parental retirement on
adult children’s outcomes, focusing primarily on fertility and labour-force partici-
pation. For instance, Eibich and Siedler, 2020 examines adult daughters’ fertility
around the time of their parents’ retirement in Germany, using the early-retirement
age threshold as an exogenous cutoff. Similarly, Ilciukas, 2023 analyse the exoge-
nous delay in older mothers’ retirement in the Netherlands, uncovering a substantial
negative effect on adult daughters’ fertility. Focusing on labour-market outcomes,
Kaufmann et al., 2023 find that an increase in grandmothers’ working hours pro-
duces lower working hours for adult daughters with young children. However, in
China Wu and Gao, 2020 shown that adult children’s annual labour supply falls
following parental retirement. To date, this literature has not considered adult
children’s well-being outcomes following parental retirement, and we here aim to
fill this critical gap.

We will appeal to two causal identification strategies applied to panel data from
the United Kingdom: the British Household Panel Survey (BHPS) and its successor,
Understanding Society (UKHLS). We construct child-parent dyads, linking socio-
economic information on adult children to their older parents’ retirement transition.

The first identification strategy exploits the discontinuous increase in the prob-
ability of retiring at the State Pension Age in a Fuzzy Regression Discontinuity
design to identify the direct and spillover effects on parents and adult children’s
well-being. In the second identification strategy, we leverage two UK Pension Acts,
from 1995 and 2011, in a difference-in-differences design (DiD) to estimate the effect
of an unexpected increase in the parental State Pension Age on their children’s
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well-being.
The Fuzzy RDD estimates reveal a positive and significant impact of maternal

retirement on adult children’s life and income satisfaction but no effect on mental
health. There is no effect of paternal retirement.

Heterogeneity analyses help shed light on potential mechanisms. It also reveals
adult children and father sub-groups where the causal impact of paternal retirement
turns statistically significant.

We consider moderation by first assessing the presence of grandchildren at
the time of retirement and then determining the age of the grandchildren. For
maternal retirement, the well-being benefits for adult children are highest when
grandchildren are in the 5-11 age range. Further stratification reveals larger rises in
satisfaction for adult children with lower incomes and who lived near their mothers
in the years pre-retirement. On the contrary, paternal retirement affects more
negatively low-income adult children. Lastly, we consider the retired mother’s and
father’s marital status and health. Retirement-positive spillovers are larger for
elder mothers who are not married (i.e. separated, divorced, or widowed) and have
never been hospitalised in the years pre-retirement. On the contrary, we observe
larger negative retirement spillovers for not-married elder fathers.

This battery of moderation results is consistent with maternal retirement causally
affecting their adult children’s well-being via time transfers, with grandmothers
having more time available to provide child care to their grandchildren, reducing
their adult children’s child-care costs and increasing their well-being. It also reveals
opposite retirement spillover effects retirement between elder mothers and elder
fathers on their adult child mental health.

Regarding the second identification strategy, the reform delayed the retirement
of the directly-affected older parents. There was no reform effect via mothers on
their adult children’s well-being, but significant positive effects of the reform via
fathers on their sons’ life and income satisfaction. The heterogeneity analyses again
show that the effect is concentrated among adult children with lower incomes and
(to a lesser extent) adult sons still living with their fathers in the years around
retirement. This second set of results suggests that infra-family financial transfers
play a role, with later paternal retirement increasing adult children’s additional
financial resources.
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The remainder of this article is organised as follows. Section 2.2 describes the
institutional setting and the potential relationships between parental retirement
and adult child well-being. Section 2.3 presents the data and the key variables of
interest. Section 2.4 outlines the empirical models, and Section 2.5 describes the
estimation results. Last, Section 2.6 concludes.

2.2 Background

2.2.1 The UK Pensions System and Pension Reform

The UK State Pension Age (SPA) is the earliest age at which workers can claim
the public pension. In 1948, this was set at 60 for women and 65 for men (having
previously been 65 for both sexes), figures which remained unchanged until April
2010. Faced with an ageing population and increased life expectancy, concerns
were raised about the sustainability of the pension system. As a result, the UK
government implemented significant pension reforms in 1995, including introducing
a single-tier flat-rate state pension and a programmed rise in the SPA to be started
in 2010.

The central point of this 1995 reform was the phased introduction over ten years
of equal State Pension Ages for men and women. The SPA for women born after
March 1950 increased gradually starting from April 2010. The 2011 Pensions Act
then modified this initial timetable, legislating a more rapid increase in women’s
State Pension age to 65 between April 2016 and November 2018 instead of the
initially planned April 2020. The same act also established that from December
2018, the State Pension age for men and women born after November 1953 would be
increased to 66 by October 2020. Figure 1 illustrates the planned date of reaching
the State Pension Age as a function of women’s and men’s cohorts under these two
pension Acts.

In addition to the State Pension, many UK workers have occupational and private
pension funds, which provide additional income after retirement. However, the
State Pension remains a significant source of income for many retirees, particularly
those without other pension arrangements. To receive the full basic State Pension,

The basic State Pension was designed to provide a minimum level of income for all retirees,
while the earnings-related state pension, known as the State Second Pension (SERPS), provided
additional income for those with moderate to high earnings.
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individuals must have 30 qualifying years of National Insurance contributions or
credits. The level of the basic State Pension depends on the contributions that the
individual made throughout their working life, with a minimum level of £141.85
per week for those who meet the eligibility criteria.

Deferring receipt of the State Pension allows individuals to receive an increased
entitlement, which depends on the number of weeks deferred. For every five weeks
of deferral, the level of the State Pension rises by 1% up to a maximum of 10.4% after
one year of deferral (Cribb et al., 2016). These higher entitlements are designed
to encourage deferred receipt and continued employment, thereby contributing to
the economy and reducing the burden on the State Pension system. Even though
the deferral rate seems generous, in practice, only relatively few individuals put
off their State Pension receipt: in 2010 English Longitudinal Study of Ageing data,
only 5% of those aged between the SPA and 75 in 2008-09 had chosen to defer their
State Pension (Crawford and Tetlow, 2008 and Cribb et al., 2016).

Figure 2.2.1: Women’s and Men State Pension Age under the 1995 and 2011 Pension
Acts

Note: The Y-axis lists the State Pension Ages as legislated by the 1995 and 2011 Pension Acts. The
X-axis shows the birth cohorts of women and men affected by the reforms. The men’s and women’s
lines overlap after State Pension Age of 65, as the 2011 Pension Act affected both sexes equally. The
horizontal dotted lines indicate the pre-reform SPA for women and men. Source: Data from Gov.UK
State Pension Age timetable.
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2.2.2 Theoretical Mechanisms

The impact of parental retirement on adult children’s well-being is theoretically
ambiguous. On the one hand, parental retirement can benefit adult children, as it
relaxes time constraints and can increase both leisure time and hours of work. On
the other hand, it may also come with adverse effects via an increased demand for
informal care and lower net financial transfers from working parents. This section
illustrates four potential channels between parental retirement and adult children’s
well-being.

First, retirement may well directly affect the intensive margin of time transfers
between parents and adult children. Based on the literature on retirement’s physical-
and mental-health consequences (see e.g. Dave et al., 2008 and Charles, 2004), the
first kind of time transfer may run from adult children to their parents via informal
care. Evidence in this field is somewhat mixed, with some UK results finding
adverse effects of retirement on health and mental well-being (Carrino et al., 2020,
and Fé and Hollingsworth, 2016). Any rise in informal care and support from adult
children following parental retirement may reduce the satisfaction of the former
(see Lacey et al., 2019).

Time transfers may also flow in the opposite direction, with grandparents’ re-
tirement increasing their availability to provide childcare for their grandchildren,
as discussed in Eibich and Siedler, 2020. This grand-parental childcare will likely
positively impact adult children’s well-being, especially for adult daughters who
often face a “child penalty” regarding their career prospects and earnings. There is
recent evidence in Kaufmann et al., 2023 that greater childcare by grandmothers
reduces this child penalty and increases the labour supply of adult daughters, and
in addition produces better educational outcomes for the grandchildren. The avail-
ability and quality of grandparental childcare may well vary, however, according
to the geographical distance between the households, grandparents’ health, and
family structure.

The third channel is direct financial transfers. Retirement almost certainly has
financial consequences (Cribb et al., 2022) and may lead to greater financial support
from adult children to their parents (or less support from newly-retired parents to
their adult children), reducing the adult children’s well-being.

Last, financial transfers may also be indirect. Adult children who are parents
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may save money on childcare costs by receiving grandparental care, again increasing
their well-being.

The net effect of these four channels on adult children’s well-being is ambiguous
and likely varies between different types of adult children. From a policy perspective,
it seems important to understand how the changes in the State Pension system will
affect the outcomes of not only retirees but also their families.

2.3 Data

Our analysis uses panel data from the British Household Panel Survey (BHPS
waves 6-18) and the UK Household Longitudinal Study (UKHLS, also known as
Understanding Society, waves 1-12), covering the period from 1996 to 2022 (Uni-
versity of Essex, Institute for Social and Economic Research, 2023). The BHPS
began in 1991 with a sample of 5,000 households and was later expanded to include
additional households from Scotland, Wales, and Northern Ireland. The ongoing
Understanding Society survey started in 2008 with approximately 40,000 house-
holds. These two surveys include many of the same questions, allowing harmonised
samples to be constructed.

Both surveys interview all adult members (16+) in participating households.
Survey respondents who leave the initial household, for instance children who move
out of their parent’s home or parents who separate, are followed and their new
household becomes part of the panel. This survey design allows us to link data
on adult children and their parents over time, even when they live in different
households.

Our sample is constructed by linking each child in a household to their biological
mother and father. If the child lives with a stepfather/mother or a father/mother-in-
law, we include them in the sample. When adult children in the original sample start
cohabitating with a partner, the new partner inherits this information regarding the
biological mother and father. This produces an unbalanced panel dataset. Appendix
2.B contains more information on the initial sample composition and the attrition
analysis.

This sample-selection procedure may result in co-residence bias if the charac-
teristics of the adult children retained in the sample differ significantly from those
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we never observe living with their parents. To address this issue, we run a simple
descriptive analysis to show how different our samples are (from the BHPS for the
RDD analysis, and from the UKHLS for the Difference-in-Differences) from the full
sample of respondents in the same age range: the results appear in Appendix 2.B.
The two samples are statistically different from the full sample of respondents in
terms of some demographic characteristics. However, we note that the effects of
retirement on a battery of parental outcomes that we estimate match in sign and
size those found in other research carried out on the full sample of parents (see, e.g.,
Della Giusta and Longhi, 2021)

We use different samples in the two distinct causal identification settings. The
first uses the State Pension Age as an exogenous cutoff point in a Fuzzy Regression
Discontinuity Design. Here, we analyse data from the BHPS, as the method requires
a fixed SPA cutoff. The second exploits the pension reform that took place in April
2010. This gradually raised the SPA from 60 to 66 over a period of ten years for
women born after April 1950, and starting in 2018 raised the SPA for men born
after 1953. This second approach applies Difference-in-Differences to UKHLS data
to evaluate the impact of delayed parental retirement on the well-being of adult
children.

2.3.1 Adult children’s outcomes

This paper evaluates how parental retirement affects adult children’s well-being.
Well-being is a multi-dimensional concept, and we here consider three different
types of outcome.

The first is a measure of psychological distress. This is derived from 12 questions
in the General Health Questionnaire (GHQ), in which respondents indicate the
extent of their agreement on a four-point scale (Appendix 2.A shows the full ques-
tionnaire). Some of the questions are negatively couched while others are positively
so. After recoding the negative questions, we add up the individual’s 12 responses
to produce a 0-36 scale, where higher numbers refer to better outcomes. The GHQ
appears in all BHPS and UKHLS waves. However, we will only use BHPS Waves
6-10 and 12-18, as these also include the two satisfaction measures described below.

The second and third well-being variables refer to self-reported satisfaction,
and appear in BHPS Wave 6 (1996) onwards. All of the satisfaction questions are
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answered on a 1-7 Likert scale, where one means completely dissatisfied, seven is
completely satisfied, and four is neutral.

The first variable is overall life satisfaction, which has been very widely analysed
across the Social Sciences. The second is satisfaction with income. This variable
is important because, as suggested above, parental retirement can have opposing
effects on the adult child’s financial status: increasing transfers of money from
adult children to their now-retired parents but with time transfers reducing the
child-care-related costs of the adult children via grandparental childcare.

2.3.2 Retirement and pension eligibility

The treatment variable in this analysis is parental retirement. In the main analysis,
we consider older parents who self-reported being retired at the date of the interview
as treated. We assume that retirement is an absorbing state, so that once individuals
retire they will remain so. In the sensitivity analysis, we will change the definition
of retirement in two ways. First, we also consider parents to be retired if they did
not self-report this status but were unemployed and not actively looking for work in
the month prior to the interview. Second, we consider as retired those who receive
pension income. The results of these analyses appear in Appendix 2.D.

Figure 2.3.1 plots the number of parents who move into retirement as a function
of their distance from their State Pension Age. Over the entire analysis period, from
1996 to 2019, we have information on 1812 mothers and 1190 fathers who enter
retirement. For both sexes, there is a notable spike around the mandatory SPA.
However, a non-negligible proportion of parents retire before the SPA.

The UK State Pension eligibility Age changed significantly in the period covered
by our data. Up to April 2010, the SPA for men was 65 and 60 for women. These
figures increased for women born after April 1950 starting in April 2010, and for
men born after December 1953 starting in December 2018. The effect of this reform
on retirement can be seen in Figure 2.3.2. Compared to the untreated cohort (with
retirement ages at 65 and 60 for men and women), the treated cohorts (with higher
SPAs) have a significantly lower retirement probability at the ages of 65 and 60.

Finally, Figure 2.3.3 shows the shares of fathers and mothers who are above
the SPA thresholds by their adult children’s ages. As was found by Eibich and
Siedler, 2020 in German data, under 20% of parents attain the State Pension Age
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Figure 2.3.1: The number of parents retiring as a function of the distance to the
SPA in years and cohort.

Source: Pooled BHPS and UKHLS sample (1996-2020).

Figure 2.3.2: Percentage of parents retiring as a function of the distance to the SPA
in years and treatment group.

Source: Pooled BHPS and UKHLS sample (1996-2020).
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threshold before their child’s 25th birthday, while almost all parents have attained
this threshold by the time their adult child turns 45. We consequently apply the
same sample restriction as in Eibich and Siedler, 2020, and only consider adult
children aged 20-45 (as parental retirement is only rare outside of this range).
We will test whether our results are sensitive to this restriction: the results and
associated discussion appear in Appendix 2.E.

Figure 2.3.3: The proportion of fathers (left) and mothers (right) above the State
Pension Age (at ages 60 and 65, respectively) as a function of their adult child’s age

(a) (b)

Source: our elaboration on UKHLS and BHPS pooled sample (1996-2020)

2.4 Empirical Approach

Parental retirement is a choice, and is related to both parental and adult child
characteristics, including their well-being. Older parents may choose to retire in
order to help their children if the latter are unwell, or to help with childcare and
household chores, and provide support in general. We tackle this endogeneity via
two identification approaches. Both of these rely on the individual’s eligibility for
the State Pension, which in the UK is likely to represent a major comeponent of
their retirement income (see Cribb et al., 2022).

As in other contributions (Coe and Zamarro, 2011, Gorry et al., 2018, Eibich and
Siedler, 2020), the first of these exploits the age threshold for pension eligibility
(up to 2010, at age 60 for mothers and 65 for fathers) as an exogenous cutoff in a
fuzzy regression discontinuity design. As State Pension eligibility is conditional on
attaining these ages, moving from being under to over the age threshold should be
associated with a considerable discontinuity in the probability of retiring.

The second identification strategy exploits the 1995 and 2011 UK Pension Acts
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that, starting in April 2010, gradually increased the State Pension Age from 60 to
66 over a ten-year period, initially only for women and then, starting in 2018, for
both sexes. These reforms affected women born after March 1950 and men born
after March 1953. We will carry out a difference-in-differences analysis to compare
the well-being of adult children of parents subject to different State Pension Ages.

2.4.1 The Fuzzy Regression Discontinuity Design

There are two main requirements for the causal interpretation of the coefficients
in a fuzzy RD design. First, being above or below the State Pension age should
not directly affect the well-being of adult children. While parental age in general
may well be related to adult children’s well-being, it does not seem likely that there
should be a discontinuity in this relationship exactly at the SPA. This assumption
is then likely to hold conditional on a continuous trend in parental age. The second
requirement is that parents cannot manipulate whether they are above or below the
threshold. With age in months being the running variable for the threshold, this
assumption should be held by construction. To check, we run the density continuity
tests of the assignment variable proposed by Cattaneo et al., 2019: see Section 2.C
in the Appendix.

Assuming that these two requirements are met, we can estimate the causal effect
of parental retirement on the three adult child well-being outcomes. The regression
model is:

rit = α + g1(ageit) + h1(pageit) + πDit + ωi + τt + νit first stage (2.1)

yit = β + g2(ageit) + h2(pageit) + λrit + ξi + κt + ϵit second stage (2.2)

In these equations, yit represents the well-being outcome of adult child i at
interview time t. The variable ageit denotes the age of the adult child in months,
while pageit represents the parent’s age, centered at the cutoff, also in months. The
variable ri indicates the retirement status of the parent at time t.

In the model, αi and ωi are fixed effects for each adult child, and τt and κt are
fixed effects for year and month, respectively, to account for secular and seasonal
trends. The terms ϵit and νit represent the idiosyncratic errors in the second and
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first stages, respectively. The functions g(.) and h(.) are parametric functions of the
child’s age (ageit) and the parent’s age (pageit), respectively.

The dummy variable Dit indicates whether the parent of adult child i is above
the state pension age at time t. In the first stage, the parameter π quantifies the
impact of the parent crossing the SPA cutoff on their retirement probability. In the
second stage, the parameter λ rflects the treatment effect of parental retirement on
the well-being of the adult child.

This model is estimated using two-stage least squares (2SLS). We apply a band-
width of 10 years for both mothers and fathers (i.e. we only include observations with
mothers aged 50 to 70 and fathers aged 55 to 75), and consider a quadratic trend
for both parental and adult child age in our main specification. Heteroskedastic
robust standard errors are clustered at the adult-child level. We will check whether
the results hold using different parental and child age bandwidths and different
functional form specifications (see Appendix 2.E).

Descriptive statistics Fuzzy RDD

The main Fuzzy RDD analysis is carried out on the sample of adult children and
their spouses who are aged 20–45 years matched to their parents who are within a
band of ±10 years around the State Pension age. The sample here is restricted to
the years before the UK pension reform so that the SPA is fixed. We drop children
whose parents never worked (385 mothers and 203 fathers) or died within the age
bandwidth around the State Pension cutoff (58 mothers and 96 fathers).

This selection procedure yields a sample of 16984 observations in the mother
sample and 13450 observations in the father sample. These cover 3518 adult
children and 1622 of their mothers and 1232 of their fathers. Table 2.4.1 presents
the descriptive statistics, divided into the adult-child-father and adult-child-mother
samples. The difference between the two samples reflects observations on mothers
only and fathers only, as opposed to both at the same time. As such, some adult
children appear in one of the two samples but not the other.
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Table 2.4.1: RDD Sample Descriptive Statistics

Mother sample Father sample

Variable N Individuals Mean or % SD N Individuals Mean or % SD

A. Adult child outcomes

GHQ (0-36) 16984 3518 25.3 5.3 13032 2635 25.3 5.3
Life Satisfaction (1-7) 16984 3518 5.2 1.1 13450 2635 5.2 1.1
Income satisfaction (1-7) 16984 3518 4.5 1.4 13450 2635 4.5 1.4
A. Adult child characteristics

Age 16984 3518 29.0 5.6 13450 2635 30.3 5.6
Year of birth 16984 3518 1974.2 6.0 13450 2635 1973.2 5.9
Married 16984 3518 32 13450 2635 39
Age left school 16984 3518 17.3 2.2 13372 2614 17.3 2.2
Female 16984 3518 49 13450 2635 49
Number of children 16984 3518 0.6 0.9 13450 2635 0.7 0.9
Real monthly individual income 16984 3518 1384.0 1116.7 13113 2588 1496.5 1170.8
Lives with father 16984 3518 23 13450 2635 22
Lives with mother 16984 3518 30 13450 2635 23
White 16984 3518 83 13367 2598 84

B. Older Parent

Retired 16984 1622 26 13450 1232 27
Above SPA 16984 1622 29 13450 1232 24
Age 16984 1622 56.8 4.9 13450 1232 61.2 4.9
Real monthly income 16984 1622 868.0 887.2 13450 1232 1614.4 1506.0

Note: Real income is derived by deflating nominal gross incomes to 2015 GBP using the CPI All
Items (D7BT).

Graphical evidence

The legislated State Pension Age provides an exogenous cutoff for retirement deci-
sions. Figure 2.4.1 reveals a sharp jump in the retirement rate around the cutoff,
suggesting that many individuals react to State Pension eligibility. As such, our
RDD estimates can be interpreted as valid intent-to-treat effects of parental retire-
ment on adult children’s well-being, as long as any of the other factors affecting
parental retirement do not change discontinuously around this cut-off.
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Figure 2.4.1: Parents’ Propensity to Retire by Age: BHPS

(a) Mother (b) Father

Note: These figures plot the retirement rate in the sample of parents in a window of ten years before
and after the State Pension Age. The points refer to fuzzy regression discontinuity estimates from
a flexible quadratic specification using a 10-year bandwidth. Standard errors are clustered at the
parent level. The sample consists of parents whose adult children or in-laws are in the main sample.

2.4.2 Difference-in-Differences

The second identification strategy exploits the change in the SPA from the UK
Pension Acts of 1995 and 2011, which gradually raised the State Pension Age from
60 to 66 over the April 2010 to October 2020 period for women, and from 65 to 66
over the December 2018 to October 2020 period for men.

We can estimate the impact of the resulting delayed retirement on adult children’s
well-being as we have data on the well-being of otherwise similar adult children
whose parents face different State Pension eligibility ages. We thus carry out a
difference-in-differences analysis, as in Cribb et al., 2016, Della Giusta and Longhi,
2021 and Cribb et al., 2022, who estimated the impact of these same reforms on the
retirees’ own labour-market outcomes and well being. The model is as follows:

yit = αTit + λi + γt +

70,75∑
pa=50,55

δ[pageit == pa)] +Xitθ + ϵit (2.3)

Here the outcome of interest yit for adult children i observed in period t is
regressed on a dummy variable Tit for whether his/her parent is above or below
the State Pension age and a set of parental and adult-children controls. These are
the adult child’s age in months and marital status, the elderly parents’ and adult
children’s home ownership, and a dummy variable for the adult child and parent
living in the same household. The dummy Tit is constructed by comparing the adult
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child’s survey interview date to their parents’ State Pension eligibility. Given the
nature of the reform, this is determined by both the parent’s birth cohort and their
age at the time of the interview.

Descriptive statistics in the DiD sample

The sample in the difference-in-differences is of mothers born between 1935 and 1965
(who are aged 50 to 70 at the time of the interview) and fathers born between 1938
and 1968 (aged 55 to 75). This allows for the comparison of adult-child outcomes
across 15 parental cohorts who were unaffected by the reform (born 1935 to March
1950) to the subsequent 15 cohorts (born April 1950 to 1965) who were exposed to
the gradual increases in the SPA.

The data used in this analysis come from the harmonized British Household
Panel Survey (BHPS) and Understanding Society (UKHLS) surveys. The resulting
panel from this combination is unbalanced. The attrition analysis for this sample
appears in Appendix 2.B. As above, we exclude older mothers and fathers who never
worked (2,815 mothers and 683 fathers) and those who passed away within the
specified age range (115 mothers and 185 fathers). The final estimation sample
encompasses 11036 adult children, 5196 older mothers, and 3768 older fathers. The
descriptive statistics for this sample are listed in Table 2.4.2.
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Table 2.4.2: Difference-in-differences Sample Descriptive Statistics

Mother sample Father sample

Variable N Individuals Mean or % SD N Individuals Mean or % SD

A. Adult child outcomes

GHQ (0-36) 59796 11036 24.8 5.6 35344 7447 24.9 5.5
Life satisfaction (1-7) 59796 11036 5.1 1.6 35942 7525 5.2 1.5
Income satisfaction (1-7) 59796 11036 4.5 1.8 35942 7525 4.6 1.7
A. Adult child characteristics

Age 59796 11036 29.4 6.1 35942 7525 29.7 6.1
Year of birth 59796 11036 1981.5 8.5 35942 7525 1981.9 8.4
Married 59796 11036 29 35942 7525 32
Female 59795 11035 51 35942 7525 51
Number of children 59796 11036 0.6 0.9 35942 7525 0.6 0.9
Real Monthly Individual Income 59281 10987 1631.5 2805 35565 7475 1698.8 2355.8
Live with father 59796 11036 26 35942 7525 35
Live with mother 59796 11036 36 35942 7525 34
White 59685 11016 82 35869 7506 79

B. Older Parent

Retired 54216 5196 26 35942 3768 34
Above SPA 59796 5666 26 35942 3768 27
Age 59796 5666 58.0 5.2 35942 3768 61.5 5.1
Real Monthly Individual Income 49429 5033 1264.5 2251.16 31040 3457 2246 4187

Note: See Table 2.4.1.

2.5 Results

In the following sections, we investigate the effect of reaching the State Pension Age
and its legislated postponement on the well-being and labour-market outcomes of
the directly-affected parents. These results will help us to evaluate the proposed
theoretical mechanisms. Retirement will be unlikely to affect the adult-child out-
comes if it has no effect on parents’ well-being or labour-market outcomes: these
are weekly working hours, leisure-time satisfaction, subjective financial situation,
subjective physical and mental health, and life satisfaction.

We then estimate the spillover effect of parental retirement on the adult chil-
dren’s well-being, stratifying the sample in four ways to investigate the underlying
mechanisms. We first consider adult children who are responsible for one or more
children under the age of 12. Second, we split the sample by the door-to-door travel
distance between adult children and their parents. The third stratification refers to
the adult children’s income bandwidth. Last, we consider the marital status of the
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older parents. All of the variables used for this stratification are measured before
the parents reaching their State Pension Age.

2.5.1 Retirement Effects on Parental Labor Supply and Well-

Being: BHPS Data

This section reports the effect of reaching the State Pension Age on the labour
supply and well-being of elderly parents. The first-stage results in Table 2.5.1 and
2.5.2 confirm that reaching the State Pension Age does predict the probability of
retirement at age 60 (for mothers) and age 65 (for fathers), with an increase of
around 29% and 23% for mothers and fathers, respectively. This eligibility is a
strong instrument for parental retirement status, with F-statistics that are much
higher than the rule-of-thumb F-statistic of 10–12 (Staiger and Stock, 1997).

The first parental outcome is the weekly number of work hours. We expect these
to fall after retirement, and this is indeed the case for both mothers and fathers:
see column (1) of Tables 2 and 3. A one standard-deviation rise in the probability
of retirement reduces weekly working hours by by 1.1 and 1.2 standard deviations
for the mother and father, respectively. As a consequence, leisure satisfaction is
expected to rise: in column (2) this increases significantly by 0.81 and 0.76 standard
deviations for retired mothers and fathers. The third outcome is the subjective
financial situation. Pensions in the UK are relatively low compared to labour
income, and financial satisfaction is expected to drop after retirement. This is what
is found in column (3), with a fall of -0.34 and -0.52 standard deviations for mothers
and fathers, respectively. Last, columns (4), (5), and (6) refer to the estimated
effect of retirement on retirees’ mental health, subjective health, and overall life
satisfaction. Mental health rises significantly post-retirement (by 0.30 and 0.27
standard deviations for mothers and fathers). The analogous figure for subjective
health is 0.23 standard deviations for mothers, while there is no significant effect
for fathers. Lastly, life satisfaction increases, but significantly only for fathers, by
0.47 standard deviations.

Comparing the second-stage IV results with the OLS results shed light on the
magnitude and direction of reverse causality. Apart from financial satisfaction
(column 3), all the coefficients have the same sign, but the OLS coefficients are
smaller (as is often the case). However, despite being insignificant, the OLS co-
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efficient for parental retirement is oppositely signed in the financial satisfaction
regressions. This may reflect reverse causality, whereby financially-satisfied older
parents retire earlier, irrespective of the State Pension Age, than do those who are
more financially-pressed who continue to work longer.

These estimated retirement effects on parental outcomes do not provide support
for one of the theoretical mechanisms in Section 2.2.2: the potential rise in informal
care from adult children to their parents. This channel is at odds with the mainly
positive effect of retirement on parental mental and subjective health, and overall
life satisfaction. However, the positive effects on leisure satisfaction and negative
effects on financial situation are consistent with the other proposed channels.

Table 2.5.1: The Effect of Mother’s Retirement on her Labor Supply and Well-being

Dependent Variables: Weekly working hours Leisure Satisfaction Financial Satisfaction GHQ Subjective health Life Satisfaction
(1) (2) (3) (4) (5) (6)

Second-stage IV results
Mother retired -1.10∗∗∗ 0.81∗∗∗ -0.34∗∗ 0.30∗ 0.14 0.19

(0.13) (0.15) (0.15) (0.17) (0.12) (0.15)
R2 0.80 0.60 0.65 0.59 0.68 0.63

First-stage IV results
Mother above SPA 0.29∗∗∗ 0.29∗∗∗ 0.29∗∗∗ 0.28∗∗∗ 0.29∗∗∗ 0.29∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
F-test 1586.00 1487.47 1510.51 1429.79 1534.23 1497.58

Reduced Form
Mother above SPA -0.32∗∗∗ 0.24∗∗∗ -0.11∗∗∗ 0.09∗ 0.04 0.06

(0.05) (0.04) (0.04) (0.05) (0.04) (0.04)
R2 0.79 0.61 0.66 0.59 0.68 0.64

OLS
Mother retired -0.80∗∗∗ 0.31∗∗∗ 0.008 0.10∗∗ 0.06∗ 0.05

(0.06) (0.06) (0.04) (0.04) (0.04) (0.04)
R2 0.81 0.61 0.66 0.59 0.68 0.64

Individuals 1,610 1,586 1,594 1,564 1,605 1,585
Observations 16,897 16,370 16,560 16,090 16,677 16,368

Clustered (mother) standard-errors in parentheses

Significance: *** = 10%; ** = 5%; * = 10%

Note: All models include individual and year and month of interview-fixed effects. The models
include a quadratic trend for the child and mother’s age. Bandwidth of 10 years. The coefficients are
standardized.
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Table 2.5.2: The Effect of Father’s Retirement on his Labor Supply and Well-being

Dependent Variables: Weekly working hours Leisure Satisfaction Financial Satisfaction GHQ Subjective health Life Satisfaction
(1) (2) (3) (4) (5) (6)

Second-stage IV results
Father retired -1.22∗∗∗ 0.76∗∗∗ -0.52∗∗∗ 0.27∗∗ -0.04 0.47∗∗

(0.14) (0.20) (0.17) (0.14) (0.15) (0.23)
R2 0.82 0.64 0.62 0.60 0.67 0.68

First-stage IV results
Father above SPA 0.22∗∗∗ 0.23∗∗∗ 0.23∗∗∗ 0.23∗∗∗ 0.23∗∗∗ 0.23∗∗∗

(0.03) (0.04) (0.04) (0.04) (0.04) (0.04)
F-test 426.92 398.27 405.85 393.90 425.20 401.07

Reduced form
Father above SPA -0.35∗∗∗ 0.22∗∗∗ -0.16∗∗∗ 0.08∗ -0.01 0.11∗∗

(0.05) (0.06) (0.05) (0.04) (0.05) (0.05)
R2 0.77 0.61 0.64 0.58 0.67 0.68

OLS
Father retired -1.03∗∗∗ 0.55∗∗∗ 0.06 0.11∗∗ -0.003 0.12∗∗∗

(0.05) (0.06) (0.05) (0.05) (0.05) (0.04)
R2 0.82 0.65 0.64 0.60 0.67 0.68

Individuals 1,013 908 910 895 940 907
Observations 10,517 9,506 9,604 9,314 9,885 9,500

Clustered (father) standard-errors in parentheses

Significance: *** = 10%; ** = 5%; * = 10%

Note: All models include individual and year and month-fixed effects. The models include a quadratic
trend for the child and mother’s age. Bandwidth of 10 years. The coefficients are standardized.

2.5.2 The Spillover Effects of Parental Retirement on Adult

Children’s Well-Being

Tables 2.5.3 and 2.5.4 show the main estimates of the effect of mother’s and father’s
retirement on a battery of adult child well-being outcomes. The regressions control
for a quadratic age trend and apply a bandwidth of ten years before and after the
pension-eligibility cutoff. The results are shown first for all adult children and then
separately for daughters and sons.

In Table 2.5.3, mothers’ retirement significantly increases their adult children’s
life and income satisfaction by about 0.2 standard deviations. In the third panel of
this table, the estimated effect on adult-child GHQ is also positive, but insignificant.
In Table 2.5.4, the paternal retirement estimates (including those from the reduced-
form regression) are all smaller, insignificant and less precisely estimated than
those for maternal retirement.
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Table 2.5.3: Mother’s Retirement and Adult Children’s Well-being.

Dependent Variables: Life satisfaction Income satisfaction GHQ

All Daughters Sons All Daughters Sons All Daughters Sons

Second-stage IV results
Mother retirement 0.20∗∗ 0.24∗ 0.18 0.21∗∗ 0.18 0.24∗ 0.11 0.18 0.06

(0.10) (0.14) (0.14) (0.10) (0.14) (0.13) (0.11) (0.16) (0.14)
F-test 1577.75 705.16 871.57 1577.75 705.16 871.57 1840.1 920.2 912.3
R2 0.57 0.56 0.58 0.57 0.57 0.57 0.50 0.48 0.52

Reduced form
Mother above SPA 0.06∗∗ 0.07∗ 0.05 0.06∗∗ 0.05 0.07∗ 0.03 0.04 0.02

(0.03) (0.04) (0.04) (0.03) (0.04) (0.04) (0.03) (0.05) (0.04)
R2 0.58 0.56 0.59 0.57 0.57 0.58 0.50 0.49 0.52

OLS
Mother retired 0.02 0.001 0.03 0.01 -0.003 0.03 -0.02 -0.02 -0.01

(0.03) (0.04) (0.04) (0.03) (0.04) (0.0) (0.03) (0.04) (0.04)
R2 0.58 0.56 0.59 0.57 0.57 0.58 0.50 0.49 0.52

Individuals 3,513 1,721 1,797 3,513 1,721 1,797 3,513 1,721 1,797
Observations 16,984 8,292 8,692 16,984 8,292 8,692 16,984 8,292 8,692

Clustered (individual) standard-errors in parentheses

Significance: *** = 10%; ** = 5%; * = 10%

Note: The regressions include a quadratic trend for the adult child and mother age, and individual,
month and year-fixed effects but no other control variables. The age bandwidth is ten years. The
coefficients are standardized. The F-test variable refers to the Cragg-Donald F-statistic from the
first stage.
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Table 2.5.4: Father’s Retirement and Adult Children’s Well-being.

Dependent Variables: Life satisfaction Income satisfaction GHQ

All Daughter Son All Daughter Son All Daughter Son

Second-stage IV results
Father retired 0.07 0.04 0.09 -0.10 -0.29 0.07 -0.24 -0.20 -0.28

(0.21) (0.31) (0.29) (0.22) (0.34) (0.29) (0.23) (0.37) (0.29)
F-test 345.83 151.12 198.84 345.83 151.12 198.84 345.83 151.12 198.84
R2 0.57 0.57 0.58 0.58 0.58 0.58 0.50 0.48 0.52

Reduced form
Father above SPA 0.01 0.02 0.004 -0.03 -0.06 0.006 -0.04 -0.03 -0.05

(0.03) (0.04) (0.05) (0.03) (0.05) (0.05) (0.04) (0.06) (0.05)
R2 0.57 0.57 0.58 0.58 0.58 0.58 0.50 0.48 0.52

OLS
Father retired 0.04 -0.07 -0.03 0.04 0.02 0.06 0.006 0.03 -0.010

(0.04) (0.05) (0.05) (0.04) (0.06) (0.05) (0.04) (0.06) (0.05)
R2 0.58 0.57 0.58 0.58 0.58 0.58 0.50 0.48 0.52

Individuals 2,635 1,299 1,336 2,635 1,299 1,336 2,635 1,299 1,336
Observations 13,457 6,632 6,825 13,457 6,632 6,825 13,457 6,632 6,825

Clustered (individual) standard-errors in parentheses

Significance: *** = 10%; ** = 5%; * = 10%

Note: see Table 2.5.3.

2.5.3 Heterogeneity

This sub-section asks whether the effect of parental retirement on adult child well-
being depends on family characteristics. The first of these is whether the adult
children are themselves parents, and if they are the age of the grandchildren. If the
positive effect of maternal retirement reflects time transfers via grandchild care,
this should only appear for adult children who are parents. In addition, Kaufmann
et al., 2023 highlights that the effect of maternal retirement on daughters’ labour
supply depends on the age of the grandchildren, with an increase in adult daughters’
working hours only when the children are aged between 4 and 7.

Table 2.5.5 presents the estimates for maternal retirement using the same
specification as in Table 5. First, separating the adult children by parenthood and
the ages of their children in columns (1)-(5) (an adult child who has children of
different ages may well appear in more than one of these columns). The results
are consistent with grandparental childcare, in that maternal retirement has no
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significant effect on any dimension of well-being for childless adult children. On the
contrary, there are positive significant effects for adult children who are parents.
With respect to the grandchild age, the smallest effects are found for grandchildren
under the age of three, although all of the estimated coefficients are statistically
equal to each other.

We interpret these findings as revealing the importance of grand-maternal
childcare for younger children. This is an important transfer, as private childcare
in the UK is very expensive. An alternative approach to the extensive margin of
retired or not is to consider the intensive margin of older mothers’ work hours: the
results remain statistically significant and in the same direction (see Appendix 2.E).

Second, inter-generational support may well vary by the geographical distance
between adult children and their retired mothers. In Chan and Ermisch, 2011,
exchanges between households fall with the travel distance between them in the
United Kingdom. A similar result with respect to grand-parental childcare provision
is found across 10 European countries in Zanasi et al., 2023. Last, Eibich and
Siedler, 2020 find a significant effect of paternal retirement on adult children’s
fertility but only for travel distances of under one hour between the parents and the
adult children. We should however note that the well-being of adult children could
influence their parents’ location and retirement choices. These heterogeneity results
regarding travel distances should, therefore, be interpreted with some caution.

Columns (6)-(8) reveal significant heterogeneity. When the travel time between
retired mothers and their adult children is less than one hour, the effect on the
latter’s life satisfaction, income satisfaction, and mental health is substantial (with
rises of 0.41, 0.24, and 0.31 standard deviations, respectively). The estimates for
longer travel times are all smaller in absolute value and insignificant.

Third, given that retired grandparents can provide free childcare to their grand-
children, maternal retirement may matter more for poorer adult children (as child-
care is less affordable for them). In columns (9) and (10), we carry out separate
estimations for adult children whose gross monthly income in the years before their
mothers reached the State Pension age was in the bottom quartile or the top quartile
in that year. For both life and income satisfaction, the positive effect of maternal
retirement is driven by adult children in the bottom income quartile.

We then turn to the marital status of the retired mother. In particular, elderly
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non-partnered mothers — whether widowed, divorced or separated — are more
likely to support their adult children, including via childcare, due to their greater
availability after retirement. Columns (11) and (12) support this hypothesis, with
larger effects for all dimensions of adult children from not-married elderly mothers
after retirement.

Last, we stratify the sample by the pre-retirement health status of elderly moth-
ers, as their ability to provide childcare and support to their adult children likely
depends on their health. This latter is measured all BHPS waves via the question:“In
the last 12 months, have you been in a hospital or clinic as an in-patient overnight
or longer?”. We divide our sample according to whether the elderly mothers were
hospitalized at least once in the pre-retirement period. In columns (13) and (14),
the life and income satisfaction of adult children with better health are significantly
and positively affected by maternal retirement. By way of contrast, the coefficient
for adult children with hospitalized mothers is negative (although not statistically
significant).

Overall, these results suggest that a substantial part of the main estimates in
Table 2.5.3 reflects the time that retired mothers transfer to their adult children.
It also sheds light on the gendered nature of childcare responsibilities and the
significant role that retired mothers can play in supporting their adult children
and grandchildren. Ultimately, these findings may have important implications for
policymakers and households, emphasizing the value of intergenerational support
and the importance of recognizing and addressing the challenges faced by women
in the workforce.

Next, Table 2.5.6 presents the analogous heterogeneity results for paternal
retirement. In general, there is little consistent evidence of heterogeneity here with
respect to adult-child or parent characteristics. However, there is some evidence (in
columns (11)-(12)) that the retirement of unmarried fathers reduces the well-being
of their adult children more than the retirement of married fathers.
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Table 2.5.5: Mother’s Retirement and Adult Child Well-being– Heterogeneity Results

Strata: No child Child Age 5-11 Age 3-4 Age 0-2 Live together ≤ 1 hrs > 1 hrs ≤ 25th pct ≥ 75th Married Not married Not hospital Hospital
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Dependent Variable

Life satisfaction 0.17 0.28∗∗ 0.38∗∗ 0.35∗∗ 0.23∗ -0.03 0.41∗∗∗ 0.35 0.57∗∗∗ 0.17 0.12 0.44∗∗ 0.27∗∗ -0.31
(0.17) (0.13) (0.16) (0.15) (0.14) (0.25) (0.14) (0.30) (0.20) (0.18) (0.13) (0.21) (0.11) (0.55)

R2 0.62 0.53 0.52 0.51 0.52 0.63 0.53 0.48 0.68 0.58 0.58 0.61 0.58 0.79

Income satisfaction 0.0002 0.39∗∗∗ 0.41∗∗∗ 0.49∗∗∗ 0.36∗∗∗ 0.19 0.24∗ 0.11 0.54∗∗∗ 0.11 0.21∗ 0.47∗∗ 0.26∗∗ -0.16
(0.16) (0.13) (0.15) (0.15) (0.14) (0.24) (0.14) (0.27) (0.19) (0.16) (0.12) (0.21) (0.11) (0.38)

R2 0.61 0.53 0.51 0.51 0.52 0.62 0.55 0.53 0.66 0.55 0.57 0.60 0.58 0.84

GHQ 0.20 0.11 0.35∗∗ 0.28∗ 0.20 0.04 0.31∗∗ -0.20 0.31 0.38∗ 0.07 0.09 0.12 0.47
(0.19) (0.14) (0.17) (0.16) (0.15) (0.26) (0.15) (0.36) (0.21) (0.20) (0.14) (0.20) (0.12) (0.66)

R2 0.53 0.47 0.46 0.46 0.46 0.56 0.47 0.39 0.61 0.54 0.52 0.51 0.51 0.76

Individuals 2,219 1,299 778 844 1,022 1,654 784 299 1,331 1,914 2,755 914 3,447 846
Observations 8,693 8,291 5,419 6,149 7,096 6,191 5,444 1,900 3,805 7,597 12,871 3,885 15,605 1,379

Clustered (pidp) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Not married includes divorced, separated and widowed older mothers. Hospital refers to older mothers who have spent at least one night in hospital in the
12 months before the interview date. For all stratification levels, the coefficients refer to the second-stage IV estimates of the regression of adult child well-being
on the residual of the first stage in equation 2.1. All models include a quadratic age trend for adult child and parental age and individual, year, and month fixed
effects. There are no other control variables.
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Table 2.5.6: Father’s Retirement and Adult Child Well-being– Heterogeneity Results

Strata: No child Child Age 5-11 Age 3-4 Age 0-2 Live together ≤ 1 hrs > 1 hrs ≤ 25th pct ≥ 75th Married Not married Not hospital Hospital
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Dependent Variable

Life satisfaction -0.21 0.33 0.16 0.22 0.53 0.10 0.55 -1.31 -0.24 -0.22 0.07 -0.41 0.18 -1.28
(0.29) (0.32) (0.36) (0.36) (0.34) (0.36) (0.55) (1.1) (0.46) (0.27) (0.23) (0.37) (0.24) (0.97)

R2 0.62 0.52 0.53 0.53 0.50 0.59 0.48 0.53 0.68 0.59 0.59 0.59 0.58 0.80

Income satisfaction -0.18 -0.04 -0.23 -0.02 0.00 -0.18 0.25 -0.36 -0.24 -0.28 -0.10 -0.29 -0.01 -1.36∗

(0.31) (0.31) (0.37) (0.36) (0.31) (0.37) (0.52) (0.95) (0.45) (0.30) (0.24) (0.40) (0.25) (0.74)
R2 0.61 0.53 0.51 0.51 0.52 0.62 0.55 0.53 0.66 0.55 0.57 0.60 0.59 0.82

GHQ -0.46 -0.06 -0.11 -0.45 -0.13 0.04 -0.59 0.85 -1.06∗∗ -0.34 0.03 -1.22∗∗∗ -0.27 0.69
(0.34) (0.33) (0.41) (0.39) (0.34) (0.37) (0.76) (0.99) (0.50) (0.31) (0.25) (0.46) (0.27) (0.68)

R2 0.53 0.47 0.46 0.46 0.46 0.56 0.47 0.39 0.61 0.54 0.52 0.51 0.51 0.82

Individuals 1,484 1,151 709 745 875 972 136 81 1,027 1,487 2,194 209 2,606 546
Observations 6,016 7,441 5,010 5,528 6,139 4,735 987 501 3,098 6,181 10,276 864 12,616 841

Clustered (pidp) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Not married includes divorced, separated and widowed older fathers.

Note: See Table 2.5.5.
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2.5.4 Evidence from Pension Reforms: UKHLS

One potential limitation of the RDD approach is potential anticipation effects,
whereby older parents and their adult children may adjust their behavior in an-
ticipation of changes in their well-being. For example, adult children might make
choices regarding fertility or employment that affect their parents’ propensity to
retire and/or their parents’ overall well-being around the time of the parent’s eligi-
bility for the State Pension. Disentangling these alternative explanations using the
RDD design is challenging. However, using changes in policy or other exogenous
events that affect parents’ eligibility for pension as an alternative source of exoge-
nous variation can help alleviate some of these concerns and provide more robust
evidence on the relationship between adult children’s well-being and retirement
decisions.

As for the RDD analysis above, in the following sections we will first illustrate
the direct effect of the UK pension reform on the labour market and well-being
outcomes of the parents who were exposed to it; we then evaluate the policy reforms’
indirect effects on the parents’ adult children.

The direct effect on parents appears in Table 2.5.7. In column (1), in line with
our results above and other contributions (see Cribb et al., 2016, Della Giusta and
Longhi, 2021), being above the SPA decreases parental weekly working hours by 0.20
and 0.27 standard deviations for mothers and fathers respectively. The analogous
effects on parents’ leisure satisfaction (Column 2) are positive and significant at 0.11
and 0.17, and those on financial satisfaction are significantly negative at 0.10 and
0.16. The results for mental and subjective health (Columns 4 and 5) are mixed, with
only a significant positive mental health impact of being above the SPA for mothers.
Lastly, overall life satisfaction (Column 6) is positively affected by being above the
SPA at 0.06 and 0.13 standard deviations for mothers and fathers, respectively.
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Table 2.5.7: The Rise in the State Pension Age and Older Parents’ Labour-market
and Well-being Outcomes

Weekly working hours Leisure Satisfaction Financial Satisfaction GHQ Subjective health Life Satisfaction
(1) (2) (3) (4) (5) (6)

Panel A

Mother above SPA -0.20∗∗∗ 0.11∗∗∗ -0.10∗∗∗ 0.10∗∗∗ 0.04∗ 0.06∗

(0.04) (0.03) (0.03) (0.04) (0.02) (0.03)
R2 0.76 0.52 0.67 0.58 0.74 0.53

Individuals 5,048 4,913 4,981 4,886 5,045 4,913
Observations 49,516 47,785 49,048 47,335 49,275 47,785

Panel B

Father above SPA -0.27∗∗∗ 0.17∗∗ -0.16∗∗∗ -0.06 0.05 0.13∗∗

(0.07) (0.07) (0.06) (0.07) (0.07) (0.06)
R2 0.75 0.53 0.68 0.63 0.75 0.53

Individuals 3,518 3,265 3,324 3,247 3,464 3,265
Observations 31,576 29,069 30,066 28,816 16,040 29,066

Clustered (birth year) standard-errors in parentheses

Significance: *** = 10%; ** = 5%; * = 10%

Note: All coefficients are standardized. The control variables are being married, having a degree,
living with their adult child, the adult child’s age in months and individual, interview year and
month fixed effects.

Table 2.5.8 then turns to the estimated effects of the pension reform on the adult
children’s well-being. In opposition to the RDD results, there are here no signifi-
cant effects of maternal retirement on adult-child well-being, with all estimated
coefficients being close to zero. This may reflect the anticipation of reforms by adult
children, who adjust their expectations and behaviour accordingly. This anticipa-
tion will reduce the estimated effect of the reform (as some of the observations in
the control group will actually be treated). A second potential explanation is the
concurrent expansion of publicly-provided and free childcare in the UK during the
period over which the pension reforms were implemented (UK Government, 2023).

However, in Panel B of Table 2.5.8 paternal retirement has significant negative
effects on adult sons’ life and income satisfaction. Paternal retirement thus increases
the leisure and life satisfaction of the parents who are concerned but is detrimental
to the well-being outcomes of adult sons.
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Table 2.5.8: The Rise in the State Pension Age and Adult Child Well-being.

Dependent Variables: Life satisfaction Income satisfaction GHQ

All Daughters Sons All Daughters Sons All Daughters Sons

Panel A

Mother above SPA 0.003 0.01 -0.008 -0.007 -0.02 0.004 -0.008 -0.03 0.02
(0.02) (0.03) (0.02) (0.02) (0.03) (0.03) (0.02) (0.03) (0.03)

R2 0.51 0.49 0.54 0.53 0.51 0.55 0.51 0.50 0.52

Individuals 11,033 5,476 5,566 11,033 5,476 5,566 10,957 5,435 5,530
Observations 59,778 30,464 29,313 59,778 30,464 29,313 58,957 30,009 28,947

Panel B

Father above SPA -0.04 0.05 -0.14∗∗ -0.02 0.06 -0.12∗∗ -0.005 0.02 -0.04
(0.05) (0.08) (0.07) (0.06) (0.06) (0.06) (0.05) (0.07) (0.07)

R2 0.52 0.49 0.55 0.54 0.51 0.57 0.53 0.52 0.54

Individuals 7,523 3,770 3,754 7,523 3,770 3,754 7,445 3,735 3,713
Observations 35,923 18,222 17,665 35,923 18,222 17,665 35,328 17,930 17,397

Clustered (pidp) standard-errors in parentheses

Significance: *** = 10%; ** = 5%; * = 10%

Note: All coefficients are standardized. Standard errors in parentheses are clustered at the adult
child level. All regressions control for adult children and older parent variables: age, marital status,
housing tenure, labour-market activity, and individual, interview year and month fixed effects.

2.5.5 Heterogeneity

The above finding that adult sons’ life and income satisfaction are negatively af-
fected by parental retirement could reflect that adult children support their fathers
financially in retirement. Equally, not working older fathers may stop financially
supporting their adult children.

One implication of these channels is that the effect of parental retirement should
differ by the adult child’s income. With transfers from the adult child to the parent,
delayed retirement of the latter should have a greater effect on higher-income sons
(as they are more likely to support their retired fathers financially); conversely, lower-
income sons will likely be more affected by transfers in the opposite direction. To
investigate heterogeneity by adult-child income, we estimate Equation 2.3 with an
interaction term between the treatment dummy and the income quartile dummies
of the adult child.

Table 2.5.9 lists the results. The effect for adult children in the first income
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quartile is given by the estimated treatment coefficient (father above the SPA). At
the same time, the interaction term shows the differential impact on adult children
in higher-income quartiles. There are no significant estimates for the whole sample
of adult children in columns (1), (3) and (5). The results for sons in columns (2),
(4) and (6) mostly reveal smaller point estimates for richer adult sons regarding
life and income satisfaction (although none of the interaction terms is statistically
significant).

Another piece of evidence comes from the travel-distance stratification, where we
expect to find larger effects for adult children who still live with their fathers or are
nearby. As well as the time-transfer channel, it may also be the case that financial
support from older parents to adult children increases with proximity (Berry, 2008).

Table 2.5.10 shows the estimated coefficients on the interaction terms between
travel distance and the treatment dummy. The main treatment coefficient (father
above SPA) reveals the effect for adult children who live with their fathers. The
effect of father’s retirement on adult-child well-being is almost always larger for
children (and especially sons) who live close by, as shown by the estimated coefficient
on Father above SPA × < 1.
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Table 2.5.9: The Rise in Father’s State Pension Age and Adult Child Well-being:
Heterogeneity by Adult Child Income

Dependent Variables: Life satisfaction Income satisfaction GHQ

All Sons All Sons All Sons
(1) (2) (3) (4) (5) (6)

Father above SPA -0.05 -0.22∗∗∗ -0.04 -0.16∗ -0.0008 0.03
(0.06) (0.08) (0.06) (0.08) (0.06) (0.07)

Father above SPA × 2nd quartile -0.005 0.05 0.02 -0.04 -0.01 -0.11
(0.04) (0.07) (0.04) (0.07) (0.05) (0.07)

Father above SPA × 3rd quartile 0.008 0.10 0.010 0.04 -0.03 -0.04
(0.04) (0.06) (0.04) (0.06) (0.05) (0.07)

Father above SPA × 4rt quartile 0.02 0.09 0.03 0.07 -0.008 -0.03
(0.04) (0.06) (0.04) (0.06) (0.05) (0.07)

R2 0.52 0.55 0.54 0.57 0.54 0.55

Individuals 7,473 3,727 7,473 3,727 7,444 3,712
Observations 35,547 17,501 35,547 17,501 35,325 17,395

Clustered (pidp) standard-errors in parentheses

Significance: *** = 10%; ** = 5%; * = 10%
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Table 2.5.10: The Rise in Father’s State Pension Age and Adult Child Well-being:
Heterogeneity by Travel Distance

Dependent Variables: Life satisfaction Income satisfaction GHQ

All Sons All Sons All Sons

Father above SPA 0.07 0.02 -0.007 -0.11 0.08 0.11
(0.06) (0.08) (0.06) (0.08) (0.07) (0.10)

Father above SPA × ¡1hr -0.14∗∗∗ -0.17∗∗∗ -0.05 -0.03 -0.09∗ -0.18∗∗∗

(0.05) (0.06) (0.05) (0.06) (0.05) (0.06)
Father above SPA × ¿1hr -0.07 -0.10 0.04 0.02 -0.06 -0.14∗

(0.05) (0.07) (0.06) (0.07) (0.06) (0.08)
R2 0.46 0.49 0.50 0.52 0.51 0.51

Individuals 4,076 1,906 4,076 1,906 4,052 1,895
Observations 24,579 11,517 24,579 11,517 24,252 11,381

Clustered (pidp) standard-errors in parentheses

Significance: *** = 10%; ** = 5%; * = 10%

2.6 Conclusion

We have here used linked parent-child information from two UK household panel
datasets to establish the spillover effects of parental retirement on the well-being of
their adult children. This effect was identified first in a Regression Discontinuity
Design analysis using eligibility age for the State Pension as a tool for identification
within a (RDD) framework. Here, only the mothers’ retirement increased their adult
children’s life satisfaction and income satisfaction. These effects were larger for adult
children who live close to their parents, who have children themselves, and who have
lower incomes. These findings are consistent with inter-generational time transfers
from retired mothers to their adult children, highlighting the importance of childcare
provisions and affordability. Delayed retirement will then have a potentially large
spillover effect on adult children’s well-being and labour-market outcomes, especially
those from lower-income households.

The second analysis considered the rise of the UK’s state pension age for women
and men. The difference-in-difference analysis here shows that fathers’ retirement
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reduces their adult children’s life and income satisfaction, with the results being
driven by adult sons; there was no significant effect of mothers’ retirement on adult-
child well-being. This is consistent with inter-generational financial transfers from
fathers to adult children.

Our most general finding is that public policies can have inter-generational
spillover effects with significant distributional consequences, underscoring the
importance of both financial and time transfers. These spillovers should enter into
any evaluation of policies that aim to change retirement behaviour.
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2.A General Health Questionnaire

Table 2.A.1: GHQ questions/responses

GHQ questions / re-

sponses

1 2 3 4

Been able to concentrate on

whatever you are doing?

Better than

usual

Same as

usual

Less than

usual

Much less

than usual

Lost much sleep over worry? Not at all No more

than usual

Rather

more than

usual

Much more

than usual

Felt that you are playing a

useful part in things?

More so

than usual

Same as

usual

Less so

than usual

Much less

capable

Felt capable of making deci-

sions about things?

More so

than usual

Same as

usual

Less so

than usual

Much less

capable

Felt constantly under strain? Not at all No more

than usual

Rather

more than

usual

Much more

than usual

Felt you could not overcome

your difficulties?

Not at all No more

than usual

Rather

more than

usual

Much more

than usual

Been able to enjoy your nor-

mal day-to-day activities?

Much more

than usual

Same as

usual

Less so

than usual

Much less

than usual

Been able to face up to your

problems?

More so

than usual

Same as

usual

Less able

than usual

Much less

able

Been feeling unhappy and de-

pressed?

Not at all No more

than usual

Rather

more than

usual

Much more

than usual

Been losing confidence in

yourself?

Not at all No more

than usual

Rather

more than

usual

Much more

than usual

Been thinking of yourself as

a worthless person?

Not at all No more

than usual

Rather

more than

usual

Much more

than usual

Been feeling reasonably

happy all things considered?

More so

than usual

About

same as

usual

Less so

than usual

Much less

than usual
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2.B Sample biases

2.B.1 Attrition bias

The bar chart in Figure 2.B.1 represents the sample composition of adult children
(16+) in the British Household Panel Survey (BHPS) across various waves, from
wave 1 in 1991-92 to wave 18 in 2008-09. Each bar is color-coded to indicate the
wave in which respondents first participated, providing insight into adding new
respondents over time and retaining participants across consecutive waves.

The initial wave (1991-92), represented by the dark purple segment at the base
of each bar, has the highest number of adult children respondents. Over time,
additional cohorts of adult children and their spouses or partners entered the
survey, which is evident in the different colours appearing in subsequent waves.
The introduction of households from Scotland and Wales in wave 9 (1999-2000) and
Northern Ireland in wave 11 (2001-02) also increased the number of adult children
in these respective waves.

Furthermore, the chart visually indicates attrition over time; the diminishing
height of the colored segments corresponding to the first wave suggests decreased
participation from the original cohort. This is consistent with the reported attrition
rates, with 52% of the initial adult children participants remaining after 18 years.
The varied height of the bars also reflects the survey’s dynamic nature, with different
numbers of respondents in each wave due to attrition and the addition of new
households.
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Figure 2.B.1: BHPS Adult children waves composition

Table 2.B.1 illustrates results from a regression of individual attrition on a set of
demographic and outcome variables in BHPS for adult children (16+), elder mothers,
and elder fathers. The main demographic predictors of attrition are male, white,
and older ages for adult children and elderly parents. Retirement status predicts a
higher likelihood of dropping from the sample for only fathers, which may indicate
a potential reason for the insignificant effect we found in this sample.
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Table 2.B.1: Characteristics of Attritors in BHPS sample

Attritors Attritors Attritors
Adult Children Elder mothers Elder Fathers

Variables

Life Satisfaction -0.006∗∗ 0.006 −3.7× 10−5

(0.003) (0.005) (0.006)
Income satisfaction -0.009∗∗∗ -0.01∗∗∗ -0.01∗∗

(0.002) (0.004) (0.005)
GHQ 0.001 0.0002 -0.003∗

(0.0006) (0.001) (0.002)
White 0.05∗∗∗ 0.10∗∗∗ 0.08∗∗∗

(0.009) (0.01) (0.02)
Age -0.005∗∗∗ -0.0002 -0.001

(0.0004) (0.0008) (0.001)
Female -0.02∗∗

(0.009)
Active 0.002

(0.007)
Retired 0.02 0.08∗∗∗

(0.02) (0.02)

Fit statistics

Observations 45,998 19,763 14,365
Pseudo R2 0.01983 0.00983 0.01073
BIC 47,220.6 22,688.0 16,853.5

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The degree of attrition from the UKHLS survey is also high: of the initial sample
of adult children, 33% still participate after 12 years, figure 2.B.2. Table 2.B.2
illustrates results from a regression of individual attrition on the demographic and
outcome variables set in UKHLS. Compared to the BHPS, in the UKHLS sample,
the same predictors are statistically significant, but being white decreases the
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probability of dropout. Moreover, in UKHLS, retirement predicts drop out for both
fathers and mothers.

Figure 2.B.2: UKHLS waves composition
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Table 2.B.2: Characteristics of Attritors in UKHLS sample

Attritors Attritors Attritors
Adult Children Elder mothers Elder Fathers

Life Satisfaction 0.006∗∗∗ 0.005∗∗ 0.006∗∗

(0.002) (0.002) (0.003)
Income Satisfaction -0.02∗∗∗ -0.02∗∗∗ -0.02∗∗∗

(0.002) (0.002) (0.003)
GHQ 0.004∗∗∗ -0.0002 -0.002∗∗

(0.0004) (0.0006) (0.0009)
White -0.08∗∗∗ -0.08∗∗∗ -0.14∗∗∗

(0.006) (0.009) (0.01)
Age -0.005∗∗∗ -0.004∗∗∗ -0.004∗∗∗

(0.0003) (0.0006) (0.0007)
Female -0.02∗∗∗

(0.007)
Active -0.03∗∗∗

(0.005)
Retired 0.05∗∗∗ 0.06∗∗∗

(0.01) (0.02)

Fit statistics

Observations 111,136 58,764 38,275
Pseudo R2 0.03350 0.01416 0.02445
BIC 143,868.7 81,235.3 51,659.2

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

2.B.2 Co-residence bias

According to Torche, 2019: “If older co-resident children are included in the analysis,
this induces the risk of bias insofar as children who continue to live with parents
after late adolescence might not be a representative sample of their cohort. Selection
bias induced by selecting co-resident children beyond their late adolescence is a
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concern, even if the sample is restricted to children who are young adults”.
To assess co-residence bias in our sample of adult children, we ran a simple

descriptive analysis comparing summary statistics of the demographic variables in
our main sample of adult children and the full sample of respondents from BHPS in
the same age range and cohort as the one used in the main analysis (25-45; 1963+).
Table 2.B.3 reports the mean and standard deviation for the full and adult children
samples and the associated p-value for the statistical test of their difference. The
two samples differ statistically significantly in all dimensions considered. This is a
significant bias we should consider when considering the validity of our main causal
estimates.

Table 2.B.3: Co-residence bias in the BHPS sample.

Variables Adult Children Full Sample p.adj.signif
GHQ 25.15 24.64 ****

(5.33) (5.60)
Income satisfaction 4.50 4.42 ****

(1.44) (1.52)
Life satisfaction 5.20 5.10 ****

(1.14) (1.23)
Active 0.87 0.84 ****

(0.34) (0.37)
Age 31.46 35.58 ****

(4.94) (5.79)
Female 0.46 0.54 ****

(0.50) ((0.50)
Labour income 1548.48 1495.68 ****

(1176.82) (1343.01)
Married 0.39 0.58 ****

(0.49) (0.49)
Number children 0.71 1.14 ****

(0.98) (1.14)
Year of birth 1972 1966 ****

(5.35) (6.51)
Years of education 16.99 16.42 ****

(2.00) (1.03)
Number of Observations 18333 57686

Mean and standard deviation (in parenthesis) of outcome and demographic variables in the BHPS
Adult Children sample and the Full sample and associated p-value for t-test for the difference in
means.
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Table 2.B.4: Co-residence bias in the UKHLS sample.

Variables Adult Children Full Sample p.adj.signif
GHQ 24.46 24.54

(5.75) (5.76)
Income satisfaction 4.38 4.16 ****

(1.99) (2.57)
Life satisfaction 4.95 4.80 ****

(1.90) (2.52)
Active 0.88 0.84 ****

(0.33) (0.37)
Age 31.37 (35.76 ****

(5.13) (5.95)
Female 0.50 0.57 ****

(0.50) (0.49)
Labour income 1933.79 2139.41 ****

(1857.12) (5409.37)
Married 0.31 0.55 ****

(0.46) (0.50)
Number children 0.55 1.14 ****

(0.89) (1.14 )
Year of birth 1984.06 1978.18 ****

(5.70) (6.86)
Years of education 16.65 16.62 ***

(1.10) (1.19)

Mean and standard deviation (in parenthesis) of outcome and demographic variables in the UKHLS
Adult Children sample and the Full sample and associated p-value for t-test for the difference in
means.

2.C Fuzzy RDD Assumption

Smoothness in density: For an RDD design to be valid, individuals must not manip-
ulate the assignment variable, which, in our case, is the parent’s age in months. We
run continuity density tests around the cutoff for mothers and fathers separately
to test the continuity in the parent’s age range. The density test consists of a null
hypothesis that the density of the running variable is continuous at the cutoff. In
other words, the null hypothesis is that there is no ”manipulation” of the density at
the cutoff. Failing to reject implies no statistical evidence of manipulation at the
cutoff (Cattaneo et al., 2019). Figure 2.C.1 illustrates the results from this test and
confirms the absence of manipulation around the cutoff.

Choice of bandwidth: One of the most critical decisions in RDD is selecting the
appropriate bandwidth around the cutoff. This parameter establishes the maximum
age range from the discontinuity. Observations beyond this range are unused.
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Choosing a narrow bandwidth minimizes bias, but it may increase variance due to
a smaller number of observations. On the other hand, selecting a larger bandwidth
reduces variance but can potentially increase bias. In the main specification, we use
a bandwidth of ten years, covering ages 50 to 70 for mothers and 55 to 75 for fathers.
We perform robustness checks with bandwidths of eight, five and three years.

Smoothness in covariates: One fundamental assumption of the RD design is
that other predetermined characteristics of the parents and adult children that
may affect adult children’s well-being should not change discontinuously at the
threshold. Parents’ predetermined variables include race, college degree, and
number of biological children. Adult children’s predetermined covariates are race,
female/male ratio, years of education, and degree. Figures 2.C.2, 2.C.3, and 2.C.4
illustrate the RD plot for children, mothers, and fathers, overlaid with lines from
local linear regressions using data within ±10 years window. The graphs show no
visible discontinuities at the cutoff, indicating that local assignment around the
cutoff is random. Overall, the RD validity checks support our empirical strategy
and provide no evidence of violations of the key identifying assumptions.

Instrument validity: There are three conditions necessary to interpret the two-
stage least squares estimate. First, parents’ age is strongly associated with retire-
ment status. We show the validity and magnitude of the first-stage relationship
in Section 2.4.1. Second, we need to assume that parents’ age only impacts adult
children’s outcomes through the change in retirement probability. This assumption
might be violated if adult children anticipate their parent’s eligibility for a state
pension and adjust their well-being accordingly.
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Figure 2.C.1: Density plots of the running variable. Mothers (left panel) and father
(right panel

(a) Mother (b) Father

Notes: The plots show the estimated probability density function of the running variable. The plot
uses parental age (in months) as the running variable and assumes a threshold at age 720 for
mothers and 780 for fathers. The density functions were estimated using the rddensity package in R,
using a local quadratic polynomial for the estimation, a cubic polynomial for the bias correction, a
triangular kernel, and jackknife standard errors.

Figure 2.C.2: Tests for the continuity of the adult child’s predetermined variables
around the mother SPA.

Source: BHPS, own calculations. The dots show averages by parental age in years. The lines show a
quadratic fit, and the shaded areas show a 95% confidence interval.
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Figure 2.C.3: Tests for the continuity of the adult child’s predetermined variables
across the father SPA. BHPS, own calculations. Note: see Figure 2.C.2.

Figure 2.C.4: Tests for the continuity of the parent’s predetermined variables across
the parent’s SPA threshold. BHPS, own calculations.

Note: see Figure 2.C.2.
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2.D Sensitivity Analysis

The RDD results may be sensitive to the retirement definition used. Indeed, in
the main analysis, we defined parents as retired if they self-report being retired.
However, the literature presents other definitions of retirement that may still be
valid. This section assesses the sensitivity of our results to the retirement definition.
We assess the sensitivity of results focusing on maternal retirement only.

We analyze three plausible variants. The first variant considers parents as
retired if they are self-declared retired or report being inactive and not looking for a
job in the month before the interview date. The second variant considers parents
as retired only if they receive a state pension benefit. Figure 2.D.1 illustrates the
switching probability according to the three definitions. The third variant uses
parental job hours instead of the self-reported retirement definition as the outcome
variable in stage 1 of equation 4.1.

Figure 2.D.1: BHPS own elaboration. Mothers switching to retirement according to
the three definitions of retirement.

Note: Definition 1 refers to the retirement definition adopted in the main analysis, Definition 2 refers
to the variant where we include also inactive and not looking for jobs individual, Definition 3 refers
to the variant where we consider the condition of receiving the State Pension£
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Table 2.D.1: Mother retirement and adult children’s well-being- Sensitivity analysis
by retirement definition.

Dependent Variables: Life satisfaction Income satisfaction GHQ

First variant Second variant Job hours First variant Second variant Job hours First variant Second variant Job hours

Second-stage IV results
retired (1st var) 0.36∗∗ 0.39∗∗ 0.20

(0.18) (0.17) (0.19)
retired (2nd var) 0.33∗ 0.39∗∗ 0.19

(0.18) (0.17) (0.19)
Job hours -0.20∗∗ -0.21∗∗ -0.12

(0.09) (0.09) (0.10)

Observations 16,775 16,572 16,897 16,775 16,572 16,897 16,398 16,197 16,510
R2 0.56948 0.57427 0.56902 0.56752 0.57192 0.56457 0.50278 0.50547 0.50067

First-stage IV results
mother above SPA 0.17∗∗∗ 0.17∗∗∗ -0.33∗∗∗ 0.17∗∗∗ 0.17∗∗∗ -0.33∗∗∗ 0.17∗∗∗ 0.17∗∗∗ -0.33∗∗∗

(0.02) (0.01) (0.03) (0.02) (0.01) (0.03) (0.02) (0.01) (0.03)

Observations 16,775 16,572 16,897 16,775 16,572 16,897 16,398 16,197 16,510
R2 0.79270 0.75460 0.79874 0.79270 0.75460 0.79874 0.79438 0.75511 0.79999
F-stat 410.8 640.1 401.6 626.5 403.6 641.9 447.1 628.2

OLS
etired (1st var) -0.01 0.02 -0.009

(0.03) (0.03) (0.03)
retired (2nd var) -0.010 0.04 0.01

(0.03) (0.04) (0.04)
Job hours -0.006 -0.008 9.9× 10−5

(0.01) (0.01) (0.01)
Observations 16,775 16,572 16,897 16,775 16,572 16,897 16,398 16,197 16,510
R2 0.57658 0.57853 0.57655 0.57386 0.57549 0.57275 0.50487 0.50647 0.50361

Clustered (pidp) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The models include a quadratic trend for the child and parents’ age. All models include fixed effects
for adult children and year and month-fixed effects. Age bandwidth of ten years. The coefficients are
all standardized.
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2.E Robustness checks

We perform four robustness checks for the model specification. The first assesses
the robustness of the RDD-IV results to change in the parental age bandwidth
around the cutoff, looking at eight, five, and three years. The second enlarges the
age bandwidth of adult children from 20-45 to 16-50, holding the parental age at ±10

years before and after the State Pension Age. The third check considers a different,
binary specification of the outcome variables. The fourth modifies the functional
form of the age variable in the main specification from quadratic to linear, cubic or
quartic.

Table 2.E.1: Mother retirement and adult children’s outcomes- Robustness checks:
Age bandwidths.

Dependent Variables: Life Satisfaction Income Satisfaction Leisure Satisfaction GHQ
Bandwidth: 8 years 5 years 3 years 16-50 8 years 5 years 3 years 16-50 8 years 5 years 3 years 16-50 8 years 5 years 3 years 16-50

Second-stage IV results
mother retirement 0.25∗∗ 0.29∗∗ 0.28 0.20∗∗ 0.19∗ 0.20 0.17 0.19∗∗ 0.03 -0.02 -0.07 -0.005 0.09 0.08 0.16 0.13

(0.11) (0.13) (0.20) (0.10) (0.10) (0.12) (0.19) (0.09) (0.11) (0.13) (0.20) (0.10) (0.10) (0.13) (0.18) (0.09)

Observations 14,423 9,434 6,104 19,417 14,444 9,458 6,121 19,420 14,449 9,459 6,120 19,448 16,785 10,746 6,838 22,943
R2 0.581 0.618 0.669 0.566 0.585 0.625 0.666 0.571 0.558 0.582 0.626 0.539 0.499 0.529 0.581 0.482

Clustered (pidp) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: The models include a quadratic trend for the child and parents’ age. All models include fixed effects for adult children and year and month-fixed effects. Age
bandwidth of ten years. The coefficients are all standardized.

Table 2.E.2: Mother retirement and adult children’s outcomes- Robustness checks:
Age functional form.

Dependent Variables: Life Satisfaction Income satisfaction GHQ
Linear Cubic Quadratic Linear Cubic Quadratic Linear Cubic Quadratic

mother retirement 0.19∗ 0.22∗∗ 0.22∗∗ 0.24∗∗∗ 0.23∗∗ 0.23∗∗ 0.14 0.14 0.14
(0.10) (0.10) (0.10) (0.09) (0.10) (0.10) (0.10) (0.11) (0.11)

Fit statistics

Observations 16,984 16,984 16,984 16,984 16,984 16,984 16,597 16,597 16,597
R2 0.57381 0.57372 0.57379 0.57026 0.57052 0.57050 0.50274 0.50256 0.50296

Clustered (pidp) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: All models include fixed effects for adult children and year and month-fixed effects. Age
bandwidth of ten years. The coefficients are all standardized
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2.F Placebo regressions

We perform three placebo regressions to support the robustness of our Fuzzy RDD
estimates. Specifically, we estimate our main specification using variables as out-
comes that maternal retirement should not affect. Specifically, we looked at (i)

whether the adult children have a university degree, (ii) whether they vote or sup-
port any political party, and (iii) their subjective health. Table 2.F.1 illustrates the
results. Effects sizes are small and not statistically significant.

Moreover, we estimate separate regression with varying State Pension Ages as
placebo cutoffs. The results of this exercise are in Table 2.F.2.

Table 2.F.1: Mother retirement and adult children’s outcomes- Placebo regressions.

Dependent Variables: Degree Vote Subj. health

Sample: All Daughters Sons All Daughters Sons All Daughters Sons

Second-stage IV results
mother retirement -0.02 -0.04 0.005 0.02 -0.003 0.05 -0.01 -0.10 0.07

(0.02) (0.02) (0.02) (0.10) (0.18) (0.11) (0.08) (0.12) (0.10)
Observations 23,037 10,928 12,109 21,262 10,306 10,956 22,245 10,631 11,614
R2 0.92580 0.92158 0.92971 0.70835 0.72974 0.59814 0.54805 0.52506 0.56944
F-stat 1,855 907.2 942.7 1,786.2 871.5 909.0 1,820.4 888.1 924.1

Clustered (pidp) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: The models include a quadratic trend for the child and parents’ age. All models include adult
children’s fixed and year- and month-fixed effects. Age bandwidth of ten years. The coefficients are
all standardized.
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Table 2.F.2: Placebo State Pension age for maternal retirement

Distance to actual cutoff: -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Outcome Variables

life satisfaction 0.41 0.46 0.36∗ 0.32∗ 0.22∗∗ 0.24∗∗ 0.10 0.12 0.02
(0.41) (0.40) (0.18) (0.18) (0.10) (0.11) (0.12) (0.12) (0.18)

income satisfaction 0.37 0.39 0.20 0.21 0.23∗∗ 0.23∗∗ 0.25∗∗ 0.21∗ 0.27
(0.41) (0.40) (0.18) (0.18) (0.10) (0.10) (0.12) (0.12) (0.18)

GHQ 0.54 0.44 0.19 0.17 0.14 0.20∗ -0.03 -0.03 0.11
(0.42) (0.41) (0.19) (0.19) (0.11) (0.12) (0.13) (0.13) (0.19)

Observations 16,984 16,984 16,984 16,984 16,984 16,984 16,984 16,984 16,984

Clustered (pidp) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: The numbers represent years from the actual cutoff
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Chapter 3

Small Pictures, Big Biases: The
Adverse Effects of an Airbnb
Anti-Discrimination Policy



3.1 Introduction

Ethnic disparities persist today across many domains, including the labor market,
housing, criminal justice, credit, and education, with evidence pointing to discrimi-
nation as a contributing factor (Lang & Spitzer, 2020). At the policy level, designing
effective anti-discrimination interventions remains an unsolved challenge (Valfort,
2018). Indeed, the effectiveness of each intervention depends on the underlying
motives of discrimination (Bohren et al., 2023). Such motives are context-dependent
and may vary according to the discrimination category, i.e., ethnicity, gender, or
age.

Given this complexity, the question of whether reducing the prominence of
personal information for individual quality assessment can effectively mitigate
discrimination outcomes remains open, as the literature provides mixed evidence
on this issue (see, e.g., Agan and Starr, 2018). This ongoing debate is particularly
relevant in digital platforms, which rely heavily on exchanging personal information
to boost users’ mutual trust. This paper leverages a design change on the Airbnb
platform, a leading online marketplace for short-term rentals, to measure how
reducing the prominence of personal information impacts ethnic disparities in
digital market outcomes.

Founded in 2008, Airbnb has stood out as a dominant actor in the online short-
term rental market. With over 6.6 million active listings in over 220 countries
worldwide (Airbnb, 2022a), Airbnb has solidified its leading role, surpassing estab-
lished hotel giants like Marriott (Edelman et al., 2017). Like many other digital
platforms, Airbnb connects virtually suppliers and consumers (Einav et al., 2016)
from all over the world. Its design embeds trust-building mechanisms like peer re-
views and personal information sharing (Gössling et al., 2021). In particular, names
and photos are crucial design components to increase trust and reduce anonymity
among users in online interactions (see, e.g., Guttentag, 2013; Bente et al., 2012).
At the same time, they provide an avenue for users to enact discriminatory prac-
tices based on visible attributes, such as perceived ethnicity, age, and gender (see
Edelman and Luca, 2014, Fisman and Luca, 2016, Edelman et al., 2017, Levy and
Barocas, 2017).

Focusing on New York City, we empirically investigate the extent of ethnic
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disparities between service providers (i.e., Airbnb Hosts), considering Asian, Black,
Hispanic, and White ethnic groups, and assess a policy to reduce them. We create
a face classification algorithm to predict hosts’ ethnicity from profile pictures and
merge the ethnicity classifications to our main Airbnb listings panel. Here, we derive
an extensive set of traditional and innovative control variables, including apartment
location and observable characteristics of apartments and hosts. Using an Ordinary
Least Squares (OLS) model, we estimate the impact of host ethnicity on two market
outcomes: occupancy rate and prices per night. Subsequently, we investigate the
impact of an Airbnb anti-discrimination policy that reduced the displayed size of
user profile pictures from 256 to 104 square pixels (see Figure 3.A). To estimate
the causal effect, we employ Two-Way Fixed Effects (TWFE) regressions alongside
Difference-in-Differences (DiD) estimators and Event-Study (ES) approaches.

The policy strategically reduced the dimension of profile pictures within the
Airbnb users’ interface. We hypothesize that this design transformation affected the
salience of positive cues inferred by guests from the host’s profile pictures, such as
attractiveness, trustworthiness, friendliness, or whether the person is smiling. Such
characteristics are known to be correlated with market outcomes, but the salience
of these features might differ according to guest ethnicity and profile picture size
(Ert et al., 2016; Jaeger et al., 2019). Notably, the new design did not involve other
significant simultaneous design changes.

This study yields three main findings. First, in line with previous research (see,
e.g., Edelman and Luca, 2014, Marchenko, 2019, Laouénan and Rathelot, 2017),
our analysis shows that ethnic minority hosts have lower occupancy rates than
comparable White hosts. Specifically, our main findings indicate that Black hosts
have approximately 7.2 percentage points lower occupancy rates than their White
counterparts. For Asians and Hispanics, the disparity is around 1.4 percentage
points and differs from zero at the 1% statistical level. Notably, in contrast to prior
studies, we observe very small ethnic differences in pricing, which are insignificant
for Black and Hispanic hosts. After considering a broader and more detailed set of
control variables, we find that ethnicity plays only little discernible role in pricing.

Second, our analysis shows that the Airbnb design transformation did not narrow
the gap in occupancy rates between ethnic minority hosts and White hosts. Our

Occupancy rate is a proxy for the number of bookings.
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results indicate that, within six months of its adoption, the new Airbnb design leads
to a 4 percentage point increase in the occupancy rate disparity between White and
Black hosts. Price disparity does not change. However, we observe Black minority
hosts reacting endogenously, changing a more flexible feature than price. Black
hosts notably increased the basic amenities listed in their listing descriptions. We
do not observe the same behavior for other ethnic groups.

Third, through heterogeneity analysis, we shed light on the potential motives
underlying discrimination and provide suggestions for the adverse effect of the design
transformation. First, by stratifying the sample by apartment types, i.e., shared
rooms or entire apartments, we find that Black hosts offering private rooms suffer
a larger occupancy rate penalty than their White hosts’ counterparts. This result
suggests that some taste-based discrimination is in place on the platform. Second,
by stratifying the sample by the hosts’ number of reviews, our findings indicate
that listings without reviews (i.e., new listings) or those with lower-than-average
reviews experienced greater discrimination and slightly higher impacts of the design
transformation. This observation suggests a mixture of screening and statistical
discrimination likely lies at the core of the observed residual ethnic disparities. In
the absence of more objective evaluations, such as guest reviews, potential guests
may rely on the host’s profile pictures to assess the quality of the listing. The policy’s
significant reduction in the displayed size of pictures constrains the information
available to guests, limiting their ability to judge the host’s trustworthiness and
other positive facial clues. This transformation negatively impacts the accuracy of
guests’ overall listing quality assessments, increasing the penalty against minority
hosts.

This paper contributes to several strands of literature. First, our results speak
to the broader literature assessing the existence and extent of ethnic discrimination
in digital platforms (see, e.g., Doleac and Stein, 2013, Edelman and Luca, 2014,
Marchenko, 2019, Laouénan and Rathelot, 2022). We created more comprehensive
data than previous research by adding new explanatory variables, mainly host
information derived from written text and precise apartment location. Therefore,
we constructed a panel data set of Airbnb listings and hosts from May 2016 to
December 2019 that we leveraged by including listing fixed effects in our causal
identification strategy.
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With a more comprehensive set of controls, we reduce the Omitted Variable Bias
(OVB) risk. As in these previous studies, we found a significant occupancy rate
disparity between majority and minority hosts, which is substantial for Black hosts.
However, by including a larger, more comprehensive set of control variables, we
found no significant residual price differences across ethnicity.

Second, we contribute to the growing yet inconclusive literature assessing the
impact of anti-discrimination policies that limit or reduce the salience of personal
information shared among transacting agents. Current research tends to focus on
labour market discrimination from employers to prospective candidates (Behaghel
et al., 2015, Agan and Starr, 2018). We are the first to evaluate anti-discrimination
policies’ short-term effects on digital platforms. Our results highlight an adverse
effect of the policy on Black hosts. Despite the fact that we cannot fully disentangle
the mechanisms underlying this negative effect, our study reveals new insights that
could guide the rationale of anti-discrimination intervention on digital platforms
more broadly.

Lastly, we contribute methodologically by developing and refining state-of-the-art
Vision Transformers models (ViT) (Dosovitskiy et al., 2020) to encode images and
text into traditional and novel variables; our new features include guest review
sentiment and the encoding of information provided in the ”hosts’ about” section of
the platform. This way, we create an automated and powerful machine that stream-
lines the manual process of decoding visuals and textual features from the platform,
making it more efficient and less burdensome. As a result, our work advances our
understanding of discrimination in general and specifically on digital platforms. It
offers a valuable resource for future research, enabling the identification of these
new features on a broader scale and across various image data sources.

We proceed as follows. Section 2 presents the theoretical and empirical context,
and Section 3 illustrates data and descriptive statistics. Section 4 illustrates our
empirical strategies, and Section 5 shows the main results. Section 6 presents
robustness checks and discusses policy implications. Section 3.8 concludes.
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3.2 Background

3.2.1 Discrimination and Anti-Discrimination Policies

Ethnic discrimination on digital platforms can be analyzed through several the-
oretical lenses: taste-based, statistical, screening, and inaccurate statistical dis-
crimination. Each framework provides insights into potential mechanisms driving
discriminatory behaviours in online environments. This section synthesizes the key
theoretical and empirical literature on discrimination models, focusing on those
types linked to the main results of this paper.

The taste-based discrimination model, grounded in Becker’s seminal work (Becker,
1957), posits that discrimination stems from personal biases against specific eth-
nic groups independent of economic rationality. In digital platforms, this model
suggests that users may avoid interactions with individuals from certain ethnic
backgrounds, irrespective of their qualifications or the quality of their service. We
assess this type of discrimination by stratifying the sample by apartment types, i.e.,
shared/private rooms and entire apartments, characterized by high and low levels of
host-guest interactions, respectively. We expect that if taste-based discrimination is
in place, ethnic minorities that offer shared or private rooms will be more penalized
compared to White hosts.

Conversely, the statistical discrimination model, advanced by Phelps and Arrow
(Phelps, 1972, Arrow, 1973), contends that discrimination may occur even in the
absence of explicit prejudice, as rational behavior. The rationale relies on true ag-
gregate differences between groups’ underlying characteristics, such as apartment
quality or host reliability. In Airbnb, users have incomplete information about an
apartment’s quality. Therefore, they might default to generalizing based on true
ethnic group differences in apartments’ characteristics, resulting in discriminatory
outcomes. If statistical discrimination exists, we should not find any ethnic differen-
tial after controlling for all the objective and observable characteristics that differ
across ethnicities.

The screening discrimination model, proposed by Cornell and Welch, 1996, elim-
inates the notion of irrational prejudices, inherent group differences, or intra-group
preferences. It posits that, in settings where a group of evaluators has to screen and
choose the best candidate, the overall accuracy in screening will be higher for those
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candidates belonging to the same ethnic group as the majority of evaluators. In this
case, discrimination is a rational response to incomplete information. In contexts
like Airbnb, guests more accurately assess accommodation quality when sharing
their ethnicity with the host. For example, the trustworthiness signal derived from
a smile in the profile picture of a White host will be more precisely assessed by
White guests than by other ethnic minorities. We test for this model by analyzing
the matching patterns among hosts and guests.

The concept of inaccurate statistical discrimination, introduced by Bohren et al.
(2023), extends the model of statistical discrimination by attributing discrimination
to inaccurate/incorrect beliefs about group characteristics, often due to informational
deficits. This is the only theoretical model empirically tested in the context of Airbnb
by Laouénan and Rathelot (2022), who found substantial evidence of its prevalence
in the platform.

Understanding the root causes of discrimination is crucial for devising effec-
tive anti-discrimination measures. Despite a lack of empirical evidence on digital
platforms, the literature provides evidence of successful and unsuccessful anti-
discrimination interventions in other domains. The insights from these examples
highlight that each type of discrimination requires tailored interventions.

Goldin et al.’s (2000) study assessing the introduction of blind auditions within
symphony orchestras highlights a significant reduction in gender discrimination,
promoting a higher rate of female musicians’ employment (Goldin & Rouse, 2000)
Another landmark study explored an information intervention aimed at reducing
prejudice (taste-based) against transgender individuals, with effective results that
persisted for three months after the intervention (Broockman & Kalla, 2016).

However, some interventions can backfire. Behaghel et al., 2015 found that
anonymizing resumes reduced minority candidates’ chances of obtaining interviews,
as it prevented counterbalance of other negative resume signals, which in turn
may be due to systemic/institutional discrimination (Bohren et al., 2022). Similarly,
Agan and Starr’s study on “ban the box” policies revealed that such interventions
decreased callback rates for minority applicants, as employers generalized criminal
backgrounds more frequently to Black applicants in the absence of the “criminal
box” (Agan and Starr, 2018).

This paper contributes to this growing literature by showing that, in the digital
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context, reducing the dimension of service providers’ profile pictures without com-
pensating with another measure that might increase user mutual trust amplifies
the residual ethnic disparity in digital market supply outcomes.

These studies’ insights guide policymakers’ interventions to limit exposure to
sensitive characteristics when taste-based discrimination is in place. On the other
hand, increasing transparency and information could be more effective when dis-
crimination is based on incorrect statistical beliefs. Finally, reducing informational
differences in signals between ethnic groups could be beneficial to mitigate screening
discrimination. Without accurately targeting the underlying motives of discrimina-
tion, interventions may fail and exacerbate the issues they aim to mitigate.

3.2.2 Airbnb

This section provides a detailed overview of how Airbnb’s hosts and guests interact
within the platform. Understanding these dynamics is the first step for framing
our identification strategy and empirical analysis. Moreover, explaining the stan-
dard Airbnb host-guest interaction clarifies the role of users’ ethnicity throughout
the booking process. We also highlight the design features that Airbnb’s anti-
discrimination package modified over the years, with a particular focus on the one
we assess in this paper.

Becoming a guest or host on Airbnb involves a straightforward process. Prospec-
tive hosts have to provide detailed information about their properties and themselves.
Hosts can modify the information on their listings, update property details and
personal information, or revise prices anytime. Similarly, guests undergo a registra-
tion process, sharing personal details that enable hosts to make informed decisions
about their visitors.

The usual interaction on the Airbnb platform starts with guests searching for
their desired city and period. This initial step opens up a filtering system where
properties can be sorted based on various criteria, including maximum and minimum
price, number of guests, and room type. After filtering, guests receive a visual list
of the available properties with basic information, such as daily price per night,
property pictures, some information on the host and its profile picture, and the
overall property rating. The guest can also locate the listing on a map. Guests can
access detailed information by clicking on the listing, including the host’s first name,
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a comprehensive property description, a standardized list of amenities, additional
photos, and reviews from previous guests. From this page, guests can further click
on the host’s picture and access the host’s page. Here, guests get more information on
the hosts, such as the number of reviews, overall ratings, and personal information
in the “host about” section. The host’s personal page, mainly the prominence of
the host picture, has been primarily modified by the anti-discrimination policy we
assess in this paper.

Once guests create their final preference, they click the “Book It” button, shifting
the decision to the host when the instant booking option is not activated. In this
case, the host can accept or reject the guest without justification. The listing will
be directly booked when the instant booking option is activated. Guests who get
rejected receive an email encouraging them to look for another place (Laouénan
& Rathelot, 2017). The rejection is not displayed on the host’s profile. If the host
accepts the guest, the booking is finalized. Guests can still cancel their booking
with penalties varying based on the host’s chosen cancellation policy. Hosts can
also cancel the booking, incurring no financial penalty but a reputation price, as
the cancellation automatically appears on their profile as a review.

Addressing concerns of fairness and inclusivity head-on, in 2016, Airbnb started
implementing a robust anti-discrimination package designed to promote equality
within its community. This comprehensive set of platform design transformations
aims to mitigate potential biases and discrimination for all users Murphy (2016).
In 2016, they introduced an Instant Booking option, which allows guests to book
immediately without the Host’s approval, provided the guest completed a basic
information form. In October 2018, Airbnb significantly changed the platform
design and reduced the size of profile pictures displayed on the user’s pages from
256 to 104 square pixels (Airbnb, 2022b).. Finally, in March 2019, Airbnb eliminated
the photo of guests before the booking from the hosts was confirmed.

Guests might still zoom in on the profile picture to make it bigger. However, the picture will be
of lower quality, as the original uploaded picture is smaller. Moreover, the Airbnb App did not allow
zooming in on pictures in 2018.

We checked the exact starting date of the policy transformation by consulting WeyBack Machine
(“Internet Archive”, 2023) and checking the appearance of the Airbnb platform through time, see
Appendix 3.A for before and after pictures
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3.3 Data

3.3.1 Data Sources

We assembled datasets from publicly available sources to examine the relationship
between Airbnb hosts’ ethnicity, prices, and occupancy rates. We created a monthly
panel from May 2016 to December 2019 (44 months) of the universe of Airbnb
listings in New York City (NYC). The main data comes from Inside Airbnb, an
independent project that scrapes monthly information worldwide from the Airbnb
website (Cox, 2017). The Inside Airbnb data stores all public information appearing
on the listing pages: listing availability (i.e., if a listing is available or not for rent on
a specific day), the price per night in US$, and many other listings’ characteristics
and hosts’ personal information. Lastly, it contains information on the guests’ first
names and reviews for each analysed listing.

We restrict our analysis to months after May 2016 since there are some months for
which the scrape data is unavailable. We include only months before December 2019
since Airbnb activities were strongly affected in 2020 and 2021 due to the COVID-19
pandemic(see, e.g., Hossain, 2021). Within this time frame, we analyze only active
listings (i.e., those receiving at least one review in six consecutive months). We
impose this restriction as we want to focus on hosts who are seriously committed
to renting their accommodation through Airbnb. Moreover, we select listings with
valid URLs for the hosts’ profile pictures. Thus, we focus only on hosts having one
human face in their profile pictures.

To examine whether this last selection criterion affects the representativeness of
our sample, we employ the Moran I test for spatial auto-correlation. This test helps
us determine if hosts’ tendency not to show human faces in their profile pictures—or
to include multiple faces—is geographically clustered, such as in neighbourhoods
predominantly inhabited by Black residents. If such a pattern were found, excluding

”To scrape” refers to web scraping, a technique used to collect data from websites.
As a reference point, the first available scrape for download, at the time we downloaded the

data, was March 2015. Even though listing data was available for most months before Mai 2016, the
calendar data was not.

We also remove hosts that have been on the Airbnb platform for at least 6 months but never
received a guest and those hosts that have not updated their calendars for one year or longer.

Analyzing multi-face images is technically challenging due to the need for a specialized model
to classify demographics in such pictures, and interpretation becomes complex as group images (like
families) may send mixed signals. Profiles without human images offer no demographic data, as
they lack facial features for analysis.
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these hosts could reduce the representativeness of these areas in our sample. Results
from the Moran test (Appendix ) indicate no significant spatial correlation in the
pattern of profile picture characteristics. Suggesting that our last sample selection
criterion does not affect the neighbourhood representativeness.

3.3.2 Outcome Variables

We use the listing availability information to create monthly occupancy rates, one of
our main dependent variables. The occupancy rate is the number of days a listing
is unavailable for booking in the 30 days following the scraping date divided by 30.
Two points are worth mentioning. First, the data scraping may not occur on the first
day of each month. In these few cases, we could not observe the listing availability
information for the days of the month before the scraping. The second important
point is that the unavailability of a listing on the Airbnb calendar doesn’t necessarily
imply an actual booking. Hosts might choose to block their accommodation on certain
days or periods, introducing a potential measurement error in this outcome variable.

Therefore, the occupancy rate is a proxy for the monthly bookings. For this
proxy to be valid, the critical assumption is that there is no systematic difference
in the renting availability patterns between ethnic minority and White hosts. If
this assumption holds, the measurement error in occupancy rate will not bias our
results.

However, if there is a systematic bias that correlates with hosts’ ethnicity – for
instance, if minority hosts more frequently block out dates unrelated to bookings
– it would artificially inflate ethnic minorities’ occupancy rates, resulting in an
underestimation of the actual disparity in occupancy rates between ethnic minorities
and Whites hosts. Conversely, if White hosts are more prone to such non-booking-
related unavailability, it would overestimate the actual disparity in occupancy rates.

According to Marchenko (2019), the first scenario is more likely to occur, as
White hosts tend to provide more entire apartments and houses on average. The
reasoning suggests that if White hosts are less likely to reside in the properties
they offer, possibly because they own additional properties, then the availability of
their listings might remain high, irrespective of actual demand. The descriptive
statistics in Table 3.F.2 of Appendix 3.F show that, on average, White hosts provide

In most sampled months, the scraping was made within the first three days of the respective
month. However, in October 2019, the earliest scrape occurred on the 14th day of the month
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more entire apartments or houses than minority hosts. In contrast, minority hosts
often offer private or shared rooms, which may not always be available for rent as
they reside on the property.

Another way to explore this assumption is by looking at host cancellation rates.
If minority hosts block out dates unrelated to bookings more frequently, their cancel-
lation rates are expected to be lower, as you can only cancel a booked date and not a
blocked one. On the other hand, if White hosts block out dates unrelated to bookings
more frequently, their cancellation rates are expected to be lower. Cancellation
rates are almost identical across host ethnicity (see Table 3.F.3 in Appendix 3.F).
Therefore, if there are systematic differences in the renting availability patterns
between ethnic minorities and White hosts, we are most likely underestimating the
ethnic disparity.

The second dependent variable is the monthly price per night in US$, which is
reported in the listing information, excluding additional fees, for example, a cleaning
fee or price surcharges (e.g., due to weekends). We report the spatial distribution of
average occupancy rates and average prices in Figure 3.3.1.

The spatial price and occupancy rate distributions in New York City are clustered
among neighborhoods. The highest prices and occupancy rates are in Manhattan
and Brooklyn Heights, and the lowest are in the Bronx and Queens.

Under the assumption that the probability of cancellations is the same across ethnicities.
For listings scraped before 2019, the daily price contained in the calendar data is missing

whenever a listing is unavailable. Otherwise, one could build a daily panel and explore the rising
price variation due to weekends, holidays, and other factors.
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Figure 3.3.1: Spatial distribution of outcomes

(a) Price per Night (b) Occupancy Rate

Note: Lighter colours indicate low values in the outcome variable. Numbers are averages over all
the months in the panel (44 months).

3.3.3 Ethnic prediction

We determine the perceived ethnicity of each Airbnb host by fine-tuning an image
classification algorithm based on state-of-the-art Vision Transformer (ViT) models
(Dosovitskiy et al., 2020). The model analyzes facial features from profile pictures
and returns the predicted probabilities for each ethnicity, e.g. Asian, Hispanic,
Black and White. We then transform these probabilities into a unique class label by
assigning the ethnicity with the highest predicted probability among the four . We
applied a similar training pipeline and fine-tuned the model to extract three other
facial features, i.e. host perceived gender, age, and smiling. The detailed description
of the model training and testing pipeline is in Appendix 3.D

As an additional accuracy check, in Figure 3.3.2 we plot the spatial distribution
of predicted hosts’ ethnicities together with the ethnic distribution as documented
in the New York census of 2020. The ethnic pattern aligns with nationally represen-
tative data, reassuring about the sample representativeness.

In the difference-in-difference approach, we additionally restrict the sample
to listings where the predicted ethnicity and gender remain constant during the

Specifically, we use the softmax function.
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analyzed period. The reasons for this change are related to the change in profile
pictures. Approximately 10% of the listings are excluded due to this restriction.

Figure 3.3.2: Spatial distribution of Hosts ethnicity. NYC census (2020) and Airbnb
hosts

(a) NYC Census (2020) (b) Predicted Host ethnicity

Note: In the figure, each NTA neighbourhood takes the colour of the majority true ethnicity of NYC
residents (left) and the predicted ethnicity of Hosts (right)

3.3.4 Controls

The data from Inside Airbnb provide all publicized information potential guests
can use to select their preferred listing. Naturally, our econometric models include
most of this information as control variables. The summary statistics of all control
variables are in Appendix 3.F. Here, we summarise the main macro-categories.

Listing characteristics This category comprises all listing information visible
on the listing pages. These are the maximum number of guests that could be hosted,
with and without additional fees, the number of bedrooms, bathrooms, and beds,
the cleaning fees, whether the instant booking option is activated, the minimum
of nights that have to be booked, number and type of amenities, whether house,
apartment, loft or townhouse, whether shared or private room or a full house, the
security deposit and type of cancellation policy.
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Host characteristics This category includes all the features attached to the
Host: being a super host, whether the Host’s identity has been verified, months of
experience as an Airbnb host, number of listings, Host’s gender, smile, age, face
dimension in the profile picture; informativeness of the host self-description; if the
Host requires the guest profile picture or the guest’s phone number and whether
the host has the instant booking option active.

Geographic controls We combine listing approximate geographic coordinates
(latitude and longitude) with geographic information system software (GIS) to
pinpoint to which Neighborhood Tabulation Area (NTA) and Public Use Microdata
Area (PUMA) of NYC each listing belongs. For security reasons, Airbnb does not
disclose the exact geographic coordinates of the listing before booking but instead a
150-meter radius. For each listing, a latitude and longitude corresponding to the
centroid of the 150-meter radius is assigned. In total, we include 55 different PUMAs
and 240 NTAs in NYC.. In addition, Using GIS and Metropolitan Transportation
Authority data (Metropolitan Transportation Authority, 2019), we create a variable
for the distance of each listing to the nearest subway station in kilometers. Moreover,
we use OpenStreetMap data (OpenStreetMap, 2021) to create variables for the
distance of each listing to the nearest supermarkets. We also create variables for
the number of stores, bars and pubs, restaurants, and touristic places/attractions
within a 500 meters radius around each listing.

Guest Reviews We process guest reviews for each listing page. This information
is very relevant, as other studies highlight the influence of the content and number
of reviews in reducing inaccurate statistical discrimination against ethnic minority
hosts (see Laouénan and Rathelot, 2022). We extract the sentiment of the reviews
for each listing (i.e., if the feedback is positive, neutral, or negative) and the review
language. To do so, we apply a large language model called RoBERTa (Liu et al.,
2019). This model proved to perform remarkably well in natural language processing
tasks. After classifying sentiment scores for each review, we create the average

The NTAs are subsets of the PUMAs.
Since the reported location of each listing can change over time due to randomization of location,

we take the average of the geographic controls for each listing.
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monthly sentiment of each listing. Finally, we store the monthly number of reviews,
monthly stock of reviews, and the additional number of reviews in a given month,
i.e., the differences in the ”stock” of reviews in a month with respect to the previous
month.

3.4 Empirical Strategy

This paper aims to answer two main research questions. The first is whether the
ethnicity of Airbnb has a role in predicting their occupancy rates and prices and
which sign it has. The second is whether the 2018 Airbnb anti-discrimination
policy effectively mitigates this impact. We construct a large set of control variables
and ethnicity indicators to estimate an Ordinary Least Squares (OLS) regression
and obtain the residual average impact of host ethnicity on listings’ occupancy
rates and prices. Second, we estimate the policy effect on occupancy rates and
prices over time (pre vs. post-policy) between different ethnic groups (White vs.
Black/Asian/Hispanic hosts) by applying a DiD estimator using a Two-Way Fixed
Effects model (TWFE). We do not have a control group in this setting, as the policy
was simultaneously implemented for all the hosts. Section 3.6.1 discusses the effects
we capture with our estimation strategy. Third, we implement an Event-Study (ES)
approach of our DiD estimator to assess the dynamics of the policy effects.

For both versions of the DiD, we can only identify the policy’s short-term effects
in the six months after its implementation. Widening the time period would sig-
nificantly restrict the sample to well-established and experienced hosts unlikely to
suffer from discrimination. Indeed, Airbnb is a dynamic platform where new hosts
enter while others leave the platform at a high turnover.

Moreover, as the parallel trends assumptions of the standard DiD do not always
perfectly hold, as a robustness test, we implement the Synthetic Difference-in-
Differences (SDID) approach, a state-of-the-art extension from the traditional DiD
to solve the problem of no pre-trends (Arkhangelsky et al., 2021).

This means that the first month in our sample (May 2016) has the average sentiment of all
reviews given up to May 2016. We do not create the average sentiment of only reviews made in May
2016 because old reviews are not deleted, and potential guests can access all reviews up to that date.

The reason why we do not use only the SID – but only as a robustness check – is because it
requires a perfectly balanced panel, and therefore, we would get the same problem of estimating the
effect for mainly well-established hosts.
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3.4.1 OLS Estimation

To measure the magnitude of ethnic disparities in our observational setting, we
rely on the simplest econometric approach proposed by the discrimination literature
throughout the years (Blank et al., 2004, Edelman and Luca, 2014).

Specifically, we run a P-OLS regression with ethnicity dummies as our main
independent variables, with White hosts as our omitted category. The two main
dependent variables are occupancy rates and (log) prices. We run six different
specifications with increasing controls to assess the sensitivity of the main ethnic
coefficient when additional control variables.

The equation takes the following form:

Yijt = α + βE ′
i + δ1X

′
it + δ2Q

′
jt + δ3Z

′
i + δ4W

′
j + γj + θt + εijt (3.1)

The outcome variable (Yijt) is the occupancy rate or the log price per night in US$
of host i from their Airbnb listing j at month t. The vectorE ′

i is composed of our three
main independent dummy variables, which indicate the ethnicity of the host (i.e.,
Asian, Black, or Hispanic; White is the omitted category). Therefore, β in equation
(1) indicates by how many percentage points the average occupancy rates and price
of listings offered by Asian, Black, or Hispanic hosts differ from that of White hosts.
The vector X ′

it comprises time-variant host controls, while the vector Q′
jt is composed

of time-variant listing controls. Moreover, the vector Z ′
i comprises time-invariant

host controls, while the vector W ′
j is composed of time-invariant listing controls.

We also include neighborhood (γj) and time (θt) fixed effects. We do not include
listing fixed effects in this model since our main independent variables (i.e., the
ethnicity of each Airbnb host) are time-invariant, and fixed effects would cancel out
its effect. Finally, εijt denotes the idiosyncratic disturbance term. Standard errors
are clustered at the NTA level.

3.4.2 Difference-in-Differences Estimation

This paper assesses the short-term impact of the Airbnb anti-discrimination design
transformation implemented in October 2018. The changes concerned reducing the

We do not take the log of the occupancy rate variable, since there are many listings with an
occupancy rate of zero in some months.
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displayed size of users’ profile pictures on Airbnb users’ pages from 250 to 104 pixels.
To evaluate the impact of this transformation, we use two-way fixed effects models in
a Difference-in-difference design. This model allows us to estimate the interaction
effect of being from any ethnic minority on outcomes before and after this design
change, controlling for any time-invariant and variant listing characteristics.

We highlight that this setting does not meet the requirements of a standard
difference-in-differences. Indeed, the Airbnb design transformation affects all hosts,
and no unaffected control group exists. Without a control group, we cannot estimate
how the policy influenced the overall occupancy rate and hosts’ prices through
Airbnb user usage variations. Only in the scenario of a static demand, where only
guest composition affects occupancy rates for each ethnic group, would our estimate
correctly identify the overall effect of the Airbnb anti-discrimination policy.

However, the recent literature has proven that, under certain assumptions,
our model identifies how heterogeneous the policy’s effect is between White and
ethnic minority hosts (Shahn, 2023). A negative policy coefficient still demonstrates
adverse policy outcomes, implying that the policy effects are greater for White hosts
than minority hosts.

As in the standard DiD, there are two key identifying assumptions: (1) parallel
trends (i.e., there are no trend differences between ethnic minorities and white hosts
before the policy) and (2) no anticipation (i.e., hosts did not know or did not react
to the policy before she was implemented). We discuss them extensively in section
3.6.1.

We only include the first six months before and after October 2018 to have
a comparable period around the policy implementation date. The sample size
decreases to 10,113 hosts and 12,633 listings. The difference-in-differences equation
takes the following form:

Yijt = α + ppt + λEi ∗ ppt + δ1X
′
it + δ2Z

′
jt + γj + θt + εijt (3.2)

where ppt stands for post-policy and is a dummy variable that is unity for months
after October 2018 and zero otherwise. As in the P-OLS, the vector E ′

i is composed
of our three main independent dummy variables, which indicate the ethnicity
of the host, but now we interact it with ppt. The interaction of both terms, our
coefficient of interest (λ), indicates whether Asian, Black, and Hispanic hosts were
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impacted differently by the policy than White hosts. The vectorsX ′
it and Z ′

jt comprise
exogenous time-variant host and listing controls, respectively. The (θt) indicates
time-fixed effects, while the γj is a set of listing dummies (i.e., listing fixed effects)
The key parameter of interest λ captures how the policy impact differs between
ethnic minorities and white hosts.

3.4.3 Event Study Estimation

In addition, we explore the dynamics of the policy effect using an event study (ES)
approach. This approach provides a more detailed analysis of the immediate and
longer-term effects of the policy change on the occupancy rate and price disparity
between minority hosts and whites. In practice, we estimate the following equation:

Yijt = α + βE ′
i +

6∑
k=−6

λk · ppk
t · E ′

i + δ1Xit + δ2Zjt + γj + θt + εijt (3.3)

The specification includes 6 pre-policy effects (β − 1, β − 2, ...,β − 6) and 6 post-
policy (lag) effects (β + 1,β + 2, ..., β + 6) capturing the differential occupancy rate
trend between Black and White groups for each month from April 2018 to March
2019. If the design transformation increases the occupancy rate disparity between
Black and White hosts, the post-policy βt’s coefficients will be positive. The model
includes monthly fixed effects θt and listing fixed effects µj to capture time-invariant
listing specific factors. Finally, as previously defined, our regression incorporates the
time-variant covariates vector Xit and Zjt. ϵijt denotes the idiosyncratic disturbance
term. Standard errors are clustered at the listing level. This approach’s advantage
is that the interactions of post-treatment time dummies with the ethnicity indicator
reflect the dynamics of the occupancy rate disparity after the design change. The
lag coefficients indicate whether the treatment effect diminishes, remains constant,
or grows over time.

We use the fixed effects estimator (within estimator). Still, the notation with dummies is simpler,
and the within and least squares dummy variable estimator results are identical.
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3.5 Ethnic Disparities on Airbnb

We begin by assessing the underlying ethnic disparity in occupancy rates and
prices that the anti-discrimination policy attempted to mitigate. How does the
ethnicity of the hosts impact the occupancy rates and overnight prices of Airbnb
listings? Table 3.5.1 provides multivariate regression estimates of the main effects
of host ethnicity on listings’ occupancy rates and (log) prices per night for several
model specifications. We define White hosts as the omitted category. Therefore, we
interpret each ethnicity coefficient in the regression as the residual impact with
respect to White hosts. The first column (Model 1) reports the raw differential in
occupancy rate and daily log prices without controlling for differences in observable
listings and host characteristics. We observe a significant negative impact on both
outcomes of being from any ethnic minority compared to White hosts. This is most
pronounced for Black hosts, where the gap in occupancy rates is 13.2% and in prices
is 27.1%. For Asian hosts, the occupancy rates gap is 4.4%, and the price gap is
13.3%. Hispanic hosts have the lowest gap in both outcomes, at 3.7% and 8.4%, in
occupancy rates and prices, respectively.

A major source of heterogeneity across listings is their geographic location. Also,
the time of the year explains much of the occupancy rate and price variation. To
account for these variations, Model 2 includes dummies for the Neighborhood Tabu-
lation Areas (NTA) where the listing is located, time dummies and other geographic
controls. Including geographic and time controls reduces the residual ethnic oc-
cupancy rate and price gaps for all minorities. For Black Hosts, the occupancy
rate gap reduces from 13.2% to 9.1%; interestingly, the residual price gap for Black
Hosts reduces to 1.5% and is not significant anymore. However, for Asian Hosts, the
occupancy rate gap reduces from 4.4% to 2.8%, and the residual price gap reduces to
7.3%, remaining significant at the 1% level. For Hispanic Hosts, the residual occu-
pancy rate gap reduces to 1.7% and the residual price gap These results suggest the
geographic position and time of the year almost fully explain the price differentials
for Black Hosts, but not their occupancy rate gaps.

Controlling for listing observable characteristics further reduces the residual
occupancy rates and price gap for all ethnic minorities (Model 3). Missing infor-
mation on the number of bathrooms, bedrooms, and beds in some listings slightly
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reduces the number of observations. The residual occupancy rate gap shrinks to
8% for Black Hosts, 2% for Asian Hosts, and 2.2% for Hispanic Hosts. The residual
price gap reduces significantly for Hispanic hosts (0.4%) and turns insignificant.
The price gap for Asian hosts reduces to 1.9% but remains statistically different
from zero at the 1% level.

Models 4 and 5 factor in Host characteristics and Guest review controls, re-
spectively. Observations drop further as new listings have no review information.
The inclusion of this set of control variables reduces the residual occupancy rate
gap to 7% for Black Hosts, 1.4% for Asian Hosts, and 1.8% for Hispanics, with all
coefficients at the 1% significant level. The residual price gap is 1.6% for Asian
Hosts, at the 1% significant level. For Black and Hispanic Hosts, the price gap
remains close to zero and not significant.

In Model 6, we include the log prices and occupancy rates. Due to endogeneity
concerns, we only add prices and occupancy rates in the last step. Results are similar
to those of Model 4 for both outcomes. Only for Asian Hosts, controlling for prices
increased the residual occupancy rate gap to 1.7% instead of reducing it. The price
coefficients in the regression (not reported) indicate that if prices increase by one
percentage point, the predicted occupancy rates fall by approximately 20%, at the
1% significant level. On the other hand, for Black Hosts, controlling for occupancy
rates increases the residual price gap to 1.4%.

The finding that minority hosts maintain comparable pricing to White hosts
despite lower occupancy rates is counter-intuitive. Typically, in a competitive market,
the rule of supply and demand would predict suppliers to lower their prices when
facing a lower demand. We provide two potential explanations. First, the ”Smart
Pricing option” Airbnb provides to its hosts may play a role. This option suggests
a market price that does not consider guest discrimination. The price suggestions
are given based on the local area demand and the characteristics of the listings
rather than individual host attributes. This implies that Black and White hosts with
comparable listings will receive the same price suggestion if their listings are in the
same neighbourhood. The second explanation considers the information asymmetry
among hosts. It is plausible that Airbnb hosts are unaware of the occupancy rates
of their White competitors, as they may observe only their prices.

To contextualize the implications of our findings, we estimate the annual revenue
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Table 3.5.1: P-OLS Results for Impact of Host Ethnicity on Listings’ Occupancy
Rates and Log Prices

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(1) (2) (3) (4) (5) (6)

Occupancy Rate

Asian -0.044*** -0.028*** -0.020*** -0.016*** -0.014** -0.017***
(0.007) (0.006) (0.004) (0.004) (0.006) (0.004)

Black -0.132*** -0.091*** -0.080*** -0.072*** -0.070*** -0.063***
(0.009) (0.007) (0.006) (0.006) (0.006) (0.005)

Hispanic -0.037*** -0.025*** -0.022*** -0.018*** -0.018*** -0.014***
(0.006) (0.005) (0.004) (0.004) (0.006) (0.004)

Observations 574,316 574,316 571,287 502,475 274,210 398,228
Adjusted R2 0.015 0.107 0.160 0.170 0.193 0.223

(Log) Price per night

Asian -0.132*** -0.073*** -0.019** -0.019** -0.016** -0.019***
(0.021) (0.013) (0.007) (0.008) (0.007) (0.007)

Black -0.271*** -0.015 0.005 0.004 -0.002 -0.014*
(0.034) (0.016) (0.008) (0.009) (0.009) (0.009)

Hispanic -0.084*** -0.017* -0.004 -0.005 -0.004 -0.007
(0.015) (0.010) (0.006) (0.006) (0.007) (0.007)

Observations 574,137 574,137 571,108 502,318 398,228 398,228
Adjusted R2 0.020 0.310 0.728 0.730 0.758 0.767

Time Fixed Effects No Yes Yes Yes Yes Yes
Neighborhood Fixed Effects No Yes Yes Yes Yes Yes
Geographic Controls No Yes Yes Yes Yes Yes
Listing Controls No No Yes Yes Yes Yes
Host Controls No No No Yes Yes Yes
Review Controls No No No No Yes Yes
Prices/Occupancy rate No No No No No Yes

Notes: The table reports pooled OLS results where the dependent variables are occupancy rates and
log price per night. The independent variables are dummies that indicate the effect for Asian, Black,
or Hispanic hosts. The omitted category is White hosts. Model 2 adds time dummies, neighbourhood
fixed effects, and geographic controls. Model 3 adds listing characteristics, and Model 4 adds host
controls. Model 5 adds review controls. Finally, Model 6 adds the prices and occupancy rates,
respectively. Standard errors are clustered at the PUMA level. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
Source: Author’s calculations.

disparity experienced by Black Airbnb hosts relative to their White counterparts.
This calculation aims to quantify the potential earnings deficit for Black hosts over
a year, attributable to guests’ ethnic preferences. Our analysis indicates that, on
average, Black hosts earn approximately 4, 110$ less annually than White hosts.
While results regarding Asian hosts show a much smaller magnitude, varying
with the analytical model employed, it is still feasible to estimate their annual
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revenue shortfall using a similar approach. In contrast, our analysis does not yield
substantial evidence to suggest a similar revenue impact for Hispanic hosts, as their
occupancy rates and pricing appear comparable to White hosts.

3.5.1 Mechanisms

Our analysis revealed a persistent residual ethnic gap in occupancy rates, which
remained unexplained by the geographic location, time of the year, and observable
characteristics of listings and hosts. Conversely, the ethnic price gap notably reduces
when more observable characteristics are incorporated into the econometric model.

This section delves into potential mechanisms driving the residual occupancy
rate disparity. Should statistical discrimination by guests be a contributing factor,
we expect to find stronger disparity for newer listings or those with fewer reviews.
Without feedback from prior guests, new visitors might default to relying on ethnic
stereotypes to assess listing quality. Conversely, taste-based discrimination may
be more influential in settings requiring increased host-guest interaction, such as
private rooms and shared accommodations. In this context, guests with prejudicial
attitudes towards ethnic minorities will incur a disutility from staying with minority
hosts, and they will be willing to pay a higher price for staying with whites.

Another dimension to consider is that hosts might also discriminate against
guests. If minority hosts discriminate and refuse bookings at higher rates than
White hosts, their occupancy rates would be lower. Regarding this point, the seminal
paper of Edelman et al., 2017 reveals similar rates of rejection across host ethnic
groups, type of property, and gender. To investigate this aspect further, we restrict
our analysis to hosts who have enabled the Instant Booking feature, ensuring
automatic guest acceptance and eliminating the potential for selective booking
acceptance from hosts.

We test for these mechanisms by performing heterogeneity analysis on several
sub-samples according to the number of reviews (below median vs. above median),
the nature of the listing (entire property vs. private/shared property), and the
instant booking option (activated vs. not activated). For each sub-sample, we report

The estimated annual revenue shortfall for hosts belonging to ethnicity i is determined by the
formula: Revi = 365[(APWAOW )− (APW (1− EPDi) ∗ (AOW − EORi))], where APW represents
the average listing price of White hosts, AOW denotes the average occupancy rate of White hosts at
this threshold, EPDi is the calculated price differential between White hosts and hosts of race i as
per Model 5, and EORi indicates the estimated occupancy rate differential for the same groups.
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the residual occupancy rate gap estimates for each ethnic minority. White hosts
are the reference group, and their coefficient is not reported. The baseline model is
Model 4, specified in the previous section.

Table 3.5.2 reports results from the heterogeneity analysis, suggesting that a
mixture of taste-based and statistical discrimination lies at the core of the residual
ethnic disparity in occupancy rates. In the sub-sample of listings with a lower
than median number of reviews (Column 2), i.e., less than 9 reviews, the residual
occupancy rate disparity increases from 7.2% to 7.8% for Black hosts, slightly for
Asians but not for Hispanics. Conversely, In the sub-sample of listings with a higher
median number of reviews (Column 3), the residual occupancy rate disparity reduces
to 5.9% for Black Hosts. These results highlight a stronger and positive impact of
the number of reviews for Black Host, but not for other ethnic minorities. Next, we
stratified the sample by different types of property, i.e. entire apartments or pri-
vate/shared rooms, with less and more host-guest interaction intensity, respectively.
Results reveal that when the property requires more interaction (Column 5), the
occupancy rate disparity, again mainly for Black Hosts, increases from 7.2% to 8.3%.
With less interaction (Column 4), Black hosts’ disparity reduces to 6.6%. Lastly, by
splitting the sample among hosts with and without instant booking, we find that
the occupancy rate disparity shrinks when the instant booking is active (Column 6),
but not enough to suggest an effect of discrimination from the Hosts.

Another mechanism that could explain the residual ethnic disparities is ethnic
matching between guests and hosts. Ethnic matching arises because attitudes,
customs, tastes, and values, which often foster friendships, are frequently associated
with, or even rooted in, ethnicity (Leszczensky & Pink, 2019). Consequently, if hosts’
listing demand depends solely on their own and their guests’ ethnicity, hosts are
not competing in the same market. To investigate this mechanism, we scraped the
URLs of guests’ profile pictures for those guests who left a review on the listing page.
We classified the ethnicity of guests for a smaller subset of the listings (7,711). This
reduction in sample size was due to the time elapsed between the main analysis
and this additional analysis conducted in 2023. Therefore, we had to focus only on
listings in the main sample still active in 2023. This corresponds to around 12% of
the main sample of 2016-2019.

For each listing, we regress the share of reviews written by guests of a given eth-
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nicity on a dummy for the host ethnicity, controlling for the location, the observable
characteristics of the listing and the host, and its price. Table 3.5.3 illustrates the
result. We find evidence for some ethnic matching, especially among black hosts
and guests: a host classified as Black is 4 percentage points more likely to have a
review from a guest also classified as Black. Conversely, the share of White guests
negatively correlates with a host being Black and a host being Asian. This means
that, on average, compared to White hosts, Black and Asian hosts receive fewer
reviews from White guests compared to their White host counterparts.

Table 3.5.2: Heterogeneity analysis for Impact of Host Ethnicity on Listings’ Occu-
pancy Rates

Baseline Below Median Above Median Entire H/A Private/Shared Room Instant Booking

(1) (2) (3) (4) (5) (6)

Asian -0.016*** -0.018* -0.017** -0.020*** -0.015* -0.024**

(0.004) (0.004) (0.009) (0.006) (0.006) (0.007)

Black -0.072*** -0.078*** -0.059*** -0.066*** -0.083*** -0.060***

(0.006) (0.013) (0.009) (0.008) (0.008) (0.010)

Hispanic -0.018*** -0.012 -0.012* -0.019*** -0.015* -0.017*

(0.004) (0.004) (0.010) (0.004) (0.006) (0.007)

Observations 502,475 90,731 182,524 251,732 237,539 168,241

Adjusted R2 0.170 0.229 0.206 0.170 0.193 0.214

Notes: The table shows heterogeneous effects of hosts’ ethnicity on occupancy rate disparity. The
independent variables are dummies that indicate the effect for Asian, Black, or Hispanic hosts. The
omitted category is White hosts. The baseline model refers to Model 4 in Table 1. ∗∗∗p < 0.01, ∗∗p <

0.05, ∗p < 0.1. Source: Author’s calculations.
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Table 3.5.3: Ethnic matching between guests and hosts

Share of White Guests Share of Asian Guests Share of Balck Guests Share of Hispanic Guests

Asian -0.019∗∗ 0.013∗ -0.000 0.002

(0.009) (0.007) (0.004) (0.007)

Black -0.036∗∗∗ -0.005 0.040∗∗∗ 0.000

(0.011) (0.007) (0.006) (0.006)

Hispanic -0.008 -0.000 0.005 0.005

(0.008) (0.006) (0.005) (0.006)

Observations 32,851 32,851 32,851 32,851

Adjusted R2 0.071 0.028 0.115 0.008

Notes: OLS regression of share of guests from a given ethnicity on host ethnicity dummies. Controls
include neighbourhood FE, geographic controls, property characteristics, and host characteristics.
Standard errors are clustered at the property level. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1. Source:
Author’s calculations.

3.6 Evaluating Airbnb Anti-Discrimination policy

So far, we have empirically identified the extent of the ethnic disparity in two main
outcomes: occupancy rates and prices per night. In this section, we focus on the
short-run effects of the 2018 Airbnb anti-discrimination policy, which aims to reduce
such ethnic differentials.

Figure 3.6.1 shows the standard difference-in-differences coefficient estimates
for occupancy rates and prices. As before, we treat White hosts as the control group
and use it as the reference category. In other words, we compare the evolution of the
occupancy rates and prices between each ethnic minority and White hosts before
and after the design transformation.

Panel (a) indicates an increase of 4 percentage points in the occupancy rate gap
of Blacks with respect to Whites. The coefficient is statistically significant at the
5% significance level. For Asians and Hispanics, the coefficients are close to zero
and are not statistically significant. Panel (b) illustrates the coefficients for (log)
price per night. The estimates indicate no change in price differential between
ethnicity’s post-policy intervention. This null effect on prices supports our previous
findings. Hosts do not adjust their prices in response to reduced demand. The
residual occupancy rate gap likely results from a change in guest booking behavior
due to the picture dimension shrinkage.
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Next, we look at the policy effect dynamics for occupancy rates and prices six
months before and after implementation. Figure 3.6.2 shows the results of the DiD
ES approach (i.e., the evolution of the occupancy rate and price gap between each
minority and White hosts before and after the policy intervention date). Only for
Black hosts (panel c), the estimates show a persistent negative effect on occupancy
rates in the six months after the policy date. As already anticipated, the figure
clearly shows that one month before the policy date (i.e., April 2018), the parallel
trend assumption does not hold, and the estimate for Black hosts is significantly
different from zero. For the other ethnic groups, there is no dynamic, and the
estimates remain close to zero and not significant. The dynamic appears flat for
prices, implying the price is not responsive to the new design.

As we have some pre-trends, we also report the SDiD estimates. Figure 3.6.3
shows our SDiD ES approach estimates. The results are similar to our standard
DiD ES. After October 2018, the occupancy rate gap between Black and White hosts
increased substantially, as shown in panel b. For Asians and Hispanics (panels a
and c), the effect remains nearly zero and is mostly insignificant.

One possible explanation for the smaller Black-White occupancy rate gap in December 2018
could be that NYC is very popular for spending Christmas and New-Years-Eve. Therefore, guests
might have booked an Airbnb way in advance to guarantee their stay in NYC over the holidays.
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Figure 3.6.1: DiD - Impact of Airbnb Policy on Listings’ Occupancy Rates and Log
Prices

Asian

Black

Hispanic

-.06 -.04 -.02 0 .02

Model 4 (Baseline) Model 6 (Endogenous)

(a) Occupancy rates

Asian

Black

Hispanic

-.01 -.005 0 .005 .01

Model 4 (Baseline) Model 6 (Endogenous)

(b) Log Prices

Note: The figures report the estimates from the DiD estimation strategy for occupancy rate (panel a)
and log prices (panel b). The independent variables consist of interactions between host ethnicity
dummy variables and a post-policy dummy variable, which takes the value of unity for months
following the implementation of the anti-discrimination policy. The omitted category is White hosts.
The baseline model includes all time-variant controls used in Model 4 of the P-OLS. The endogenous
model includes prices and occupancy rates, respectively. Standard errors are clustered at the NTA
level.

149



Figure 3.6.2: Event-Study - Impact of Airbnb Policy on Listings’ Occupancy Rates
and Prices

(a) Occupancy Rates (Asian Hosts) (b) Log Prices (Asian Hosts)

(c) Occupancy Rates (Black Hosts) (d) Log Prices (Black Hosts)

(e) (Occupancy Rates (Hispanic Hosts) (f) Log Prices (Hispanic Hosts)

Note: ES estimates of the Airbnb policy on occupancy rates for the three ethnic groups. 90% confidence interval.
Standard errors clustered at the NTA level. Dotted vertical lines: Airbnb policy starting date.
Source: Authors own calculation.
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Figure 3.6.3: Event.Study - Impact of Airbnb Policy on Listings’ Occupancy Rates

(a) Asian hosts (b) Hispanic hosts

(c) Black hosts

Note: SDiD Event Study estimates of the Airbnb policy on occupancy rates for the three ethnic
groups. 90% confidence interval. Standard errors clustered at the NTA level. Dotted vertical lines:
Airbnb policy starting date.

3.6.1 Difference-in-Differences assumptions

The two main assumptions of the DiD approach are (i) no pre-trends and (ii) no
anticipation. This means that, in the pre-policy period (6 months in total), the trend
in outcomes variables for ethnic minority and White hosts should follow parallel
trends, and hosts should not anticipate any effect of the policy and adapt to it before
its actual implementation. As shown in Figure 3.6.4, just visually, it appears that
all the ethnicities have similar trends in occupancy rates.

However, Table 3.6.1 shows the joint parallel trend test does not hold for Asian
and Black hosts. As previously mentioned, due to the existence of some pre-trends,
we use the SDiD (Arkhangelsky et al., 2021) as a robustness check. For (log) prices,
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the parallel trend assumption holds at each point (see Figure 3.6.4 Panel b).
To check for anticipation effects, we look at rates of profile picture changes in

the period before the policy. Figure 3.6.5 shows the share of hosts that change their
profile picture each month. This share is generally very low, with no substantial
differences across ethnicity. We interpret this as supporting evidence for no antici-
pation of the policy. If hosts expected to be negatively impacted by the new design,
they should have uploaded a new and clearer profile picture.

Figure 3.6.4: Parallel Trends by Ethnicity

(a) Occupancy Rates (b) Log Prices

Note: Line plot for the monthly occupancy rates and prices from April 2018 to September 2018, for
each ethnic group.
Source: Authors own elaboration

Table 3.6.1: Parallel Trends Test by Ethnicity

Ethnicity F-stat (Occ. Rate) Prob > F (Occ. Rate) F-stat (Log Price) Prob > F (Log Price)

Asian 2.56 0.025 0.360 0.873

Black 3.93 0.002 0.790 0.560

Hispanic 1.03 0.398 1.070 0.376

Note: The table reports the results of a joint parallel trends test for subgroup parallel trends

Source: Authors calculation
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Figure 3.6.5: No Anticipation

Source: Authors own elaboration.

3.6.2 Heterogeneity Analysis

The Airbnb anti-discrimination policy increases the occupancy rate disparity be-
tween Black-White hosts. While exploring the mechanism in section 3.5, we have
found mild evidence that driving the ethnic disparities is a mixture of taste-based,
inaccurate statistical, and screening discrimination by guests. Black hosts with
a lower than median number of reviews and who offer private rooms instead of
entire apartments suffer greater penalties in occupancy rates. Therefore, we also
hypothesize that if the policy had any effects, it would mainly target these hosts.

We perform heterogeneity analysis to identify the sub-samples of hosts for which
the policy had the greatest impact. Table 3.6.2 shows the difference-in-differences
estimates for different sample strata based on the number of reviews (below vs.
above median) and the property type (entire apt. vs. private rooms). We found
minimal policy effect differentials among these groups. Contrary to our expectations,
the policy appears to have increased the Black-White disparity more for Black hosts
who offer entire apartments rather than, as expected, private rooms, which involve
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more hosts-guest interactions.

Table 3.6.2: Heterogeneity analysis for the impact of Airbnb Policy on Occupancy
Rates

Baseline Below Median Above Median Entire H/A Private/Shared Room

(1) (2) (3) (4) (5)

Asian -0.000 0.005 -0.000 -0.012 0.011

(0.005) (0.008) (0.008) (0.007) (0.008)

Black -0.036*** -0.038*** -0.030*** -0.056*** -0.018

(0.006) (0.013) (0.009) (0.008) (0.008)

Hispanic 0.000 -0.003 0.006 -0.002 0.006

(0.005) (0.007) (0.007) (0.006) (0.008)

Observations 100,233 45,950 47,022 51,865 46,285

Adjusted R2 0.114 0.079 0.166 0.127 0.109

Notes: The table shows heterogeneous effects of hosts’ ethnicity on occupancy rate disparity. The
independent variables are dummies that indicate the effect for Asian, Black, or Hispanic hosts. The
omitted category is White hosts. The baseline model refers to controls used in Model 4 in Table 1.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

Source: Author’s calculations.

3.6.3 Additional Outcomes

Thus far, our focus has primarily been on occupancy rates and prices. Our empirical
findings reveal a statistically significant occupancy rate disparity between Black
and White hosts, which increased after Airbnb’s new design. Surprisingly, we
observe minimal price disparities between hosts, unchanged following the policy
intervention. However, beyond prices, hosts on the platform can modify certain
elements attached to their listings, such as their profile pictures, self-descriptions
in their bios, and the range of amenities offered in the property. Conversely, other
features remain exogenous, set automatically by the platform or determined by
guests’ feedback, hence not modifiable directly from the hosts.

Hosts may opt to adjust the more flexible, less cost-intensive features in response
to shifts in occupancy rates rather than reduce prices and potentially impact their
overall profits. To explore this hypothesis, we estimate the DiD (ES) for a further
outcome, the log of the number of listed amenities associated with each listing in a
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given month.
Figure 3.6.6 reports the DiD (ES) results for the number of amenities. We found

a significant positive effect on the number of amenities offered. Specifically, there’s
a marked increase of about 4 percentage points in the number of basic amenities
provided by Black hosts, a change not observed among Asian and Hispanic hosts.
This finding suggests a proactive strategy by Black hosts to enhance their listings’
appeal after facing a drop in demand. Figure 3.6.8 (panel b) illustrates these
trends through an event study estimation, showing the dynamics of the estimated
coefficients until six months after the policy change.

Another variable that we have thus far not analyzed as an outcome variable is
the number of reviews. This variable is indeed an endogenous choice of guests and,
therefore, is likely an underestimate of the true number of listing bookings in a
given month. However, we can analyze it to observe whether the policy has any
short-term impact on the number of reviews received by hosts. Figure 3.6.7 reports
the estimate for the DiD estimator. Interestingly, we observe a high and statistically
significant negative effect of a host being Black on the number of monthly reviews
in the aftermath of the policy implementation.

This additional analysis supports the main findings that the Airbnb policy had
differing impacts on hosts based on ethnicity. While the occupancy rates gap between
Black minority and White hosts increased significantly after the policy change, price
disparities remained minimal and unchanged. Black hosts adjusted by increasing
the number of listing amenities rather than lowering prices. Finally, the signifi-
cant negative impact on the number of reviews for Black hosts post-policy further
corroborates the increased occupancy rate gap we find.
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Figure 3.6.6: DiD - Impact of Airbnb Policy on Number of Amenities

Note: See figure 3.6.1

Figure 3.6.7: DiD - Impact of Airbnb Policy on Number of Reviews

Asian

Black

Hispanic

-.15 -.1 -.05 0 .05

Model 4 (Baseline) Model 6 (Endogeneus)

Note: See Figure 3.6.1
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Figure 3.6.8: Event.Study - Impact of Airbnb Policy on Listings’ Number of Amenities

(a) Asian hosts (b) Hispanic hosts

(c) Black hosts

Note: SDiD Event study approach estimates the Airbnb policy on the number of amenities for the three ethnic
groups. 90% confidence interval based on standard errors clustered at the NTA level. Vertical lines: Airbnb
policy starting date.
Source: Authors own calculation.

3.6.4 Mechanisms

The adverse impact of the Airbnb design transformation on the occupancy rate
disparity between Black and White hosts warrants a deeper exploration of the
underlying mechanisms. After the policy, we hypothesize that guests can still discern
a host’s skin color, especially darker tones, even with smaller profile pictures. At the
same time, smaller profile pictures increase uncertainty and inaccuracy in detecting
other facial features that convey trustworthiness, such as a smile. In turn, this
increased uncertainty will negatively affect occupancy rates.

Supporting this hypothesis, Ert and Fleischer, 2019 demonstrates that a smile
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in a profile picture significantly enhances perceptions of a host’s attractiveness and
trustworthiness, positively influencing occupancy rates. Also, the pooled regression
analysis results, which adjust for observable listing characteristics and geographic
variables, reveal that a host’s smile positively correlates with occupancy rates by
2.14 percentage points, a statistically significant finding at the 1% level.

In the following, we undertake a series of additional analyses to explore the
proposed hypothesis. We aim to simulate the effect of smaller profile pictures on
the human ability to detect facial clues. We use our fine-tuned face classification
algorithm to predict ethnicity and smiles in images resized to match the dimensions
after Airbnb’s policy change. We pick the images from the training dataset. We
measure the average prediction entropy and accuracy in scenarios with normal-sized
and reduced-sized images. We then take the differences between the two scenarios
and estimate the p-values.

Prediction entropy is calculated using the Shannon entropy formula, commonly
employed in information theory, represented as H(X) = −

∑
i p(xi) log p(xi), where

p(xi) is the probability of feature xi, i.e., being black or smiling. This metric measures
the uncertainty in information extracted from a signal: higher entropy indicates
greater uncertainty. For accuracy assessment, we compare the model’s predictions
against the ground truth stored in the training dataset and take the average number
of times the prediction equalizes the true value.

The results in Table 3.6.3 reveal two key findings. Consistent with our hypothesis,
prediction entropy increases, and prediction accuracy decreases with smaller pic-
tures across all facial features analyzed. Secondly, and notably, the feature “Black”
shows the lowest entropy and highest accuracy, both before and after the reduction in
image size. This suggests that our model, designed to replicate human perceptions,
is most effective in identifying the “Black” feature among the facial characteristics
we studied. While these results support our hypothesis, it is important to note that
the algorithm’s performance cannot be entirely generalized to human performance.
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Table 3.6.3: Prediction Entropy and Accuracy from Airbnb Policy Simulation

Normal Compressed Statistic p-values

(1) (2) (3) (4)

Prediction Entropy

Smile 0.23 0.26 9.01 0.00

Black 0.07 0.15 12.89 0.00

White 0.11 0.16 13.11 0.00

Hispanic 0.31 0.36 6.45 0.00

Asian 0.18 0.26 12.03 0.00

Prediction Accuracy

Smile 0.90 0.88 -6.06 0.00

Black 0.98 0.92 -8.86 0.00

White 0.97 0.94 -8.11 0.00

Hispanic 0.86 0.82 -3.42 0.00

Asian 0.93 0.87 -7.58 0.00

Note: In information theory, the entropy measures the information uncertainty in a distribution:
higher entropy implies higher uncertainty. The accuracy measures the distance of the algorithmic
prediction from the human classification. Source: Author’s calculations.
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3.7 Discussion and Robustness Checks

In this section, we examine the robustness of the main results. First, we investi-
gate the potential for omitted variable bias in the OLS regression using the Oster
approach, as presented in Oster (2017). Second, we describe additional analysis
of confounding factors for the OLS regression. These are profile picture quality
and apartment quality. Indeed, these two variables may correlate with the host’s
ethnicity and the outcome variables, biasing our coefficients. Third, we evaluate
the OLS results’ sensitivity to different cutoff thresholds in the ethnicity prediction
probability. Finally, we provide evidence that what drives the DiD results are not
supply or demand shocks on the platform.

Omitted Variables This paper estimates the residual ethnic disparities in two
outcomes after controlling for the entire set of observable characteristics from the
Airbnb website. This simple statistical approach to measuring discrimination has
statistical challenges and limitations.

The gold standard for measuring the causal effect of immutable traits such as
ethnicity is to manipulate this trait, or the perception of it, randomly and estimate
the effect of such intervention on the outcome. In our setting, however, to interpret
β as the causal effect of hosts’ ethnicity on the outcomes, we must assume we have
included all relevant observable factors correlating with the outcomes and differing
systematically across ethnicity. If that is not the case, our estimates will suffer
from omitted variable bias. As shown in Table 3.5, the estimated coefficients for
ethnic minorities tend to get closer to zero as we add more controls. This raises
the question of what would happen to the estimated coefficients if we could add all
potentially relevant unobserved controls.

Due to this potential omitted variable bias (OVB), we follow an approach proposed
by Oster, 2017, which builds up on an idea proposed by “Selection on Observed and
Unobserved Variables: Assessing the Effectiveness of Catholic Schools”, 2005.

This approach aims to measure how large the effect of unobservable variables
would have to be to offset the estimated coefficients under the assumption that
the selection of observables is proportional to the selection of unobservables. The
parameter δ, which is reported when applying this approach, shows how large the
selection of unobservables would have to be to cancel out the estimated impact of

160



host ethnicity on the outcome variables of interest. For example, δ = 2 would mean
that unobservables have to be twice as important as observables to cancel out the
estimated coefficients. According to Oster, δ = 1, is an appropriate cutoff to define
whether the results are robust or not. The other important information we report is
the identified set. If the identified set does not include zero, the estimated coefficient
can be considered robust to OVB. For further details about Oster’s approach and
derivations of δ and the identified set, see Oster, 2017.

The results using Oster’s approach are reported in Table 3.G.1. To apply this
method, the R-squared from the uncontrolled regression (i.e., the regression where
we do not control for anything but the independent variable of interest) needs to
be the same for all models compared to the uncontrolled regression. Therefore, we
restrict our sample so that only the observations included in Model 4 are used to
estimate the coefficients of the other models. Our results show that the estimated
occupancy rate coefficients are still robust after applying Oster’s approach. As
one can see, δ is always above the appropriate cutoff of 1, proposed by Oster. The
identified sets also exclude zero, implying that the bias-adjusted coefficients with
the selected upper bounds on δ and Rmax do not change sign significantly relative
to the estimated coefficients in the main models. However, the estimated log price
coefficients are no longer robust after applying Oster’s approach. Nonetheless, δ is
always close to 1, and only the identified Black hosts include zero.

Alternative Ethnicity Definitions Alternative definitions of outcomes and
ethnicity variables tend to provide very similar results. In all these robustness
exercises, the baseline model refers to the OLS regression with geographic controls,
time dummies, listings, and host characteristics (model 4).

We first assess the change in the estimated coefficients with different probability
thresholds in the ethnicity prediction. Our face classification model returns the
probability of a host belonging to each ethnicity. In the main analysis, we assign to
hosts the ethnicity with the highest predicted probability. To test the robustness
of our results, we adjusted the threshold, considering only classifications where
the model’s confidence for a given ethnicity exceeded 50%, 60%, 70%, and 80% of

This means that observations of any control variable with missing values are not used in
estimations of any model.

The choice of using the highest predicted probability adds a bit of noise to our ethnicity classifi-
cation, but it maximizes the number of observations.
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probability. This adjustment aimed to restrict our sample to hosts for which the
confidence for the predicted ethnicity is higher than the given threshold.

Table 3.G.2 illustrates the results for the OLS estimator on occupancy rates.
In both cases, coefficients are robust to different specifications. Increasing the
threshold around the ethnicity predictions results in slightly higher occupancy rate
disparity for all ethnicities, especially for Black hosts. This implies that the more
certain our algorithm (and potentially the prospective guests) are about the host’s
ethnicity, the higher the residual impact of host ethnicity on occupancy rates. This
means that our results are rather conservative and, if anything, underestimate the
true effect.

As a second robustness test, we substitute the ethnicity dummies with a normal-
ized black/white continuous measure, as proposed in

Face Dimension in Profile Pictures We have shown that hosts do not change
their profile pictures in the pre-policy period (see Figure 3.6.5). Nevertheless, it
is plausible that systematic differences in profile pictures between ethnicities also
existed before the policy. For instance, it could be the case that all White hosts
had clearer and more professional profile pictures compared to Black hosts. Such
pre-existing disparities might contribute to the observed strong ethnic disparity
and the strongest policy’s effect on Black hosts.

To investigate this scenario, we analyze each profile picture by measuring the
proportion of the total image occupied by the face. In full-body pictures or non-frontal
faces, the face percentage will be lower than in cases with frontal and close-up photos.
Therefore, we examine whether systematic differences in the face percentage within
images existed among ethnic minorities and White hosts before and after the policy.
Results from this analysis revealed no systematic difference between Black and
White hosts in terms of face percentages.

Listing Quality and Room Types The main analysis in this paper uses the
information at the listing and host levels collected from May 2016 to December 2019.
A limitation of this dataset is the lack of any information related to the apartment
pictures hosts upload on their listings pages. If Black hosts systematically show
worst-quality apartments in their listing pictures, the model suffers from an omitted

Results not yet reported.
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variable problem.
We collected and analyzed additional listing information in a later period (2023-

2024) from the original sample (2016-2019). Likely due to the impact of the COVID-
19 pandemic and more restrictive policies for Airbnb imposed by NYC, only 13% of
the listings from the original sample remained active during this period. We found
no access to any further information about listings that were removed from the
platform. Therefore, this additional analysis assesses only descriptively, at present,
whether systematic differences exist in room types and overall apartment quality
across ethnic groups.

We extracted the raw data from our main dataset by selecting a stratified random
sample of 1,000 active hosts, comprising 250 hosts from each ethnic group. Using the
listing URL information, we downloaded images of the apartments at the current
time. We then fine-tuned an image classification model to identify the types of rooms
depicted in each image (i.e., bathrooms, bedrooms, kitchens, living rooms, dining
rooms, and exteriors). The model was trained using a pre-classified apartment
imagery dataset provided by Poursaeed et al., 2018.

The model achieved an accuracy of 87% on the test sample and 95% on the
training sample. Using this model, we classified the room types in each host’s
apartment imagery. We calculated the ethnic differentials in the likelihood of
displaying a picture for each room type. For example, whether a Black is as likely
to display a bathroom as a White host. The results of a simple regression analysis,
where the outcome variable is a binary indicator of whether a given room type is
present and the independent variables include ethnic group dummies (with White
hosts as the reference group). This analysis reveals that Black hosts are less likely
to display living or dining rooms than White hosts. These room types correlate
with the type of apartment (e.g., an entire apartment or a private room), which is
a variable we control for. Other types of rooms, such as bathrooms and bedrooms,
appear as likely between ethnicity.

In a second descriptive analysis, we assess the quality of the apartments using
the same images. Given that apartment quality can be highly subjective, it is
challenging to quantify it as straightforwardly as variables such as ethnicity or the
presence of a smile in a host’s profile picture. Any predictive model would likely

Not yet reported.
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produce noisy and imprecise results.
Consequently, we adopted an alternative approach: we fine-tuned a generative

text model to describe the content of each image objectively. We then utilized a text
classification model to predict the sentiment of these descriptions—whether positive,
negative, or neutral. This predicted sentiment serves as a proxy for the quality of
the room type depicted in the images. We then compared the average sentiment
across hosts of different ethnicities. The results reveal no statistical difference in
sentiment across ethnicities.

Supply and Demand In Section 3.4.2, we observe that we are not in a standard
DiD setting. The new design was implemented simultaneously across all hosts’
ethnicity, so we do not have a control group in the classical sense. This implies that
we cannot identify the causal effect of the policy on each ethnic group’s demand.
However, suppose there is no supply (i.e., the number of listings offered on Airbnb)
and demand (i.e., the number of guests on Airbnb) policy effects. In that case, our
estimates will identify the policy’s overall effect on each ethnic group’s demand. In
this static case, where all the market conditions stayed the same, our results might
reflect a policy effect on the distribution of guests across hosts depending on their
ethnicity – for example, a shift of guests from Black to White hosts.

The supply shock might have occurred if an over-proportionally high number of
Black Hosts had registered on Airbnb because they thought they would have better
chances after the new design. This shock might have created extra competition
for Black hosts in a setting of strong segregation and homophily, explaining the
increased outcome gap with White hosts. A demand shock due to the policy appears
less likely. However, in the case of a considerable increase in the number of people
using Airbnb, our causal estimates would not capture the effect of this shock.

We test this hypothesis by graphically assessing the average monthly listings
active for each ethnicity and estimating the overall policy responses of occupancy
rates and log prices. Figure 3.G.1 in Appendix 3.G shows that the supply of listings
offered on the Airbnb platform stayed relatively constant over time and across
ethnicity. Excluding the possibility of a supply shock driving our main result. Table
3.G.3 in Appendix 3.G reports that the overall demand (i.e., occupancy rates) is also
constant in the period analyzed. This shows that there was no significant demand

Not yet reported.
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shock on the platform.
This is supporting evidence that, due to the policy, it is more likely that guests’

preferences have changed, and discriminatory behavior toward Black hosts has
increased.

3.8 Conclusion

This paper investigates the effects of Airbnb’s anti-discrimination policies on ethnic
disparities among hosts. We initially identified a notable occupancy rate disparity.
Black hosts experience a 7.2 percentage points lower occupancy rate than White
hosts, even after adjusting for location and observable property and host character-
istics. Moreover, we estimate a 4 percentage point increase in the Black-White occu-
pancy rate disparity following the implementation of the Airbnb anti-discrimination
policy. This adverse effect likely stems from the policy’s reduction of guests’ ability
to discern positive facial cues in profile pictures while still permitting recognition of
skin color, disproportionately disadvantaging Black hosts. In an adaptive response,
Black hosts appear to enhance the amenities offered in their listings. Asian and
Hispanic hosts are not affected by the anti-discrimination policy in any direction.

Several critical insights and a potentially serious dilemma for platform designers
and policymakers emerge from our study. First, reducing profile picture prominence
has amplified ethnic gaps in occupancy rate. Limiting the information available to
guests to assess prospective hosts has potentially increased reliance on statistical
or inaccurate statistical discrimination. This type of discrimination is partially
driven by guests’ imperfect information regarding the quality of properties, a sit-
uation exacerbated by the platform’s feedback system, which disadvantages new
hosts with few reviews. Profile pictures are crucial in countering these biases by
offering insights into hosts’ reliability and trustworthiness. Therefore, increasing
the transparency and breadth of information provided to guests, including through
profile pictures, could help mitigate ethnic disparities by addressing and correcting
beliefs.

This study contributes to the literature concerning discrimination in digital plat-
forms, underscoring the challenges and potential strategies to enhance inclusivity
and diversity. As online interactions become increasingly prevalent, our findings

165



advocate for a balanced approach to information disclosure that fosters trust while
avoiding the reinforcement of biases. This approach could prove beneficial across
diverse digital platforms. Future research should examine the effective implemen-
tation of such strategies and assess their wider effects on ethnic disparities within
the digital economy.
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Appendix

3.A Airbnb Anti-Discrimination policy

Figure 3.A.1: Host Profile Pictures-before (left) and after (right) the design change

Note: The figure does not show the exact sizes of the profile pictures, but the proportion represents
the design change from 256 to 104 square pixels.
Source: Authors own elaboration

3.B Sample selection



Table 3.B.1: Samples Selection

Initial Number of obs. 1,525,361
Criteria Percentage Loss (%)
Inactive listing 4.46%
Invalid profile picture URL 41%
Picture URL missing 0.12%
Face ethnicity and Name ethnicity mismatch 0.83%
No Human Face detected 9.56%
Multiple Faces detected 10.22%
Pooled OLS number of obs. 574,316
Picture URL changes 36.02%
Race prediction changes 6.83%
Gender prediction changes 3.3%
Not in the sample before and after the policy (DID 6-months) 39.37%
Excluding months outside the reference period (DID 6-months) 71.2%
DID (6-months) number of obs. 99,820

Notes: The table illustrates, for each selection criteria, the percentage lost relative to the initial
number of observations.

3.C Spatial Patterns in Host Profile Pictures

Figure 3.C.1: Spatial Distribution of host profile picture characteristics

(a) Multiple faces (b) No face

Notes: The figures report the percentage of profile pictures characterized by multiple faces (left
panel) or no faces (right panel)) over the total number of listings in a given neighborhood. The scale
differs between the two panels
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Table 3.C.1: Moran I results for No Face and Multiple Faces

No face Multiple Faces
Moran’s I 0.0544 0.0833
p-value 0.107 0.036

Notes: Moran’s I measure spatial autocorrelation. Values range from -1 (indicating perfect dispersion)
to +1 (indicating perfect clustering). A value of 0 indicates random spatial patterning. The p-value
tests the null hypothesis that the observed pattern is random. Lower p-values indicate significant
spatial autocorrelation.

3.D Face classification

The Inside Airbnb data provides each host profile picture’s Uniform Resource Lo-
cator (URL). Previous studies (see Edelman and Luca, 2014, Wang et al., 2015,
Kakar et al., 2018 and Marchenko, 2019) also used profile pictures to identify the
ethnicity of Airbnb hosts. However, they manually coded the perceived race and
other demographic characteristics, making the process time-consuming and not
completely replicable.

To fine-tune the ViT model, we engaged five people with diverse backgrounds,
including country of birth, age, education, and occupation. We ask them to classify
ethnicity, age, gender, and smiling on a random sample of 5,000 Airbnb profile
pictures. The mode of these classifications serves as the ground truth in our training
dataset.

Therefore, we augmented the training data with 1,354 face images from the
Chicago-Face database, which includes self-declared ethnicity and other demograph-
ics, such as age and gender (Ma et al., 2015) and 2,223 images from the 10k US
Adult Faces Database (Bainbridge et al., 2013).

The ethnic classification achieved an overall accuracy of 92% in the training
data and 86% in the test data, competing with state-of-the-art results in ethnic
classification models (see, e.g., Abdulwahid, 2023).

The gender classification achieves 95% accuracy in a test sample (97% in the
training sample). For smiling, we got 88% accuracy in the test sample and (90%
during training) while for the age groups, we reached 82% accuracy in the test
sample (93% during training). We provide detailed predictive accuracy metrics for

About 39.4% of our panel’s pictures have an invalid URL. Invalid URLs may be caused by hosts
changing their profile pictures occasionally. Either the host deleted the old picture or decided to
delete its account.
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predicted features in Appendix 3.E.
In addition, we use each host’s first name to double-check the algorithmic classifi-

cation for ethnicity and gender. To do so, we use data from three different sources: 1.
Worldwide Gender-Name Dictionary, a data set provided by Raffo and Lax-Martinez
(2018) which includes 6.2 million names classified by their perceived gender, 2. state-
specific data for New York from the Social Security Agency (2020), and 3. a data set
provided by Hayes and Mitchell (2020). When the classification of profile pictures
completely disagrees with the classification by name, we exclude the observation
from the panel. These selection criteria leave us with a final panel that contains
44 months with 574,316 listing x months observations. Table 3.B.1 illustrates the
sample selection steps. The panel is unbalanced: some properties enter the system,
and others exit.
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3.E Performance Metrics Face Classification

Table 3.E.1: Precision, Sensitivity, F1-Score and Balanced Accuracy of Fine-tuned
ViT model (Ethnicity)

Ethnicity
Category Precision Sensitivity F1-Score Balanced Accuracy

Asian 91% 90% 91% 94%
Black 96% 98% 97% 98%
Hispanic 87% 82% 85% 90%
White 94% 97% 95% 96%

Overall Accuracy: 92 % Observations: 13,037

Gender

Women 97% 97% 97% 97%
Men 96% 97% 97% 97%

Overall Accuracy: 98% Observations: 13,037

Smile

No 86% 92% 89% 90%
Yes 93% 89% 91% 90%

Overall Accuracy: 90 % Observations: 13,037
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3.F Descriptive Statistics

Table 3.F.1: Descriptive Statistics of Host Characteristics

Asian Black Hispanic White

Host is a Superhost 0.16 0.20 0.16 0.18
(0.37) (0.40) (0.37) (0.38)

Host’s Identity Verified? 0.56 0.52 0.56 0.63
(0.50) (0.50) (0.50) (0.48)

Months of Experience 41.77 40.01 43.16 47.32
(26.49) (26.80) (26.86) (25.81)

Host about words 28.42 34.94 30.74 31.68
(38.47) (37.31) (35.68) (34.69)

Host about information 2.11 1.96 2.14 2.29
(1.45) (1.42) (1.49) (1.50)

Instantbook 0.34 0.42 0.33 0.28
(0.47) (0.49) (0.47) (0.45)

Female 0.56 0.59 0.52 0.53
(0.50) (0.49) (0.50) (0.50)

Age: <30 0.46 0.18 0.30 0.26
(0.50) (0.38) (0.46) (0.44)

Age: 30-45 0.44 0.59 0.54 0.46
(0.50) (0.49) (0.50) (0.50)

Age: 45-60 0.08 0.20 0.14 0.25
(0.27) (0.40) (0.34) (0.43)

Smile 0.53 0.57 0.56 0.64
(0.50) (0.49) (0.50) (0.48)

Number of Listings 12561 7505 13136 25339
Number of Hosts 7762 4876 8468 17206

N 112055 79430 122478 260625

175



Table 3.F.2: Descriptive statistics of Listing characteristics

Asian Black Hispanic White

Number of Guests 2.79 2.87 2.85 2.89
(1.89) (1.88) (1.87) (1.86)

Number of Guests Included 1.50 1.62 1.52 1.54
(1.10) (1.25) (1.10) (1.14)

Number of Bathrooms 1.13 1.11 1.14 1.15
(0.42) (0.37) (0.40) (0.46)

Number of Bedrooms 1.13 1.18 1.16 1.18
(0.69) (0.70) (0.74) (0.75)

Number of Beds 1.52 1.57 1.55 1.57
(1.06) (1.15) (1.07) (1.08)

Cleaning Fee 47.57 42.27 50.78 52.91
(50.60) (44.05) (51.06) (52.60)

Extra Guests Charge 15.28 17.51 15.38 15.73
(22.62) (22.20) (23.19) (24.65)

Minimum Stay 5.36 4.29 4.97 5.08
(14.91) (12.07) (10.99) (12.78)

Number of Amenities 18.77 20.01 18.92 18.92
(8.71) (9.72) (9.04) (8.80)

Apart/Lofts/Townh/Condos 0.86 0.78 0.87 0.90
(0.35) (0.42) (0.33) (0.30)

Houses 0.09 0.15 0.09 0.06
(0.29) (0.36) (0.28) (0.24)

Entire Apartment/House 0.46 0.43 0.51 0.55
(0.50) (0.50) (0.50) (0.50)

Private Room 0.50 0.53 0.47 0.43
(0.50) (0.50) (0.50) (0.49)

Shared Room 0.03 0.04 0.02 0.02
(0.18) (0.19) (0.15) (0.14)

Security Deposit 161.95 123.17 173.24 183.65
(356.99) (248.15) (401.87) (405.63)

Number of Listings 12561 7505 13136 25339
Number of Hosts 7762 4876 8468 17206

N 112055 79430 122478 260625
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Table 3.F.3: Descriptive Statistics of Guest Reviews

Asian Black Hispanic White

Review Scores Rating 93.44 92.95 93.57 94.19
(7.94) (8.39) (8.06) (7.27)

Review Scores Accuracy 9.57 9.54 9.58 9.62
(0.81) (0.85) (0.80) (0.75)

Review Scores Cleanliness 9.21 9.26 9.26 9.28
(1.07) (1.03) (1.03) (0.98)

Review Scores Check-In 9.73 9.71 9.73 9.77
(0.68) (0.71) (0.68) (0.61)

Review Scores Communication 9.74 9.71 9.75 9.80
(0.68) (0.73) (0.69) (0.59)

Review Scores Location 9.50 9.22 9.48 9.57
(0.78) (0.88) (0.80) (0.72)

Review Scores Value 9.35 9.33 9.36 9.41
(0.85) (0.89) (0.85) (0.79)

Avg. Monthly Agg. Neg. Sentiment 0.07 0.06 0.07 0.06
(0.13) (0.12) (0.12) (0.12)

Avg. Monthly Agg. Neu. Sentiment 0.11 0.11 0.11 0.10
(0.10) (0.09) (0.10) (0.09)

Avg. Monthly Agg. Pos. Sentiment 0.82 0.82 0.82 0.84
(0.18) (0.16) (0.17) (0.16)

Avg. Cancellation by Host 0.05 0.05 0.05 0.05
(0.29) (0.26) (0.30) (0.28)

Number of Reviews 23.65 29.00 23.98 26.52
(39.43) (45.74) (39.67) (43.40)

Number of Reviews Host 56.96 61.89 49.46 46.80
(124.30) (108.64) (106.39) (103.54)

Number of Listings 12561 7505 13136 25339
Number of Hosts 7781 4873 8501 17162

N 112055 79430 122478 260625
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3.G Robustness Checks

Table 3.G.1: Results for Selection on Observables

Baseline Effect [R2] Model 4 [R2] Rmax δ for β = 0 given Rmax Identified Set

(1) (2) (3) (4) (5)

Occupancy Rate

Asian -0.042*** [0.003] -0.016*** [0.161] 0.209 1.607 [-0.050, -0.016]

(0.006) (0.004)

Black -0.131*** [0.026] -0.075*** [0.184] 0.239 1.774 [-0.151, -0.075]

(0.009) (0.006)

Hispanic -0.036*** [0.002] -0.017*** [0.163] 0.212 2.570 [-0.041, -0.017]

(0.006) (0.004)

Observations (Asian) 325,794 325,794

Observations (Black) 297,493 297,493

Observations (Hispanic) 335,414 335,414

(Log) Price per night

Asian -0.144*** [0.010] -0.020*** [0.737] 0.958 0.456 [-0.181, -0.020]

(0.021) (0.008)

Black -0.280*** [0.033] 0.005 [0.730] 0.949 -0.040 [-0.369, 0.005]

(0.036) (0.009)

Hispanic -0.091*** [0.004] -0.003 [0.736] 0.957 0.108 [-0.118, -0.003]

(0.006) (0.004)

Observations (Asian) 325,794 325,794

Observations (Black) 297,493 297,493

Observations (Hispanic) 335,414 335,414

Time Fixed Effects No Yes

Neighborhood Fixed Effects No Yes

Geographic Controls No Yes

Listing Controls No Yes

Host Controls No Yes

Review Controls No No

Prices/Occupancy rate No No

Notes: The table reports pooled OLS results where the dependent variable is occupancy rate or log
price per night. The independent variables are dummies indicating the effect for Asian, Black, or
Hispanic hosts. The omitted category is White hosts. The table reports the results after applying an
approach proposed by Oster, 2017. δ is calculated by assuming Rmax = 1.3(R-squared) and β = 0

for each racial group individually. The identified set is calculated assuming Rmax = 1.3(R-squared)
and δ = 1 for each racial group individually. Standard errors are clustered at the PUMA level.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1. Source: Author’s calculations.
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Table 3.G.2: Results for different Ethnicity prediction thresholds

(1) (2) (3) (4) (5)

Baseline Threshold 50 Threshold 60 Threshold 70 Threshold 80

Asian -0.016*** -0.017*** -0.016*** -0.014** -0.017**

(0.004) (0.005) (0.005) (0.005) (0.005)

Black -0.072*** -0.074*** -0.077*** -0.078*** -0.081***

(0.006) (0.006) (0.006) (0.006) (0.006)

Hispanic -0.018*** -0.017*** -0.020*** -0.017** -0.018**

(0.004) (0.004) (0.005) (0.005) (0.005)

Observations 502,475 486,098 457,948 429,464 395,169

Adjusted R2 0.170 0.171 0.172 0.173 0.174

Notes: The table reports pooled OLS results where the dependent variable is occupancy rate. The
baseline model refers to Model 4 in the main analysis. Each threshold refers to a sub-sample of hosts
where the predicted ethnic probability is higher than the specified threshold. Standard errors are
clustered at the PUMA level. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1. Source: Author’s calculations.
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Figure 3.G.1: Supply of Listings Before and After the Design Change

Note: The figure illustrates the share of listings active in a given month for each ethnic group. The

vertical dotted line indicates the policy implementation date.

Source: Authors’ calculation

Table 3.G.3: Results for Demand Shocks After the Policy on Occupancy Rates and
Prices

(1) (2)

Occupancy Rate Log Price

Post-Policy 0.039 -0.004

(0.035) (0.011)

Observations 113,252 113,201

Notes: Standard errors are clustered at the listing level.
Source: Author’s calculations.
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Chapter 4

Spatial Comprehensive Well-Being
Composite Indicators based on
Bayesian Latent Factor Model:
Evidence from Italian Provinces

Montorsi, C., & Gigliarano, C. (2024). Spatial Comprehensive Well-Being Composite Indicators
Based on Bayesian Latent Factor Model: Evidence from Italian Provinces. Social Indicators Research,
1-37.



4.1 Introduction

In the socioeconomic literature, we observe a strong consensus that the well-being
concept encompasses multiple dimensions and that looking only at economic as-
pects may distort perceptions, leading to inadequate policy actions (Atkinson &
Bourguignon, 1982).

The 2009 report by the Sen-Stiglitz-Fitoussi Commission on the Measurement
of Economic Performance and Social Progress marked a milestone in this debate,
requiring researchers across the globe to develop new tools for the multidimensional
monitoring of well-being (Stiglitz et al., 2009). Since then, the tools used to measure
well-being have flourished in Europe and beyond. The standard of living, quality of
life, quality of services and many other aspects of well-being have been measured and
monitored through an increasing number of specialized indicators. More recently,
climate awareness has created new imperatives for the private and public spheres.
Air pollution, water quality, particulate matter, and other environmentally related
indicators have begun to be assessed throughout Europe, expanding the definition
of well-being to include an environmental dimension. In many European countries,
these elementary indicators have been integrated into national accounts, expanding
policymakers’ access to information when designing policies.

Despite these remarkable advances, providing a unique definition of well-being
remains a challenge, both on the macro and individual levels. Over the years, schol-
ars have worked to create theoretical frameworks reflecting such multidimensional
ideas (see, e.g., Bourguignon and Chakravarty, 2003, and Alkire and Foster, 2011).
On the macro level, advanced theoretical models are mainly based on a set (or
dashboard) of indicators of demonstrated consistency with the well-being construct.
Examples include the OECD Better Life Index (BLI) and the Canadian Index of
Wellbeing.

In Italy, the first theoretical framework developed in this debate was the “Equi-
table and Sustainable Well-Being (BES)” jointly proposed in 2013 by the National
Council for Economics and Labor (CNEL) and the Italian National Institute of
Statistics (ISTAT).

The emergence of a new multi-dimensional well-being paradigm has been revolu-
tionary but not without drawbacks. Comparing nations or sub-regions with multiple
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and arbitrary sub-dimensions of well-being has become a daunting task (Kasparian
& Rolland, 2012). This hurdle gives rise to the need for synthesis. Composite indica-
tors (CIs) fulfill this requirement by reducing complex systems into lower-dimension
spaces, thus allowing the performance of an individual unit to be evaluated across
space and time.

The state-of-the-art aggregation methods for constructing composite indicators
entail a broad list of approaches, from simple ones, such as linear aggregation, to
more refined ones. Refined empirical indices are built on non-substitutable and
non-compensatory indicators and allow for comparison across territorial units (see,
e.g., De Muro et al., 2011, Mazziotta and Pareto, 2013, Mazziotta and Pareto, 2018
and Scaccabarozzi et al., 2022).

Although they effectively fulfil their synthesis requirement, most CIs’ approaches
require researchers to rely on several structural assumptions, for example, lack of
uncertainty measure, normative weighting, temporal stability, spatial independence
and linearity in the functional form (Ciommi et al., 2017). The approach we propose
in this paper addresses three of them.

First, we argue that the normative selection of indicator weights is problematic.
For several CIs, the choice of weights comes from expert judgments or is neutral by
setting all indicators equally weighted (Mazziotta & Pareto, 2013). This approach
exposes indicator weights to the subjectivity of those involved in constructing the
CI.

Second, we question the assumption of the spatial independence of elementary
indicators across areas. Current methods rely solely on variables from the analyzed
area for well-being information, ignoring information from neighboring areas. How-
ever, economically speaking, the neighbourhood is not random (Fusco et al., 2018),
but instead describes a common culture among enterprises, a shared set of adminis-
trative rules on the provincial or regional level and so on, creating spatially aligned
clusters, not to mention the detrimental influence of neighbouring factors on the
validity of model estimates. In the linear regression framework, spatial correlation
creates duplicated information and inflates the variance of the statistical model,
damaging the validity of the estimated standard errors (Anselin & Griffith, 1988).
As suggested by Fusco et al., 2018, spatial composite indicators bring out inherent
local differences by identifying spatial clusters when elementary indicators are well
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clustered. Moreover, the lack of attention to the variables’ spatial dimension may
have significant consequences when assigning weights (Sarra & Nissi, 2020).

Third, traditional indices often lack a measure of uncertainty. This last feature
can be problematic if policies or resources’ allocation is based on threshold values
or composite indicator percentiles (Hogan & Tchernis, 2004).

Researchers solve the weights selection problem relying on data-driven statistical
models such as principal component analysis (PCA), factor analytic models Chelli
et al. (2015), and Bayesian latent class models (Hogan and Tchernis, 2004; Machado
et al., 2009; Ciommi et al., 2020). These weighting methods are helpful when dealing
with large data sets to reduce data dimensionality and find common patterns. One
critique of this method is that it can accommodate only linear relationships among
variables, while it would be reasonable to have non-linear underlying patterns
Canning et al., 2013. Nonetheless, when applied to well-being composite indicators,
the factor analytic model provides a clear interpretation: the elementary indicators
reflect an underlying latent construct interpreted as well-being, and the factor
loadings represent each indicator’s contribution to this well-being construct (Rijpma,
2016; Ciommi et al., 2020).

Here, we follow the above-outlined approach based on factor models. In addition,
we assume that well-being spillovers occur among neighboring provinces, creating
well-being levels that are spatially correlated. Since we deal with spatial data,
we must reformulate the traditional factor analytic model to incorporate spatial
co-variation. We follow Hogan and Tchernis (2004) and Davis et al. (2021) and
propose a Bayesian latent factor model for spatially correlated multivariate data.
Our Bayesian model confers the distinct advantage of estimating a distribution of
well-being for each province instead of single-point estimates, thereby allowing for
uncertainty quantification in the estimates. Another advantage of the Bayesian
setting is that it can handle missing values with a posterior imputation procedure.
In this way, the model directly incorporates the uncertainty caused by missing data
into the resulting model’s estimates.

This paper proceeds in three steps, as in Ciommi et al. (2020). We first parti-
tion the BES elementary indicators into three distinct well-being domains: social,
economic, and environmental. We analyze Italian provinces’ well-being for each
dimension through composite indicators, including spatial correlation among provin-
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cial well-being levels. Under the assumption that neighbouring areas influence each
other, our proposed method allows us to obtain more precise estimates by exploiting
information from neighbouring provinces (Hogan & Tchernis, 2004). In the second
step, we consolidate the three well-being dimensions into an overall well-being index
for each Italian province. Lastly, we estimate the well-being levels of macro-regions
(NUTS 1) and evaluate their evolution over time.

The paper proceeds as follows. Section 4.2 describes the data and summarizes
the results from the exploratory spatial analysis. Section 4.3 explains the statistical
methodology. Section 4.3.1 presents the estimates from implementing statistical
models to ‘Province BES’ data. Section 4.4 is devoted to concluding remarks.

4.2 Data

This analysis uses data from the Province BES dashboard (‘BES at the local level’).The
Province BES data contains 55 elementary indicators of well-being grouped into
11 macro-domains for the 107 Italian provinces over the period 2004-2021 (ISTAT,
2021). This data source enables well-being monitoring in the Italian territories over
time. The presence of missing values, especially in the early and later years, led us
to restrict the analysis to 2012 to 2019. We hold elementary indicators with at least
one non-missing value for each remaining year. The final set counts 34 elementary
indicators. We list and report descriptive statistics for the selected elementary
indicators in Appendix 4.A.

Our set of indicators resulted in a missing value percentage of 0.7%, which we
then impute with a posterior imputation procedure, as explained in section 4.3.

As in Ciommi et al., 2020, we partition the elementary indicators into three
well-being domains: social, economic, and environmental. In doing so, we aim to
build composite indicators for each Italian province that summarize the level of
well-being in each of these domains.

As mentioned in the introduction, we assume that neighboring provinces have
spatially correlated levels of well-being. To test this assumption, we explore the
spatial correlation of Province BES indicators through a spatial exploratory data
analysis (SEDA). Specifically, we estimate the Moran I test of global spatial corre-

For more references see https://www.istat.it/en/well-being-and-sustainability/
the-measurement-of-well-being/bes-at-local-level
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lation (see Moran, 1950) and an indicator of the local spatial association (LISA)
(see Anselin, 1995). Both approaches test the hypothesis of spatial randomness
against the alternative of spatial clustering across each Italian province and BES
elementary indicators.

We perform these spatial assessments for each year from 2012 to 2019. The
assessment highlights significant spatial auto-correlation for many indicators in
all well-being domains. Moran’s I coefficients notably differ from zero, indicating
spatial solid clustering or patterns. Some indicators show variations in spatial
auto-correlation across time. For instance, Life expectancy at birth and Women’s
political representation in municipalities increased their spatial clustering from
2012 to 2019. Some indicators demonstrate non-significant spatial auto-correlation,
reflected in higher p-values (above 0.05), indicating a lack of spatial clustering. For
instance, Public transport networks, Specialized doctors, and Density of historical

green areas, among others, show no significant spatial patterns in both years. The
LISA assessment highlights the highest concentration of spatially correlated obser-
vations in East-North and Southern areas. The economic domain has the greatest
number of elementary indicators with significant spatial correlation and clustering.
Surprisingly, the environmental indicators only have a weak spatial association.
The detailed results from the exploratory spatial assessment outlined above are in
section 4.B of the Appendix.

This empirical evidence favours our hypothesis that neighbouring provinces
share information on socioeconomic development levels. Thus, we estimate latent
factor analytic statistical models that flexibly account for spatial correlation in the
observed data.

4.3 Bayesian factor model for spatial data

We incorporate spatial information following the Bayesian factor model proposed
by Hogan and Tchernis, 2004. This model is based on a latent variable framework,
where elementary indicators manifest a hidden construct– the province’s well-being.

For province i, where i = 1, . . . , N , with N = 107 Italian provinces, let Yid denote
the elementary indicator d in province i. The length D of the observed vector Y i =

(Yi1, . . . , YiD) depends on the well-being domain considered: the social domain has
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D = 20 indicators, the economic domain hasD = 9 indicators, and the environmental
domain has D = 5 indicators.

For each observation i, the latent factor model assumes an L dimensional (L < D)

latent variable δi that holistically characterizes socioeconomic characteristics. Socio-
economic characteristics, in turn, exemplify through Y i. Here, we assume L = 1,
hence reducing the model to one latent factor for each province, and represent the
model in a hierarchical form as in Figure 4.3.1.

Figure 4.3.1: A graphical representation of a Bayesian hierarchical latent variable
model
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On the level of observed data, the likelihood is:

Y i | µ,λ, δi,Σ ∼ Multivariate Normal (µ+ λδi,Σ) , (4.1)

where µ is a D × 1 mean vector, λ is a D × 1 vector of factor loadings, and Σ =

diag (σ2
1, . . . , σ

2
D) is a diagonal matrix measuring residual variation in Y i, implying

independence among the elements of Y i conditionally on δi.
In this model, each factor loading is a variance component, i.e. λd = cov(Yid, δi).

Because residual variances σd differ across elementary indicators, factor loadings
measure covariance on different scales. They cannot be directly compared to assess
the strength of the association between each indicator and provinces’ well-being.
Instead, following Hogan and Tchernis (2004) and Davis et al. (2021), we can examine
squared correlation coefficients λ2d/(λ2d+σ2

d). The squared correlations represent the
proportion of variation in latent province well-being explained by each elementary
indicator, offering a measure comparable to the weights in a standard weighted
average.

On the second level, let δ = (δ1, . . . , δN)
T be the vector of province latent indexes.
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The prior distribution is:

δ ∼ Multivariate Normal (0N ,Ψ) , (4.2)

where Ψ is a N × N spatial covariance matrix with 1’s on the diagonal and ψis =

corr (δiδs) on the off-diagonal. When Ψ = IN , the model assumes spatial indepen-
dence. The well-being composite index for province i is summarized by the mean of
the posterior distribution of the latent factor δi given Y and µ,λ,Σ.

The prior distributions for the remaining parameters in (4.1) are:

λd ∼ Normal(g,G)(λ1 > 0); (4.3)

σ2
d ∼ Inverse-Gamma(α/2, β/2); (4.4)

µd ∼ Normal(0, Vµ). (4.5)

The primary scope of prior distributions is to include subjective opinions on the
parameters of interest. However, to let the data speak for themselves and simplify
the derivation of posterior distributions, we use conjugate diffuse priors by choosing
g = 0, G = 10000, α = 1/1000, β = 1/1000, and Vµ = 1000.

To include spatial correlation, we work on the spatial covariance matrix Ψ,
parametrizing it both marginally and conditionally. The first marginal specification
assumes that the generic element ψis of the prior covariance matrix is

ψis = corr(δiδs) = exp(−ωdis), (4.6)

where ω models spatial correlation and ω ≥ 0 ensures that ψis < 1; dis is the
Euclidean distance between centroids of area i and s and dii = 0 by definition (see
Hogan and Tchernis, 2004).

The second way to parametrize the covariance matrix Ψ is through conditional
auto-regressive (CAR) specifications of spatial dependency (see Besag et al., 1991).
The more general structures are the Gaussian CAR models. These models first
require the construction of a set Ri of areas neighbors of area i. Thus, if we assume
the conditional distribution of each δi to be

δi | {δs : s ∈ Ri} ∼ Normal
(∑

s∈Ri

βisδs,
1

αi

)
,
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then the joint marginal distribution of δ = (δ1, . . . , δN)
T follows aMultivariate− Normal(0, B−1),

where B is N ×N spatial covariance matrix with {α1, . . . , αN} along the diagonal
and −αiβis on the off-diagonal, provided that B is symmetric and positive definite
(see Besag, 1974). The βis are general weights defining the influence of province s
on the prior mean of δi, while αi represents province-level characteristics such as
the number of neighborhoods Hogan and Tchernis (2004).

To ensure that B is positive-definite and symmetric, one or more parameters
in the CAR models should be constrained. Here, we consider two different CAR
specifications.

Model CAR A defines Ri as the set of adjacent indicator tracts. R is an adjacency
(weight) matrix withRii = 0,Ris = I(s ∈ Ri) andRis = Rsi. Thus, the model assumes
βis = ωRis and αi = 1 (constant), where ω measures the degree of spatial correlation.
This leads to the definition

B = IN − ωR. (4.7)

One necessary condition for ensuring that B is positive definite and symmetric is
that the ordered eigenvalues ξ1, . . . , ξN of R satisfy: ξ−1

1 < ω < ξ−1
N .

Model CAR B, defines Ri in the same way as CAR A but here βis = ωRij(ns/ni)
1/2,

and αi = ni. Where ni and ns are the number of neighbours of area i and s, respec-
tively.

For this model
B = diag(ni)− ω(ni ∗ ns)

(1/2)R. (4.8)

We estimate the model’s posterior distribution using Markov Chain Monte
Carlo methods, specifically employing a Gibbs sampling algorithm with Metropolis-
Hastings steps to estimate the spatial parameter ω. At each iteration of the algo-
rithm, we draw a sample from the conditional posterior distribution of the model
parameters and the latent well-being δ. We use these draws to construct the pos-
terior distributions of all model parameters, discarding the initial samples as a
burn-in period. We simulate 6000 draws and “burn” 3000 of them. To obtain our
distribution of well-being ranking, we rank the estimates of δi in each sampling
iteration. The province posterior mean ranking is the mean of a province’s rank
across all iterations.

A key advantage of this model is that it can handle missing values through
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a posterior imputation procedure. The procedure replaces missing elementary
indicator values with “draws” from the first level equation conditional on current
iterations’ “draws” of the latent factor and the other models’ parameters (for more
details, see Davis et al., 2021).

We carried out a sensitivity analysis to assess the impact of our prior choices on
(a) the parameters µω and Vω of the spatial parameter ω prior distribution, (b) the
prior mean and variance, g and G, of the factor loading λj, and (c) the prior variance
Vµ of the mean µ. We also changed the seed or initial values. Finally, we modified
the definition of the spatial topology in the CAR models by increasing the number
of neighborhoods and defining the spatial weight matrix R differently. In each case,
the resulting estimates remained stable.

The results from this assessment prove the stability of the estimated values
to variation in prior choices with a slight degree of instability in the marginal
correlation model when changing the prior distribution on the spatial parameter.
Data are available upon request.

4.3.1 Economic, social and environmental well-being

We begin by summarizing the posterior distributions of factor loadings (λd), residual
standard deviations (σd), and squared correlations (λ2d/(λ2d + σ2

d)) for each well-being
domain. Next, we present composite indicator estimates for each province, which
enable us to examine the extent of divergence in provincial well-being over time
and space. To aid in visualizing this heterogeneity, we employ maps that offer an
intuitive representation of the spatial distribution of well-being. Furthermore, we
compare our data-driven posterior well-being rankings with those obtained through
the widely used Mazziotta-Pareto methodology, as extensively documented in the
literature (De Muro et al., 2011, Mazziotta and Pareto, 2013). We document the
level of agreement between both CIs’ approaches. In the following, we focus solely
on the results derived from model CAR B, which demonstrated superior models’
performances compared to the other spatial models (see section 4.C for models’
selection results).

Tables 4.3.1, 4.3.2, and 4.3.3 report the mean posterior estimates of factor load-
ings, residual standard deviations and squared correlations in the year 2019 (com-
parisons across spatial models and for 2012 are in Appendix 4.D).
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Starting from Table 4.3.1, we find that the leading indicators in the economic
domain are Employment rate, Non-participation rate, and Youth non-participation

rate, followed by Pensioners with low pension. These indicators exhibit high squared
correlations, indicating their significant and equal weights in explaining the varia-
tion in latent economic well-being. Moving on to the environmental domain (Table
4.3.2), we observe that the indicators Waste recycling services and Separate collection

of municipal waste are the primary drivers of variation in environmental well-being.
However, we note that the remaining indicators in this domain have much smaller
squared correlations, suggesting a lower impact on environmental well-being.

Finally, turning our attention to Table 4.3.3, we find that the most influential
indicator for social well-being is Graduates mobility, followed by People not in

education employment or training (neet) and People with at least upper secondary

education (25–64 years). The square correlations for this domain differ significantly
across elementary indicators. Suggesting that the elementary social indicators only
partially explain social well-being variation across provinces.

Our data-driven approach reveals that elementary indicators have varying
weights and contributions to each well-being domain. This result challenges tra-
ditional approaches that equally weigh all indicators and emphasizes the need
to consider each domain’s specific context and characteristics when evaluating
provincial well-being.

Figures 4.3.2, 4.3.3, and 4.3.4 illustrate each province’s well-being composite
indicator and its posterior credibility interval in 2012 and 2019. These figures
allow us to assess the variation in well-being trends and rankings of the Italian
provinces relative to the Italian mean (represented by the vertical dotted line at 0).
Additionally, in Appendix 4.E, we report for each province the posterior distribution
quantiles for the three well-being composite indicators.

Examining the figures, we can discern notable patterns in the distribution of
well-being across different domains over time. Specifically, in Figure 4.3.2 and
Figure 4.3.3, we observe consistent stability in the well-being distribution for the
social and economic domains. Only a few provinces exhibit above-average values in
the social domain, while most provinces cluster around the mean. This behaviour
suggests low polarization in social well-being across Italian provinces. In turn, the
economic domain displays more provinces with above and below-average values,
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Table 4.3.1: Economic well-being: factor loadings, residual standard deviations, and
squared correlations with 95% credibility intervals, on CAR B model, in 2019

Indicator (d) Factor Loadings
(95% CI)

Residual
Standard Deviations

(95% CI)

Squared Correlations
(95% CI)

Employment rate (20–64
years)

1.92
(1.66, 2.20)

0.02
(0.01 , 0.03)

1.00
(1.00 , 1.00)

Non-participation rate -1.92
(-2.21, -1.66)

0.02
(0.01 , 0.03)

1.00
(1.00 , 1.00)

Youth non-participation
rate (15–29 years)

-1.88
(-2.17, -1.63)

0.05
(0.04, 0.07)

1.00
(1.00 , 1.00)

Pensioners with low pen-
sion

-1.80
(-2.09, -1.53)

0.14
(0.10, 0.18)

0.99
(0.99 , 1.00)

Youth employment rate (15–
29 years)

1.79
(1.52, 2.09)

0.15
(0.11, 0.20)

0.99
(0.99 , 1.00)

Average yearly earnings of
employee

1.58
( 1.30, 1.91)

0.42
( 0.32, 0.56)

0.96
(0.92 , 0.98)

Working days of paid of em-
ployee

1.54
(1.29, 1.81)

0.38
(0.28, 0.49)

0.94
(0.90 , 0.97)

Average yearly per-capita
pension income

1.48
(1.18, 1.82)

0.42
(0.32, 0.56)

0.92
(0.87, 0.86)

Rate of bank’s non-
performing loans to
households

-1.40
(-1.74 , -1.08)

0.50
(0.38, 0.66)

0.88
(0.81 , 0.94)

Note: Rows indicate the elementary indicators used in the composite indicator’s construction. Factor
loadings represent the posterior mean of each λd in our statistical model. in our statistical model.
The numbers in parentheses are the 2.5 and 97.5 quantiles, which define the 95% credibility intervals
of the mean. In the Bayesian framework, these values do not indicate significance levels as in the
frequentist approach but represent the boundaries that contain 95% of the posterior probability.
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Table 4.3.2: Environmental well-being: factor loadings, residual standard deviations,
and squared correlations with 95% credibility intervals, on CAR B model, in 2019

Indicator (d) Factor Loadings
(95% CI)

Residual
Standard Deviations

(95% CI)

Squared Correlations
(95% CI)

Waste recycling services 1.46
(1.28, 1.64)

0.01
(0.00, 0.08)

1.00
(1.00, 1.00)

Separate collection of mu-
nicipal waste

1.35
(1.17, 1.57)

0.16
(0.10 0.22)

0.99
(0.98, 0.99)

Collection of urban waste 0.27
(0.00, 0.55)

0.99
(0.75, 1.30)

0.08
(0.00, 0.25)

Density of historical green
areas

0.16
(-0.12, 0.44)

1.03
(0.79, 1.36)

0.04
(0.00, 0.17)

Availability of urban green
areas

-0.07
(-0.36, 0.21)

1.04
( 0.79, 1.36)

0.02
(0.00, 0.11)

Note: see Table 4.3.1

indicating stronger polarization of economic levels across the Italian surface.
Figure 4.3.4 focuses on the environmental composite indicator. Here, we observe

more pronounced variations across the years. Specifically, from 2012 to 2019,
a significant decline in environmental well-being is evident across most Italian
provinces, leading to heightened polarization in this domain.

Finally, the posterior credibility intervals offer additional insights into the un-
certainty surrounding our findings. Over the years, social and economic well-being
consistently display relatively narrow credibility intervals for all provinces, indi-
cating low uncertainty in the CIs estimates. On the other hand, there is a gradual
decrease in the width of confidence intervals in the environmental dimension over
time. This shift reflects an increasing confidence in the CI’s point estimate for 2019
compared to 2012. Notably, the figures highlight the impact of missing data in the
elementary indicators of Sud Sardegna province. These missing values notably
increase the uncertainty surrounding Sud Sardegna’s CI estimate, evident through
much wider credibility intervals than in other provinces.”

Next, we map the composite indicators’ estimates for all Italian provinces at the
beginning (the year 2012) and end (the year 2019) of the analysis period. Figure
4.3.5 and Figure 4.3.6 showcase the spatial distributions of social, economic and
environmental well-being, respectively. Consistent with our earlier findings, the
spatial distribution of social well-being (Figure 4.3.5) remains relatively stable over
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Table 4.3.3: Social well-being: factor loadings, residual standard deviations, and
squared correlations with 95% credibility intervals, on CAR B model, in 2019

Indicator (d) Factor Loadings
(95% CI)

Residual
Standard Deviations

(95% CI)

Squared Correlations
(95% CI)

Graduates mobility (25–39
years)

1.72
(1.41, 2.04)

0.18
(0.12, 0.26)

0.99
(0.98, 1.00)

People not in education em-
ployment or training (neet)

-1.61
(-1.96, -1.30)

0.28
( 0.20, 0.39)

0.97
(0.94, 0.99)

People with at least upper
secondary education (25–64
years)

1.50
(1.19,1.83)

0.36
(0.27 0.49)

0.94
(0.90, 0.97)

Participation in lifelong
learning

1.51
(1.20, 1.86)

0.38
(0.28, 0.50

0.94
(0.89, 0.97)

Irregular electricity ser-
vices

-1.49
(-1.84,-1.17)

0.39
(0.28, 0.52)

0.93
(0.88, 0.97)

People having completed
tertiary education (25–34
years)

1.46
(1.15, 1.81)

0.40
(0.30 0.55)

0.93
(0.87, 0.97)

Children who benefited of
early childhood services

1.39
(1.06, 1.75)

0.48
(0.35, 0.64)

0.89
(0.81, 0.95)

Life expectancy at birth 1.31
(0.97, 1.68)

0.52
( 0.39 0.70)

0.86
(0.76, 0.94)

Public transportation net-
work

0.97
(0.63, 1.33)

0.76
(0.58 1.01)

0.61
(0.40, 0.79)

Widespread crimes re-
ported

0.95
(0.58, 1.33)

0.77
( 0.58 1.03)

0.59
(0.36, 0.78)

Mortality rate in extra-
urban road accidents

-0.86
(-1.24, -0.50)

0.82
(0.63, 1.08)

0.52
(0.29, 0.74)

Youth (< 40 years old) polit-
ical representation

-0.71
(-1.09, -0.35)

0.89
(0.67, 1.17)

0.39
(0.16, 0.64)

Women’s political represen-
tation in municipalities

0.66
(0.29, 1.02)

0.88
(0.67, 1.15)

0.36
(0.13, 0.61)

Specialized doctors 0.68
(0.32 1.05)

0.91
(0.69, 1.20)

0.36
(0.13, 0.62)

Voluntary murders -0.65
(-1.02 -0.28)

0.92
(0.69, 1.21)

0.33
(0.12, 0.59)

Health services outflows ad-
mittance

-0.63
(-1.03, -0.27)

0.92
(0.70, 1.20 )

0.32
(0.10, 0.59)

Hospital beds in high care
wards

0.49
0.12 0.86

0.96
(0.73, 1.28)

0.21
(0.03, 0.48)

Roads accidents mortality
rate (15–34 years)

-0.38
(-0.76, 0.01)

0.99
(0.76 1.29)

0.15
(0.01, 0.40)

Prison density 0.33
( -0.04, 0.72)

1.00
(0.76 1.31)

0.12
(0.00, 0.35)

Other reported crimes 0.29
( -0.09, 0.67)

1.00
(0.77 1.32)

0.10
(0.00, 0.32)

Note: see Table 4.3.1

194



Figure 4.3.2: Social well-being: composite indicator estimates for Italian provinces
in 2012 (left panel) and 2019 (right panel)

Note: The bars indicate each province’s mean posterior composite indicator value in each panel. The
horizontal black line corresponds to the 90% posterior credibility interval. The vertical bar at 0
indicates the Italian average for 2012–2019. The wide credibility interval for Sud-Sardegna province
is due to the high percentage of missing values. Source: Our elaboration of ISTAT “Province BES”.
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Figure 4.3.3: Economic well-being: composite indicator estimates for Italian
provinces in 2012 (left panel) and 2019 (right panel)

Note: see Figure 4.3.2
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Figure 4.3.4: Environmental well-being: composite indicator estimates for Italian
provinces in 2012 (left panel) and 2019 (right panel)

Note: see Figure 4.3.2
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time. Some of the Northern provinces, particularly the regional capitals, exhibit
higher levels of social well-being. In the economic domain, a noticeable polarisation
persists between the northern and southern provinces, with the former consistently
displaying higher levels of well-being. Regarding environmental well-being (Figure
4.3.6), the North-East provinces tend to fare better. However, an interesting trend
emerges: the northern provinces show improvement in their environmental well-
being levels, whereas the southern provinces experience a marked decline, indicated
by the darker shading throughout the years.

Finally, for each well-being domain, we compare the rankings based on our
method with rankings based on the Mazziotta-Pareto methodology, which is widely
used for policy decision-making in Italy. The Mazziotta-Pareto index (MPI) consists
of the arithmetic mean of normalized elementary indicators, incorporating a penal-
ization term for indicator variability, with equal weights assigned to all indicators.
The general formula for computing the index entails two steps Mazziotta and Pareto,
2013. First, we calculate the normalized indicator values as follows:

zid = 100 +
(yid − ȳd)

sd
10,

where ȳd and sd represent the elementary indicator d mean and standard deviation
respectively. Then, we estimate the MPI as follows:

MPIi =Mzi + Szicvi,

where Mzi =
∑D

d=1 zid
D

, Szi =

√∑D
d=1(zid−Mzi )

2

D
, and cvi =

Szi

Mzi
.

Figures 4.3.7 and 4.3.8 show the rankings estimated by our Bayesian model on
the x-axes and the corresponding Mazziotta-Pareto rankings on the y-axes. The
diagonal line indicates perfect agreement between the Mazziotta-Pareto rank and
our mean posterior rank. The farther the provinces are located from this line, the
higher the disagreement between the two methodologies.

First, we notice high agreement (Pearson correlation coefficients (ρ) > 0.8) be-
tween the two methodologies, more pronounced at the top 20% of the rank distribu-
tion in all three domains. The economic domain has the highest ranking agreement
(ρ = 0.96), followed by the social (ρ = 0.92) and the environmental domains (ρ = 0.86).
We observe more disagreement towards the bottom to the middle of the distribution.
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These discrepancies in rankings can be attributed to the variation in the weights
assigned to the elementary indicators in our model compared to the equally weighted
Mazziotta-Pareto indicator. This finding indicates that different evaluation methods
for provincial well-being can lead to changes in provincial ranks. However, it is
important to note that our results align with the Mazziotta-Pareto ranking for some
provinces, suggesting that certain provinces have specific needs that warrant more
focused interventions.
Figure 4.3.5: Maps of provincial social well-being composite indicators, for 2012 (top
panel) and 2019 (bottom panel)

Note: Italian provinces are grouped in well-being quintiles. The more ’purple’ colors refer to worse-off
provinces, while ’greener’ shades indicate better-off provinces. The black dots indicate provincial
capitals. Provinces with negative values are below the Italian averages over the entire period of
analysis

4.3.2 Overall well-being

To provide a comprehensive assessment of the overall well-being of each province, we
condense the three previously estimated composite indicators into a single composite
value. The three composite indicators already account for the spatial correlation
among Italian provinces. Here, we employ a spatially independent latent factor
model using posterior mean estimates of the three well-being composite indicators
as the model’s outcomes. Let δ̂i = (δ̂i1, δ̂i2, δ̂i3) indicating the 3-dimensional vector
of composite well-being indicators for each province i. We consider the following
Bayesian factor model:
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Figure 4.3.6: Maps of provincial economic (left) and environmental (right) well-being
composite indicators, for 2012 (top panel) and 2019 (bottom panel)

(a) (b)

Note: see Figure 4.3.5

Figure 4.3.7: Social well-being posterior mean rankings and Mazziotta-Pareto
rankings for 2019

Note: Posterior mean rankings produced by model CAR B. The R in the left corner is the Pearson
correlation coefficient between posterior mean ranking and the Mazziotta-Pareto rankings. We
remove Sud-Sardegna province from the plot for its many missing values.
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Figure 4.3.8: Economic well-being (a) and environmental well-being (b) posterior
mean rankings and Mazziotta-Pareto rankings for 2019

(a) (b)

Note: see Figure 4.3.7

δ̂i | µ,λ, wi,Σ ∼ Multivariate Normal(µ+ λwi,Σ) likelihood

wi ∼ Normal(0, 1) prior

We estimate the posterior distribution of factor loadings, residual standard
deviation, and squared correlations, as presented in Table 4.3.4. This table reveals
two key insights. Firstly, we observe a strong correlation between the overall well-
being composite indicator (wi) and the economic and social well-being composite
indicators. Notably, the economic domain appears to have the highest weight among
the well-being domains. This suggests that targeting economic aspects in low-
developed provinces would reduce the disparities in overall well-being between
Italian provinces.

Figure 4.3.9 provides a map representation to illustrate overall well-being vi-
sually on the Italian surface. The spatial distribution of overall well-being is
non-random, with the northern provinces consistently exhibiting higher levels
of well-being while the southern provinces consistently experience lower well-being.
Additionally, overall well-being slightly increases over time in some southern and
central provinces, revealing a moderate polarisation reduction.
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Table 4.3.4: Overall well-being: factor loadings, residual standard deviations and
squared correlations with 95% credibility intervals in 2019

Domain (d)
Factor Loadings

(95% CI)

Residual

Standard Deviations

(95% CI)

Squared Correlations

(95% CI)

Social
0.77

(0.68 ,0.85)

0.06

(0.05, 0.08)

0.77

(0.68, 0.85)

Economic
0.98

(0.92, 0.99)

0.006

(0.0006, 0.03)

0.98

(0.92,1.00)

Environmental
0.34

(0.19, 0.49)

0.31

(0.25, 0.4)

0.34

(0.20, 0.49)

Note: see Table 4.3.1

Figure 4.3.9: Maps of provincial overall well-being composite indicator, for 2012 (top
panel) and 2019 (bottom panel)

X2012

X2019

Overall 
CAR B

−2.171 to −1.074

−1.074 to 0.084

0.084 to 0.587
0.587 to 0.810
0.810 to 1.372

Note: see Figure 4.3.5

4.3.3 Macro region well-being

Finally, we aggregate provinces belonging to the same macro-region m (NUTS1),
for m = 1, . . . , 5, i.e. Northwest, Northeast, Center, South, and Islands, to assess
the evolution of the Italian macro-regional well-being over time. We consider a
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hierarchical model, which requires specifying a prior distribution for the mean
(αm[i]) for each macro-area m of the latent variable δ̂i. We also assume the variance
(σm[i]) to vary across macro-areas. More formally, for the three well-being domains,
the model becomes:

δ̂i | αm[i], σm[i] ∼ Normal(αm[i], σm[i]) likelihood

αm[i] ∼ Normal(0, 1) prior

σm[i] | ν, τ ∼ cauchy(ν, τ) prior

As standard practice, we chose a normal distribution as the prior distribution for
the mean (αm[i]) and a Cauchy distribution for the standard deviation (σm[i]) of the
latent factor distribution Gelman et al., 2013, and interpret αm as the well-being
level of macro-region m.

Figures 4.3.10 and 4.3.11 show each macro area time series for social, economic,
environmental, and overall well-being. These figures reveal a consistent and endur-
ing macro-territorial division that characterizes the Italian territory throughout the
analyzed period. Notably, the South and Islands consistently fall below the average,
while the Center, Northwest, and Northeast remain above the average. Moreover,
these macro areas intersect in specific years and for particular well-being domains.

The trend in economic well-being remains relatively flat over time, with a consis-
tent ranking of macro areas across the years. On the other hand, social well-being,
illustrated on the left in Figure 4.3.10 exhibits more interaction among macro areas
over the years. The Center aligns with the Northwest, maintaining a similar trajec-
tory until 2019, while the Northeast shows a slight upward trend. In contrast, the
Islands’ social well-being experienced a decline over time, reaching a lower level in
2019 compared to the beginning of the series.

Only environmental well-being demonstrates a non-flat trend over time among
the four estimated time series. In 2016 the Northwest and Northeast aligned, while
the South experienced a steady decline after 2015. The Center exhibits an upward
trend after 2016, and the Islands remain relatively stable.

We estimate the hierarchical models above using STAN interfaces in R Carpenter et al., 2017.
The code for implementing the Hierarchical models is available on GitHub.
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Finally, the overall domain mirrors the evolution of social and economic well-
being levels. The environmental domain contributes minimally to determining the
overall well-being trend.

Figure 4.3.10: Social (left) and economic (right) well-being composite indicator for
Italian macro territorial areas (black dotted line indicates the Italian average)
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Figure 4.3.11: Environmental (left) and overall(right) well-being composite indicator
for Italian macro territorial areas (black dotted line indicates the Italian average)
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4.4 Concluding remarks

This paper applies a Bayesian spatial latent factor model to propose well-being
composite indicators and rankings for all Italian provinces from 2012 to 2019. Our
approach differs from traditional composite indicators methodologies in several

204



ways. First, we modeled the spatial dependence of elementary indicators, capturing
potential socioeconomic spillover effects. Second, we incorporate a measure of
composite indicators uncertainty related to missing data. Third, we estimate data-
driven weights for elementary indicators, thus avoiding an arbitrary selection of
weight exposed to subjective opinion.

Using the ”Province BES” dataset from ISTAT, we examine the assumption of
spatial independence in the elementary indicators by conducting global and local
tests of spatial association. This initial assessment confirms positive spatial associ-
ation in the “Province BES” indicators. We then categorize the indicators into three
sustainable development well-being domains: social, economic, and environmental.
Employing a Bayesian approach, we estimate the posterior distribution of latent
variables, with their expected values interpreted as hidden well-being indicators for
Italian provinces.

The study reveals significant disparities in social and economic well-being be-
tween northern and southern regions, with the northern provinces consistently
demonstrating higher levels of well-being. In contrast, the environmental dimen-
sion exhibits less persistent polarization, with above-average levels observed in
the South. One possible interpretation is that environmental consciousness has
gained prominence more recently than socioeconomic aspects. Consequently, north-
ern and southern provinces are experiencing increased climate awareness, with
similar provincial investments in environmental well-being rates. Compared to the
Mazziotta-Pareto approach, our rankings diverge, particularly at the upper end of
the well-being distribution and within the environmental domain. Uncertainty in
ranking estimates is also higher for provinces that are better off. These findings
suggest that the government could allocate resources more effectively by targeting
provinces at the lower end of the well-being ranking.

Subsequently, we reduce the three well-being dimensions into an overall well-
being indicator for each Italian province. This composite indicator, driven primarily
by the economic domain and with minimal weight given to environmental well-being,
remains stable and clustered throughout the analyzed period. These findings empha-
size the significance of economic factors in shaping overall well-being and highlight
regional disparities within Italy. They also indicate that focused interventions to
improve economic conditions can reduce provincial well-being disparities.
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Additionally, we extend the analysis to the NUTS-1 level, encompassing North-
west, Northeast, Center, South, and Island macro-regions, in order to provide
well-being trends across the analyzed period. The results demonstrate varying
degrees of heterogeneity among these macro areas.

The primary limitation of this study is the limited number of indicators avail-
able within the environmental dimension compared to the social and economic
dimensions, which also suffer from more missing observations. As long as data on
environmental aspects remain scarce, it will be challenging for researchers to pro-
vide robust evidence in favour of climate policy interventions. In future research, we
aim to enrich the environmental analysis by integrating advanced sensor measure-
ments of air pollution, water quality, and soil temperature into national accounts.
Additionally, we plan to incorporate a subjective dimension that considers citizens’
perceptions of life satisfaction.

Overall, this study contributes to the understanding of well-being dynamics in
Italy, offering valuable insights for policymakers in addressing regional disparities
and focusing on targeted interventions for improved well-being outcomes.
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Besag, J., York, J., & Mollié, A. (1991). Bayesian image restoration, with two applications

in spatial statistics. Annals of the institute of statistical mathematics, 43(1), 1–20.

Bourguignon, F., & Chakravarty, S. R. (2003). The measurement of multidimensional

poverty. The Journal of Economic Inequality, 1, 25–49.

Canning, D., French, D., & Moore, M. (2013). Non-parametric estimation of data dimension-

ality prior to data compression: The case of the human development index. Journal

of Applied Statistics, 40(9), 1853–1863.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker,

M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language.

Journal of statistical software, 76(1).

Chelli, F. M., Ciommi, M., Emili, A., Gigliarano, C., & Taralli, S. (2015). Comparing equitable

and sustainable well-being (bes) across the italian provinces. a factor analysis-based

approach. Rivista Italiana di Economia Demografia e Statistica, LXIX (3), 61–72.

Ciommi, M., Gigliarano, C., Chelli, F. M., Gallegati, M., et al. (2020). It is the total that does

[not] make the sum: Nature, economy and society in the equitable and sustainable

well-being of the Italian provinces. Social Indicators Research., https://doi.org/10.1007/s11205-

020-02331-w.

Ciommi, M., Gigliarano, C., Emili, A., Taralli, S., & Chelli, F. M. (2017). A new class of

composite indicators for measuring well-being at the local level: An application to

the equitable and sustainable well-being (bes) of the Italian provinces. Ecological

indicators, 76, 281–296.

Davis, W., Gordan, A., & Tchernis, R. (2021). Measuring the spatial distribution of health

rankings in the United States. Health Economics, 30(11), 2921–2936.

207



De Muro, P., Mazziotta, M., & Pareto, A. (2011). Composite indices of development and

poverty: An application to MDGs. Social indicators research, 104, 1–18.

Fusco, E., Vidoli, F., & Sahoo, B. K. (2018). Spatial heterogeneity in composite indicator: A

methodological proposal. Omega, 77, 1–14.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013).

Bayesian data analysis. CRC press.

Hogan, J. W., & Tchernis, R. (2004). Bayesian factor analysis for spatially correlated data,

with application to summarizing area-level material deprivation from census data.

Journal of the American Statistical Association, 99(466), 314–324.

ISTAT. (2021). BES 2021. Il benessere equo e sostenibile in Italia. Rome.

Kasparian, J., & Rolland, A. (2012). OECD’s ‘Better Life Index’: Can any country be well

ranked? Journal of Applied Statistics, 39, 2223–2230.

Machado, C., Paulino, C. D., & Nunes, F. (2009). Deprivation analysis based on Bayesian

latent class models. Journal of Applied Statistics, 36, 871–891.

Mazziotta, M., & Pareto, A. (2013). Methods for constructing composite indices: One for

all or all for one. Rivista Italiana di Economia Demografia e Statistica, LXVII (2),

67–80.

Mazziotta, M., & Pareto, A. (2018). Measuring well-being over time: The adjusted Mazziotta–

Pareto index versus other non-compensatory indices. Social Indicators Research,

136(3), 967–976.

Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2), 17–23.

Rijpma, A. (2016). What can’t money buy? wellbeing and gdp since 1820 (tech. rep.). Utrecht

University, Centre for Global Economic History.

Sarra, A., & Nissi, E. (2020). A spatial composite indicator for human and ecosystem well-

being in the Italian urban areas. Social Indicators Research, 148, 353–377.

Scaccabarozzi, A., Mazziotta, M., & Bianchi, A. (2022). Measuring competitiveness: A com-

posite indicator for Italian municipalities. Social Indicators Research, 1–30.

Stiglitz, J. E., Sen, A., Fitoussi, J.-P., et al. (2009). Report by the commission on the mea-

surement of economic performance and social progress.

208



Appendix

4.A Descriptive statistics

Table 4.A.1: Descriptive statistics of selected elementary indicators, all years

Domain Indicator mean median sd Unit

Social

Graduates mobility (25-39 years) -9.18 -6.13 13.04 Ratio
People not in education, employment, or training (neet) 23.28 21.00 8.35 %
Participation in lifelong learning 7.45 7.20 2.21 %
People with at least upper secondary education level (25–64 years) 58.97 60 7.51 %
Irregular electricity services 2.27 1.88 1.28 Average number for user
People having completed tertiary education (25-34 years) 23.38 23.00 5.57 %
Children who benefited from early childhood services 13.22 12.10 7.65 %
Life expectancy at birth 82.56 82.5 0.83 Years
Public transportation network 2618.30 2187.45 2037.70 Seat-km per capita
Widespread crimes reported 190.74 179.40 72.02 For10.000 inhabitants
Mortality rate in extra-urban road accidents 5.58 5.10 2.84 %
Youth (¡ 40 years old) political representation 30.81 30.70 5.36 %
Specialized doctors 27.04 24.7 7.46 For10.000 inhabitants
Women’s political representation in municipalities 28.16 29.00 6.73 %
Voluntarily murders
Health services outflows admittance 7.96 6.30 5.07 %
Hospital beds in high care wards 2.95 2.7 1.24 For10.000 inhabitants
Road accidents mortality rate (15–34 years) 0.75 0.70 0.41 For 10.000 inhabitants
Prison density 128.55 126.70 41.55 %
Other reported crimes 16.47 15.60 5.03 For 10.000 inhabitants

Economic

Employment rate (20–64 years). 61.54 65.90 9.85 %
Non-participation rate 18.36 14.30 10.84 %
Youth non-participation rate (15–29 years) 33.43 30.45 16.72 %
Pensioners with low pension 10.97 9.47 3.21 %
Youth employment rate (15–29 years) 35.97 36.15 10.90 %
Working days of paid of employees 75.16 76.61 5.52 %
Average yearly earnings of employee 18302.73 18123.38 3077.61 Euro
Average yearly per-capita pension income 16028.68 15981.43 1597.06 Euro
Rate of bank non-performing loans to households 1.30 1.20 0.54 %

Environmental

Waste recycling services 45.05 30.01 77.21 mq for inhabitant
Separate collection of municipal waste 37.52 37.60 20.17 %
Collection of urban waste 37.52 37.60 20.17 %
Density of historical green areas 2.49 1.60 3.26 mq for 100 mq res.areas
Availability of urban green areas 45.05 30.01 77.21 mq for inhabitant

Source: our elaboration on “Province BES’, ISTAT 2019
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4.B Spatial Exploratory Data Analysis

Table 4.B.1

Domain Indicator Moran I 2012 p value Moran I 2019 p value

Soc.

Graduates mobility (25–39 years) 0.59 < 0.001 0.68 < 0.001

People not in education employment or training (neet) 0.72 < 0.001 0.74 ¡ 0.001
Participation in long life learning 0.21 < 0.001 0.33 < 0.001

People with at least upper secondary education level (25–64 years) 0.40 < 0.001 0.45 < 0.001

Irregular electricity services 0.67 < 0.001 0.64 < 0.001

People having completed tertiary education (25–39 years) 0.26 < 0.001 0.18 < 0.001

Children who benefited of early childhood services 0.70 < 0.001 0.65 < 0.001

Life expectancy at birth 0.53 < 0.001 0.60 < 0.001

Public transport network -0.06 0.81 -0.03 0.67
Widespread crimes reported 0.28 < 0.001 0.21 < 0.001

Mortality rate in extra urban road accidents 0.29 < 0.001 0.35 < 0.001

Youth (¡40 years old) political representation in municipalities 0.49 < 0.001 0.39 < 0.001

Specialized doctors 0.04 0.23 0.03 0.26
Women s political representation in municipalities 0.81 < 0.001 0.64 < 0.001

Voluntary murders 0.22 < 0.001 0.08 0.07
Health services outflows admittance’s 0.39 < 0.001 0.43 < 0.001

Hospital beds in high care wards -0.06 0.77 -0.09 0.90
Roads accidents mortality rate (15–34 years) 0.10 0.05 0.04 0.23
Prison density 0.09 0.05 0.18 < 0.001

Other reported crimes 0.14 0.01 0.10 0.04

Eco.

Employment rate (20–64 years) 0.82 < 0.001 0.82 < 0.001

Non participation rate 0.82 < 0.001 0.81 < 0.001

Youth non participation rate (15–29 years) 0.79 < 0.001 0.80 < 0.001

Pensioners with low pension 0.78 < 0.001 0.80 < 0.001

Youth employment rate (15–29 years) 0.74 < 0.001 0.77 < 0.001

Working days of paid employee 0.65 < 0.001 0.62 < 0.001

Average yearly earnings of employee 0.65 < 0.001 0.68 < 0.001

Average yearly per-capita pension income 0.54 < 0.001 0.61 < 0.001

Rate of bank’s non performing loans to households 0.35 < 0.001 0.52 < 0.001

Env

Waste recycling services 0.53 < 0.001 0.34 < 0.001

Separate collection of municipal waste 0.67 0.00 0.47 < 0.001

Collection of urban waste 0.51 < 0.001 0.57 < 0.001

Density of historical green areas -0.05 0.78 -0.04 0.70
Availability of urban green areas 0.08 0.05 0.03 0.21

Note: Each row corresponds to one of the 34 elementary indicators used in our model. The table
reports the results from Moran’s test of spatial autocorrelation. The second and fourth columns
report the value of the observed Moran’s I coefficient in 2012 and 2019. The third and fifth columns
reports the p-value of the test. When p-value is < 0.001, we reject the null hypothesis of spatial
randomness at 1% significance level.
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Table 4.B.2: Proportion of provinces with statistically significant p-value (p < 0.005)
for the LISA statistic, for each BES elementary indicator, for 2012 and 2019

Dom. Indicator 2012 2019

Soc.

Prison density 0.14 0.12
Other reported crimes 0.13 0.12
Youth (< 40 years old) political representation 0.20 0.19
Women s political representation in municipalities 0.22 0.25
Children who benefited from early childhood services 0.24 0.20
Widespread crimes reported 0.17 0.10
Regional health services outflows hospital admittances 0.21 0.19
People not in education employment or training (neet) 0.17 0.18
Irregular electricity services 0.20 0.15
People having completed tertiary education (25–39 years) 0.10 0.10
Graduates mobility (25–39 years) 0.22 0.26
Roads accidents mortality rate 0.10 0.08
Mortality rate in extra urban road accidents 0.17 0.19
Participation in long life learning 0.18 0.19
People with at least upper secondary education level (25–64 years) 0.18 0.15
Public transport network 0.07 0.07
Life expectancy at birth 0.23 0.19
Specialized doctors 0.11 0.13
Voluntary murders 0.08 0.06
Hospital beds in high care wards 0.07 0.03

Eco.

Employment rate (20–64 years) 0.21 0.21
Non-participation rate 0.19 0.20
Youth non participation rate (15–29 years) 0.22 0.21
Pensioners with low pension 0.20 0.20
Youth employment rate (15–29 years) 0.25 0.25
Average yearly earnings of employee 0.21 0.20
Average yearly per capita pension income 0.20 0.21
Rate of bank’s non-performing loans to households 0.07 0.15
Working days of paid of employees 0.23 0.24

Env

Waste recycling services 0.12 0.19
Separate collection of municipal waste 0.21 0.20
Collection of urban waste 0.19 0.21
Density of historical green areas 0.06 0.04
Availability of urban green areas 0.07 0.08

Note: These are results from the function that estimates the (non-centred) local indicators of spatial
association modified form proposed in Anselin, 1995. The p-value is the permutation two-sided
p-value for each observation.
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4.C Models’ selection criteria

Table 4.C.1: Goodness of fit measures for the three well-being domains, for 2019.

Criteria Model Economic Social Environment

p
Marginal Correlation 340.12 1554.01 357.97
CAR A 258.43 1551.40 362.79
CAR B 233.95 1549.78 356.44

G
Marginal Correlation 515.97 1378.69 329.52
CAR A 250.95 1381.51 325.43
CAR B 206.99 1377.46 329.63

C
Marginal Correlation 856.09 2932.71 687.50
CAR A 509.38 2932.91 688.22
CAR B 440.94 2927.24 686.07

Note: We assess the goodness of fit (G) and variability (p) of the models following the model selection
criterion proposed by Gelfand and Ghosh, 1998. These criteria penalize the lack of fit and high
posterior predictive variance due to over and under-parametrization. C is the sum of the two
measures. Lower values of C indicate better models’ performance.
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4.D Factor Loadings across spatial models and years

Figure 4.D.1: Social well-being: factor loadings with 95% credibility intervals, for the three spatial models, in 2012 and 2019
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Figure 4.D.2: Economic well-being: factor loadings with 95% credibility intervals, for the three spatial models, in 2012 and 2019
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Figure 4.D.3: Environmental well-being: factor loadings with 95% credibility intervals, for the three spatial models, in 2012 and 2019
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4.E Full distribution of composite indicators

Table 4.E.1: Summary of posterior distribution of the composite indicator for the social dimension. Model CAR B. Year 2019.

Province mean median 25% 75% IQR Province mean median 25% 75% IQR Province mean median 25% 75% IQR
Agrigento -1.18 -1.18 -1.50 -0.89 0.21 Foggia -1.06 -1.06 -1.39 -0.79 0.21 Pescara -0.20 -0.19 -0.46 0.07 0.17
Alessandria -0.33 -0.32 -0.58 -0.09 0.17 Forlı̀-Cesena 0.13 0.13 -0.11 0.39 0.17 Piacenza 0.04 0.04 -0.21 0.28 0.17
Ancona 0.16 0.15 -0.09 0.44 0.18 Frosinone -0.62 -0.62 -0.90 -0.36 0.18 Pisa 0.36 0.35 0.11 0.62 0.18
Aosta 0.02 0.02 -0.22 0.26 0.17 Genova 0.30 0.29 0.04 0.56 0.18 Pistoia -0.09 -0.09 -0.35 0.15 0.17
Arezzo -0.20 -0.20 -0.47 0.06 0.17 Gorizia -0.15 -0.15 -0.42 0.11 0.17 Pordenone 0.06 0.05 -0.18 0.31 0.17
Ascoli Piceno -0.08 -0.08 -0.33 0.18 0.17 Grosseto -0.11 -0.11 -0.36 0.14 0.17 Potenza -0.74 -0.73 -1.03 -0.47 0.19
Asti -0.48 -0.47 -0.75 -0.23 0.18 Imperia -0.49 -0.48 -0.77 -0.23 0.18 Prato -0.10 -0.10 -0.37 0.15 0.18
Avellino -0.62 -0.62 -0.89 -0.37 0.18 Isernia -0.47 -0.47 -0.74 -0.20 0.18 Ragusa -1.03 -1.02 -1.33 -0.75 0.21
Bari -0.31 -0.30 -0.57 -0.05 0.18 L’Aquila -0.19 -0.19 -0.44 0.05 0.18 Ravenna 0.21 0.20 -0.04 0.47 0.17
Barletta-Andria-Trani -0.82 -0.82 -1.10 -0.56 0.19 La Spezia 0.00 0.00 -0.25 0.24 0.17 Reggio di Calabria -1.16 -1.15 -1.49 -0.88 0.20
Belluno -0.14 -0.14 -0.40 0.11 0.17 Latina -0.49 -0.49 -0.76 -0.23 0.18 Reggio nell’Emilia 0.23 0.23 -0.01 0.48 0.17
Benevento -0.88 -0.88 -1.16 -0.61 0.19 Lecce -0.69 -0.69 -0.97 -0.41 0.18 Rieti -0.60 -0.59 -0.88 -0.34 0.18
Bergamo -0.18 -0.18 -0.45 0.06 0.18 Lecco 0.08 0.08 -0.16 0.35 0.17 Rimini 0.23 0.23 -0.02 0.49 0.18
Biella -0.03 -0.03 -0.28 0.22 0.17 Livorno -0.04 -0.05 -0.30 0.21 0.17 Roma 0.42 0.42 0.16 0.70 0.18
Bologna 0.98 0.97 0.69 1.29 0.21 Lodi -0.16 -0.16 -0.41 0.09 0.17 Rovigo -0.35 -0.35 -0.62 -0.09 0.18
Bolzano/Bozen 0.04 0.04 -0.22 0.29 0.17 Lucca -0.08 -0.09 -0.33 0.16 0.17 Salerno -0.72 -0.72 -1.01 -0.46 0.19
Brescia 0.03 0.03 -0.22 0.28 0.17 Macerata -0.10 -0.10 -0.36 0.14 0.17 Sassari -0.64 -0.63 -0.92 -0.38 0.18
Brindisi -0.82 -0.81 -1.11 -0.56 0.18 Mantova -0.22 -0.22 -0.50 0.03 0.17 Savona 0.08 0.08 -0.18 0.35 0.18
Cagliari 0.27 0.26 0.01 0.55 0.18 Massa-Carrara -0.01 -0.02 -0.26 0.24 0.17 Siena -0.03 -0.02 -0.27 0.22 0.17
Caltanissetta -1.43 -1.42 -1.78 -1.12 0.22 Matera -0.43 -0.42 -0.71 -0.16 0.18 Siracusa -1.00 -0.99 -1.31 -0.71 0.21
Campobasso -0.44 -0.44 -0.71 -0.19 0.18 Messina -0.97 -0.97 -1.27 -0.68 0.19 Sondrio -0.22 -0.22 -0.47 0.03 0.18
Caserta -1.07 -1.07 -1.38 -0.79 0.20 Milano 0.96 0.95 0.65 1.30 0.22 Sud Sardegna -0.66 -0.67 -1.39 0.10 0.48
Catania -0.83 -0.82 -1.12 -0.57 0.19 Modena 0.41 0.41 0.16 0.68 0.17 Taranto -0.99 -0.98 -1.30 -0.72 0.19
Catanzaro -0.79 -0.79 -1.08 -0.52 0.19 Monza e della Brianza 0.22 0.21 -0.03 0.47 0.18 Teramo -0.35 -0.35 -0.61 -0.08 0.17
Chieti -0.43 -0.42 -0.69 -0.16 0.18 Napoli -0.88 -0.88 -1.18 -0.61 0.20 Terni -0.10 -0.10 -0.35 0.15 0.17
Como 0.15 0.14 -0.09 0.41 0.17 Novara 0.10 0.10 -0.15 0.36 0.17 Torino 0.29 0.29 0.04 0.56 0.18
Cosenza -0.93 -0.92 -1.24 -0.66 0.20 Nuoro -0.80 -0.80 -1.08 -0.53 0.19 Trapani -1.27 -1.26 -1.61 -0.97 0.22
Cremona -0.13 -0.14 -0.39 0.11 0.17 Oristano -0.72 -0.72 -1.01 -0.46 0.19 Trento 0.34 0.34 0.09 0.61 0.17
Crotone -1.48 -1.47 -1.84 -1.16 0.24 Padova 0.28 0.27 0.03 0.53 0.18 Treviso -0.01 -0.01 -0.26 0.23 0.17
Cuneo -0.28 -0.28 -0.53 -0.03 0.17 Palermo -0.88 -0.88 -1.18 -0.62 0.19 Trieste 0.69 0.68 0.41 1.00 0.20
Enna -1.17 -1.16 -1.49 -0.88 0.21 Parma 0.58 0.58 0.33 0.87 0.18 Udine 0.26 0.26 0.01 0.53 0.17
Fermo -0.29 -0.29 -0.55 -0.02 0.17 Pavia -0.02 -0.02 -0.27 0.23 0.17 Varese 0.08 0.08 -0.17 0.33 0.18
Ferrara 0.17 0.17 -0.08 0.42 0.17 Perugia 0.20 0.20 -0.05 0.45 0.17 Venezia 0.09 0.09 -0.16 0.35 0.18
Firenze 0.75 0.74 0.48 1.05 0.19 Pesaro e Urbino -0.02 -0.02 -0.27 0.22 0.17 Verbano-Cusio-Ossola -0.20 -0.20 -0.46 0.04 0.18

Vercelli -0.35 -0.35 -0.61 -0.09 0.17
Verona 0.37 0.37 0.12 0.64 0.18
Vibo Valentia -1.02 -1.01 -1.34 -0.75 0.20
Vicenza 0.10 0.09 -0.15 0.35 0.17
Viterbo -0.47 -0.47 -0.75 -0.21 0.17
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Table 4.E.2: Summary of posterior distribution of the latent variable (composite indicator) for the economic dimension. CAR model B.
Year 2019.

Province mean median 25% 75% IQR Province mean median 25% 75% IQR Province mean median 25% 75% IQR
Agrigento -1.25 -1.25 -1.46 -1.07 0.14 Foggia -1.07 -1.07 -1.26 -0.90 0.12 Pescara -0.39 -0.39 -0.50 -0.28 0.07
Alessandria 0.01 0.01 -0.08 0.10 0.06 Forlı̀-Cesena 0.24 0.24 0.14 0.34 0.07 Piacenza 0.18 0.18 0.09 0.28 0.06
Ancona -0.08 -0.08 -0.17 0.02 0.06 Frosinone -0.73 -0.73 -0.88 -0.59 0.10 Pisa 0.07 0.07 -0.02 0.16 0.06
Aosta 0.16 0.16 0.06 0.25 0.06 Genova -0.12 -0.12 -0.21 -0.02 0.06 Pistoia -0.07 -0.07 -0.16 0.02 0.06
Arezzo 0.14 0.14 0.05 0.24 0.06 Gorizia 0.04 0.04 -0.05 0.13 0.06 Pordenone 0.26 0.25 0.16 0.35 0.06
Ascoli Piceno -0.18 -0.18 -0.27 -0.09 0.06 Grosseto 0.01 0.01 -0.09 0.10 0.06 Potenza -0.77 -0.77 -0.91 -0.64 0.10
Asti 0.16 0.16 0.07 0.26 0.06 Imperia -0.24 -0.24 -0.34 -0.15 0.07 Prato 0.19 0.19 0.09 0.29 0.07
Avellino -0.68 -0.68 -0.82 -0.55 0.09 Isernia -0.60 -0.60 -0.74 -0.48 0.09 Ragusa -0.78 -0.78 -0.94 -0.64 0.10
Bari -0.56 -0.56 -0.69 -0.45 0.08 L’Aquila -0.31 -0.31 -0.42 -0.21 0.07 Ravenna 0.22 0.22 0.13 0.31 0.06
Barletta-Andria-Trani -0.93 -0.93 -1.10 -0.77 0.11 La Spezia -0.03 -0.03 -0.12 0.07 0.06 Reggio di Calabria -1.28 -1.27 -1.49 -1.08 0.14
Belluno 0.31 0.31 0.21 0.41 0.07 Latina -0.46 -0.46 -0.58 -0.36 0.07 Reggio nell’Emilia 0.24 0.24 0.15 0.34 0.06
Benevento -0.83 -0.83 -0.99 -0.68 0.10 Lecce -0.96 -0.96 -1.13 -0.80 0.11 Rieti -0.39 -0.38 -0.50 -0.28 0.07
Bergamo 0.21 0.21 0.12 0.31 0.07 Lecco 0.23 0.23 0.15 0.33 0.06 Rimini 0.04 0.04 -0.06 0.13 0.06
Biella 0.05 0.05 -0.04 0.15 0.06 Livorno -0.12 -0.12 -0.22 -0.03 0.07 Roma -0.10 -0.10 -0.19 0.00 0.06
Bologna 0.28 0.28 0.18 0.38 0.07 Lodi 0.07 0.07 -0.02 0.16 0.06 Rovigo 0.07 0.07 -0.02 0.17 0.06
Bolzano/Bozen 0.45 0.45 0.35 0.55 0.07 Lucca -0.17 -0.17 -0.27 -0.07 0.06 Salerno -0.91 -0.90 -1.06 -0.76 0.11
Brescia 0.23 0.23 0.14 0.32 0.06 Macerata 0.00 0.00 -0.09 0.09 0.06 Sassari -0.60 -0.60 -0.73 -0.47 0.09
Brindisi -0.76 -0.75 -0.90 -0.62 0.10 Mantova 0.19 0.18 0.10 0.28 0.06 Savona 0.02 0.02 -0.07 0.11 0.06
Cagliari -0.55 -0.55 -0.68 -0.44 0.08 Massa-Carrara -0.07 -0.07 0.02 -0.16 0.06 Siena 0.10 0.10 0.19 0.01 0.06
Caltanissetta -1.27 -1.27 -1.48 -1.08 0.14 Matera -0.49 -0.48 -0.61 -0.37 0.08 Siracusa -1.03 -1.03 -1.21 -0.87 0.12
Campobasso -0.56 -0.56 -0.68 -0.45 0.08 Messina -1.28 -1.28 -1.49 -1.08 0.14 Sondrio 0.22 0.22 0.12 0.31 0.07
Caserta -1.16 -1.16 -1.35 -0.98 0.13 Milano 0.23 0.23 0.14 0.33 0.07 Sud Sardegna -0.30 -0.31 -1.44 0.84 0.93
Catania -1.16 -1.16 -1.35 -0.98 0.13 Modena 0.19 0.18 0.09 0.28 0.06 Taranto -1.00 -0.99 -1.17 -0.83 0.12
Catanzaro -0.90 -0.90 -1.06 -0.75 0.11 Monza e della Brianza 0.13 0.13 0.04 0.23 0.07 Teramo -0.27 -0.27 -0.37 -0.17 0.07
Chieti -0.41 -0.41 -0.52 -0.31 0.07 Napoli -1.25 -1.25 -1.46 -1.07 0.14 Terni -0.22 -0.22 -0.32 -0.12 0.07
Como 0.13 0.13 0.04 0.22 0.06 Novara 0.10 0.10 0.01 0.19 0.06 Torino 0.03 0.03 -0.07 0.12 0.06
Cosenza -1.02 -1.01 -1.20 -0.85 0.12 Nuoro -0.66 -0.66 -0.80 -0.54 0.09 Trapani -1.30 -1.29 -1.52 -1.09 0.15
Cremona 0.15 0.15 0.06 0.25 0.06 Oristano -0.70 -0.70 -0.84 -0.58 0.09 Trento 0.20 0.20 0.11 0.30 0.06
Crotone -1.41 -1.41 -1.64 -1.20 0.16 Padova 0.19 0.19 0.10 0.29 0.06 Treviso 0.13 0.13 0.04 0.23 0.06
Cuneo 0.26 0.26 0.17 0.36 0.07 Palermo -1.27 -1.26 -1.48 -1.08 0.14 Trieste 0.12 0.12 0.03 0.22 0.06
Enna -1.23 -1.22 -1.43 -1.04 0.14 Parma 0.18 0.18 0.09 0.28 0.06 Udine 0.08 0.08 -0.01 0.17 0.06
Fermo 0.07 0.07 -0.03 0.16 0.06 Pavia 0.12 0.12 0.03 0.21 0.06 Varese 0.15 0.15 0.06 0.24 0.06
Ferrara 0.12 0.12 0.03 0.21 0.06 Perugia 0.02 0.02 -0.07 0.10 0.06 Venezia 0.14 0.14 0.04 0.23 0.07
Firenze 0.20 0.19 0.10 0.29 0.06 Pesaro e Urbino 0.02 0.02 -0.07 0.11 0.06 Verbano-Cusio-Ossola 0.01 0.01 -0.08 0.10 0.06

Vercelli 0.00 0.00 -0.10 0.09 0.06
Verona 0.24 0.24 0.15 0.34 0.06
Vibo Valentia -1.18 -1.18 -1.38 -1.00 0.13
Vicenza 0.24 0.24 0.15 0.34 0.07
Viterbo -0.40 -0.39 -0.51 -0.29 0.08
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Table 4.E.3: Summary of posterior distribution of the environmental dimension’s latent variable (composite indicator). CAR model B.
Year 2019

Province mean median 25% 75% IQR Province mean median 25% 75% IQR Province mean median 25% 75% IQR

Agrigento -0.77 -0.90 -0.44 -1.23 0.79 Foggia -0.32 -0.26 0.26 -0.84 1.10 Pescara -0.43 -0.49 -0.05 -0.80 0.76
Alessandria -0.82 -0.87 -0.42 -1.22 0.80 Forlı̀-Cesena -0.21 -0.24 0.12 -0.54 0.66 Piacenza -0.03 0.00 0.30 -0.36 0.66
Ancona 0.21 0.17 0.57 -0.16 0.73 Frosinone -0.83 -0.92 -0.41 -1.32 0.91 Pisa -0.75 -0.80 -0.32 -1.20 0.89
Aosta -0.43 -0.45 -0.10 -0.77 0.67 Genova 0.29 0.44 1.05 -0.28 1.33 Pistoia 0.12 0.16 0.51 -0.25 0.76
Arezzo -0.73 -0.80 -0.35 -1.13 0.78 Gorizia 0.17 0.08 0.59 -0.35 0.94 Pordenone 1.04 1.01 1.40 0.67 0.73
Ascoli Piceno -0.32 -0.30 0.06 -0.68 0.75 Grosseto -0.36 -0.30 0.04 -0.75 0.79 Potenza -0.14 -0.28 0.22 -0.63 0.86
Asti 0.07 0.04 0.45 -0.35 0.80 Imperia -0.84 -0.80 -0.48 -1.21 0.73 Prato 0.35 0.29 0.72 -0.04 0.76
Avellino 0.15 0.22 0.56 -0.26 0.81 Isernia -1.41 -1.46 -1.01 -1.80 0.79 Ragusa -0.42 -0.35 -0.05 -0.79 0.74
Bari -0.84 -0.83 -0.49 -1.20 0.71 L’Aquila -0.05 -0.06 0.27 -0.36 0.63 Ravenna -0.25 -0.31 0.13 -0.62 0.75
Barletta-Andria-Trani 0.11 0.25 0.71 -0.35 1.05 La Spezia -0.11 -0.15 0.28 -0.50 0.78 Reggio di Calabria -0.70 -0.83 -0.33 -1.21 0.88
Belluno 0.68 0.66 1.04 0.29 0.75 Latina -0.73 -0.76 -0.40 -1.07 0.67 Reggio nell’Emilia 0.82 0.80 1.15 0.50 0.66
Benevento -0.24 -0.28 0.16 -0.69 0.85 Lecce -0.27 -0.21 0.29 -0.79 1.07 Rieti -0.68 -0.64 -0.35 -1.01 0.66
Bergamo 0.35 0.32 0.70 -0.01 0.72 Lecco -0.06 -0.10 0.31 -0.44 0.75 Rimini -0.09 -0.14 0.25 -0.47 0.72
Biella 0.26 0.28 0.63 -0.11 0.74 Livorno -0.69 -0.70 -0.35 -1.02 0.67 Roma 1.36 1.48 2.16 0.67 1.49
Bologna 0.18 0.19 0.51 -0.15 0.66 Lodi 1.05 1.07 1.41 0.72 0.69 Rovigo -0.07 -0.10 0.29 -0.42 0.71
Bolzano Bozen 0.93 1.00 1.43 0.47 0.96 Lucca 0.01 -0.05 0.37 -0.37 0.74 Salerno -0.31 -0.37 0.05 -0.69 0.74
Brescia 1.55 1.66 2.16 1.02 1.14 Macerata 0.02 -0.01 0.41 -0.42 0.84 Sassari -0.42 -0.46 -0.07 -0.76 0.68
Brindisi -0.23 -0.19 0.13 -0.62 0.75 Mantova 0.74 0.69 1.13 0.32 0.80 Savona -0.81 -0.82 -0.42 -1.19 0.78
Cagliari -0.32 -0.40 0.10 -0.78 0.89 Massa-Carrara -0.68 -0.66 -0.33 -1.05 0.72 Siena -0.30 -0.29 0.08 -0.66 0.74
Caltanissetta -0.54 -0.49 -0.14 -0.95 0.81 Matera 0.15 0.02 0.47 -0.35 0.82 Siracusa -1.18 -1.14 -0.79 -1.58 0.78
Campobasso -0.90 -0.86 -0.56 -1.22 0.66 Messina -0.99 -0.96 -0.67 -1.33 0.66 Sondrio -0.11 -0.23 0.23 -0.59 0.82
Caserta 0.20 0.18 0.53 -0.12 0.65 Milano 1.19 1.31 1.81 0.68 1.13 Sud Sardegna -0.99 -1.11 -0.66 -1.44 0.78
Catania -1.28 -1.33 -0.90 -1.65 0.75 Modena 1.12 1.16 1.49 0.75 0.74 Taranto -1.44 -1.48 -1.03 -1.84 0.81
Catanzaro -0.39 -0.48 0.00 -0.80 0.81 Monza e della Brianza 0.78 0.75 1.13 0.42 0.71 Teramo 0.18 0.16 0.53 -0.18 0.71
Chieti -0.84 -0.89 -0.40 -1.27 0.87 Napoli -0.68 -0.74 -0.35 -1.03 0.68 Terni 0.39 0.30 0.86 -0.16 1.02
Como 1.91 1.97 2.50 1.34 1.16 Novara -0.13 -0.18 0.22 -0.49 0.72 Torino 0.34 0.38 0.72 -0.06 0.77
Cosenza 0.52 0.58 0.99 0.06 0.94 Nuoro 0.88 0.91 1.25 0.50 0.75 Trapani -1.18 -1.11 -0.76 -1.59 0.83
Cremona 0.10 0.06 0.47 -0.28 0.75 Oristano 0.21 0.17 0.64 -0.27 0.92 Trento 0.63 0.52 1.04 0.15 0.90
Crotone -2.45 -2.46 -2.11 -2.80 0.69 Padova 0.22 0.20 0.56 -0.11 0.67 Treviso 0.80 0.78 1.21 0.43 0.78
Cuneo 0.23 0.20 0.58 -0.12 0.69 Palermo -1.17 -1.12 -0.84 -1.51 0.67 Trieste 0.35 0.41 0.74 -0.02 0.76
Enna -1.34 -1.30 -0.97 -1.69 0.73 Parma 0.39 0.45 0.82 0.05 0.77 Udine 0.15 0.10 0.49 -0.19 0.67
Fermo -0.19 -0.24 0.23 -0.60 0.83 Pavia -0.24 -0.17 0.11 -0.58 0.69 Varese 0.10 0.03 0.48 -0.29 0.77
Ferrara 0.15 0.09 0.55 -0.24 0.80 Perugia -0.01 -0.08 0.40 -0.47 0.86 Venezia 0.91 0.92 1.24 0.58 0.67
Firenze 0.29 0.28 0.65 -0.07 0.72 Pesaro e Urbino -0.36 -0.40 -0.01 -0.74 0.73 Verbano-Cusio-Ossola 0.07 -0.02 0.49 -0.39 0.88

Vercelli 0.11 0.08 0.50 -0.24 0.74
Verona -0.04 -0.07 0.30 -0.39 0.69
Vibo Valentia -0.49 -0.49 -0.14 -0.83 0.69
Vicenza 0.67 0.67 1.04 0.29 0.75
Viterbo -0.68 -0.71 -0.31 -1.03 0.71
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Table 4.E.4: Summary of posterior distribution of the latent variable (composite indicator) for the overall well-being dimension. CAR
model B. Year 2019

Province mean median 25% 75% IQR Province mean median 25% 75% IQR Province mean median 25% 75% IQR

Agrigento -1.84 -1.86 -1.70 -1.98 0.28 Foggia -1.52 -1.53 -1.39 -1.66 0.27 Pescara -0.21 -0.22 -0.11 -0.33 0.22
Alessandria 0.46 0.47 0.57 0.36 0.21 Forlı̀-Cesena 0.95 0.95 1.05 0.85 0.21 Piacenza 0.85 0.84 0.95 0.74 0.21
Ancona 0.40 0.39 0.50 0.29 0.21 Frosinone -0.86 -0.87 -0.74 -0.98 0.24 Pisa 0.68 0.67 0.78 0.57 0.21
Aosta 0.78 0.78 0.89 0.68 0.21 Genova 0.32 0.31 0.42 0.21 0.21 Pistoia 0.37 0.37 0.47 0.27 0.20
Arezzo 0.70 0.72 0.81 0.60 0.21 Gorizia 0.55 0.56 0.66 0.45 0.21 Pordenone 0.98 0.98 1.08 0.88 0.21
Ascoli Piceno 0.20 0.19 0.29 0.09 0.21 Grosseto 0.48 0.48 0.58 0.38 0.20 Potenza -0.95 -0.96 -0.83 -1.07 0.24
Asti 0.73 0.75 0.85 0.63 0.22 Imperia 0.00 0.01 0.11 -0.10 0.21 Prato 0.84 0.84 0.95 0.74 0.21
Avellino -0.76 -0.78 -0.65 -0.88 0.23 Isernia -0.63 -0.63 -0.53 -0.74 0.21 Ragusa -1.02 -1.01 -0.89 -1.13 0.23
Bari -0.51 -0.53 -0.40 -0.63 0.23 L’Aquila -0.06 -0.07 0.03 -0.17 0.20 Ravenna 0.89 0.89 1.00 0.79 0.20
Barletta-Andria-Trani -1.24 -1.25 -1.12 -1.37 0.25 La Spezia 0.48 0.47 0.58 0.38 0.20 Reggio di Calabria -1.90 -1.91 -1.77 -2.04 0.27
Belluno 1.04 1.05 1.15 0.94 0.21 Latina -0.37 -0.38 -0.27 -0.48 0.21 Reggio nell’Emilia 0.98 0.97 1.08 0.87 0.21
Benevento -1.05 -1.06 -0.93 -1.17 0.24 Lecce -1.26 -1.28 -1.14 -1.40 0.26 Rieti -0.25 -0.26 -0.16 -0.36 0.20
Bergamo 0.87 0.87 0.98 0.76 0.22 Lecco 0.94 0.94 1.04 0.84 0.21 Rimini 0.62 0.61 0.72 0.51 0.21
Biella 0.60 0.60 0.70 0.50 0.20 Livorno 0.29 0.28 0.39 0.18 0.20 Roma 0.38 0.36 0.47 0.26 0.21
Bologna 1.13 1.10 1.23 0.99 0.24 Lodi 0.63 0.63 0.73 0.53 0.20 Rovigo 0.59 0.60 0.70 0.49 0.20
Bolzano Bozen 1.29 1.30 1.42 1.18 0.23 Lucca 0.21 0.20 0.31 0.10 0.20 Salerno -1.17 -1.18 -1.05 -1.30 0.25
Brescia 0.92 0.92 1.03 0.82 0.21 Macerata 0.52 0.51 0.61 0.41 0.20 Sassari -0.61 -0.62 -0.51 -0.73 0.22
Brindisi -0.93 -0.94 -0.82 -1.05 0.23 Mantova 0.82 0.82 0.93 0.72 0.20 Savona 0.55 0.54 0.65 0.44 0.20
Cagliari -0.40 -0.44 -0.29 -0.56 0.27 Massa-Carrara 0.37 0.36 0.46 0.27 0.20 Siena 0.66 0.67 0.77 0.56 0.21
Caltanissetta -1.94 -1.94 -1.79 -2.08 0.29 Matera -0.41 -0.42 -0.31 -0.53 0.22 Siracusa -1.45 -1.46 -1.32 -1.58 0.26
Campobasso -0.54 -0.55 -0.44 -0.65 0.21 Messina -1.88 -1.88 -1.74 -2.03 0.29 Sondrio 0.83 0.84 0.95 0.72 0.22
Caserta -1.67 -1.68 -1.53 -1.81 0.28 Milano 1.04 1.01 1.14 0.90 0.24 Sud Sardegna -0.10 -0.10 0.00 -0.20 0.20
Catania -1.65 -1.66 -1.50 -1.79 0.28 Modena 0.89 0.88 1.00 0.78 0.22 Taranto -1.38 -1.39 -1.25 -1.50 0.25
Catanzaro -1.17 -1.18 -1.05 -1.30 0.25 Monza e della Brianza 0.79 0.77 0.89 0.68 0.21 Teramo -0.01 -0.02 0.08 -0.12 0.20
Chieti -0.25 -0.25 -0.15 -0.36 0.21 Napoli -1.81 -1.82 -1.67 -1.96 0.29 Terni 0.14 0.12 0.24 0.03 0.21
Como 0.77 0.75 0.86 0.66 0.20 Novara 0.71 0.70 0.81 0.61 0.21 Torino 0.58 0.57 0.67 0.47 0.20
Cosenza -1.39 -1.41 -1.26 -1.53 0.27 Nuoro -0.73 -0.74 -0.62 -0.85 0.23 Trapani -1.94 -1.94 -1.79 -2.08 0.29
Cremona 0.77 0.77 0.87 0.67 0.20 Oristano -0.79 -0.81 -0.68 -0.92 0.24 Trento 0.93 0.91 1.02 0.81 0.21
Crotone -2.17 -2.17 -2.01 -2.32 0.30 Padova 0.89 0.88 0.99 0.78 0.21 Treviso 0.76 0.75 0.86 0.65 0.21
Cuneo 0.93 0.95 1.05 0.83 0.22 Palermo -1.85 -1.86 -1.70 -1.99 0.29 Trieste 0.79 0.78 0.89 0.68 0.21
Enna -1.81 -1.82 -1.66 -1.95 0.29 Parma 0.92 0.90 1.03 0.80 0.23 Udine 0.68 0.67 0.78 0.57 0.21
Fermo 0.59 0.60 0.70 0.49 0.21 Pavia 0.71 0.71 0.81 0.61 0.20 Varese 0.80 0.79 0.90 0.70 0.20
Ferrara 0.75 0.74 0.86 0.65 0.21 Perugia 0.56 0.55 0.66 0.45 0.21 Venezia 0.76 0.76 0.86 0.65 0.21
Firenze 0.95 0.93 1.05 0.83 0.22 Pesaro e Urbino 0.56 0.55 0.65 0.46 0.20 Verbano-Cusio-Ossola 0.51 0.51 0.61 0.41 0.20

Vercelli 0.46 0.46 0.56 0.36 0.20
Verona 0.99 0.98 1.09 0.88 0.21
Vibo Valentia -1.72 -1.72 -1.57 -1.85 0.28
Vicenza 0.96 0.95 1.06 0.85 0.21
Viterbo -0.25 -0.26 -0.15 -0.36 0.21
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Chapter 5

Quality of Government for
Environmental Well-Being?
Subnational Evidence from
European Regions



5.1 Introduction

Building effective, transparent, accountable, and uncorrupted public institutions
is a core target of the United Nations’ Sustainable Development Goal 16. Besides
being a globally agreed standalone policy target, institutional quality is also widely
understood to be a prerequisite to achieving the broader goals of the sustainable
development agenda (e.g. DESA, 2019; UN, 2012). The basic argument is that
successfully reaching any policy objective becomes more complicated under dys-
functional public institutions. Along these lines of thought, increasing citizens’
well-being necessitates sound public institutions, often referred to as ‘quality of
government.’ And indeed, this view is supported by abundant scholarly research
(e.g. Charron et al., 2015; Evans and Rauch, 1999; Holmberg and Rothstein, 2011)

A nation’s well-being is commonly conceived as a combination of economic, social,
and environmental dimensions, and each of them as a positive polarity with respect
to the overall well-being (e.g., Ciommi et al., 2022; Giovannini, 2015; Michalos, 1997).
However, the vast majority of past studies on the relationship between quality of
government and nations’ wellbeing have focused on the first two dimensions. Less
research attention has been paid to the link between the quality of government and
the natural environment, even if environmental degradation is one of the biggest
global concerns of our time.

This paper aims to shed light on the association between quality of government
and environmental well-being by providing a theoretically and statistically more
rigorous approach than in previous studies. Ultimately, our goal is to investigate
whether quality of government —defined as “the extent to which states perform their
required activities and administer public services in an impartial and uncorrupted
manner” (Charron et al., 2015: 316)— is a key predictor of environmental wellbeing.

Current literature points to inconclusive results. Some suggest that quality of
government increases environmental wellbeing (Povitkina, 2018), but others find no
evidence of any significant effect (Peiró-Palomino et al., 2020), and still, others find
evidence of an inverse link between the quality of government and environmental
wellbeing (Holmberg et al., 2009).

Besides the scarce research attention and inconclusiveness, we identify three
additional shortcomings that might have affected research results. First, there is a
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lack of cross-country quantitative studies at the subnational level. Second, there is
inadequate consideration of the multidimensionality of environmental well-being.
Third, spatial correlation in environmental well-being is seldom taken into account.

On the first shortcoming, the lion’s share of cross-country studies on the topic is
focused on the country-level, disregarding subnational variation within and across
countries. Yet experts have recently demonstrated that both quality of government
(Charron et al., 2019) and wellbeing (Iammarino et al., 2019) vary significantly from
one country to another and within them. These diversities have notably increased
in Europe in the last decade (Iammarino et al., 2019), which makes the European
context particularly relevant for our investigation.

We argue that a comprehensive picture of the relationship between the quality
of government and environmental well-being requires investigating subnational
dynamics. Our study fills this gap by investigating European regions’ institutions-
environment nexus at the subnational level (NUTS-2). The downside of focusing on
European regions is that our findings are confined to a specific context and may not
be generalisable to other parts of the world.

Concerning the second shortcoming, we contend that current knowledge of the
institutions-environment focuses on an excessively narrow empirical understanding
of the environment, mainly in terms of air pollution. Both national (Azimi et al.,
2023) and sub-national (Peiró-Palomino et al., 2020) cross-country studies on the
topic tend to measure environmental well-being with exposure to a specific air
pollutant like carbon dioxide or a combination of multiple pollutants. It is self-
evident, however, that air pollution does not represent environmental well-being
in its entirety. We address this problem by using a multidimensional approach to
environmental well-being.

We identify four core dimensions of environmental well-being (see ISTAT, 2021)
and measure them with multiple representative indicators. Specifically, we look at
the dimensions of (1) air quality, (2) water quality, (3) soil quality, and (4) energy and
climate change. Instead of using single variables as proxies, we construct a set of
composite indicators to represent each of them as comprehensively as possible. We
take a spatial Bayesian latent variable approach to composite indicator construction
(Hogan and Tchernis, 2004, Davis et al., 2021). Compared to frequentist methods,
our approach results in more precise estimates and provides information on their
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uncertainty.
Third, most studies on environmental wellbeing ignore spatial characteristics and

interlinkages among neighboring countries or regions, causing potentially biased
results. This is highly problematic, because recent empirical evidence suggests that
wellbeing tends to be spatially interdependent, at least in Europe (Peiró-Palomino et
al. 2020). In linear regressions, the presence of spatial correlation in the dependent
variable creates duplicate information, inflating the variance of the statistical model
and damaging the validity of the estimated standard errors (Moran, 1950).

We assess the magnitude of spatial correlation in our environmental data, finding
significant spatial patterns on the European subnational surface. Thus, we first
model this spatial dependence to increase precision in the environmental composite
indicators estimates. Second, we use them as dependent variables in subsequent
spatial regressions of environmental well-being on the quality of government. Our
spatial regression models provide robust evidence that well-functioning and effective
public institutions are strongly related to environmental well-being —especially the
quality of air and soil— even when accounting for the data’s spatial characteristics

The findings of our study have significant relevance to the policy debate. Even
though improving economic, social, and environmental wellbeing is a globally agreed
policy objective, combining economic performance with environmental sustainability
has proved challenging. According to experts, environmental concerns will increase
in the coming years and climate change has been named as one of the major threats
for humanity (MacAskill, 2022). Understanding how to advance environmental
well-being must be thus one of the main priorities of policymakers in Europe and
worldwide. The findings of our study indicate that by strengthening the regional
quality of government, European policymakers can contribute to protecting their
societies from environmental degradation.

Our paper proceeds as follows. Section 5.2 summarises the literature on quality
of government and environmental well-being and presents our theoretical argument.
Section 5.3 delves into the data and methods. Section 5.4 presents the empirical
results and discusses the findings. Section 5.5 summarises our main findings and
briefly reflects on their implications for policymakers and future studies on the
topic.
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5.2 Background

5.2.1 Literature review

An important body of literature at the crossroads between economics and political
science underscores the relevance of well-functioning and effective public institutions
for positive development outcomes (e.g. Acemoglu and Robinson, 2012; Evans, 1995;
Rothstein, 2011).

Findings show that at the national level well-functioning public institutions foster
economic growth (e.g. Evans and Rauch, 1999), reduce poverty (e.g. Chong and
Calderon, 2000) and income inequality (e.g., Panaro and Vaccaro, 2022), strengthen
food security (e.g., Sachs, 2015), increase life satisfaction (e.g., Helliwell and Huang,
2008), and improve public health outcomes (e.g. Holmberg and Rothstein, 2011)
among many other indicators of human wellbeing.

Only a handful of cross-country studies suggest the opposing view that institu-
tional quality does not affect or negatively affects economic and social well-being.
For instance, Kraay (2004) finds that poverty-increasing distributional change oc-
curs especially in countries with high institutional quality, and Huang (2016) finds
that in many Asian countries, impartial institutions do not affect economic growth,
except for South Korea, where corruption seems to foster economic growth. The
conventional view, supported by the majority of empirical findings, is then that
quality of government advances economic and social wellbeing. Yet, as previously
noted, this body of research focuses on economic and social well-being, overlooking
environmental dimension.

The few country-level studies that have focused on the link between the quality of
government and environmental aspects of well-being are contradicting. On the one
hand, well-functioning public institutions appear to reduce carbon dioxide emissions
(Azimi et al., 2023), improve drinking water quality (Povitkina & Bolkvadze, 2019),
reduce deforestation (Meyer et al., 2003), generate more stringent environmental
policies (Pellegrini & Gerlagh, 2006). On the other hand, institutional quality could
be related to higher carbon dioxide emissions (Holmberg et al., 2009), and the
magnitude and sign of the net effect of corruption on pollution might depend on the
level of national income (Cole, 2007).

While the above studies have increased our understanding of the relationship
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between quality of government and well-being, their results are based on countries
as the units of analysis, ignoring subnational disparities. Only recently have experts
begun to stress the importance of considering subnational variation regarding both
the quality of government and the well-being. The broader well-being literature
has shifted towards higher territorial level disaggregation (Mazziotta et al., 2021),
and a similar trend has emerged in the literature on institutional quality (see, e.g.,
Charron et al., 2019; Iddawela et al., 2021). Environmental problems, in particular,
tend to differ among subnational territories (Halkos et al., 2015) and quality of
government matters for national and regional development (Rodrı́guez-Pose, 2013).

Only in the last few years has a substantial body of studies explored the sub-
national variation in the institutions’ quality and well-being nexus, especially in
Europe. These studies generally support the view that a higher quality of govern-
ment is linked to higher economic and social well-being.

Charron et al. (2015) show that regional quality of government is positively cor-
related with income, social trust, and education and inversely correlated with infant
mortality, unemployment, and economic and gender inequality. Other studies push
forward by controlling for confounding factors. Peiró-Palomino et al. (2020) show
that subnational quality of government positively affects the most common aspects
of well-being: education, jobs, income, safety, civic engagement, access to services,
housing, and community support. Other scholars analyse more specific aspects of
economic and social wellbeing and show that subnational institutional quality fos-
ters entrepreneurship (Nistotskaya et al., 2015), boosts economic resilience (Ezcurra
& Rios, 2019), increases trade flows((Barbero et al., 2021), curbs social exclusion
(Di Cataldo & Rodrı́guez-Pose, 2017), reduces income inequality (Parente, 2019),
strengthens innovation capacity (Rodrı́guez-Pose & Di Cataldo, 2015), deepens
citizens’ trust in public administration (Van de Walle & Migchelbrink, 2020) and in
other people (Lombardo & Ricotta, 2021), and facilitates convergence among regions
(Charron et al., 2019) across subnational territories in Europe.

Yet again, even if these studies highlight the importance of considering subna-
tional variation, they focus only on economic and social dimension of well-being,
neglecting the environment. One of the few studies that considers the subnational
relationship between environmental well-being and institutional quality in Europe
finds no evidence of any significant association (Peiró-Palomino et al. 2020). In
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this study, the authors measure environmental well-being as the estimated aver-
age exposure to air pollution. Another subnational study on the topic finds that
environmental performance in NUTS-1 regions in France, Germany, and the UK is
curvilinearly related to institutional quality: the association is positive in regions
with ineffective and dysfunctional institutions, but as subnational quality of gov-
ernment increases the link between institutions and environmental performance
becomes unexpectedly inverse (Halkos et al., 2015). Therefore, the relationship
between quality of government and environmental well-being at the subnational
level in Europe is thus unclear and understudied.

5.2.2 Theoretical framework

In this study, we hypothesize that citizens in regions with poorer government quality
suffer from lower environmental well-being. The precise mechanisms linking higher
quality of government to higher environmental well-being are likely manifold, but
here we discuss three of the most important ones.

First, we expect quality of government to foster environmental well-being through
higher effectiveness. Corruption, which is at odds with quality of government (Roth-
stein & Teorell, 2008) reduces the effectiveness of environmental policies because
“if corrupt officials accept bribes for looking the other way, individuals and organiza-
tions who pollute or destroy natural resources can avoid fines without changing their
behaviour” (Aklin et al., 2014). Regions with high-quality of government should
be thus more effective in enforcing environmental regulations than regions with
low-quality.

Second, we expect quality of government to improve environmental well-being
through more competent civil servants. Given that quality of government, under-
stood as impartiality, entails meritocratic recruitment in the civil service (Rothstein,
2011), regions with higher quality of government should have highly skilled bureau-
crats compared to regions with poor quality of government. We can quite confidently
expect —ceteris paribus— competent civil servants to be better at implementing
policies than incompetent civil servants. This reasoning applies to any policies,
including those targeting environmental well-being.

Third, public institutions in which civil servants are not only recruited based on
meritocracy but also have predictable career structures —instead of institutions
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in which civil servants need to rely on political connections or other personal ties
to advance on the career ladder— incentivise to work harder and are conducive
to an organization that is in general more concerned about long-term objectives
rather than short-term private gains (Cornell et al., 2020). We expect this last
point to be especially important for facilitating environmental well-being, which
often requires long-term commitment by policymakers and civil servants who are
ultimately responsible for successful policy implementation. Moreover, the prospect
of a predictable career could further boost civil servants’ average level of competence
by increasing the attractiveness of working in the public sector.

5.3 Empirical approach

5.3.1 Data

Measuring environmental well-being in European regions is tricky due to the ab-
sence of multidimensional subnational cross-country data. At the time of this
writing, no comprehensive measure of environmental well-being at the subnational
European level exists. To cope with the lack of data, scholars often use single proxy
measures that capture only specific parts of environmental well-being. Yet, as al-
ready discussed, such proxies cannot represent environmental well-being precisely
and, at best, have weak content validity. For instance, one of the most well-known
cross-national datasets on subnational wellbeing —OECD’s Regional Wellbeing
Dataset— equates environmental wellbeing simplistically with air pollution by
particulate matter (OECD, 2020).

To tackle this problem and to better measure multidimensional subnational
environmental wellbeing in Europe, we first scrutinise and collect a battery of
subnational indicators related to air quality, water quality, soil quality, and energy
and climate change —the four main aspects of environmental wellbeing— and then
develop a set of composite indicators to capture these four aspects as comprehensively
as possible. The next section presents the methods used to construct our composite
indicators. Here, we present the elementary indicators that we have collected
from four different sources (Joint Research Centre, European Observation Network
for Territorial Development and Cohesion, European Environment Agency, and
Eurostat).
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After meticulously reviewing publicly available subnational data on the envi-
ronment in Europe, we collected 16 indicators related to our four dimensions of
environmental well-being. Ultimately, our measurement framework consists of six
elementary indicators for air quality, four for water quality, four for soil quality, and
two for energy and climate change. Appendix 5.A provides a detailed description of
the elementary indicators and their sources.

We measure Air quality as a composite index that synthesises the following six
elementary indicators: nitrogen dioxide (NO2) removal capacity by urban vegetation
(measured in the year 2020), urban population exposed to particle matter (PM) of
size 10µm (2020), air concentration of PM of size 2.5µm (2016), air concentration of
PM of size 10µm (2016), air concentration of ozone (2017), and air concentration
of NO2 (2017). The composite indicator of water quality consists of the following
four elementary indicators: water productivity (2020), quality of drinking water
(2020), sewage treatment (2014/2016), and freshwater consumption (2020). Soil
quality has four elementary indicators: capacity of ecosystems to avoid soil erosion
(2020), severe soil erosion by water (2016), artificial surfaces inside Natura 2000
protected areas (2018), and organic farming (2016). Energy and climate change
synthesize two elementary indicators: energy recovery capacity (2018) and potential
vulnerability to climate change (2071-2100 prediction).

To measure subnational quality of government in European regions, we use
arguably the most widely used and well-constructed dataset on the topic: the
European Quality of Government Index Survey Dataset Charron et al., 2019. The
dataset, published by University of Gothenburg’s Quality of Government Institute,
provides subnational data for European Union countries in four different years
—2010, 2013, 2017, and 2021. The European Quality of Government Index (EQI)
entails first aggregating individual survey question scores into three dimensions of
quality of government and then synthesizing these three indicator’s components
—Quality, Impartiality, and Corruption— into a composite indicator. EQI captures
institutional quality in Europe at the NUTS-2 level in 238 subnational territories
and runs from low to high on a z-score scale (mean of 0; standard deviation of
1). In line with our theoretical expectations on the direction of the link between
quality of government and environmental wellbeing, in our main analysis, we use
the 2017 measure of quality of government because most indicators of environmental
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wellbeing refer to years 2017-2020.

5.3.2 Estimation methods

One of the shortcomings in past subnational studies on the relationship between
quality of government and environmental wellbeing is the lack of a comprehensive
and synthetic measure of environmental wellbeing and its core dimensions. Hence,
through a data-driven approach based on Bayesian latent factor models, we construct
four environmental composite indicators, one for each of the four environmental
domains —air quality, water quality, soil quality, and energy and climate change—
summarising the information of the above discussed 16 elementary environmental
indicators. Then, we run a series of spatial lag regression models to shed light
on the link between quality of government and environmental well-being in 233
European regions.

We hypothesise the existence of spatial spillovers, so that environmental con-
ditions in each region are partially determined by the environmental conditions
of its neighbouring regions. To verify this initial assumption, we test for spatial
autocorrelation in the 16 environmental elementary indicators through the Global
Moran I test (Moran, 1950), which provides significant results for all the indicators
except the Urban population exposed to PM10 (Table 5.B.1, Appendix 5.B). We also
compute spatial correlograms to assess the degree at which spatial autocorrelations
change as a function of distance (Figures A1-A4, Appendix 5.B). Based on these
results, we follow Hogan and Tchernis (2004) and estimate a Bayesian latent factor
model for spatially correlated data. The Bayesian approach naturally adapts to
the hierarchical structure of the latent factor model. Moreover, through priors’
distribution specification, the Bayesian approach allows embedding information
on the spatial structure of the data at the latent factor level, resulting in more
precise latent factors’ estimates (Hogan and Tchernis, 2004). Finally, the Bayesian
approach also has the advantage of quantifying the uncertainty about the latent
factor scores through the posterior parameters’ distribution information.

We apply the spatial Bayesian latent factor model by Hogan and Tchernis, 2004
separately for each of the four environmental domains. In particular, for each
European region i, where i = 1, . . . , N , with N = 233, let Yip denote the elementary
environmental indicator p in region i and p = 1, . . . , P , with P = 6, 4, 4, 2, for air

229



quality, water quality, soil quality, energy and climate change, respectively. Hence,
Yi = (Yi1, . . . , YiP )

T is the vector of the observed outcome variables for region i. For
each of the four environmental domains, we assume the existence of a latent variable
δi that fully characterizes the environmental well-being level, manifesting itself
through Yi. We represent the model in a hierarchical form. At the first level, we
have:

Yi | µi, δi,Σ ∼ Multivariate Normal(µi + λδi,Σ), (5.1)

where µi is a P × 1 mean vector, λ is a P × 1 vector of factor loadings, and Σ =

Diag(σ2
1, . . . , σ

2
P ) is a diagonal matrix measuring residual variation in Yi. Assuming

Σ diagonal implies independence among the elements of Yi conditionally on δi.
Let δ = (δ1, . . . , δN)

T be the vector of regions’ latent environmental wellbeing. We
add spatial information to the latent factor prior distribution by assuming:

δ ∼ Multivariate-Normal(0N ,Ψ), (5.2)

where Ψ is a N ×N spatial variance-covariance matrix having 1’s on the diag-
onal and ψi,j = corr(δi, δj) on the off-diagonal. When Ψ = IN the model assumes
spatial independence across regions’ environmental wellbeing levels. The literature
proposes several alternatives to introduce spatial correlation based on a marginal
or conditional specification of spatial dependency. Here, we consider a conditional
specification, which defines spatial dependence in the latent environmental factor
as a conditional autoregressive process in which a region’s environmental well-being
is determined by the average environmental well-being of its neighbours (Besag
et al., 1991; Cressie and Chan, 1989) so that:

δi | δj : j ∈ Ri ∼ Normal(Σj∈Ri
ω(nj/ni)

1/2δj, 1/ni), (5.3)

where ω is a spatial correlation parameter to be estimated, ni is the number
of region i’s neighbouring regions and Ri is the set of indices for regions that are
neighbours of region i. This conditional autoregressive specification implies a spatial
variance-covariance matrix Ψ = (In − ω(ni ∗ nj)

1/2R)−1, where R is the neighborhood
adjacency matrix with elements rij = rji = 1 if region i and region j share a common
boundary, and 0 otherwise.

Finally, a characteristic of the Bayesian framework is the introduction of prior dis-
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tributions on all the model parameters. In our case, we have set λp ∼ Normal(g,G)I(λ1 >
0), σ2

p ∼ Inverse-Gamma (α/2, β/2), µp ∼ Normal(0, Vµ). The primary scope of prior
distributions is to include subjective opinions on the parameters of interest. Yet, to
let the data ‘speak for themselves’, we use diffuse priors by choosing g = 0, G = 1000,
α = 1/1000, β = 1/1000, and Vµ = 1000.

We estimate the model posterior distribution using Markov Chain Monte Carlo
methods. Specifically, we use a Gibbs sampling algorithm that includes Metropo-
lis Hasting steps to estimate spatial parameter ω. At each step of the sampling
algorithm, we obtain draws from the conditional posterior distribution of the model
parameters (i.e. λ, µ,Σ and the latent environmental factor δ). We use these draws
to build the posterior distributions of all model parameters after accounting for a
burn-in period before convergence. We simulate 6000 draws and burn 3000 of them.
Another key advantage of this model is that it can handle missing values through a
posterior imputation procedure. The procedure replaces missing elementary indica-
tor values with draws from the first level equation conditional on current iterations’
draws of the latent factor and the other models’ parameters (see also Davis et al.,
2021).

Next, we retrieve the mean from the estimated environmental composite indi-
cators’ posterior distributions and use it as the dependent variable in spatial lag
models to analyse the linear dependence between environmental wellbeing and qual-
ity of government. Using spatial regression models instead of simple ordinary least
square regressions, we address the bias arising from the strong spatial association in
the environmental indicators illustrated in Figure 5.4.1. Indeed, spatial correlation
in the outcome violates assumptions of homoskedasticity and independence. We
perform Lagrange Multiplier tests to select the most appropriate spatial model.
Results from this test show that the spatial lag model is the most appropriate for
the data at hand (Table 5.B.2, Appendix 5.B).

In the Spatial Lag model, the dependent variable in a region i is affected by the
independent variables in the same region i and those in its neighbouring regions
(LeSage & Pace, 2009). For each environmental domain, set δ̂i = E[δi | Y, µ, λ,Σ],
where i indicates the region. QoGi is quality of government indicator in region i.
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Then, the spatial lag model takes the following form:

δ̂i = ρ
∑
j∈Ri

(wij δ̂j) + βQoGi +
∑
d

(γdxid) + ϵ, (5.4)

In this model, ρ reflects the strength of spatial dependence among neighbouring
regions. When ρ ̸= 0, the coefficient of interest β captures the impact of quality of
government on environmental well-being as a combination of direct and indirect
spatial effects (LeSage & Pace, 2009). Ri represents the set of neighbouring regions
of i, as in the previous model. wij is a weighted neighborhood indicator, with
0 < wij ≤ 1 if region i and region j share a common boundary, and wii = 0. For the
error term, we assume ϵ ∼ N(0, σ). We add region-specific controls in xid, namely
GDP/capita, population density, region area, unemployment rate, the share of
employment in agriculture and manufacturing, and expenditure in research and
development. We selected these control variables based on the literature and data
availability. We also run ‘baseline’ models without control variables and models in
which we control for the effect of the ‘remaining’ aspects of environmental wellbeing.
Additionally, we also analyse the effect of quality of government on an overall index
of environmental wellbeing and test the robustness of our results to quality of
government measured in different years.

Therefore, we disentangle the average direct and indirect spatial effect from the
estimated β following the methodology of LeSage and Pace (2009). The direct effect is
simply the magnitude of the link between quality of government and environmental
well-being in a given region, excluding any effects via neighbouring regions. Its value
derives from the mean of the diagonal terms of the matrix of partial derivatives. The
indirect association instead reflects the magnitude of the impact on environmental
wellbeing in a given region, rendered by a change in quality of government in the
neighboring regions. This term derives from the difference between total and direct
effects (Golgher & Voss, 2016).

5.4 Results and Discussion

We begin the empirical part by drawing a map of the level of quality of government in
European regions in 2017 in Figure 5.4.1. The map leaves little doubt that, in general,
Northern and Western European countries have a higher quality of government than

232



Southern and Eastern European countries. And the map also confirms substantial
differences among regions within many countries. To give an example of the nuances
that would be missed in a national-level approach, consider the case of Italy. At
the national level, according to EQI, Italy has a lower quality of government than
any other country except Bulgaria, Croatia, Greece, and Romania. At the regional
level, however, the Southern Italian region of Calabria has the second lowest level
of subnational institutional quality in Europe. In contrast, the Northern Italian
autonomous provinces of Trento and Bolzano have higher subnational institutional
quality than relatively successful regions such as Catalonia (Spain) and Warsaw
(Poland). Studies that do not dig deeper into within-country differences neglect
these ‘details’.

Figure 5.4.2 shows that environmental well-being follows a relatively similar
geographical division to the quality of government, with some variation among
dimensions. Generally, citizens living in Northern and Western Europe enjoy
greater environmental wellbeing than citizens living in Southern and Eastern
Europe. The regions with the poorest environmental wellbeing are Attica (Greece)
for air, Thessalia (Greece) for water, Sicily (Italy) for soil, and Algarve (Portugal)
for energy and climate change. The regions with the best environmental wellbeing
instead are Upper Norrland (Sweden) for air, Copenhagen (Denmark) for water,
Salzburg (Austria) for soil, and Saxony-Anhalt (Germany) for energy and climate
change. Nonetheless, compared to quality of government, we find even larger within-
country differences and exceptions to the general pattern.

As exemplified by the box plots in Figures C5-C8 (Appendix 5.C), there is substan-
tial variation in environmental well-being within many countries. Outlier regions
such as Berlin (Germany), Lombardy (Italy), and Moravia-Silesia (Czech Republic)
have significantly poorer air quality than other regions in their respective countries.
The same applies for regions such as Liège (Belgium), Northwest Bohemia (Czech
Republic), and Lower Austria for water quality, Corsica (France), Ionian Islands
(Greece), and Swietokrzyskie (Poland) for soil quality, and Algarve (Portugal) for
energy and climate change. Some outlier regions instead perform much better than
expected. Regions such as Stockholm (Sweden), Brussels (Belgium), and Prague
(Czech Republic) have much higher water quality, regions such as Bremen (Ger-
many), Budapest (Hungary), and Åland (Finland) have much higher soil quality,
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Figure 5.4.1: Map of environmental wellbeing in European regions, by decile

and regions such as Bratislava (Slovakia), East-Central Sweden, and Saxony-Anhalt
have much more wellbeing in terms of energy and climate change compared to other
regions in their respective countries.

By computing the standard deviation (sd) of regional environmental wellbeing
scores in a given country, we can classify countries according to the amount of
within-country variation. As for air quality, the largest within-country variation
occurs in Croatia (sd = 0.52), Italy (sd = 0.51), and Greece (sd = 0.46). As for water
quality, the largest within-country variation occurs in Belgium (sd = 1.03), Denmark
(sd = 1.02), and Greece (sd = 0.62). As for soil quality, the largest within-country
variation occurs in Croatia (sd = 0.60), Spain (sd = 0.52), and Italy (sd = 0.50).
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Figure 5.4.2: Map of quality of government in European regions, by decile

As for energy and climate change, the largest within-country variation occurs in
Belgium (sd = 0.79), Netherlands (sd = 0.63), and Germany (sd = 0.61). These
results show that while environmental wellbeing tends to be higher in Northern and
Western Europe, within-country differences do not follow any clear geographical
pattern. A complete picture of the relationship between quality of government and
environmental wellbeing requires then taking into account subnational variation.

Table 5.4.1 reports the estimated factor loadings of the spatial Bayesian latent
factor models. Factor loadings with negative signs imply an inverse association
between the elementary indicators and the latent dimension of environmental well-
being. Conversely, factor loadings with positive signs imply a positive association
between the elementary indicators and the latent dimension of environmental
wellbeing. When the factor loading distribution is highly centered around zero,
we consider the associated indicator insignificant for improving well-being. The
posterior means of all our factor loadings have the expected signs.

Some elementary indicators are more strongly related to their respective latent
dimensions of environmental well-being than others. The indicators of PM10 and
PM2.5-based air pollution have the strongest relationship with the dimension of
air. Ozone and NO2-based air pollution and urban vegetation’s capacity to remove
NO2 are moderately related to air, whereas urban exposure to PM10 is weakly
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related to air. Water productivity is relatively strongly related to the dimension of
water, whereas the quality of drinking water, sewage treatment, and freshwater
consumption are moderately related to water. The capacity of ecosystems to avoid
soil erosion has the strongest covariance with the dimension of soil. Severe soil
erosion by water, organic farming, and artificial surfaces inside protected areas
have a weaker relationship with soil. Energy recovery capacity represents energy
and climate change better than climate change vulnerability.

Table 5.4.1: Elementary indicators of wellbeing: posterior mean and 95% credibility
interval of factor loadings for each environmental dimension

Elementary indicator Air Water Soil Energy
NO2 Removal capacity by urban vegetation 0.739 (0.657, 0.979)
Urban population exposed to PM10 -0.262 (-0.341, -0.039)
Air pollution – PM2.5 -1.608 (-1.661, -1.450)
Air pollution – PM10 -1.674 (-1.725, -1.513)
Air pollution – Ozone -0.626 (-0.699, -0.410)
Air pollution – NO2 -0.729 (-0.801, -0.510)
Water productivity or use efficiency 0.756 (0.678, 0.985)
Drinking water quality 0.491 (0.424, 0.686)
Sewage treatment 0.397 (0.329, 0.591)
Freshwater consumption per capita -0.430 (-0.498, -0.231)
Capacity of ecosystems to avoid soil erosion 0.558 (0.476, 0.875)
Severe soil erosion by water -0.340 (-0.443, -0.035)
Artificial surfaces inside N2000 in km2 -0.220 (-0.280, 0.049)
Organic farming 0.318 (0.239, 0.547)
Energy recovery (R1) capacity per capita 0.619 (0.520, 0.949)
Potential vulnerability to climate change -0.436 (-0.531, -0.149)

Note: Each row corresponds to one of the elementary indicators used in the composite indicator’s
construction, for each environmental pillar. Factor loadings represent the posterior mean of each λ
in our statistical model. The numbers in square brackets are the left and right bounds of the 95%
credibility intervals. In a Bayesian framework, these values represent the boundary within which
rely 95% of the λ posterior probability.

With our new composite indicators of the core dimensions of environmental
wellbeing, we are now ready to assess the institutions-environment nexus through
regression analysis. Table 5.4.2 summarises the results of our main regressions,
where quality of government is measured in 2017. In the baseline models, we do
not include any controls in the regression equation. In the intermediate models,
we control for potential confounders, including GDP/capita, population density,
total area, employment in agriculture and manufacturing, unemployment rate, and
research and development expenditure. In the full models, to exclude that the
associations are driven by other aspects of environmental wellbeing, we also control
different dimensions of environmental wellbeing.

The baseline models (1-4) without controls show that quality of government
is strongly correlated with each of our four dimensions of environmental well-
being. The positive sign of the slope coefficients indicates that a higher level of
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quality of government goes together with higher environmental well-being. In
each environmental dimension the result is statistically significant at the 1% level.
Nevertheless, to get more robust evidence on the link between quality of government
and environmental well-being we must control for potential confounding factors. The
results remain substantially unaltered in the intermediate models (5-8), where we
include the previously discussed set of controls. Quality of government is a positive
and statistically significant predictor of air (β = 0.213), water (β = 0.183), soil
(β = 0.237), and energy (β = 0.212) at the 1% level. None of the other independent
variables seems to be an equally important determinant of all our four dimensions
of environmental well-being.

In the full models (9-12), we also control for the main dimensions of environ-
mental well-being. At least in theory, these different dimensions are likely to be
interrelated. The regression results confirm our theoretical expectations in part.
The predictive power of quality of government on air (β = 0.137), soil (β = 0.165), and
energy (β = 0.136) decreases compared to the previous sets of models but the slope
coefficients remain statistically significant at least at the 1% level. The relationship
between quality of government and water instead becomes considerably weaker
and the slope coefficient becomes non-significant (β = 0.041). These results show
that quality of government has, in general, a positive impact on the quality of air,
soil, and energy and climate change. Although these full models do not suggest
a clear association between quality of government and quality of water, the link
between the two could work in a more indirect way through the other dimensions of
environmental wellbeing —especially soil quality, which is strongly related to water
quality according to the regression estimates.

The coefficients discussed above reflect the total effect of government quality
on environmental well-being, a combination of direct and indirect effects. Table
5.4.3 reports disaggregated estimates of these two types of effects for the models
discussed above.

In the baseline models, both the direct and indirect associations between quality
of government and environmental wellbeing are positive and statistically significant,
at least at the 1% level across models. The direct impact is consistently stronger
than the indirect impact. The pattern emerges from the intermediate models with
controls, except that the indirect relationship between quality of government and air
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Table 5.4.2: Environmental wellbeing and quality of government (2017): main
regression results

Dependent variable: Air Water Soil Energy

Baseline models (1) (2) (3) (4)
Quality of government 0.219*** 0.361*** 0.221*** 0.270***

(0.025) (0.040) (0.025) (0.035)
N 233 233 233 233
Wald test (df = 1) 167.557*** 5.100** 126.309*** 8.148***
LR test (df = 1) 93.169*** 6.509*** 73.929*** 7.457***

Intermediate models (5) (6) (7) (8)
Quality of government 0.213*** 0.183*** 0.237*** 0.211***

(0.036) (0.050) (0.049) (0.051)
Ln(GDP/capita) 0.076 0.195 -0.110 -0.303*

(0.114) (0.161) (0.165) (0.163)
Population density -0.0001*** 0.0003*** 0.0001*** 0.0000

(0.00004) (0.0001) (0.0000) (0.0001)
Total area 0.0000 0.0000 0.0000 0.0000

(0.00000) (0.00000) (0.00000) (0.00000)
Employment in agriculture -0.007 -0.006 -0.007 -0.004

(0.005) (0.007) (0.007) (0.007)
Employment in manufacturing 0.002 0.000 0.002 0.003

(0.004) (0.005) (0.004) (0.005)
Unemployment (15-75) -0.002 -0.026*** -0.019*** -0.005

(0.006) (0.008) (0.006) (0.009)
R&D expenditure 0.0000 0.0002*** 0.0000 0.0002***

(0.00005) (0.00008) (0.00005) (0.00008)
N 221 221 221 221
Wald test (df = 1) 85.832*** 1.951 93.202*** 6.949***
LR test (df = 1) 53.166*** 2.383 54.503*** 6.040**

Full models (9) (10) (11) (12)
Quality of government 0.137*** 0.041 0.165*** 0.136***

(0.042) (0.059) (0.051) (0.062)
Air 0.045 0.045

(0.080) (0.084)
Water 0.045 0.131***

(0.048) (0.043)
Soil 0.288*** 0.122

(0.087) (0.094)
Energy 0.032 0.068 0.039

(0.045) (0.063) (0.041)
Ln(GDP/capita) 0.115 0.226 -0.146 -0.308*

(0.114) (0.159) (0.146) (0.162)
Population density 0.00004* 0.0003*** 0.0001** 0.0001

(0.00004) (0.0001) (0.00004) (0.0001)
Total area 0.0000 0.0000 0.0000 0.0000

(0.00000) (0.00000) (0.00000) (0.00000)
Employment in agriculture -0.007 -0.006 -0.007 -0.004

(0.005) (0.007) (0.007) (0.007)
Employment in manufacturing 0.002 0.000 0.002 0.003

(0.004) (0.005) (0.004) (0.005)
Unemployment (15-75) -0.002 -0.026*** -0.019*** -0.005

(0.006) (0.008) (0.006) (0.009)
R&D expenditure 0.0000 0.0002*** 0.0000 0.0002***

(0.00005) (0.00008) (0.00005) (0.00008)
N 221 221 221 221
Wald test (df = 1) 85.832*** 1.951 93.202*** 6.949***
LR test (df = 1) 53.166*** 2.383 54.503*** 6.040**

Note: Robust standard errors in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001. Quality of
government refers to the year 2017. LR test indicates the significance of the spatial autoregressive
parameter.

quality becomes non-significant. Finally, results from the full models, where we also
include the other dimensions of environmental well-being, show that both the direct
and indirect links are positive and significant for water and soil quality. Energy
and climate change are only directly but not indirectly associated with the quality
of government. Conversely, in the full models, there seems to be no statistically
significant relationship between water quality and quality of government.

We test the robustness of our results with a battery of alternative regression
models. First, instead of measuring quality of government in 2017, we use the 2013
measurement (Table 5.4.4) and 2010 one (Table 5.4.5) to investigate if longer time
lags between our main independent and dependent variables affect the institutions-
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Table 5.4.3: Environmental wellbeing and quality of government (2017): direct and
indirect effects

Air Water Soil Energy
Direct Indirect Direct Indirect Direct Indirect Direct Indirect

Baseline models
Quality of government 0.257*** 0.161*** 0.363*** 0.043** 0.252*** 0.141*** 0.273*** 0.041***

(0.026) (0.020) (0.038) (0.020) (0.033) (0.019) (0.034) (0.014)
Intermediate models
Quality of government 0.235*** 0.114*** 0.184*** 0.012 0.261*** 0.126*** 0.214*** 0.030**

(0.044) (0.023) (0.045) (0.009) (0.035) (0.020) (0.058) (0.014)
Full models
Quality of government 0.149*** 0.077*** 0.041 0.001 0.183*** 0.081*** 0.137*** 0.016

(0.042) (0.023) (0.057) (0.004) (0.037) (0.018) (0.058) (0.009)

Note: Direct and indirect effects are averaged over all N regions/observations. The direct effect
provides a summary measure of the impact of quality of government in region i. It considers feedback
effects that arise from the change in the i region’s quality of government on the environmental quality
of neighbouring regions in the system of spatially dependent regions. The indirect effect measures
the impact of an increase in quality of government in all other regions on the environmental quality
of a given region.

environment nexus.
We find that quality of government in both 2013 and 2010 is a strong and statisti-

cally significant predictor of each of our four dimensions of environmental wellbeing
in the baseline and intermediate models. This mirrors the results of the previous set
of regressions. The full models instead show interesting differences among our four
dimensions of environmental wellbeing. When we add our environmental controls
into the models, the effect of quality of government on air remains more or less the
same over time, regardless of whether quality of government is measured in 2017,
2013, or 2010. The effect of quality of government on energy and climate change
decreases considerably over time. It does not retain its statistical significance in the
full models when the quality of government is measured in 2013 or 2010. The rela-
tionship between quality of government and water quality remains non-significant
across full models, like in our previous regressions.

Then, instead of disaggregating environmental wellbeing into its underlying
dimensions, we create a composite index of ‘overall’ environmental wellbeing, syn-
thesising all our 16 elementary indicators. We use this overall index in our spatial
lag models as a dependent variable and test the link between overall environmental
quality well-being and institutions (Table 5.D.1 in Appendix 5.D). Regardless of
confounding factors or time lags, well-functioning, effective institutions correlate
positively with overall environmental well-being at the highest statistical signifi-
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cance level. The year of measurement of quality of government essentially does not
affect the magnitude of the association, indicating that environmental well-being as
a whole can be advanced by improving regional institutional quality. The estimates
in Table 5.D.2 (Appendix 5.D) show that the effect of the quality of government on
overall environmental well-being occurs both in direct and indirect ways. Still, the
direct effect is stronger than the indirect effect.
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Table 5.4.4: Environmental wellbeing and quality of government (2013): regression
results

Air Water Soil Energy

Baseline models (1) (2) (3) (4)
Quality of government 0.236*** 0.334*** 0.188*** 0.223***

(0.025) (0.040) (0.025) (0.036)
N 233 233 233 233
Wald test (df = 1) 166.028*** 6.887*** 165.421*** 14.080***
LR test (df = 1) 94.957** 8.417*** 88.566*** 12.466***

Intermediate models (5) (6) (7) (8)
Quality of government 0.230*** 0.154*** 0.192*** 0.144***

(0.035) (0.049) (0.033) (0.050)
Ln(GDP/capita) 0.048 0.212 -0.083 -0.325*

(0.113) (0.163) (0.108) (0.169)
Population density -0.0001*** 0.0003*** 0.0001*** 0.00003

(0.00004) (0.0001) (0.00004) (0.00003)
Total area 0.00000*** 0.00000 0.00000 0.00000

(0.00000) (0.00000) (0.00000) (0.00000)
Employment in agriculture -0.006 -0.006 0.004 -0.004

(0.005) (0.007) (0.004) (0.007)
Employment in manufacturing -0.006 0.001 -0.007* 0.005

(0.004) (0.005) (0.004) (0.006)
Unemployment (15-75) 0.002 -0.030*** -0.023*** -0.036***

(0.006) (0.008) (0.005) (0.009)
R&D expenditure -0.00001 0.0002*** 0.00005 0.0002***

(0.00005) (0.00001) (0.00005) (0.00002)
N 221 221 221 221
Wald test (df = 1) 87.570*** 2.311 112.496*** 10.061***
LR test (df = 1) 55.014*** 2.761** 62.399*** 8.600***

Full models (9) (10) (11) (12)
Quality of government 0.170*** 0.028 0.117*** 0.047

(0.038) (0.056) (0.035) (0.059)
Air 0.113 0.147***

(0.081) (0.053)
Water 0.043 0.141***

(0.047) (0.043)
Soil 0.165*** 0.181***

(0.060) (0.091)
Energy 0.041 0.074 0.062

(0.044) (0.063) (0.041)
Ln(GDP/capita) 0.083 0.234 -0.120 -0.259

(0.112) (0.158) (0.108) (0.168)
Population density -0.0001*** 0.0003*** 0.0001** 0.0001

(0.00004) (0.0001) (0.00004) (0.00004)
Total area 0.00000*** 0.00000 -0.00000 -0.00000

(0.00000) (0.00000) (0.00000) (0.00000)
Employment in agriculture -0.007 -0.007 0.006 0.001

(0.005) (0.006) (0.004) (0.007)
Employment in manufacturing -0.007* 0.003 -0.003 -0.005

(0.004) (0.005) (0.003) (0.006)
Unemployment (15-75) 0.008 -0.016* -0.017*** -0.027***

(0.006) (0.009) (0.006) (0.009)
R&D expenditure 0.00003 0.0002*** -0.00005 0.0002***

(0.00005) (0.00008) (0.00005) (0.00008)
N 221 221 221 221
Wald test (df = 1) 77.557*** 2.262 92.961*** 5.547***
LR test (df = 1) 50.899*** 0.314 55.925*** 4.717**

Note: Robust standard errors in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001. Quality of
government refers to year 2013. LR test indicates the significance of the spatial autoregressive
parameter ρ.
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Table 5.4.5: Environmental wellbeing and quality of government (2010): regression
results

Dependent variable: Air Water Soil Energy

Baseline models (1) (2) (3) (4)
Quality of government 0.241*** 0.321*** 0.174*** 0.227***

(0.025) (0.041) (0.025) (0.036)
N 233 233 233 233
Wald test (df = 1) 158.904*** 8.536*** 189.342*** 14.597***
LR test (df = 1) 90.653*** 10.439*** 98.244*** 13.058***

Intermediate models (5) (6) (7) (8)
Quality of government 0.239*** 0.171*** 0.207*** 0.275***

(0.035) (0.049) (0.033) (0.050)
Ln(GDP/capita) 0.009 0.175 -0.125 -0.350*

(0.113) (0.164) (0.108) (0.169)
Population density -0.0001* 0.0003*** 0.0001*** 0.00004

(0.00004) (0.0001) (0.00004) (0.00004)
Total area 0.00000*** 0.00000 0.00000 0.00000

(0.00000) (0.00000) (0.00000) (0.00000)
Employment in agriculture -0.006 -0.006 0.004 0.001

(0.005) (0.007) (0.004) (0.007)
Employment in manufacturing -0.006 0.001 -0.007* 0.004

(0.004) (0.005) (0.004) (0.006)
Unemployment (15-75) -0.006 -0.032*** -0.026*** -0.038***

(0.006) (0.008) (0.005) (0.008)
R&D expenditure -0.00001 0.0002*** 0.00005 0.0002***

(0.00005) (0.00001) (0.00005) (0.00002)
N 221 221 221 221
Wald test (df = 1) 90.293*** 2.298 120.949*** 9.592***
LR test (df = 1) 55.751*** 2.744** 66.878*** 8.529***

Full models (9) (10) (11) (12)
Quality of government 0.178*** 0.044 0.132*** 0.088

(0.039) (0.057) (0.035) (0.059)
Air 0.105 0.183***

(0.082) (0.053)
Water 0.038 0.136***

(0.047) (0.043)
Soil 0.163*** 0.162*

(0.060) (0.091)
Energy 0.032 0.074 0.054

(0.044) (0.063) (0.041)
Ln(GDP/capita) 0.052 0.218 -0.145 -0.294*

(0.112) (0.160) (0.108) (0.162)
Population density -0.0001*** 0.0003*** 0.0001** 0.00004

(0.00004) (0.0001) (0.00004) (0.00004)
Total area 0.00000*** 0.00000 -0.00000 -0.00000

(0.00000) (0.00000) (0.00000) (0.00000)
Employment in agriculture -0.007 -0.007 0.006 0.001

(0.005) (0.006) (0.004) (0.007)
Employment in manufacturing -0.007* 0.003 -0.003 -0.005

(0.004) (0.005) (0.003) (0.006)
Unemployment (15-75) 0.004 -0.017* -0.019*** -0.028***

(0.006) (0.009) (0.006) (0.009)
R&D expenditure 0.00003 0.0002*** -0.00005 0.0002***

(0.00005) (0.00008) (0.00005) (0.00008)
N 221 221 221 221
Wald test (df = 1) 80.360*** 2.266 98.266*** 5.419***
LR test (df = 1) 51.190*** 0.319 49.244*** 4.193**

Robust standard errors in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001. Quality of government
refers to year 2010. LR test indicates the significance of the spatial autoregressive parameter ρ.

5.5 Conclusion

The study at hand has investigated the relationship between quality of government
and environmental wellbeing in Europe through a multidimensional, comparative,
and regional approach. The main contributions of our study are manifold. First,
we detected the presence of spatial spillovers in environmental wellbeing in Eu-
ropean regions. Second, accounting for this spatial correlation, we constructed
a set of composite indicators, capturing four main dimensions of environmental
wellbeing: air quality, water quality, soil quality, and energy and climate change.
Third, through a battery of spatial regression models, we showed that institutional
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quality is a significant and positive predictor of environmental wellbeing. This
is particularly true for the dimensions of air and soil, and to a lesser extent for
the dimension of energy and climate change. The effect of quality of government
on water quality instead seems to be primarily indirect, occurring through other
aspects of environmental wellbeing.

The existence of spatial correlation in environmental wellbeing is after all not so
surprising. Even if the extent of environmental degradation varies extensively from
one region to another in many countries, neighbouring regions tend to have more
similar scores than distant regions. The negative externalities of environmental
hazards do not follow regional boundaries but can spread to neighbouring regions.
For instance, poor air quality caused by Europe’s largest coal-fired power plant in
Lodz, does not only increase air pollution in Lodz but depending on the winds can
affect the quality of air also in neighbouring regions. Our study thus provides strong
evidence of the existence of spatial correlation in data on environmental wellbeing.
This means that scholars studying the environment should seriously consider the
spatial characteristics of their data. Otherwise, their results are likely to be biased.

By developing a set of novel composite indices of environmental wellbeing, we
have found that in general Northern and Western European regions have better
environmental wellbeing than Southern and Eastern European regions. Yet, our
subnational approach has shown that there are many exceptions too —environmen-
tal wellbeing varies significantly not only across countries but also within countries
and depends up to a certain extent on the dimension of wellbeing. Just to give a
couple of examples, in Bolzano (Italy), air quality is higher than in Copenhagen
(Denmark), but in Lombardia (Italy) air quality is worse than in almost any other
European region. Water quality in Copenhagen however is better than in any other
European region. In Lower Austria instead soil quality is poorer than in most Polish
regions but Salzburg (Austria) is one of the regions with the best soil quality. These
nuances can be captured only with a subnational and multidimensional approach
to environmental wellbeing.

Finally, through a series of spatial regression models and robustness tests,
we find strong evidence of a positive overall relationship between environmental
wellbeing and quality of government. The institutions-environment nexus however
is not equal across the core dimensions of environmental wellbeing. Quality of
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government matters especially for air and soil quality, and to a lesser extent for
energy and climate change. On the contrary, we find only weak support for the
direct relationship between quality of government and water quality. The quality of
water seems to be more affected by other dimensions of environmental wellbeing
rather than institutions. Improvements in quality of government however seem to be
positively associated water quality via other dimensions of environmental wellbeing
—in particular soil quality. By considering these differences among dimensions of
environmental wellbeing, our study shows that equating environmental wellbeing
simplistically with air pollution is misleading. Researchers and policymakers must
take into account other aspects of environmental wellbeing too.

Our findings do not provide any support for an inverse relationship between
institutional quality and the environment. Hence, given that quality of government
matters for environmental wellbeing, our study shows clearly that by strengthening
regional institutional quality, policymakers can significantly reduce the burden
caused by environmental problems and improve the living conditions of their cit-
izens. While the study at hand has focused on European regions, there seems to
be no reason to believe that the hypothesised association would not apply to other
contexts as well. We call on future research to verify whether institutions matter for
environmental wellbeing also in other regions of the world, once more abundant sub-
national cross-country data on environmental wellbeing and quality of government
becomes available.
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5.A Environmental elementary Indicators

Table 5.A.1: Description and sources of elementary indicators in the energy and climate change dimension

Elementary indicator Year Polarity Description Dim. Source
Energy recovery (R1) capacity per capita 2018 + On the basis of the treatment operations de-

fined in Directive 2008/98/EC a distinction is
made in treatment types: Recovery - Recy-
cling and backfilling (excluding energy recov-
ery) (RCVRB): operations R2 to R11; Energy
recovery (RCVE): Operation R1

Energy EEA

Potential vulnerability to climate change 2071-2100 – Potential regional vulnerability to climate
change (combination of regional potential im-
pacts and regional capacity to adapt to climate
change)

Energy ESPON
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Table 5.A.2: Description and sources of elementary indicators in the air dimension

Elementary indicator Year Polarity Description Dim. Source
NO2 Removal capacity by urban vegetation 2020 + Removal capacity is calculated as the product

of dry deposition velocity and pollutant concen-
tration, derived on the context of the LUISA
modelling platform.

Air JRC

Urban population exposed to PM10 2020 – The EU urban population exposed to PM10
concentrations exceeding the daily limit value
on more than 35 days in a year measures the
percentage of population in urban areas ex-
posed to PM10 concentrations exceeding the
daily limit value (50 µg/m3) established by the
Air Quality Directive (2008/50/EC) on more
than 35 days in a calendar year.

Air JRC

Air pollution - PM2.5 2016 – Population weighted average of a 10 by 10 km
of air concentration (µg/m3) of particle matter
of size 2.5 micrometers (small particles) inter-
polated on a grid created by the EEA. Capped
to 25 µg/m3 = limit yearly value of the EU Am-
bient Air Quality Directive.

Air ESPON

Air pollution - PM10 2016 – Population weighted average of a 10 by 10 km
of air concentration (µg/m3) of particle matter
of size 10 micrometers (big particles) interpo-
lated on a grid created by the EEA.

Air ESPON

Air pollution - Ozone 2017 – Population weighted average of a 10 by 10 km
of air Ozone O3 concentration (µg/m3) interpo-
lated on a grid created by the EEA.

Air ESPON

Air pollution - NO2 2017 – Population weighted average of annual aver-
age concentration of NO2 in µg/m3, interpo-
lated at 1 km2 grid cell level and combined
with GEOSTAT 1 km2 grid population data,
set by the EU Ambient Air Quality Directive.

Air ESPON
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Table 5.A.3: Description and sources of elementary indicators in the water and soil dimension

Elementary indicator Year Polarity Description Dim. Source
Water productivity or use efficiency 2020 + The indicator reflects productivity in terms of

water use, so gives a measure of a country’s
water use efficiency.

Water JRC

Drinking water quality 2020 + Share of people who declared being satisfied
with water quality, %.

Water ESPON

Sewage treatment 2014/2016 + Percentage of urban wastewater with more
stringent treatment in collected wastewater.

Water ESPON

Freshwater consumption per capita 2020 – The indicator is the result of the water use
model, which allocates sectorial statistical
data on freshwater consumption.

Water JRC

Capacity of ecosystems to avoid soil erosion 2020 + The indicator measures the capacity of ecosys-
tems to avoid soil erosion assigning values
ranging from 0 to 1 at pixel level, covering
the EU-28

Soil JRC

Severe soil erosion by water 2016 – Severe soil erosion by water is defined as the
estimated share of non-artificial areas under
risk of being subject to soil erosion by water
(from more than 10 tonnes per hectare and
year). Non-artificial areas are agricultural
areas, forest and semi-natural areas (exclud-
ing beaches, dunes, sand plains, bare rock,
glaciers and perpetual snow cover).

Soil JRC

Artificial surfaces inside N2000 in km2 2018 – Artificial surfaces include urban fabric, indus-
trial, commercial and transport units, mine,
dump, and construction sites, and artificial,
non-agricultural vegetated areas.

Soil EEA

Organic farming 2016 + Share of total organic area in total utilised
agricultural area

Soil ESPON
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5.B Elementary Indicator Spatial Autocorrelation

Table 5.B.1: Moran’s test for spatial autocorrelation

Elementary Indicator Global Moran Index p-value
NO2 Removal capacity by urban vegetation 0.376 <0.001
Urban population exposed to PM10 0.034 0.191
Air pollution - PM2.5 0.685 <0.001
Air pollution - PM10 0.617 <0.001
Air pollution - Ozone 0.668 <0.001
Air pollution - NO2 0.826 <0.001
Water productivity or use efficiency 0.253 <0.001
Drinking water quality 0.530 <0.001
Sewage treatment 0.434 <0.001
Freshwater consumption per capita 0.486 <0.001
Capacity of ecosystems to avoid soil erosion 0.565 <0.001
Severe soil erosion by water 0.547 <0.001
Artificial surfaces inside N2000 in km2 0.293 <0.001
Organic farming 0.412 <0.001
Energy recovery (R1) capacity per capita 0.260 <0.001
Potential vulnerability to climate change 0.627 <0.001

Note: Each row corresponds to one of the 16 elementary indicators used in our model. The second
column reports the value of the observed Moran’s I coefficient (Moran, 1950). The third column
reports the p-value of the test. For all elementary indicators, except “Urban population exposed to
PM10”, we reject the null hypothesis of spatial randomness at 1% significance level.

Table 5.B.2: Lagrange multiplier tests

Test
LMerr LMlag RLMerr RLMlag

Air 1.55e-11 1.121e-14 0.1454 5.353e-05
Water 0.003587 0.004122 0.5764 0.8068
Soil 6.004e-11 2.91e-12 0.9381 0.01484
Energy 0.02365 0.009059 0.2448 0.08106
Overall 1.079e-11 8.438e-15 0.2286 8.307e-05

Note: The table reports the p-values from the different Lagrange Multiplier tests. LMerr is the
simple test for spatial dependence in the error terms; LMlag is the test for omitted spatially lagged
dependent variable. RLMerr and RLMlag are the robust versions of the two tests. For all the
outcomes apart from the water quality indicator, the test does not reject the hypothesis of zero spatial
correlation. Results indicate that the best model is the Spatial lag model.
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Figure 5.B.1: Spatial correlograms for elementary indicators in the air dimension

Note: The spatial autocorrelation functions show the estimated Moran’s I correlations versus spatial
lag. The vertical bar corresponds to +/- twice the square root of the Moran I variance. Each lag defines
higher-order neighbor sets, i.e., the first lag includes regions with contiguous boundaries, the second
lag includes regions with a boundary in common with the boundaries’ regions, etc. The horizontal
bar indicates 0. Values greater than 0 indicate positive spatial autocorrelation or clustering in the
elementary indicator; values less than 0 indicate negative spatial autocorrelation or dispersion in
the elementary indicator 254



Figure 5.B.2: Spatial correlograms for elementary indicators in the soil dimension
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Figure 5.B.3: Spatial correlograms for elementary indicators in the water dimension
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Figure 5.B.4: Spatial correlograms for elementary indicators in the energy dimen-
sion
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5.C Sub-national environmental well-being

Figure 5.C.1: Boxplots of sub-national air scores by country
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Figure 5.C.2: Boxplots of sub-national soil scores by country

259



Figure 5.C.3: Boxplots of sub-national water scores by country
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Figure 5.C.4: Boxplots of sub-national energy scores by country
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5.D Overall environmental well-being

Table 5.D.1: Robustness checks: overall environmental wellbeing and quality of
government

Dependent variable: overall environmental wellbeing

Baseline models (1) (2) (3)

Quality of government 0.215*** 0.224*** 0.225***

(0.024) (0.024) (0.024)

N 233 233 233

Wald test (df = 1) 181.297*** 185.988*** 182.413***

LR test (df = 1) 96.967** 100.124*** 96.919***

Quality of government measured in years 2017 2013 2010

Full models (4) (5) (6)

Quality of government 0.206*** 0.214*** 0.218***

(0.034) (0.033) (0.034)

log(GDP/capita) 0.095 0.075 0.041

(0.108) (0.107) (0.108)

Population density -0.0001*** -0.0001*** -0.0001*

(0.00004) (0.00004) (0.00004)

Total area 0.00000*** 0.00000*** 0.00000***

(0.00000) (0.00000) (0.00000)

Employment in agriculture -0.005 -0.004 -0.003

(0.004) (0.004) (0.004)

Employment in manufacturing -0.004 -0.003 -0.003

(0.004) (0.004) (0.004)

Unemployment (15-75) -0.002 -0.004 -0.008

(0.006) (0.005) (0.005)

R&D expenditure -0.00000 -0.00000 -0.00000

(0.00005) (0.00005) (0.00005)

N 221 221 221

Wald test (df = 1) 96.419*** 99.693*** 104.059***

LR test (df = 1) 56.953*** 58.968*** 60.367***

Quality of government measured in year 2017 2013 2010

Note: Robust standard errors in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001. LR test indicates
the significance of the spatial autoregressive parameter ρ.
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Table 5.D.2: Overall environmental wellbeing and quality of government: direct
and indirect effects

Dependent variable: overall environmental wellbeing

Direct Indirect

Baseline models
Quality of government (2017) 0.255*** 0.164***

(0.022) (0.020)

Intermediate models
Quality of government (2017) 0.229*** 0.117***

(0.037) (0.023)

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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General Conclusion and Future
Research

This dissertation explores the topic of well-being through diverse research questions,
methodologies, and contexts. In particular, it contributes to and expands the knowl-
edge in three main areas: predictive analytics and machine learning for well-being
research, inter-generational and spillover effects, and the impact of policies and
institutional quality on well-being.

Findings from each Chapter contribute to improving policy decision-making
for well-being in different ways. Chapter 1 shows the potential of socio-economic
life course information for predicting the risk of depression in old age. Irrespec-
tive of the specific target, these findings show that machine learning models can
solve prediction problems in public policy-making and identify population groups
at risk of ill-being (Berryhill et al., 2019). Chapter 2 highlights inter-generational
spillovers of parental retirement and pension reforms. This finding affirms the need
to evaluate public intervention spillover effects and their critical distributional con-
sequences. Chapter 3 highlights significant ethnic disparities in market outcomes
among Airbnb service providers and finds an adverse effect of anti-discrimination
design interventions. This finding implies that while designing anti-discrimination
interventions is necessary, they must be carefully tested and monitored to avoid
adverse consequences that may exacerbate the disparities they aim to reduce. Chap-
ter 4 applies an alternative method to construct composite indicators of well-being.
This approach provides policymakers with a more holistic and precise tool for as-
sessing well-being across different macro-regions. This approach can also help
identify specific areas of need, allowing for the allocation of resources to maximize
overall societal well-being. Finally, Chapter 5 estimates a strong link between the
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quality of governments and environmental well-being, highlighting the role of the
well-functioning institution in combating environmental degradation.

Overall, these chapters’ contributions push the boundaries of well-being research
while underscoring the critical role of data-driven insights in enabling effective
policymaking. However, many windows remain open for further advancements. The
following section outlines two research projects on my agenda inspired by some of
this dissertation’s findings and limitations.

Future Research Developments

Transformer-based inference on Italian Electronic Health and Labour
Records

This project follows Chapter 1 of this dissertation and addresses one of its main
limitations: using retrospective data to construct life biographies.

The inspiring idea is the recent publication in the machine learning literature
by Savcisens et al. (2024). This paper proposes a procedure to encode individual
administrative labour and health records into “sentences”. The individual sentences
are collections of health or job events (like specific diagnosis or job type) converted
into concept tokens and ordered chronologically. The data transformed in this
sentence-sequenced structure represents the training dataset for a Transformer
architecture that predicts early mortality and personality nuances. Similarly to large
language models (LLM), this model learns the association between life sentences
and individual outcomes.

My project idea draws from this recent discovery. It explores the potential of
Transformer-based models when tailored to predict individual-level labour and
health outcomes based on Italian administrative yearly records, namely the WHIP
and Health dataset (Bena et al., 2012). These data consist of linked administrative
Italian individual health and work histories, and detailed episodes along these two
life trajectories.

I want to focus on predicting three paramount health and labor variables: occu-
pational injuries, cardiovascular diseases, and retirement timing. The significance
of achieving accurate and precise predictions is particularly relevant when target-

“Health Ministry” for hospitalization events, ISTAT for mortality records, INAIL for occupational
injuries, INPS for work episodes
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ing such sensitive outcomes, as wrong predictions may propagate into negative
socio-economic consequences (Black et al., 2011; Chaudhry et al., 2006; Miller &
Galbraith, 1995).

The model will predict these outcomes as a supervised and an unsupervised
prediction task. As a supervised task, I will predict the three life outcomes using a
similar training pipeline as in Chapter 1. As an unsupervised task, I will study the
resulting concept of embedding space on the pre-trained and fine-tuned Transformer-
based model, which reveals non-trivial relationships between past life events and
targeted outcomes.

The embedding is the very first main outcome generated by the model. It de-
fines the numerical representations of all life events and their associations in the
data, from diagnoses to job types and income levels. This concept space forms the
foundation for the predictions.

As a final contribution, I will use the SHAP framework adopted in Chapter 1
(Lundberg & Lee, 2017) to unveil the negative or positive impact of significant life
events on the predicted outcome.

Technological Change and Labour Market Discrimination – TechnoDis-
crimination

Another fascinating research field I want to explore addresses the impact of artificial
intelligence (AI) tools on hiring discrimination. This project relates to Chapter 3 of
this dissertation and, in general, to my exploration of machine-learning techniques
throughout my PhD years.

It is pretty safe to say that AI systems are changing and complementing human
resources (HR) practices in the labour market. Their significant ability to speed
up some HR procedures, which are costly and divert employees from other produc-
tive work, justified the widespread acceptance and deployment in this area. The
transformation involves private and public institutions (Broecke, 2023). AI systems
search job candidates, screen their resumes, create job ads, and assess candidate
suitability for each job posting (Von Krogh, 2018). Recently, AI tools have also begun
to conduct and analyze job interviews, evaluating candidates based on verbal and
non-verbal cues to determine Big Five personality traits (Hickman et al., 2022).

Despite the great relevance of the phenomenon, only a paucity of data exists on
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AI adoption rate in hiring practices (Broecke, 2023). This data shortage justifies
the lack of empirical studies in observational settings. Some studies have appeared
on the experimental side, with a general conclusion that these technologies do not
automatically correct human biases and, in some cases, might even amplify them
(Lippens, 2024). However, there is also some evidence of their positive effects (Avery
et al., 2023; Pisanelli, 2022). What emerges is that these algorithms are, in most
cases, innerly biased.

These biases derive from the dataset’s characteristics used to train the algorithm
and the objective function assigned. AI recruitment systems are trained using com-
panies’ historical information, including candidate resumes and their demographics.
By learning from the data, the algorithm discerns patterns and predicts candidates’
suitability for specific job positions (C. Li et al., 2020). Candidates’ suitability
increases as much as their characteristics are similar to current employees. As
such, the algorithm usually selects from groups with proven track records rather
than taking risks on non-traditional applicants, raising concerns about equality of
opportunities (D. Li et al., 2020).

These experimental studies take the algorithm design as given, assuming its
predictions are the ground truth. In other words, they fail to test if fairness-aware
AI recommendations might be used to de-bias human decision-making. For example,
in Avery et al., 2023 paper, they use a popular AI-assisted recruitment tool that
provides applicant screening software. In the second, they used the standard version
of the chatbot generative AI mode (ChatGPT). Hence, none of these studies has
attempted to control the bias in the algorithm’s predictive behavior or evaluated
how varying such sources of biases might impact human final decisions.

In this project, I want to create an algorithm that recommends suitable can-
didates to recruiters but corrects the bias derived from the data (fair algorithm).
Therefore, I plan to explore hiring outcomes from the interaction between humans
and fair algorithm in an experimental setting.
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