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Abstract: Although the safety and efficacy of COVID-19 vaccines in older people are critical to
their success, little is known about their immunogenicity among elderly residents of long-term care
facilities (LTCFs). A single-center prospective cohort study was conducted: a total IgG antibody
titer, neutralizing antibodies against Wild-type, Delta Plus, and Omicron BA.2 variants and T cell
response, were measured eight months after the second dose of BNT162b2 vaccine (T0) and at least
15 days after the booster (T1). Forty-nine LTCF residents, with a median age of 84.8 ± 10.6 years,
were enrolled. Previous COVID-19 infection was documented in 42.9% of the subjects one year
before T0. At T1, the IgG titers increased up to 10-fold. This ratio was lower in the subjects with
previous COVID-19 infection. At T1, IgG levels were similar in both groups. The neutralizing activity
against Omicron BA.2 was significantly lower (65%) than that measured against Wild-type and Delta
Plus (90%). A significant increase of T cell-specific immune response was observed after the booster.
Frailty, older age, sex, cognitive impairment, and comorbidities did not affect antibody titers or T
cell response. In the elderly sample analyzed, the BNT162b2 mRNA COVID-19 vaccine produced
immunogenicity regardless of frailty.

Keywords: BNT162b2 mRNA COVID-19 vaccine; long-term care facilities elderly residents; neutralizing
antibodies; Omicron BA.2; cellular immunity

1. Introduction

Elderly residents of long-term facilities (LTCFs) are at high risk of experiencing se-
vere coronavirus disease 2019 (COVID-19), particularly if they have underlying chronic
diseases [1–3].
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To protect this population, in January 2021, the Italian plan for anti-SARS-CoV-
2/COVID-19 vaccination established that elderly and extremely vulnerable LTCFs residents
had priority in the vaccination schedule.

The efficacy of the COVID-19 mRNA vaccine in inducing a strong systemic immune
response against SARS-CoV-2 and in preventing severe disease has been well demon-
strated [4,5]. However, LTCF elderly patients aged 70 to 80 years or older with frailty have
not been represented in most vaccine development research, despite being earmarked as
the earliest recipients in any national vaccination schedule [6–9].

A large epidemiological study on the effects of the BNT162b2 COVID-19 vaccine
booster (third dose) during the B.1.617.2 (Delta) variant spread has demonstrated a signif-
icant, rapid, and consistent reduction in the COVID-19 burden among persons living in
LTCFs [10,11]. Among this population, high protection against hospitalization and deaths
from COVID-19, but modest protection against infection, was confirmed after the fourth
dose during a substantial increase in the Omicron variant [12].

Therefore, even if the most recent studies in the elderly population also confirm the
efficacy of mRNA COVID-19 vaccines against the variants of concern (VOCs), little is
known about the humoral immune and T cells response.

The significant loss of potentially protective antibodies has been shown within 6 months
following the primary course vaccination with COVID-19 mRNA vaccines (2 doses) among
elderly nursing home residents, particularly in those individuals without prior SARS-
CoV-2 infection [13,14]. In addition, booster vaccination significantly increased vaccine-
specific anti-spike, anti-RBD, and Omicron-specific neutralization activity above the pre-
booster levels in nursing residents, both in those with and without prior SARS-CoV-2
infection [15,16].

This single-center prospective cohort study was conducted to evaluate both the hu-
moral immune and T cells response elicited before and after the BNT162b2 booster (third
dose) among LTCFs elderly residents who have undergone a primary vaccination cycle
with the BNT162b2 COVID-19 vaccine for at least 6 months.

2. Results
2.1. Study Participants

Between October 2021 and January 2022, 49 vaccinated elderly residents from LTCFs
with a median age of 84.8 ± 10.6 years were enrolled. Thirty-seven subjects (75%) were
female. Previous COVID-19 infection (PI) was documented in 42.9% of the subjects at
more than one year (median: 342 [331; 433]) before T0. Table 1 shows the clinical features
of the participants. All the recruited subjects were not infected with SARS-CoV-2 in the
period between T0 and T1. In the 6-month follow-up post-booster, nineteen subjects
(38.7%) contracted a SARS-CoV-2 infection, all with mild symptoms. Indeed, none of them
developed severe disease or required hospitalization, reinforcing the booster’s efficacy in
preventing the severity of the disease. None developed significant adverse reactions after
the vaccine doses.

Table 1. Demographic and clinical features of the study participants.

Variable All Subjects (n = 49)

Age, years 84.8 ± 10.6
Sex, Female 37 (75.5%)
Number of comorbidities 1.3 ± 0.7
Comorbidities
-Dementia
-Cardiovascular disease (CVD)
-Diabetes
-COPD
-Autoimmune disease

27 (55.1%)
20 (40.8%)
8 (16.3%)
7 (14.3%)
3 (6.1%)
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Table 1. Cont.

Variable All Subjects (n = 49)

Previous SARS-CoV-2 infection at T0 21 (42.9%)
Previous flu vaccination at T0 7 (14.3%)

In the table: mean ± standard deviation for continuous variables, and counts and (%) for categorical variables
T0: before the COVID-19 vaccine booster dose. COPD: chronic obstructive pulmonary disease.

No significant differences in gender or age were observed between previous COVID-
19-infected and not-infected individuals. The median time between T0 and T1 was 56 days;
42.9% of the subjects received flu vaccinations between T0 and T1.

2.2. BNT162b2-Vaccine Booster Increases Spike-Specific IgG Antiboiy Titer in Elderly

After the booster, the IgG antibody concentration increased in all the elderly subjects
up to 13.6-fold (T0GMC: 361 IU/mL, T1GMC 4910 IU/mL; ∆T1-T0: 4549.2) (Table 2). This
ratio was lower in the subjects with prior COVID-19 infections (up to 5.5-fold) because of
the higher level of IgG antibodies at T0 compared with subjects not previously infected
(T0PI-GMC: 1011 IU/mL and T0GMC: 166 IU/mL, respectively, p < 0.0001), suggesting
that natural infection delays the decay of the antibody levels after the second dose of
vaccination. At T1, IgG levels were similar in both groups (T1PI-GMC:4552 IU/mL and
T1GMC: 4304 IU/mL, p = 0.64) (Figure 1 and Table 2).

Table 2. Time trends for serum IgG antibodies between T0 and T1 in the overall sample and according
to previous SARS-CoV-2 infection.

Time
All Subjects (n = 49) No Previous SARS-CoV-2

(n = 28)
Previous SARS-CoV-2

(n = 21) p-Value 3 p-Value 4

Mean 1 ∆(IC 95%) 2 Mean 1 ∆(IC 95%) 2 Mean 1 ∆(IC 95%) 2

T0 361 - 166 - 1011 -

0.91

<0.0001

T1 4910 4549.2
(2778; 6320.3) 4470 4304

(1877.4; 6730.6) 5563 4552.8
(707; 8398.5) 0.64

1: Geometric mean concentration. 2: change in geometric mean concentration, modelled through a log-linear
regression model for repeated measures, with unstructured variance-covariance matrix. 3: p-value testing
homogeneity of trends between subjects with and without previous SARS-CoV-2 infection. 4: p-value testing
homogeneity of geometric mean values between subjects with and without SARS-CoV-2 infection, at each time.
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primary vaccination cycle. In each group, the horizontal line represents the sample median, while
the vertical line represents the interquartile range. T0 = pre-booster; T1 = post-booster. Statistical
analyses were reported in Table 2.

2.3. High Neutralizing Activity against Wild-Type and Delta Plus, but Not against Omicron BA.2,
Variants after BNT162b2 Vaccine Boost

Two doses of the BNT162b2 vaccine elicit high levels of protection from symptomatic
disease, but this wanes over time. The BNT162b2 booster immunization can restore
effectiveness to more than 90% of the general population, eliciting a strong systemic
neutralizing activity. In order to verify the induction of specific neutralizing antibodies
(Nab) in older people, we first analyzed the neutralization efficiency of the BNT162b2
booster vaccination against Wild-type SARS-CoV-2 (i.e., Wuhan) in 46 of the enrolled
subjects. We found that 83% (38/46) of the subjects had neutralizing antibodies at T0 with
an inhibitory activity (INH) mean of 81.6% (Figure 2).
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Figure 2. BNT162b2 booster in elderly elicits strong neutralizing antibodies activity against Wild-
type and Delta Plus variants but weaker against Omicron BA.2. Nab percentage distribution of
SARS-CoV-2 variants at T0 (orange) and T1 (light blue) according to SARS-CoV-2 variants.

After the booster, neutralizing antibodies were found in all but one subject, and the
neutralization efficiency slightly increased to 90.4%. (Figure 2). We next analyzed the
neutralization efficiency of the BNT162b2 vaccine booster against Delta Plus and Omicron
BA.2 VOCs as compared to T0.

At T0, 74% (34/46) of the subjects presented Nab against the Delta Plus variant, with
a mild reduction of INH means compared to Wild-type (INH: 76.88%). After the booster,
Nab were found in 96% of the subjects (44/46), with INH mean values similar to Wild-type
(INH: 90.4%). Of note, the individual lacking Nab against Wild-type after the booster also
failed to develop antibodies against Delta Plus. Finally, only 41% (19/46) of the subjects
presented Nab against Omicron BA.2 at T0, with a reduced INH (60%). The vaccine booster
induced the production of Nab in 82.6% (38/46) of the subjects, with a slight increase in
INH mean values (76.6%) (Figure 2). In conclusion, at T0, not all the subjects showed serum
Nab against Delta Plus and much fewer against Omicron BA.2 VOCs. After the booster, the
number of subjects with Nab and the neutralizing activity against Delta Plus was similar to
that observed for Wild-type. Regarding Omicron BA.2, the number of subjects with Nab
doubled, with a mild increase in INH. Those individuals without Nab against Wild-type
did not develop Nab against either Delta Plus or Omicron BA.2 VOCs.

Interestingly, before the booster, there was a significant positive correlation between
IgG titers and neutralizing antibodies against Wild-type and the two VOCs in the overall
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population and among SARS-CoV-2-negative subjects (Table 3). At variance, in subjects
with prior COVID-19 infection, the correlation was positive and significant only for Omicron
BA2. This can be explained by the fact that, among the previously exposed subjects, the
percentage of Nab against Wild-type and Delta Plus was already substantially elevated,
regardless of the serum IgG levels. For Omicron BA.2, neutralizing antibodies were found
at IgG titers > 1000 or >10,000 IU/mL (Figure 3A, Table 3). At T1, the percentage of Nab
response for Wild-type and Delta Plus was high regardless of the serum IgG titers. When
observed at T0, after the booster, we found a positive correlation between serum IgG titers
and percentage of Nab only for Omicron BA2.1, particularly in previously unexposed
individuals (Figure 3B, Table 3).

Table 3. Correlation between serum IgG * and VOC-specific Nab positivity at T0 and T1, in the
overall sample and according to previous SARS-CoV-2 infection.

Wild-Type Delta Plus Omicron BA.2

All patients (n = 46), time

T0 0.79 0.72 0.72

T1 0.06 −0.05 0.53

No previous SARS-CoV-2 (n = 26), time

T0 0.89 0.87 0.80

T1 0.17 0.23 0.64

Previous SARS-CoV-2 (n = 20), time

T0 0.24 0.16 0.52

T1 −0.21 −0.34 0.33
*: log-linear concentration. Pearson correlation coefficient. Bold: Pearson correlation coefficient different from
zero (p-value < 0.05).
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Finally, at T0 and after the booster, no associations emerged between humoral response
(serum IgG levels and %Nab) and age and gender. As far as the other comorbidities, IgG
levels were lower for subjects with dementia (geometric mean: 3332 vs. 5133, p-value = 0.01)
but without a similar finding as regards the percentage of Nab. Similar observations were
found for chronic obstructive pulmonary disease (COPD) but with very few positive
subjects (n = 7). No particular associations emerged for the other comorbidities (Table 4).

Table 4. Association between demographic and clinical characteristics and vaccine booster dose
response (T1), assessed as serum IgG and neutralizing antibodies against Omicron BA.2 variant.

Variable N
Serum IgG Nab%, Omicron BA.2

Geometric Mean
(95% CI) p-Value ˆ Mean (95% CI) p-Value ˆ

Age * 49 −0.01 (−0.35; 0.33) 0.58 0.9 (−7.6; 9.4) 0.84

Time since T0 ** 49 0.009 (−0.17; 0.18) 0.91 4.3 (0.2; 8.3) 0.04

Sex

men 12 5465 (2682; 11,139)
0.73

61.6 (44.4; 78.8)
0.65

women 37 5092 (3380; 7670) 63.9 (53.9; 73.9)

Diabetes

Yes 8 7231 (3016; 17,341)
0.34

71.7 (50.4; 93.0)
0.50

No 41 5739 (3566; 9236) 67.7 (56.0; 79.3)

COPD

Yes 7 11,583 (4698; 28,553)
0.04

57.3 (34.7; 79.9)
0.50

No 42 7021 (4318; 11,416) 61.9 (49.6; 74.1)

CVD

Yes 20 4548 (2555; 8097)
0.71

64.9 (50.1; 79.7)
0.98

No 29 4853 (3388; 6952) 65.0 (55.9; 74.1)

Dementia

Yes 27 3332 (2128; 5218)
0.01

63.1 (51.2; 75.1)
0.65

No 22 5133 (3677; 7167) 65.2 (56.4; 74.0)

Autoimmune
Disease

Yes 3 13,210 (3235; 53,945)
0.16

51.4 (16.9; 86.0)
0.43

No 46 7799 (3777; 16,104) 58.7 (40.9; 76.5)

Flu Vaccination
between T0 and T1

Yes 21 3504 (2075; 5919)
0.10

60.6 (47.0; 74.2)
0.41

No 28 4708 (3329; 6659) 64.4 (55.5; 73.3)
*: beta-coefficient (with 95% CI) for 10 years increase in age. **: beta-coefficient (with 95% CI) for 10 days
increase in time since T0. Geometric mean: estimated from univariate log-linear regression models, adjusting for
previous SARS-CoV-2 infection. Mean: estimated from univariate linear regression models, adjusting for previous
SARS-CoV-2 infection. ˆ: Wald chi-square p-value from univariate regression models, adjusting for previous
SARS-CoV-2 infection. CVD: Cardiovascular disease. COPD: chronic obstructive pulmonary disease.

2.4. Induction of RBD-Specific T Cell Responses in Elderly after BNT162b2 Vaccination

T cell responses specific to the receptor-binding domain (RBD) were evaluated by
ELISpot assay in PBMCs from 38 out of 49 vaccinated individuals after stimulation with
RBD-15 mer overlapping peptides. A significant increase in T cell-specific immune response
was observed in T1 as compared to T0 (Figure 4A). The median T cell responses were 74.5
(range: 1–540) and 21 (range: 0–312) IFN-γ SFU/106 PBMC, respectively.
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Figure 4. Cellular response to BNT162b2 vaccination in elderly. PBMCs collected at T0 and at T1
were stimulated for 24h with RBD-15 mer overlapping peptides. Each data point represents the
normalized mean spot count from duplicate wells for one study participant, after subtraction of the
non-stimulated control in the overall sample (A) and according to previous SARS-CoV-2 infection
(B) Results were given as IFN-γ spot-forming units (SFU)/106 PBMC. The positive cut-off was set
at 10 IFN-γ SFU/106 PBMC. Correlations between IgG levels and the cumulative SFU responses at
T0 and T1 in overall population ((C,F), respectively), and according to prior SARS-CoV-2 infection
((D,E,G,H), respectively) as assessed by Pearson correlation. r, correlation coefficient. **** p < 0.00001.

In subjects with a prior COVID-19 infection, the median value of IFN-γ SFU/106 PBMC
was 105 (range: 1–540) at T1 and 37 (range: 0–312) at T0, while previously unexposed
individuals exhibited a lower median value at both time points (74.5, range: 3–351 IFN-γ
SFU/106 PBMC at T1 and 20.5, range: 0–141 IFN-γ SFU/106 PBMC at T0); however, these
differences between previously unexposed and exposed subjects were not statistically
significant at either T1 or T0. A significant increase in the response was observed instead
at T1 compared to T0 among subjects without prior exposure to COVID-19 infection
(Figure 4B).

Correlation analysis revealed a significant positive association between RBD-specific T
cell responses and anti-spike antibodies exclusively at T0 (Figure 4C). Notably, this correla-
tion was observed only in subjects with a previous natural infection (Figure 4D). However,
no correlation was observed at T1, indicating a potential change in the relationship between
T cell responses and antibody levels over time (Figure 4F,H).

3. Discussion

The impact of SARS-CoV-2 and COVID-19 disease susceptibility varies depending
on an individual’s age and health status [17]. The elderly are more susceptible to SARS-
CoV2 infections than younger individuals due to age and overall reduced function of the
immune system [18–20]. Current vaccines have proven effective against severe disease
caused by new SARS-CoV-2 variants, but to what extent they can protect the elderly
population is still unclear, as the immunological correlates of protection in this population
remains poorly studied [21–25]. Moreover, the appearance of new viral variants such
as Delta (the predominant strain until mid-December 2021) and Omicron (emerged in
November 2021 and rapidly spread throughout the world), as well as the reduction in the
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effectiveness of vaccination over time, has made the elderly population more susceptible to
the infection. During our study, the local circulation of Delta variant was to a large extent
superseded by Delta Plus and, particularly, by Omicron variants. Thus, we focused on
analyzing neutralizing antibody activity against Delta Plus and Omicron BA.2, in addition
to Wild-type strain, while T cell response was evaluated only against the original strain.
We observed that the BNT162b2 booster induces a broad immune response with SARS-
CoV-2-specific neutralizing antibodies and SARS-CoV-2-specific T cells in elderly people.
Interestingly, in line with other reports, we found that the level of total IgG at 8 months
from the first vaccination cycle significantly dropped in subjects unexposed to natural viral
infection but remained high in subjects with prior COVID-19 infection diagnosed after the
second dose of the vaccine [26]. Consistently, Demaret et al. observed that although COVID-
19-naive older adults have a poor antibody response to the BNT162b2 mRNA vaccine
compared with younger adults, the antibody response was greater in COVID-19-recovered
older residents compared with unexposed COVID-19 subjects, reaching a level similar to
that of young participants [27]. At variance, the booster dose significantly increased IgG
titers, reaching similar values in all individuals regardless of prior infection [28,29]. At
8 months after the first vaccination cycle, Nab were found not only against the Wild-type
strain but also against the Delta Plus VOC, with 83% and 74% of individuals showing similar
levels of neutralizing activity. Interestingly, at this time point, the unexposed subjects
developed Nab only at IgG concentrations above 100 IU/ml, suggesting that the level
of IgG titer in the serum significantly affects the development of neutralizing antibodies
and, thus, the protection against viral infection [30,31]. The neutralizing activity of the Ab
increased after the booster, showing that the third shot of the BNT162b2 vaccine evokes
a systemic immune response effective not only against the Wild-type strain (i.e., 90.4%) but
also against the Delta Plus variant (i.e., 90.4%), as previously reported by others [29,32].
However, the scenario was completely different for the Omicron BA.2 variant. At T0,
neutralizing antibodies were observed in the presence of high levels of IgG in the sera
in all individuals, independent of previous COVID-19 natural infection. This might be
explained by the fact that the recruited subjects were infected when the most predominant
viral strains were the Wild-type and the Delta variant, and, therefore, natural neutralizing
antibodies were poorly effective against the Omicron variant [33]. The booster doubled
the percentage of the subjects with Nab against Omicron BA.2, with a slight increase in
neutralizing activity (Nab, 82.6; INH, 76.6%). Accordingly, Muik et al. demonstrated that
individuals between 20 and 72 years of age who received only two doses of the BNT162b2
mRNA vaccine had a low ability to neutralize the Omicron variant. In contrast, a third
shot of BNT162b2 significantly improved antibody recognition of Omicron, suggesting
that three doses of the mRNA vaccine BNT162b2 may protect against Omicron-mediated
COVID-19 [34]. Among the unexposed subjects, we found a positive correlation between
IgG levels and Nab, possibly indicating that, although the IgG titers are similar in SARS-
CoV-2 unexposed and previously exposed subjects after the booster, natural infection might
select B cell clones able to recognize and neutralize several viral epitopes conserved among
the different mutated strains. Besides neutralizing antibodies representing the first layer of
adaptive immunity against COVID-19, T cell responses play a crucial role as a second layer
of defense in preventing severe COVID-19. BNT162b2 was demonstrated to induce a broad
cellular immune response with poly-specific CD4+ and CD8+ T cells at least 9 weeks after
the booster [7,35]. Even though emerging SARS-CoV-2 variants can elude recognition
by neutralizing antibodies, especially when the level of antibodies declines over time,
cell-mediated immune responses are much better sustained [36–38]. Here, we found that
at T0, the T cell response specific to RBD was higher in previously exposed individuals
compared with unexposed subjects (median: 37 [0–312]; median 20.5 [1–540]), respectively.
These results are in agreement with previous reports suggesting that patients with prior
COVID-19 infection had a better T cell response compared with unexposed subjects [27]. Of
note, Hansen et al. have evaluated both humoral and cellular immune response in naturally
infected older people and in uninfected older people 9 months after the first dose of the
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BNT162b2 vaccine. They observed that T cell responses persisted up to 12 months only in
naturally infected older patients but waned in previously unexposed subjects. Accordingly,
in our study, T cell response was low at T0 in vaccinated older people. Importantly, and
similarly to our results, they observed that pre-infected older adults had more robust and
durable antibody responses compared with unexposed individuals [39]. Cumulatively,
these results emphasize that natural infection induces more robust and durable immune
responses in the elderly, which is not achieved by two doses of the BNT162b2 vaccine.

The booster pulsed cell-mediated immune response in all subjects. Interestingly, only
in individuals with prior natural infection did we find a significant positive association
between RBD-specific T cell responses and IgG levels exclusively at T0. Higher Ab titers
and more specific T cells most likely correlate to the increased number of memory T
cells generated by vaccination/natural infection and thus to the increased primed T cell-
dependent stimulation of antibody-producing B cells.

The correlation between T cell responses and anti-spike antibody titers was previously
described by other groups, particularly in naturally infected pre-exposed individuals [40].

Consistently with our findings, Hurme et al. reported that, in working-age vaccinated
individuals, the levels of S1-specific antibodies did not correlate with T cell responses,
whereas, in the COVID-19 patients’ anti-S1 IgG antibody levels, a correlation trend with T
cell responses was observed [35]. Consistently As, in the present study, we evaluated the
T cell response only against the original strain of the virus, it will be crucial in the future
studies to investigate the persistence of BNT162b2 vaccine-induced cellular immunity to
the most prominent VOCs. Even though we clearly demonstrated that the booster dose
significantly elicits both neutralizing and cellular immune responses in the elderly, as was
observed for younger people, the weakened immune system of the elderly, characterized by
steady decline of innate and adaptive immune responses, should be taken into consideration
in future strategies of vaccine optimization for different age groups.

4. Materials and Methods
4.1. Study Design and Participants

We performed a single-center prospective study recruiting elderly residents of an LTCF
in Northern Italy (Fondazione Molina, Varese, Italy), who underwent the BNT162b2 (Pfizer-
BioNTench®) boosting vaccination by intramuscular injection (i.e., third dose) to evaluate
the systemic humoral immune response elicited by the vaccine.

The inclusion criteria were the age of 70 years or older, completion of a primary
vaccination cycle with two doses of BNT162b2 COVID-19 vaccine within the past 6 months,
negativity for SARS-CoV-2 infection as assessed by COVID-19 antigen rapid test at the
time of recruitment, absence of symptoms of acute infection, and acceptance to receive the
booster dose injection of the BNT162b2 vaccine.

Exclusion criteria were documented SARS-CoV-2 infection in the last 6 months and
ongoing therapy with glucocorticosteroid and/or immunosuppressant.

Patients who arrived at the residential facility and met the inclusion criteria were
prospectively recruited; the recruitment period started on 15 October 2021 and lasted
3 months. Patients who could not be evaluated after the third-dose vaccination because
they died or were hospitalized for an unrelated cause were excluded from the study. No
eligible patients in the study declined to participate. The clinical protocol for sample
and data collection was approved by the Institutional Ethics Committee. The study was
conducted in accordance with the Declaration of Helsinki.

Data were collected 8 months after the second shot of the vaccine (T0) and at least
14 days after the booster (T1). A 15 mL sample of whole blood was obtained from each
participant at T0 and T1: 5 mL into a container with a gel separator for serum fraction and
10 mL into an EDTA tube for peripheral mononuclear cells (PBMCs) isolation.

The following clinical data were recorded: age, sex, main comorbidities (diabetes,
chronic obstructive pulmonary disease [COPD], cardiovascular disease [CVD], dementia,
autoimmune diseases), exposure to SARS-CoV-2 infection before T0, between T0 and T1
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and/or within 6 months after the booster shot, and flu vaccination prior to T0 or between
T0 and T1.

4.2. Antibody Measurement

A commercial enzyme-linked immunosorbent assay (ELISA) specific for the S1 protein
of SARS-CoV-2 was used to measure IgG Ab titers in serum samples, according to the
manufacturer’s instructions (Anti-nCoV19 S1 IgG HS Immunospark, Pomezia, Italy). Serum
samples were analyzed at 1:10, 1:100, and 1:1000 dilution at T0, and at 1:100, 1:1000, and
1:10,000 at T1. The results were expressed as UI/mL, and the lower threshold established
by the manufacturer was 0.625 IU/mL for the IgG Ab, as previously described [41].

Furthermore, the presence of anti-RBD Nab in serum was assessed by competitive
ELISA, following the manufacturer’s instructions (cPASSTM SARS-CoV-2 Neutralization
Antibody Detection Kit, GenScript, Piscataway, NJ, USA), as previously described [41].
Briefly, 10 µL of serum were diluted in 90 µL of sample dilution buffer. Positive and negative
serum controls provided within the kit were used as reference for the serum Nab. The
optical density (OD) average of the negative controls was used to calculate the percentage
of inhibition according to the following formula: (1 − OD value of the sample/OD value of
negative control) × 100%. A cut-off value of 30% was used to discriminate between the
presence or absence of Nab, according to the manufacturer’s instructions. In the case of
positivity, the percentage of inhibitory activity (i.e., INH) was also assessed.

Finally, to verify the efficacy of the immune response against the VOC, the serum
samples at T0 and after the booster were also tested against the RBD of the Delta Plus
variant (lineage B.1.617.2.1; K417N, L452R, T478K) and the Omicron variant B2.A (lineage
B.1.1.529.2; G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N,
T478K, E484A, Q493R, Q498R, N501Y, Y505H).

4.3. Peptide Pools and Antigens

Fifty-three 15-mer peptide pools overlapping by 11 amino acid residues, representative
of the receptor-binding domain (RBD), were used at the concentration of 3 µg/mL per well
(ChinaPeptides, Shanghai, China).

4.4. Ex Vivo Enzyme-Linked Immunospot Assay (ELISpot Assay)

PBMC were rested for 2 h in complete medium and seeded at 3.33 × 105 cells/well in
96-well plates pre-coated with anti-IFN-γ (15 µg/mL; clone 1-D1K; Mabtech, Nacka Strand,
Sweden). Test wells were supplemented with the 15-mers described above. Negative
control wells lacked peptides, and positive control wells included PHA (5 µg/mL; Sigma-
Aldrich, St. Louis, MO, USA). Tests were performed in duplicate. Samples were incubated
for 24 h at 37 ◦C. Plates were then washed five times with PBS (Lonza, Basel, Switzerland)
and incubated for 2 h at room temperature with biotinylated anti-IFN-γ (1 µg/mL). After
five further washing steps, a 1:1000 dilution of alkaline phosphatase-conjugated strepta-
vidin (Mabtech, Nacka Strand, Sweden) was added for 1 hr at room temperature. Plates
were then washed a further five times and developed for 20 min with BCIP/NBT Substrate
(Mabtech, Nacka Strand, Sweden). Spots were counted using an automated ELISpot Reader
System (Autoimmun Diagnostika GmbH, Strasburg, Germany). Results were given as IFN-
γ spot-forming units (SFU)/106 PBMC after calculating the mean values from duplicate
wells and subtracting spots from negative control. The positive cut-off was set at 10 IFN-γ
SFU/106 PBMC.

4.5. Statistical Analysis

Participant characteristics at T0 were summarized using standard descriptive statistics.
To account for their skewed distributions, at each visit time, we calculated sample medians
and interquartile range for serum IgG, in the overall sample and according to previous
SARS-CoV-2 infection. To estimate time trends in serum IgG, we used repeated-measure
regression models, with baseline value, time visit, previous SARS-CoV-2 infection status,
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and the interaction between time and infection status as independent variables. Again, we
modelled log-transformed IgG values and reported the geometric mean concentrations
(GMC) with 95% confidence intervals. Individuals were categorized according to the
presence of Nab. We estimated the linear correlation between log-transformed serum
IgG levels and VOC-specific Nab positivity at T0 and T1 using the Pearson’s correlation,
in the overall sample and by previous SARS-CoV-2 infection. We tested whether the
prevalence of Nab varied with virus variance (i.e., Wuhan Wild-type, Delta Plus, and
Omicron BA.2 strains) using a regression model with repeated-measure (unstructured
variance-covariance matrix) and including an interaction term between sample and variant
(3 degrees of freedom, Wald chi-square test). Statistical analyses were carried out using the
SAS Software (9.4 release), and pictures were drawn using R (3.6.3 version). For ELISpot
assays, the statistical analysis and graphical presentations were performed using GraphPad
Software 8.01 (GraphPad Software Inc, La Jolla, CA, USA). Paired data were analyzed by
Wilcoxon signed rank test. Statistical differences between groups were assessed by the
non-parametric Mann–Whitney U test. Pearson’s correlation was used for the evaluation of
bivariate associations.
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