
Virtual Communities as Narrative Processes

Marco Benini and Federico Gobbo

Dipartimento di Informatica e Comunicazione
Università degli Studi dell’Insubria
via Mazzini 5, IT-21100, Varese, Italy
{marco.benini, federico.gobbo}@uninsubria.it

Abstract. By facing the problem to describe the history of a virtual community
as the sequence of events generated by its participants, a different perception of the
meaning of communitywares emerges. This paper describes a proposal for a virtual
community system based on the narrative process that supports the social evolution
of the community.

Key words: Communityware design, Semantic web technology, Ontologies

1 Introduction

Discussion and collaboration servers, i.e. software tools that promote and
mediate dialogue and partnership among different users, are not a novelty
anymore: they gradually grew following the network spread and evolution [1].
Nevertheless, there is still no tool supporting the evolution of the rules of the
social network underpinning cooperation. In fact, the social rules are mostly
defined by designers, and hard-coded into the collaborative system, without
explicit semantic information. In this paper a formal model to represent the
most known collaboration models is given, in terms of semantic web ontologies.
These ontologies will be managed in natural language, so that users can define
by themselves new, original forms of cooperation and dialogue.

In principle, there are three basic collaboration models over a network:
e-mail exchange (including mailing lists), shared repositories, and interactive
content update technologies [7]. Virtual communities, encouraging participa-
tion and active learning among remote users, naturally prefer the third model
since their members aim to establish social relations, and this goal is easier
to achieve if users are allowed to update content interactively.

As a matter of fact, virtual communities evolved around complex com-
munitywares which combine the feature of the three basic models. In fact,
their main service [1] was to provide discussion lists, often called conferences,
where the participants were allowed to discuss over common topics (the e-mail

exchange model), while additional features were usually provided, as shared
repositories (i.e. the second model), or personal web pages, email address, etc.
The aim behind these systems was to offer an all-inclusive environment [11], in
order to give a complete support to each participant’s need, so that the com-
munity members were invited to use the Internet almost exclusively through
the community support.

Henceforth, as communities evolved, the software platforms grew in com-
plexity, due to the subsequent addition of unplanned features. In fact, it is
very difficult, if not impossible, to foresee every participant’s need or desire
in advance, i.e. before the virtual community establishes itself, as people ex-
pectations are usually very different: our claim is that these wishes cannot be
foreseen since they arise after the community uses the software for enough
time to evolve itself, while the design of the software takes place before the
community starts to operate.

2 Virtual communities and “new texts”

Since the end of the 20th century, the increase of network size and speed and
the standardisation of the web [2] also lead to a deep transformation of virtual
communities. Community services became differentiated according to their
needs. In our opinion, the deep reasons behind this fragmentation lie in the
increase of users’ awareness: the Internet services are now mostly well-known
and, thus, users don’t need an active guidance in their usage anymore. Indeed,
it is not surprising the raise in popularity of a new kind of community-oriented
services, broadly called new texts, like for instance wikies, which allow the
collaborative development of knowledge, or blogs, which act as discussion ve-
hicles [5]. However, despite their maturity as technological objects, the design
of communitywares and new text services is similar and still quite traditional:
they are usually developed as specialised web-based applications [11].

Their design and development is focused on the web technology and its
clever application to the problem domain; the simple idea that the purpose of
the software is just to support a living community is left in the background.
In the approach proposed here, the reversal is true: a communityware should
support a virtual community from its start permitting its evolution with the
social rules that participants arbitrarily decide to adopt, according to the
community life. Moreover, the social rules belong to the community, which
can modify them over time to reflect new needs and wishes.

2.1 Blogs and wikies as narratives

Since our aim is to propose a reversal approach, in the following we will de-
scribe ideal “new text” communitywares and how their core works. A designer
may either directly implement this approach, or, preferably, may include tech-
niques and ideas in a richer system, where the features avoided for clearness
and conciseness are present and fully supported.

We start by designing and thus constructing a language allowing the writ-
ing of the community history. Hence we call our approach narrative, since
virtual communities are considered as narrative processes. This narration is
described by means of a language, which has enough expressive power to depict
also the community state, that is, the information owned by the community.
In this perspective, the language itself is part of the state; since the state varies
over time, and the language is part of it, the language may evolve as well. As
far as the features used by the community are defined by the language, any
addition to the language corresponds to an evolution of the community in
terms of represented features, thus overcoming the discussed ageing problem.

In order to concretely exemplify our ideas we define the words “User”,
“Message” and “Conference”. Their intended meaning1 is as follows: the users
are the actors of the community, i.e. they can perform actions like sending
messages, and, in turn, messages are organised to form conferences. The com-
munity state is the sum of the conferences and the language defined insofar.
The community history tales the changes in the community state.

Communitywares based on the e-mail exchange model [7] – e.g. BBS, mail-
ing lists, web forums, web groups – organise content on the paradigm “write
once, read many”. In fact, in this paradigm, conferences are threads, owned
by no user in particular. A message, the root, starts a thread on a specific
question or topic, which sequentially people answer or comment. If a message
is off-topic, a new thread begins. Threads are often very long, and the result
is a complex tree of messages, where conference boundaries are not always
clear as messages belong to more than one conferences, and redundancy in
the messages content is tolerated [7].

Blogs are a significant variant of this paradigm, which we call the anno-
tation model. In fact, unlike what happens with mailing lists, blogs have a
clearly defined author – maybe collective, but still one – who owns the con-
ferences and has the right to manage their messages. Conferences are shaped
as threads, but the root (called post in the blog jargon) is more important
than the threaded answers, which can be considered as mere comments. Un-
like mailing lists, threads are usually short, and not rarely they are made by
a unique message, the post. Comments are not the only way to answer to
one’s post: blogs are by no means living as monads, on the contrary, anno-
tations – i.e. messages belonging to a blog but pertaining to another blog
post – are allowed and encouraged. When annotation happens, blogs are put
into relation and form a blogosphere – another form of community [10]. Fig. 1
shows a prototypical example: John has raised an issue (post B) for further
considerations on Tuesday in his blog, and Pietro reacts commenting it in
John’s blog space. On the contrary, Mario, after reading B, decides to write
the longer answer D as an annotation of B, perhaps via a citation. Thus, on
Wednesday John’s and Mario’s blogs are intertwined. In this picture, Jack is
allowed to comment but he decides to read without reacting. In blogs, the

1These notions are standard and described at length, e.g., in [1].

 's blog

post A

a comment

post B

John

JackPietro

 's blog

Mario

post C

post D annotates B

Monday

Tuesday

Wednesday

a comment

Fig. 1. A minimal blogosphere

content is organised on the paradigm “write yours, read and comment the
others”. In the terms given above, a blog is a set of conferences owned by a
user with a defined identity. Wikies are quite different from blogs, as in the

Tuesday

a wiki

edit E edit G

edit F

edit H

John MarioJack Pietro

Monday

Wednesday

Fig. 2. A pure wiki

shown example (Fig. 2). On Monday John and Jack start two different wiki
pages (edit E, G) on some related topics – in our terms, they had created two
conferences. Note that in a pure wiki no message is authored, i.e. all messages
are anonymous. Pietro reads Jack’s message on Tuesday, and he writes a mes-
sage (edit H) that updates the message body. Jack, who evidently likes the
wiki way more than blogs, reads the changes and decides to add some infor-
mation to the conference started by John, appending some content (edit F).
The conference history becomes a sequence of patches of differences between
subsequent messages.

3 From natural language to ontologies

When describing a blog or a wiki, it is natural and easier to depict an example
of the intended model, as done in the previous section.

One can try to move toward a formal description by narrating the ex-
ample: “John is an user. John’s blog is a set of conferences, owned by John.
A comment is a message. Only users may post messages”. This informal de-
scription identifies some social rules, some entities and some roles: John and
his blog are entities, they gain a social role by their attributes, like being a
user or a blog. There are other, unidentified entities, like messages, and they
can be related to known objects by some actions, like “post”, whose usage is
restricted to users when involving comments.

In this perspective, narrating the history of the community means to record
the sequence of actions performed in the community world. Every action is
composed by a series of events, each one described by a simple sentence.
When able to interpret the meaning of events as actions to apply on the actual
community information, the community will be enlivened by a suitable engine
that receives and performs the action on the community state. If narratives,
e.g. the example before, are formalised into events, it becomes feasible to
develop an engine for a narrative communityware.

Our investigation on the informal description starts by analysing the sen-
tences: sentences are structured groups of elements, where each element plays
a role or a defined function – hierarchically defined. According to Tesnière’s
structural grammars [12], a sentence is a set of connections, where its type is
defined by the verb: the term valence refers to the number of arguments, or
actants, a verb can take. For example, the sentence “John owns John’s Blog”
contains “owns” which is a divalent verb, i.e. it has a first actant (“John”, the
subject) and a second actant. On the contrary, the verb “to be” is monova-
lent, as it has only one actant (the subject), and denotes an attribute of it.
In order to avoid unnecessary complexity in natural language parsing, only
present tense is used, i.e. sentences are all statements. Besides verbs, there are
nouns: generally speaking they denote either concrete entities, like “John”, or
concepts, like “user”. Some verbs and some nouns are predefined, i.e., their
meaning is common knowledge. These elements are “to be” and “may” in
our example. On the contrary, most nouns and verbs have a specific mean-
ing which depends on the particular community we are constructing: “user”,
“conference”, “to own” and “to post” are of this kind, since their interpreta-
tion varies if the community is a wiki, a blog or something else. Therefore, a
formal description must define these notions and a communityware engine has
to provide a model, enabling their subsequent use on the community state.

The description we propose is based on a pair of knowledge bases, repre-
sented as OWL ontologies: the history and the state of the community. The
history contains the recording of the sequence of events occurring during the
community life. The state contains the language definitions and the informa-
tion owned by the community as it holds in a particular instant; while the

history is constantly growing, the state gets updated by every event. In this
respect, using an ontology to represent the state allows both to dress the
language with a logical meaning and to ensure the formal consistency of the
depicted community world moment by moment.

3.1 Sketches from a Narrative Community

The narrative approach can be formalised in an operative model of the previ-
ous examples: we start by defining a simple language that allows the narration
of the community events; the events will be the actions each participant per-
forms in the community. The syntax is based on a set of nouns and verbs that
allows the constructions of simple sentences: for convenience, we use the OWL
syntax [4, 8]2 that simplifies the understanding of the system’s behaviour.

In the beginning, the history of the community as well as its state are
empty, and the language is pure OWL plus the vcs (virtual community struc-
ture) namespace, whose content is explained later. The first step is to define
the notions of “User”, “Message” and “Conference”. A user, the community
starter, narrates the following events to the system:

<owl:Class rdf:ID="Noun" />

<owl:Class rdf:ID="User">

<rdfs:subClassOf rdf:resource="#Noun" />

</owl:Class>

<owl:Class rdf:ID="Message" />

<rdfs:subClassOf rdf:resource="#Noun" />

</owl:Class>

<owl:Class rdf:ID="Conference" />

<rdfs:subClassOf rdf:resource="#Noun" />

</owl:Class>

A “Noun” is rendered as an OWL class; “User”, “Message” and “Confer-
ence” are nouns. Analogously, he can describe the basic verbs to interact with
the concepts just defined:

<owl:Class rdf:ID="Verb">

<rdfs:subClassOf rdf:resource="&owl:ObjectProperty" />

</owl:Class>

<Verb rdf:ID="read">

<rdfs:domain rdf:resource="#User" />

<rdfs:range>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Message" />

<owl:Class rdf:about="#Conference" />

</owl:unionOf>

</rdfs:range>

<vcs:action> ... </vcs:action>

2We assume the standard conventions for namespaces in OWL fragments, see [8].

</Verb>

<Verb rdf:ID="own">

<rdfs:domain rdf:resource="#User" />

<rdfs:range rdf:resource="#Conference" />

<vcs:action> ... </vcs:action>

</Verb>

<Verb rdf:ID="post">

<rdfs:domain rdf:resource="#User" />

<rdfs:range rdf:resource="#Message" />

<vcs:action> ... </vcs:action>

</Verb>

Therefore, a verb like “read” is both a linguistic element in the “Verb”
class, and an OWL-property whose domain (the subject of the verb) is a
“User” and whose range (the object of the verb) is either a “Message” or a
“Conference”. Consequently, “read” has a triple meaning: as a linguistic el-
ement, it is a bivalent verb; as an action, it denotes the transformation on
the state as calculated by its <vcs:action> tag; as an OWL element, it is a
property relating class elements. In particular, the <vcs:action> declares the
effect of the verb on the state of the community by means of a program written
in XML/XQuery [3], linked via the vcs namespace – details are omitted here
for clarity. The state of the community is an OWL ontology containing the
sentences in the defined language that describe the information of the commu-
nity. The action is a piece of programming code that defines the change on the
state when a related event happens: for example, when the event “John posts
the message X” occurs, the message X is added to the community state by
the program contained in the <vcs:action> of the declaration of the “post”
verb (see next subsection for a precise description).

To describe the structure of a message, we enrich our language with at-
tributes, represented as OWL datatype properties:

<owl:DatatypeProperty rdf:ID="title">

<rdfs:domain rdf:resource="#Message" />

<rdfs:range rdf:resource="&xsd:string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="content">

<rdfs:domain rdf:resource="#Message" />

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="inConference">

<rdfs:domain rdf:resource="#Message" />

<rdfs:range rdf:resource="#Conference" />

</owl:ObjectProperty>

To show how the previous declarations can be used, we populate the state
with some facts, from the examples in Sec. 2.1:

<User rdf:ID="John" />

<Conference rdf:ID="JohnBlog" />

<Message rdf:ID="msg1">

<title> Post A </title>

<content rdf:resource="http://www.dicom.uninsubria.it" />

<inConference rdf:resource="#JohnBlog"/>

</Message>

<User rdf:about="#John">

<own rdf:resource="#msg1" />

</User>

The narrative approach, as described till now, allows both to write the
history of the community, and to operate the core actions on the community
state. Moreover, the language used to tale the events is defined as part of
the narration, like in mathematical textbooks, where the concepts are first
defined, and then used to derive results and to define new notions.

In the emerging model, nothing prevents the reflective usage of already
defined concepts. For example, we can define a conference whose elements are
the defined users. The event we submit to the system is the following:

<Conference rdf:ID="Users" />

<owl:Class rdf:about="#User">

<rdfs:subClassOf rdf:resource="#Message" />

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="#inConference" />

<owl:allValuesFrom rdf:resource="#Users" />

</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

It means that a user is a special kind of “Message”, which lies in the
“Users” conference. The result is that user management does not require new
verbs or special actions: the ability to post in the “Users” conference allows
the creation, cancellation and modification of the set of users by means of the
very same actions used to manage any other message. An important point
to notice is that we evolved toward this kind of management: in fact, we
incrementally derived the idea of managing the users adding a new conference
to an existing community where, initially, “User” was a standalone concept.

The reflective use of concepts is nothing but an example of evolution: in
fact, since the language may be modified at any time, potentially every event
involving a change in the language can be regarded as a step toward the
evolution of the community.

4 Behind the Curtain

The ideal communityware engine implicitly used in the preceding section is
very simple: it takes its input, an event, from the web, processes it and calcu-
lates the output, usually an XML document. The event is an OWL fragment,

that must be understandable in the current state, that is, the state ontology
plus the event must form a valid XML document as defined in [13], satisfying
the OWL syntax augmented with the vcs namespace.

Moreover, the event must be semantically sound with the state, that is,
the state ontology plus the event must form an OWL-consistent document as
defined in [9], thus generating a logically sound theory.

If the event is both valid and sound, it denotes the actions that must
be performed on the ontology state: each action is defined by means of a
function written in XML/XQuery [3], represented inside the definition of the
simple event’s verb via the <vcs:action> tag; the default action (when the
tag is missing) is to append the event to the ontology state. Therefore, the
denoted action is tentatively performed and the resulting state is checked to
be valid and sound. As a consequence, the output is calculated as the updated
state ontology: in a real system, this would be inappropriate and a suitable
presentation of part of the state should be extracted and shown to the user.
Finally, the event is recorded in the community history.

Although heavily based on the semantic web technologies, the described
engine operates as a simplified web-based application. But, differently from
the traditional communitywares, wikies and blogs, it does not provide hard-
coded notions, actions and rules. As previously illustrated, even the basic
notions, like user or message, are defined “in the language” and, thus, they
become part of the state hence, as any other element of the state, they may
be modified, created or cancelled with the only limitation that the resulting
state preserves validity and soundness, i.e. it has to be a well-formed OWL
ontology with no internal contradictions.

As a matter of fact, the abstractness and the generality of the illustrated
engine provide the community with the instruments to sustain its own evolu-
tion, since literally everything can be discussed and, eventually, modified. It
is evident that, in practice, a more significant starting point is needed, that is,
the initial language should be non-empty and should represent a well recog-
nised language to describe a community model. In this respect, the shown
sketch is too limited, but the discussion in Sec. 2.1 provide the highlights to
develop the notions and, thus, the language constructors needed to represent
the corresponding community models, starting from blogs and wikies.

In fact, the narration of an example of community life requires a language
that can be usefully represented in the form of an OWL ontology; this on-
tology becomes the foundational event of the community, enabling its usage
by means of the illustrated engine. Therefore, the narrative description of
communities becomes the enabling metaphor that allows their representation
in a semantic web system. Because of the expressive power of semantic web
conceptual instruments, it is possible to enliven the narrative representations
of communities in order to support them and, eventually, their evolutions.

5 Concluding remarks

This paper has shown the idea that considering virtual communities as the
result of a narrative process, leads to a new possible design approach of the
communitywares to support them. This approach wants to suggest that the
semantic web technology is mature enough to permit a significant encoding
of virtual communities in its main representation language, namely OWL.
In this respect, ontologies become the instrument both to represent and to
operate communities, with a degree of freedom and flexibility unachievable in
traditional and modern communitywares.

Being a proposal paper, a great deal of future work is expected: in the
first place, the implementation of the engine and the consequent collection of
experimental data. Also, it is important to study to what extent reflection
(see the end of Sec. 3.1) can be used to simplify the management of complex
communities. Finally, the proposed approach allows to simulate communities
with specific social rules: for example, the study of the application of the
rules formalising Creative Commons licenses [6]. Although we have begun to
explore some of these themes [5], most is still to be done.

References

1. M. Benini, F. De Cindio, and L. Sonnante. Virtuose, a VIRTual CommU-
nity Open Source Engine for integrating civic networks and digital cities. In
P. van den Besselaar and S. Koizumi, eds, Digital Cities III — Information Tech-
nologies for Social Capital: Cross-Cultural Perspectives, volume 3081 of LNCS,
pp. 217–232. Springer Verlag, 2003.

2. T. Berners-Lee. Weaving the Web. Harper, 2002.
3. D. Chamberlin et al. XQuery from the Experts. Addison Wesley, 2003.
4. M. Dean and G. Schreiber. OWL web ontology language reference. W3C, Feb.

2004.
5. F. Gobbo, M. Chinosi, and M. Pepe. Novelle, a collaborative open source writing

software. In J. Karlgren, ed., NEW TEXT: Wikis and blogs and other dynamic
text sources, Trento, Italy, 2006. Association for Computational Linguistics.

6. L. Lessig. Free Culture. Penguin, 2004.
7. B. Leuf and W. Cunningham. The Wiki Way: Quick Collaboration on the Web.

Addison Wesley, 2002.
8. D.L. McGuinness and F. van Harmelen. OWL web ontology language overview.

W3C, Feb. 2004.
9. P.F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL web ontology language

semantics and abstract syntax. W3C, Feb. 2004.
10. Andrew Rosenbloom. The blogosphere. Comm. of the ACM, 47(12), Dec. 2004.
11. D. Schuler. New communities and new community networks. In M. Gurstein, ed.,

Community Informatics: Enabling Communities with Information and Commu-
nications Technologies, Hershey, USA, 2000. Idea Publishing Group.

12. L. Tesnière. Éléments de syntaxe structurale. Klincksieck, Paris, 1959.
13. F. Yergeau et al. Extensible markup language (XML) 1.1. W3C, Feb. 2004.

