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Abstract. Let p be a prime. We prove that certain amalgamated free
pro-p products of Demushkin groups with pro-p-cyclic amalgam cannot
give rise to a 1-cyclotomic oriented pro-p group, and thus do not occur
as maximal pro-p Galois groups of fields containing a root of 1 of order p.
We show that other cohomological obstructions which are used to detect
pro-p groups that are not maximal pro-p Galois groups—the quadratic-
ity of Z/pZ-cohomology and the vanishing of Massey products—fail with
the above pro-p groups. Finally, we prove that the Minač–Tân pro-
p group cannot give rise to a 1-cyclotomic oriented pro-p group, and
we conjecture that every 1-cyclotomic oriented pro-p group satisfy the
strong n-Massey vanishing property for n = 3, 4.
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1. Introduction

Let p be a prime number, and let 1+pZp denote the pro-p group of principal
units of the ring of p-adic integers Zp—namely, 1+ pZp = {1+ pλ | λ ∈ Zp}.
An oriented pro-p group is a pair (G, θ) consisting of a pro-p group G and
a morphism of pro-p groups θ : G → 1 + pZp, called an orientation of G
(see [29]; oriented pro-p groups were introduced by Efrat [7], with the name
“cyclotomic pro-p pairs”). An oriented pro-p group (G, θ) gives rise to the
continuous G-module Zp(θ), which is equal to Zp as an abelian pro-p group,
and which is endowed with the continuous G-action defined by
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g · λ = θ(g) · λ for all g ∈ G and λ ∈ Zp(θ).

An oriented pro-p group (G, θ) is said to be Kummerian if the following
cohomological condition is satisfied: for every n ≥ 1 the natural morphism

H1(G, Zp(θ)/pn
Zp(θ)) −→ H1(G, Z/pZ), (1.1)

induced by the epimorphism of continuous G-modules Zp(θ)/pn
Zp(θ) � Z/p

is surjective (see [11])—here we consider Z/p as a trivial G-module. Moreover,
the oriented pro-p group (G, θ) is said to be 1-cyclotomic if the above coho-
mological condition is satisfied also for every closed subgroup of G—namely,
the natural morphism (1.1) is surjective also with H instead of G, and the
restriction θ|H : H → 1+pZp instead of θ for all closed subgroups H of G (in
[25,26] a 1-cyclotomic oriented pro-p group is called a “1-smooth” oriented
pro-p group). This cohomological condition was considered first by J. Labute,
who showed ante litteram that for every Demushkin group G there exists pre-
cisely one orientation which completes G into a Kummerian oriented pro-p
group, namely the orientation induced by the dualizing module of G (see
[13]).

In case of trivial orientations, 1-cyclotomicity translates into a purely
group-theoretical statement. Namely, an oriented pro-p group (G,1)—where
1 : G → 1 + pZp denotes the orientation which is constantly equal to 1—is 1-
cyclotomic if, and only if, the abelianization of every closed subgroup of G is
a free abelian pro-p group. Pro-p groups satisfying this group-theoretic condi-
tion are called absolutely torsion-free pro-p groups, and they were introduced
by Würfel [36].

The main goal of this work is to produce new examples of pro-p groups
which no orientations can turn into a 1-cyclotomic oriented pro-p group.

Theorem 1.1. Let G be a pro-p group with pro-p presentation

G = 〈 x, y1, . . . , yd1 , z1, . . . , zd2 | r1 = r2 = 1 〉, (1.2)

where d1, d2 are two positive odd integers, and either:
(1.1.a) d1 + d2 ≥ 4 and

r1 = [x, y1][y2, y3] · · · [yd1−1, yd1 ],

r2 = [x, z1][z2, z3] · · · [zd2−1, zd2 ];

(1.1.b) or p is odd and

r1 = yp
1 [y1, x][y2, y3] · · · [yd1−1, yd1 ],

r2 = zp
1 [z1, x][z2, z3] · · · [zd2−1, zd2 ].

Then there are no orientations θ : G → 1 + pZp such that the oriented pro-p
group (G, θ) is 1-cyclotomic.

It is worth underlining that the pro-p groups described in Theorem 1.1
are amalgamated free pro-p products of two Demushkin groups—the sub-
group generated by x, y1, . . . , yd1 and the subgroup generated by x, z1,
. . . , zd2—, with pro-p-cyclic amalgam, generated by x. Despite Demushkin
groups and their free pro-p products are some of the (extremely few) exam-
ples of pro-p groups which are known to give rise to 1-cyclotomic oriented
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pro-p groups, the presence of a pro-p-cyclic amalgam is enough to lose 1-
cyclotomicity.

Oriented pro-p groups satisfying 1-cyclotomicity have great prominence
in Galois theory. Given a field K, let K̄s and K(p) denote respectively the
separable closure of K, and the compositum of all finite Galois p-extensions of
K. The maximal pro-p Galois group of K, denoted by GK(p), is the maximal
pro-p quotient of the absolute Galois group Gal(K̄s/K) of K, and it coincides
with the Galois group of the Galois extension K(p)/K. Detecting maximal
pro-p Galois groups among pro-p groups, are crucial problems in Galois the-
ory. Already the pursuit of concrete examples of pro-p groups which do not
occur as maximal pro-p Galois groups of fields is already considered a very
remarkable challenge (see, e.g., [1,3,4,24,33]).

The maximal pro-p Galois group GK(p) of a field K containing a root
of 1 of order p gives rise to the oriented pro-p group (GK(p), θK), where

θK : GK(p) −→ 1 + pZp

denotes the pro-p cyclotomic character (see Example 2.4 below). By Kummer
theory, the oriented pro-p group (GK(p), θK) is 1-cyclotomic (see [13, p. 131]
and [11, Sect. 4])—in case p = 2 we need to assume further that

√
−1 ∈ K.

Therefore, a pro-p group which cannot complete into a 1-cyclotomic oriented
pro-p group does not occur as the maximal pro-p group of a field containing
a root of 1 of order p—and hence neither as the absolute Galois group of
any field (see, e.g., [24, Remark 3.3]). Hence, the following corollary may be
deduced directly from Theorem 1.1.

Corollary 1.2. A pro-p group G as in Theorem 1.1 does not occur as the
maximal pro-p Galois group of any field containing a root of 1 of order p
(and also

√
−1 if p = 2). Hence, G does not occur as the absolute Galois

group of any field.

In the recent past, other cohomological properties have been used to
study maximal pro-p Galois groups—and to find examples of pro-p groups
which do not occur as maximal pro-p Galois groups. By the Norm Residue
Theorem—proved by M. Rost and V. Voevodsky, with the contribution by
Ch. Weibel, see [12,34]—one knows that if K is a field containing a root of 1
of order p, the Z/p-cohomology algebra H•(GK(p), Z/pZ), endowed with the
cup-product

� : Hm(GK(p), Z/pZ) × Hn(GK(p), Z/pZ) −→ Hm+n(GK(p), Z/pZ),

is quadratic, i.e., its ring structure is completely determined by the 1st and
the 2nd cohomology groups (see, e.g., [22, Sect. 2]). Moreover, it was shown by
E. Matzri that if K is a field containing a root of 1 of order p, then GK(p) satis-
fies the triple Massey vanishing property (see [9] and references therein)—for
an overview on Massey products in Galois cohomology see [19]. These two
cohomological properties were used to find examples of pro-p groups which
do not occur as maximal pro-p Galois groups of fields containing a root of 1
of order p, for example in [4, Sect. 8] and in [19, Sect. 7].
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We prove that the pro-p groups described in Theorem 1.1 cannot be
ruled out as maximal pro-p Galois groups employing the above two cohomo-
logical obstructions.

Proposition 1.3. Let G be a pro-p group as in Theorem 1.1.
(i) The Z/p-cohomology algebra H•(G, Z/pZ) is quadratic.
(ii) The pro-p group G satisfies the cyclic p-Massey vanishing property—

namely, the p-fold Massey product

〈α, . . . , α
︸ ︷︷ ︸

p times

〉

contains 0 for every α ∈ H1(G, Z/pZ).
(iii.a) If G is as in (1.1.a), then G satisfies the 3- and the strong 4-Massey

vanishing property.
(iii.b) If G is as in (1.1.b) and p > 3 then G satisfies the 3- and the strong

4-Massey vanishing property.

(We recall the basic notions on Massey products in Galois cohomology in
Sect. 6.1 below.) Hence, Corollary 1.2 provides brand new examples of pro-p
groups which do not occur as maximal pro-p Galois groups of fields containing
a root of 1 of order p, and as absolute Galois groups. Moreover, we remark
that the relations which define the pro-p groups described in Theorem 1.1
are rather “elementary”—just elementary commutators of generator times,
possibly, the p-power of a generator—, unlike the examples provided in [1,4,
19,24], where the relations involve higher commutators.

Finally, we focus on the Minač–Tân pro-p group, i.e., the pro-p group
G with pro-p presentation

G = 〈 x1, . . . , x5 | [[x1, x2], x3][x4, x5] = 1 〉.
In [19, Sect. 7], Minač and Tân showed that G does not satisfy the 3-Massey
vanishing property, and thus it does not occur as the maximal pro-p Galois
group of any field containing a root of 1 of order p. We prove that G cannot
complete into a 1-cyclotomic oriented pro-p group.

Theorem 1.4. Let p be an odd prime. Then there are no orientations turning
the Minač–Tân pro-p group into a 1-cyclotomic oriented pro-p group.

Theorem 1.4 has been proved independently by I. Snopce and P. Za-
lesskĭı (unpublished). Theorem 1.4 provides a negative answer to the ques-
tion posed in [29, Remark 3.7]—namely, the Minač–Tân pro-p group may be
ruled out as a maximal pro-p Galois group of a field containing a root of 1 of
order p (and thus as an absolute Galois group) in a “Massey-free” way.

Altogether, 1-cyclotomicity of oriented pro-p groups provides a rather
powerful tool studying maximal pro-p Galois groups, and it succeeds in de-
tecting pro-p groups which are not maximal pro-p Galois groups when other
methods fail, as underlined above. We believe that further investigations in
this direction will lead to new obstructions for the realization of pro-p groups
as maximal pro-p Galois group.



MJOM Chasing Maximal Pro-𝑝 Galois Groups via 1-Cyclotomicity Page 5 of 34 56

Actually, Theorem 1.4, and the main result in [33] (see in particular [33,
p. 1907]), may lead to the suspect that 1-cyclotomicity is a more restrictive
condition in comparison with the vanishing of Massey products. Thus, we
formulate the following conjecture.

Conjecture 1.5. Let (G, θ) be an oriented pro-p group, such that Im(θ) ⊆
1 + 4Z2 if p = 2. If (G, θ) is 1-cyclotomic, then the pro-p group G satisfies
the 3-Massey vanishing property; if moreover G is finitely generated, then G
satisfies the strong n-Massey vanishing property for every n ≥ 3.

After the publication on the arXiv of an earlier version of this paper,
A. Merkurjev and F. Scavia proved the first statement of Conjecture 1.5—
see [16, Theorem 1.3]—; while, on the other hand, there are 1-cyclotomic
oriented pro-2 groups (G, θ) such that Im(θ) ⊆ 1+4Z2, where G is not finitely
generated and does not satisfy the strong 4-Massey vanishing property—see
[15, Theorem 1.6]. In particular, [16, Theorem 1.3] implies Theorem 1.4 (see
also [16, Remark 6.3]).

2. Oriented Pro-p Groups and Cohomology

2.1. Notation and Preliminaries

Throughout the paper, every subgroup of a pro-p group is tacitly assumed to
be closed with respect to the pro-p topology. Therefore, sets of generators of
pro-p groups, and presentations, are to be intended in the topological sense.

Given a pro-p group G, we denote the closed commutator subgroup of G
by G′—namely, G′ is the closed normal subgroup generated by commutators

[h, g] = h−1 · hg = h−1 · g−1hg, g, h ∈ G.

The Frattini subgroup of G is denoted by Φ(G)—namely, Φ(G) is the closed
normal subgroup generated by G′ and by p-powers gp, g ∈ G (cf., e.g., [5,
Proposition 1.13]). A minimal generating set of G gives rise to a basis of the
Z/pZ-vector space G/Φ(G), and conversely (cf., e.g., [5, Proposition 1.9]).

Finally, we denote the abelianization G/G′ of G by Gab. Throughout
the paper, we will make use of the following straightforward fact.

Fact 2.1. Let G be a finitely generated pro-p group. Then a subset {x1, . . . , xd}
of G is a minimal generating set of G if, and only if, the subset {x1G

′,
. . . , xdG

′} of Gab is a minimal generating set of the abelian pro-p group Gab.

2.2. Oriented Pro-p Groups

Let G be a pro-p group. An orientation θ : G → 1+ pZp is said to be torsion-
free if p is odd, or if p = 2 and Im(θ) ⊆ 1 + 4Z2. Observe that one may
have an oriented pro-p group (G, θ) where G has non-trivial torsion and θ
torsion-free (e.g., if G 	 Z/p and Im(θ) = {1}).

A morphism of oriented pro-p groups (G1, θ1) → (G2, θ2), is a ho-
momorphism of pro-p groups φ : G1 → G2 such that θ1 = θ2 ◦ φ (cf. [29,
Sect. 3, p. 1888]).

Within the family of oriented pro-p groups one has the following con-
structions. Let (G, θ) be an oriented pro-p group.
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(a) If N is a normal subgroup of G contained in Ker(θ), one has the oriented
pro-p group (G/N, θ/N ), where θ/N : G/N → 1 + pZp is the orientation
such that θ/N ◦ π = θ, with π : G → G/N the canonical projection.

(b) If A is an abelian pro-p group (written multiplicatively), one has the
oriented pro-p group A � (G, θ) = (A � G, θ̃), with action given by
gag−1 = aθ(g) for every g ∈ G, a ∈ A, where the orientation θ̃ : A�G →
1 + pZp is the composition of the canonical projection A � G → G with
θ.

2.3. Kummerianity and 1-Cyclotomicity

Let (G, θ) be an oriented pro-p group. Observe that the G-action on the
G-module Zp(θ)/pZp(θ) is trivial, as θ(g) ≡ 1 mod p for all g ∈ G. Thus,
Zp(θ)/pZp(θ) is isomorphic to Z/p as a trivial G-module.

An oriented pro-p group (G, θ) comes endowed with the distinguished
subgroup

Kθ(G) =
〈

gh · h−θ(g) | g ∈ G, h ∈ Ker(θ)
〉

(cf. [11, Sect. 3]). The subgroup Kθ(G) is normal in G, and it is contained
in both Ker(θ) and Φ(G). On the other hand, Kθ(G) ⊇ Ker(θ)′, so that
Ker(θ)/Kθ(G) is an abelian pro-p group. Moreover, if θ is a torsion-free ori-
entation, G/Ker(θ) 	 Im(θ) is torsion-free, and thus either trivial or iso-
morphic to Zp. Hence, the epimorphism G � G/ Ker(θ) splits, and since
ghg−1 ≡ hθ(g) mod Kθ(G) for every g ∈ G and h ∈ Ker(θ), one concludes
that

(

G/Kθ(G), θ/Kθ(G)

)

	 Ker(θ)
Kθ(G)

�
(

G/Ker(θ), θ/Ker(θ)

)

(cf., e.g., [30, Sect. 2.2, Eq. (2.1)]).
One has the following result relating the subgroup Kθ(G) and the surjec-

tivity of the maps (1.1) (cf. [11, Theorem 7.1], see also [30, Proposition 2.6]).

Proposition 2.2. Let (G, θ) be an oriented pro-p group with θ a torsion-free
orientation. The following are equivalent.

(i) The natural map

H1(G, Zp(θ)/pn
Zp(θ)) −→ H1(G, Z/pZ),

is surjective for every positive integer n.
(ii) The quotient Ker(θ)/Kθ(G) is a free abelian pro-p group.

If an oriented pro-p group (G, θ) with torsion-free orientation satisfies
the above two equivalent properties, then it is said to be Kummerian. More-
over, (G, θ) is said to be 1-cyclotomic if (H, θ|H) is Kummerian for every
subgroup H ⊆ G.

Remark 2.3. The original definition of 1-cyclotomic oriented pro-p group re-
quires only that for every open subgroup U of G, the oriented pro-p group
(U, θ|U ) is Kummerian (cf. [29, Sect. 1]). By a continuity argument, this is
enough to imply that the oriented pro-p group (H, θ|H) is Kummerian also
for every subgroup H ⊆ G (cf. [29, Corollary 3.2]).
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If (G,1) is an oriented pro-p group with 1 : G → 1+pZp the orientation
constantly equal to 1, then K1(G) = G′, and by Proposition 2.2 (G, θ) is
Kummerian if, and only if, G/G′ = Ker(1)/K1(G) is a free abelian pro-p
group (cf. [11, Example 3.5–(1)]). Hence, (G,1) is 1-cyclotomic if, and only
if, H/H ′ is a free abelian pro-p group for every subgroup H ⊆ G, i.e., G is
absolutely torsion-free (cf. [25, Remark 2.3]).

2.4. Examples

Example 2.4. Let K be a field containing a root of 1 of order p, and also√
−1 if p = 2. Then the pro-p cyclotomic character θK of GK(p)—induced by

the action of GK(p) on the roots of 1 of p-power order contained in K(p)—
has image contained in 1 + pZp. Observe that Im(θK) = 1 + pf

Zp, where
f ∈ N∪{∞} is maximal such that K contains a root of 1 of order pf (if f = ∞,
we set p∞ = 0). In particular, θK is a torsion-free orientation. The module
Zp(θK) is called the 1st Tate twist of Zp (cf., e.g., [20, Definition 7.3.6]).

For the convenience of the reader, here we recall J. Labute’s argument
to show that the oriented pro-p group (GK(p), θK) is Kummerian—and thus
also 1-cyclotomic, as every subgroup H ⊆ GK(p) is the maximal pro-p Galois
group of an extension of K, with pro-p cyclotomic character θK|H—as it is
presented in [13, p. 131] (where the module Zp(θK) is denoted by I = I(χ′)).
For every n ≥ 1 one has an isomorphism of continuous GK(p)-modules

Zp(θK)/pn
Zp(θK) 	 μpn =

{

ζ ∈ K(p) | ζpn

= 1
}

.

Let K
× and K(p)× denote the multiplicative groups of units of K and K(p)

respectively. By Hilbert 90, the short exact sequence of continuous GK(p)-
modules

{1} �� μpn �� K(p)× pn

�� K(p)× �� {1} (2.1)

induces a commutative diagram

K
×/(K×)pn ��

πn

����

H1(GK(p), μpn) ∼ ��

��

H1 (GK(p), Zp(θK)/pn
Zp(θK))

��
K

×/(K×)p ∼ �� H1(GK(p), μp)
∼ �� H1 (GK(p), Z/pZ)

,

where the left-side vertical arrow πn and the central vertical arrow are in-
duced by the pn−1th power map pn

: K(p)× → K(p)×, and the right-side
vertical arrow is induced by the epimorphism of continuous GK(p)-modules
Zp(θK)/pn

Zp(θK) � Z/pZ. Since the map πn is surjective, also the other
vertical arrows are surjective.

Example 2.5. Let G be a free pro-p group. Then the oriented pro-p group
(G, θ) is 1-cyclotomic for any orientation θ : G → 1+ pZp (cf. [29, Sect. 2.2]).

Example 2.6. Let G be an infinite Demushkin group (cf., e.g., [20, Defini-
tion 3.9.9]). By [13, Theorem 4], G comes endowed with a canonical orienta-
tion χ : G → 1 + pZp which is the only one completing G into a 1-cyclotomic
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oriented pro-p group. In particular, if d = dim(H1(G, Z/pZ)) is even (which
is always the case if p �= 2), then G has a presentation

G =
〈

x1, . . . , xd | xpf

1 [x1, x2] · · · [xd−1, xd] = 1
〉

,

with f ≥ 1 (f ≥ 2 if p = 2). In this case χ(x2) = (1 − pf )−1 and χ(xi) = 1
for i �= 2.

Example 2.7. Let (G, θ) be an oriented pro-p group, with θ a torsion-free
orientation. The oriented pro-p group (G, θ) is said to be θ-abelian if the
subgroup Kθ(G) is trivial and if Ker(θ) is a free abelian pro-p group—in this
case G is a free abelian-by-cyclic pro-p group, i.e.,

G 	 Ker(θ) �
G

Ker(θ)

(cf. [30, Remark 2.2]). In other words, G has a presentation

G =
〈

x0, xi | i ∈ I, xx0
i = x

θ(x0)
−1

i , [xi, xj ] = 1 ∀ i, j ∈ I
〉

,

for some set of indices I, and θ(xi) = 1 for all i ∈ I (cf. [22, Proposition 3.4]).
A θ-abelian oriented pro-p group (G, θ) is Kummerian by Proposition 2.2,
as by definition Kθ(G) is trivial and Ker(θ) is a free abelian pro-p group.
Moreover, if H is a subgroup of G, then one has

H 	 (H ∩ Ker(θ)) �
H

Ker(θ|H)

(cf. [30, Remark 2.4]), so that the oriented pro-p group (H, θ|H) is θ|H -
abelian, and thus Kummerian, and consequently (G, θ) is 1-cyclotomic.

One has the following result to check whether an oriented pro-p group
is Kummerian (cf. [30, Propositions 2.6, 3.6]).

Proposition 2.8. Let (G, θ) be an oriented pro-p group, with θ a torsion-free
orientation. Then (G, θ) is Kummerian if, and only if, there exists a normal
subgroup N of G such that N ⊆ Ker(θ)∩Φ(G), and the quotient (G/N, θ/N ),
is a θ/N -abelian oriented pro-p group. If such a normal subgroup N exists,
then N = Kθ(G).

2.5. Kummerianity and 1-Cocyles

Let (G, θ) be an oriented pro-p group. Recall that for n ∈ N∪{∞}, a 1-cocycle
c : G → Zp(θ)/pn

Zp(θ) is a continuous map satisfying

c(gh) = c(g) + θ(g)c(h) for every g, h ∈ G, (2.2)

where θ(g) denotes the image of θ(g) modulo pn. From (2.2) one deduces

c([g, h]) = θ(gh)−1
(

c(g)(1 − θ(h)) − c(h)(1 − θ(g))
)

. (2.3)

For n ∈ N ∪ {∞}, every element of H1(G, Zp(θ)/pn
Zp(θ)) is represented by

a 1-cocycle c : G → Zp(θ)/pn
Zp(θ). The following result is due to J. Labute

(cf. [13, Proposition 6]).
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Lemma 2.9. Let (G, θ) be a finitely generated oriented pro-p group with
torsion-free orientation, and let X = {x1, . . . , xd} be a minimal generating
set of G. The following are equivalent.

(i) (G, θ) is Kummerian.
(ii) For all n ∈ N ∪ {∞} and for any sequence λ1, . . . , λd of elements of

Zp(θ)/pn
Zp(θ) there exists a continuous 1-cocycle G → Zp(θ)/pn

Zp(θ)
satisfying c(xi) = λi for all i = 1, . . . , d.

Proposition 2.10. Let G be a finitely generated pro-p group, and let (G, θ) be
a Kummerian oriented pro-p group with torsion-free orientation. If N is a
normal subgroup of G such that N ⊆ Ker(θ) and the restriction map

res1G,N : H1(G, Z/pZ) −→ H1(N, Z/pZ)G

is surjective, then also (G/N, θ/N ) is Kummerian.

In order to prove Proposition 2.10 we need the following fact, whose
proof—rather straightforward—is left to the reader.

Fact 2.11. Let G be a finitely generated pro-p group, and let (G, θ) be an
oriented pro-p group with torsion-free orientation.

(i) If c : G → Zp(θ)/pn
Zp(θ) is a continuous 1-cocycle, with n ∈ N ∪ {∞},

then c−1(0) ∩ Ker(θ) is a normal subgroup of G.
(ii) Let N ⊆ G be a normal subgroup satisfying N ⊆ Ker(θ), with canonical

projection π : G → G/N . For n ∈ N ∪ {∞} one has the following:
(a) a continuous 1-cocycle c : G → Zp(θ)/pn

Zp(θ) satisfying c|N ≡
0 induces a continuous 1-cocycle c̄ : G/N → Zp(θ/N )/pn

Zp(θ/N )
such that c = c̄ ◦ π;

(b) a continuous 1-cocycle c̄ : G/N → Zp(θ/N )/pn
Zp(θ/N ) induces a

continuous 1-cocycle c : G → Zp(θ)/pn
Zp(θ) satisfying c|N ≡ 0

and c = c̄ ◦ π.

Proof of Proposition 2.10. Set Ḡ = G/N and θ̄ = θ/N . For every n ≥ 1, the
canonical projection π : G → Ḡ induces the inflation maps

fn : H1(Ḡ, Zp(θ̄)/pn
Zp(θ̄)) −→ H1(G, Zp(θ)/pn

Zp(θ)),

f : H1(Ḡ, Z/pZ) −→ H1(G, Z/pZ),
(2.4)

which are injective by [20, Proposition 1.6.7]. Also, the epimorphisms (respec-
tively, of continuous Ḡ-modules and continuous G-modules) Zp(θ̄)/pn

Zp(θ̄) →
Z/pZ and Zp(θ)/pn → Z/pZ induce, respectively, the morphisms

τN
n : H1(Ḡ, Zp(θ)/pn) −→ H1(Ḡ, Z/p),

τn : H1(G, Zp(θ)/pn) −→ H1(G, Z/p).
(2.5)

Altogether, by [20, Proposition 1.5.2] one has the commutative diagram

H1
(

Ḡ, Zp(θ̄)/pn
Zp(θ̄)

) τN
n ��

fn

��

H1(Ḡ, Z/pZ)

f

��
H1 (G, Zp(θ)/pn

Zp(θ))
τn �� �� H1(G, Z/pZ)
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Since (G, θ) is Kummerian, τn is surjective for every n ≥ 1. Given β̄ ∈
H1(Ḡ, Z/pZ), β̄ �= 0, our goal is to find α ∈ H1(Ḡ, Zp(θ̄)/pn

Zp(θ̄)) such that
β̄ = τN

n (α).
Set β = β̄ ◦ π = f(β̄). Then β : G → Z/p is a non-trivial continu-

ous homomorphism such that Ker(β) ⊇ N . By hypothesis, the morphism
N/Np[G,N ] → G/Φ(G) induced by the inclusion N ↪→ G, and dual to
res1G,N , is injective. Thus, one may find a minimal generating set X of G such
that Y = X ∩ N generates N as a normal subgroup of G. By Lemma 2.9,
there exists a continuous 1-cocycle c : G → Zp(θ)/pn

Zp(θ) satisfying

c(x) ≡ β(x) mod pZp(θ) for every x ∈ X
—i.e., τn([c]) = β, where [c] ∈ H1(G, Zp(θ)/pn

Zp(θ)) denotes the cohomology
class of c—and moreover c(x) = 0 for every x ∈ Y. Therefore, by Fact 2.11–
(i), the restriction

c|N : N −→ Zp(θ)/pn
Zp(θ)

is the map constantly equal to 0. By Fact 2.11–(ii), c induces a continuous
1-cocycle

c̄ : Ḡ −→ Zp(θ̄)/pn
Zp(θ̄)

such that c̄ ◦ π = c, and [c] = fn([c̄]), where [c̄] ∈ H1(Ḡ, Zp(θ̄)/pn
Zp(θ̄))

denotes the cohomology class of c̄. Altogether, one has

f(β̄) = β = τn([c]) = τn ◦ fn([c̄]) = f ◦ τN
n ([c̄]).

Since f is injective, one obtains β̄ = τN
n ([c̄]). �

Remark 2.12. Proposition 2.10 may be proved also in a purely group-theoretic
way, see [3, Remark 3.9].

3. The Z/pZ-Cohomology of G

The purpose of this section is to prove the first statement of Proposition 1.3,
and more in general to describe the Z/pZ-cohomology algebra H•(G, Z/pZ)
with G as in Theorem 1.1.

3.1. Degree 1 and 2

Let G be a pro-p group. We set the subgroup G(3) of G as follows:

G(3) =

{

Gp[G,G′] if p �= 2,

G4(G′)2[G,G′] if p = 2,

i.e., G(3) is the third term of the p-Zassenhaus filtration of G (cf., e.g., [23,
Sect. 3.1]). In particular, G(3) is a normal subgroup of the Frattini subgroup
Φ(G), and the quotient Φ(G)/G(3) is a p-elementary abelian pro-p group—
and thus also a Z/p-vector space.

Recall that the cohomology group H1(G, Z/pZ) is equal to the group of
pro-p group homomorphisms from G to Z/p, namely, one has

H1(G, Z/pZ) = Hom(G, Z/pZ) 	 (G/Φ(G))∗, (3.1)
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where ∗ denotes the Z/p-dual (cf., e.g., [32, Chap. I, Sect. 4.2]). Thus, the
dimension of H1(G, Z/pZ) is equal to the cardinality d(G) of any minimal
generating set of G. On the other hand, the dimension of H2(G, Z/pZ) is equal
to the number r(G) of defining relations of G (cf. [32, Chap. I, Sect. 4.3]).
Moreover, if both H1(G, Z/pZ) and H2(G, Z/pZ) are finite, and if the cup-
product yields an epimorphism H1(G, Z/pZ)⊗2 � H2(G, Z/pZ), one has an
isomorphism of elementary abelian p-groups

(

Φ(G)/G(3)

)∗ trg �� H2(G, Z/pZ) (3.2)

(cf. [17, Theorem 7.3]). For further properties of the cohomology of pro-p
groups we refer to [32, Chap. I, Sect. 4] and to [20, Chap. III, Sect. 9].

3.2. Amalgams

Henceforth, G will denote a pro-p group as in Theorem 1.1. Set

G1 = 〈 x, y1, . . . , yd1 | xεp[x, y1] · · · [yd1−1, yd1 ] = 1 〉,
G2 = 〈 x, z1, . . . , zd2 | xεp[x, z1] · · · [zd2−1, zd2 ] = 1 〉,

with ε = 0, 1 depending on whether we are considering case (1.1.a) or (1.1.b).
Then G1, G2 are Demushkin groups, and G is the amalgamated free pro-p
product

G = G1 �p̂
X G2, (3.3)

with amalgam the subgroup X ⊆ G1, G2 generated by x. Observe that
X 	 Zp, as X has infinite index in both G1, G2, and subgroups of infinite in-
dex of Demushkin groups are free pro-p groups (cf. [32, Chap. I, Sect. 4.5, Ex-
ample 5–(b)]). Therefore, the amalgamated free pro-p product is proper, i.e.,
G1, G2 ⊆ G (cf. [31]).

3.3. Quadratic Cohomology

Let

B = { χ, ϕ1, . . . , ϕd1 , ψ1, . . . , ψd2 }
be the basis of H1(G, Z/pZ) = Hom(G, Z/pZ) dual to X = {x, y1, . . . , zd2}—
i.e.,

χ(w) =

{

1 if w = x

0 if w = yi, zj

and

ϕi(w) =

{

δi,i′ if w = yi′

0 if w = x, zj ,
ψj(w) =

{

δj,j′ if w = zj′

0 if w = x, yi,

for every 1 ≤ i, i′ ≤ d1 and 1 ≤ j, j′ ≤ d2 (cf. (3.1)). With an abuse of no-
tation, we may consider the subsets B1 = {χ,ϕ1, . . . , ϕd1}, B2 = {χ, ψ1,
. . . , ψd2}, and BX = {χ}, as bases of H1(G1, Z/pZ), H1(G2, Z/pZ), and
H1(X, Z/pZ) respectively.

Proposition 3.1. The algebra H•(G, Z/pZ) is quadratic.
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Proof. As stated in Sect. 3.2, G = G1 �p̂
X G2 is a proper amalgamated free

pro-p product. Since BX ⊆ B1,B2, the restriction maps

res1Gi,X : H1(Gi, Z/pZ) −→ H1(X, Z/pZ), with i = 1, 2,

are surjective. Moreover, H2(X, Z/pZ) = 0, as X 	 Zp, and thus
Ker(res2Gi,X

) = H2(Gi, Z/pZ) for both i = 1, 2. On the other hand,
H1(G1, Z/pZ) and H1(G2, Z/pZ) are generated by χ � ϕ1 and χ � ψ1 re-
spectively, as G1, G2 are Demushkin groups (cf., e.g., [20, Proposition 3.9.16]),
and thus

Ker(res2Gi,X)

= H2(Gi, Z/pZ) = Ker(res1Gi,X) � H1(Gi, Z/pZ), with i = 1, 2,

as res1G1,X(ϕ1) = 0 and res1G2,X(ψ1) = 0. Finally, Demushkin groups are well-
known to yield a quadratic Z/pZ-cohomology algebra, while H•(X, Z/pZ) is
obviously quadratic, as X 	 Zp. Therefore, we may apply [28, Theorem B],
so that also H•(G, Z/pZ) is quadratic. �

We describe now more in detail the structure of H•(X, Z/pZ). By
duality—cf. [17, Theorem 7.3] and (3.2)—the set {χ � ϕ1, χ � ψ1} is a
basis of H2(G, Z/pZ), and in H2(G, Z/pZ) one has the relations

χ � ϕi′ = χ � ψj′ = ϕi � ψj = 0 (3.4)

for all 1 ≤ i, i′ ≤ d1 and 1 ≤ j, j′ ≤ d2, with i′, j′ �= 1, and

ϕi � ϕi′ =

{

(−1)εχ � ϕ1 if 2 | i = i′ − 1,

0 otherwise,

ψj � ψj′ =

{

(−1)εχ � ψ1 if 2 | j = j′ − 1,

0 otherwise

(3.5)

(see also [23, Sect. 3.2]).
Finally, one has an exact sequence

· · · H2(X, Z/pZ)

H3(G, Z/pZ) H3(G1, Z/pZ) ⊕ H3(G2, Z/pZ) · · ·

(cf. [28, p. 653]). Since H2(X, Z/pZ) = H3(Gi, Z/pZ) = 0 for both i = 1, 2,
one has H3(G, Z/pZ) = 0, and thus by quadraticity also Hn(G, Z/pZ) = 0
for all n ≥ 3.

Remark 3.2. It is well-known that if a pro-p group has non-trivial torsion,
then its nth Z/p-cohomology group is non-trivial for every n > 0; hence, G
is torsion-free.
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4. Proof of Theorem 1.1 Case (1.1.a)

Let G be a pro-p group as defined in Theorem 1.1, with defining relations as
in (1.1.a)—namely,

G = 〈 x, y1, . . . , yd1 , z1, . . . , zd2 | r1 = r2 = 1 〉,
with d1 + d2 ≥ 4 and

r1 = [x, y1] · · · [yd1−1, yd1 ],

r2 = [x, z1] · · · [zd2−1, zd2 ].

Without loss of generality, we may assume that d1 ≥ 3.

4.1. Kummerianity

Let G1, G2 be the two Demushkin groups as in Sect. 3.2, with ε = 0. By
Example 2.6, if

θ1 : G1 −→ 1 + pZp and θ2 : G2 −→ 1 + pZp

are two torsion-free orientations completing respectively G1 and G2 into
Kummerian oriented pro-p groups, then necessarily θ1(x) = θ1(y1) = · · · =
θ1(yd1) = 1, and analogously θ2(x) = θ2(z1) = · · · = θ1(zd2) = 1.

Proposition 4.1. Let θ : G → 1 + pZp be a torsion-free orientation. Then the
oriented pro-p group (G, θ) is Kummerian if, and only if, θ is constantly equal
to 1.

Proof. If θ ≡ 1, then (G,1) is Kummerian if, and only if, the abelianization
Gab is a free abelian pro-p group. But this is easily verified, as clearly Gab 	
Z

d1+d2−1
p .

Conversely, suppose that (G, θ) is Kummerian. Let N1 and N2 denote
the normal subgroups of G generated as normal subgroups by z1, . . . , zd2

and y1, . . . , yd1 respectively. Then G/N1 	 G1 and G/N2 	 G2. Moreover,
Proposition 2.10 implies that (G/Ni, θ/Ni

) is Kummerian for both i = 1, 2.
Since G/Ni 	 Gi for both i, Example 2.6 and the argument before the
statement of the proposition imply that the torsion-free orientations θ/N1

and θ/N2 are constantly equal to 1. Hence, also θ is constantly equal to 1, as
θ(w) = θ/N1(wN1) for every w ∈ G1, and analogously θ(w) = θ/N2(wN2) for
every w ∈ G2. �

Therefore, if G may complete into a 1-cyclotomic oriented pro-p group,
then necessarily G is absolutely torsion-free. In order to prove Theorem 1.1
in case (1.1.a), we aim at exhibiting an open subgroup H of G, of index p2,
whose abelianization Hab has non-trivial torsion.

4.2. The Subgroup U

Set u = yp
3 , t0 = z−1

1 y3, and th = t0t
y3
0 · · · ty

h
3

0 for all h = 0, . . . , p − 1. A
straightforward computation shows that

zh
1 = yh

3 · (t−1
0 )yh−1

3 · · · (t−1
0 )y3 · t−1

0 = yh
3 t−1

h−1 (4.1)

for all h = 0, . . . , p − 1.
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Let φG : G → Z/p be the homomorphism of pro-p groups defined by
φG(y3) = φG(z1) = 1 and φG(x) = φG(yi) = φG(zj) = 0 for all i =
1, 2, 4, . . . , d1 and j = 2, . . . , d2, and set U = Ker(φ). Then U is an open
subgroup of G of index p, generated as a normal subgroup by the subset

X = { u, x, t0, yi, zj | i = 1, 2, 4, . . . , d1, j = 2, . . . , d2} ,

and G/U = {U, y3U, . . . , yp−1
3 U}.

Lemma 4.2. The subset

YU =
{

u, x, y2, th, y
yh
3

i , z
yh
3

j | i = 1, 4, . . . , d1, j = 2, . . . , d2, h = 0, . . . , p − 1
}

of U is a minimal generating set of U as a pro-p group.

Proof. Since U is normally generated by X and G/U = {U, . . . , yp−1
3 U}, U is

generated as a pro-p group by the set {wyh
3 | w ∈ X , h = 0, . . . , p − 1}. Also,

U is subject to the relations

r
yh
3

1 =
[

xyh
3 , y

yh
3

1

]

· · ·
[

y
yh
3

d1−1, y
yh
3

d1

]

= 1, (4.2)

r
yh
3

2 =
[

xyh
3 , z

yh
3

1

]

· · ·
[

z
yh
3

d2−1, z
yh
3

d2

]

= 1, (4.3)

with h = 0, . . . , p − 1.
Consider the abelianization Uab. Since the only factor in (4.2) which

does not lie in U ′ is [yyh
3

2 , y3], the relation (4.2) implies that [yyh
3

2 , y3] ∈ U ′ as
well, and therefore

y
yh
3

2 ≡ y2 mod U ′ for all h = 0, . . . , p − 1.

Analogously, the only factor in (4.3) which does not lie in U ′ is [xyh
3 , z

yh
3

1 ], so

that the relation (4.2) implies that [xyh
3 , z

yh
3

1 ] ∈ U ′ as well. Hence, one has

≡ 1 mod U ′ ⇒ xy3t−1
0 ≡ x mod U ′

⇒ xy3 ≡ xt0 mod U ′,

[xy3 , zy3
1 ] ≡ 1 mod U ′ ⇒ (xy3)(z

y3
1 ) = xy2

3(t
−1
0 )y3 ≡ xy3 mod U ′

⇒ xy2
3 ≡ xt1 mod U ′,

and so on. Thus,

xyh
3 ≡ xth−1 mod U ′ for all h = 1, . . . , p − 1.

Altogether, Uab is the free abelian pro-p group generated by the cosets {wU ′ |
w ∈ YU}, so that Fact 2.1 yields the claim. �

Now set U1 = G1∩U and U2 = G2∩U . Then U1, U2 are open subgroups
of G1, G2, respectively, of index p, and thus they are again Demushkin groups,
on 2+p(d1−1) and 2+p(d2−1) generators respectively (cf. [6]). In particular,
the defining relation of U1 is

s1 =
0
∏

h=p−1

([

y
yh
3

4 , y
yh
3

5

]

· · ·
[

y
yh
3

d1−1, y
yh
3

d1

] [

xyh
3 , y

yh
3

1

])

[y2, u] = 1, (4.4)
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while the defining relation of U2 is

s2 =
0
∏

h=p−1

([

z
zh
1

2 , z
zh
1

3

]

· · ·
[

z
zh
1

d2−1, z
zh
1

d2

])

[x, zp
1 ]

=
0
∏

h=p−1

([

z
yh
3 t−1

h−1
2 , z

yh
3 t−1

h−1
3

]

· · ·
[

z
yh
3 t−1

h−1
d2−1 , z

yh
3 t−1

h−1
d2

])

[x, ut−1
p−1] = 1.

(4.5)

Also, from the relations (4.4)–(4.5) and from (4.1), one computes

xy3 = xz1t0 = xt0([zd2 , zd2−1] · · · [z3, z2])t0 ,

xy2
3 = xt1([zd2 , zd2−1] · · · )t1

([

zy3
d2

, zy3
d2−1

]

· · ·
)t−1

0 t1
,

xy3
3 = xt2([zd2 , zd2−1] · · · )t2

([

zy3
d2

, zy3
d2−1

]

· · ·
)t−1

0 t2
([

z
y2
3

d2
, z

y2
3

d2−1

]

· · ·
)t−1

1 t2
,

(4.6)

and so on. In fact, the two relations (4.4)–(4.5)—with the xyh
3 ’s replaced

using (4.6)—are all the defining relations we need to get U , as shown in the
following.

Lemma 4.3. The pro-p group U has r(U) = 2 defining relations.

Proof. Since Hn(G, Z/pZ) = 0 for every n ≥ 3 (cf. Sect. 3.3) and [G : U ] = p,
one has Hn(U, Z/pZ) = 0 for every n ≥ 3 as well (cf. [20, Proposition 3.3.5]).
Moreover, one has

r(U) − d(U) + 1 = p (r(G) − d(G) + 1) (4.7)

(cf. [20, Proposition 3.3.13]). By definition, r(G) = 2 and d(G) = 1+d1 +d2,
while d(U) = 3 + p(d1 + d2 − 2) by Lemma 4.2. Therefore, from (4.7) one
computes r(U) = 2. �

4.3. The Subgroup H

Let φU : U → Z/p be the homomorphism of pro-p groups defined by φU (y1),
φU (yy3

1 ) = −1, and φU (w) = 0 for any other element w of YU , and put
H = Ker(φU ). Then H is an open subgroup of U of index p. Set v = y1.
Since U/H = {H, vH, . . . , vp−1H}, H is the pro-p group (non-minimally)
generated by

XH =
{

vp, (vyy3
1 )vh

, wvh | w ∈ YU , w �= v, yy3
1 , h = 0, . . . , p − 1

}

,

and subject to the 2p relations svh

1 = 1 and svh

2 = 1, with h = 0, . . . , p − 1.
We claim that the abelianization Hab yields non-trivial torsion.

Proposition 4.4. The abelian pro-p group Hab is not torsion-free.

Proof. Since all the elements of YU showing up in the last terms of the
equalities (4.6) belong to H, one deduces that xyh

3 ≡ x mod H ′ for all
h = 0, . . . , p − 1.

Now, each factor of s2—cf. (4.5)—is a commutator of elements of H,
and thus the relations svh

2 = 1 yield trivial relations in Hab. On the other
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hand, every factor of s1—cf. (4.4)—but [x, y1] and [xy3 , yy3
1 ], is a commutator

of elements of H. From (4.4) one obtains

[xy3 , yy3
1 ] [x, y1] ≡

[

x, v−1(vyy3
1 )
]

[x, v] ≡ [x, v−1][x, v] ≡ 1 mod H ′, (4.8)

as vyy3
1 ∈ H. Altogether, Hab is the abelian pro-p group (non-minimally)

generated by the set XHab = {wH ′ | w ∈ XH}, and subject to the p relations
[

xvh

H ′, v−1H ′
] [

xvh

H ′, vH ′
]

= H ′, with h = 0, . . . , p − 1,

as U/H = {H, vH, . . . , vp−1H}. From these relations, one deduces the equiv-
alences:

xv2 ≡ (xv)2 · x−1 mod H ′ with h = 1,

xv3 ≡
(

xv2
)2

· (xv)−1 ≡ (xv)3 · x−2 mod H ′ with h = 2,

...

xvp−1 ≡
(

xvp−2
)2

·
(

xvp−3
)−1

≡ (xv)p−1 · x2−p mod H ′ with h = p − 2,

xvp ≡
(

xvp−1
)2

·
(

xvp−2
)−1

≡ (xv)p · x1−p mod H ′ with h = p − 1.

But xvp ≡ x mod H ′, as vp ∈ H, and thus from the last of the above equiv-
alences one obtains

x ≡ (xv)px1−p mod H ′ =⇒ (xv)px−p ≡ (xvx−1)p ≡ 1 mod H ′. (4.9)

Altogether, Hab is the abelian pro-p group minimally generated by

YHab =
{

vpH ′, xH ′, xvH ′, (vyy3
1 )vh

H ′, wvh

H ′ | h = 0, . . . , p − 1
}

,

where w ∈ YU � {v, yy3
1 , x}, and subject to the relation ((xH ′)−1 · xvH ′)p =

H ′—in particular, Hab is isomorphic to Z
2+p+p2(d1+d2−2)
p × Z/pZ. �

5. Proof of Theorem 1.1 Case (1.1.b)

Let p be an odd prime, and let G be a pro-p group as defined in Theorem 1.1,
with defining relations as in (1.1.b)—namely,

G = 〈 x, y1, . . . , yd1 , z1, . . . , zd2 | r1 = r2 = 1 〉,

with

r1 = yp
1 [y1, x] · · · [yd1−1, yd1 ],

r2 = zp
1 [z1, x] · · · [zd2−1, zd2 ].
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5.1. Kummerianity

Let G1, G2 be the two Demushkin groups as in Sect. 3.2, with ε = 1. By
Example 2.6, if

θ1 : G1 −→ 1 + pZp and θ2 : G2 −→ 1 + pZp

are two torsion-free orientations completing respectively G1 and G2 into
Kummerian oriented pro-p groups, then necessarily θ1(y1) = · · · = θ1(yd1) =
1, and analogously θ2(z1) = · · · = θ1(zd2) = 1, while θ1(x) = θ2(x) =
(1 − p)−1.

Proposition 5.1. An orientation θ : G → 1 + pZp completes G into a Kum-
merian oriented pro-p group (G, θ) if, and only if,

θ(x) = (1 − p)−1 and θ(yi) = θ(zj) = 1

for all i = 1, . . . , d1 and j = 1, . . . , d2.

Proof. Suppose that θ : G → 1+ pZp is the orientation defined as above, and
pick arbitrary p-adic integers λ, λi, λ

′
j ∈ Zp for 1 ≤ i ≤ d1 and 1 ≤ j ≤ d2.

The assignment x �→ λ, yi �→ λi and zj �→ λ′
j for every i, j yields a well-defined

continuous 1-cocycle c : G → Zp(θ), as (2.3) implies that

c(r1) = c(yp
1) + c([y1, x]) + c([y2, y3]) + · · · + c([yd1−1, yd1 ])

= p · λ1 + θ(x)−1(λ1(1 − θ(x)) − 0) + 0 + · · · + 0
= 0

and

c(r2) = c(zp
1) + c([z1, x]) + c([z2, z3]) + · · · + c([zd2−1, zd2 ])

= p · λ′
1 + θ(x)−1(λ′

1(1 − θ(x)) − 0) + 0 + · · · + 0
= 0.

Therefore, (G, θ) is Kummerian by Lemma 2.9.
Conversely, suppose that (G, θ) is Kummerian. Let N1 and N2 denote

the normal subgroups of G generated as normal subgroups by z1, . . . , zd2

and y1, . . . , yd1 , respectively. Then G/N1 	 G1 and G/N2 	 G2. Moreover,
Proposition 2.10 implies that (G/Ni, θ/Ni

) is Kummerian for both i = 1, 2.
Since G/Ni 	 Gi for both i, Example 2.6 and the argument before the

statement of the proposition imply that θ/N1(y1N1) = · · · = θ/N1(yd1N1) = 1,
and analogously θ/N2(z1N2) = · · · = θ/N2(zd2N2) = 1, while θ/N1(xN1) =
θ/N2(xN2) = (1 − p)−1. Hence, θ is as defined above, as θ(w) = θ/N1(wN1)
for every w ∈ G1, and analogously θ(w) = θ/N2(wN2) for every w ∈ G2. �

Henceforth, θ : G → 1 + pZp will denote the orientation as in Proposi-
tion 5.1.
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5.2. The Subgroup H

Let φ1 : G1 → Z/p ⊕ Z/p and φ2 : G2 → Z/p ⊕ Z/p be the homomorphisms
of pro-p groups defined by

φ1(x) = φ2(x) = (1, 0),

φ1(y1) = φ2(z1) = (0, 1),

φ1(yi) = φ2(zj) = (0, 0) for i, j ≥ 2.

(5.1)

Put U1 = Ker(φ1) and U2 = Ker(φ2), and also

t = z−1
1 y1, u = xp, v = yp

1 , w = zp
1 .

Then U1 is an open normal subgroup of G1 of index p2, and likewise for U2

and G2—note that by [6] both U1 and U2 are Demushkin groups.
Finally, put N1 = Ker(θ|U1), N2 = Ker(θ|U2), and let T be the subgroup

of G generated by t. Observe that N1 and N2 are free pro-p groups, as they are
subgroups of infinite index of Demushkin groups (cf. [32, Chap. I, Sect. 4.5, Ex-
ample 5–(b)]), while T 	 Zp as G is torsion-free (cf. Remark 3.2).

Let H be the subgroup of G generated by U1, U2 and T , and let M be
the subgroup of H generated by N1, N2 and T . Observe that M ⊆ Ker(θ).
Our aim is to show that the oriented pro-p group (H, θ|H) is not Kummerian.
For this purpose, we need the following.

Lemma 5.2. (i) M = N1 � N2 � T .
(ii) M is a normal subgroup of H, and H 	 M � Xp

(iii) One has an isomorphism of p-elementary abelian groups
G

Φ(G)
	 Xp

Xp2 × N1

Np
1 [N1, U1]

× N2

Np
2 [N2, U2]

× T

T p
. (5.2)

Proof. Consider the pro-p tree T associated to the amalgamated free pro-p
product (3.3). Namely, T consists of a set vertices V and a set of edges E ,
where

V = { hG1, hG2 | h ∈ G } = G/G1 ∪̇ G/G2,

E = { hX | h ∈ G } = G/X,

and it comes endowed with a natural G-action, i.e.,
g.(hG1) = (gh)G1 for every g ∈ G, hG1 ∈ G/G1 ⊆ V
g.(hG1) = (gh)G2 for every g ∈ G, hG2 ∈ G/G2 ⊆ V,

g.(hX) = (gh)X for every g ∈ G, hX ∈ G/X = E .

(5.3)

Pick g ∈ M and hX ∈ E . Then g.hX = hX if, and only if, g ∈ hXh−1,
i.e., g = hxλh−1 for some λ ∈ Zp. Since M ⊆ Ker(θ), it follows that

1 = θ(g) = θ
(

hxλh−1
)

= θ(x)λ = (1 − p)λ, (5.4)

and therefore λ = 0, as 1 + pZp is torsion-free. Hence, the subgroup M
intersects trivially the stabilizer StabG(hX) of every edge hX ∈ E . By [14,
Theorem 5.6], M decomposes as free pro-p product as follows:

M =

(

∐

ω∈V′
StabM (ω)

)

� F, (5.5)
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where F is a free pro-p group, and V ′ ⊆ V is a continuous set of representatives
of the space of orbits M\V. Clearly, the vertices G1 and G2 belong to different
orbits, thus in the decomposition (5.5) one finds the two factors

StabM (G1) = { g ∈ M | gG1 = G1 } = M ∩ G1,

StabM (G2) = { g ∈ M | gG2 = G2 } = M ∩ G2.

Since N1 ⊆ M ∩ G1 ⊆ Ker(θ) ∩ G1 = N1, one has StabM (G1) = N1, and
analogously StabM (G2) = N2. Therefore, from (5.5) one obtains

M = N1 � N2 �

⎛

⎝

∐

ω∈V′�{G1,G2}
StabM (ω) � F

⎞

⎠ . (5.6)

It is straightforward to see that t /∈ N1 � N2. Since M is generated as pro-p
group by N1, N2 and t, the right-side factor in (5.6) is necessarily T , and this
proves (i).

To prove (ii), we need only to show that uMu−1 = M , as H = 〈 u,M 〉.
Since N1 is normal in U1, and u ∈ U1, then uN1u

−1 = N1—analogously,
uN2u

−1 = N2. Now, observe that the integer

(1 − p)p − 1 =
(

1 −
(

p

1

)

p +
(

p

2

)

p2 − · · · − pp

)

− 1

is divisible by p2 but not by p3, so we put (1−p)p = 1+p2λ, with λ ∈ 1+pZp.
From the relation r1 = 1 one deduces

yx
1 = y1−p

1 · ([y2, y3] · · · [yd1−1, yd1 ])
−1

, (5.7)

and by iterating (5.7) p times, one obtains yu
1 = y

(1−p)p

1 n1 for some n1 ∈
N ′

1—for this purpose, observe that for every ν ≥ 0 and i ≥ 1, the triple
commutator

[yν
1 , [yi, yi+1]] =

[

y
yν
1

i , y
yν
1

i+1

]−1

· [yi, yi+1]

belongs to N ′
1, as y

yν
0

i ∈ N1. Analogously, zu
1 = z

(1−p)p

1 n2 for some n2 ∈ N ′
2.

Altogether,

tu = (z−1
1 y1)u = zu

1 yu
1 = n−1

2 · w−pλ · t · vpλ · n1, (5.8)

which belongs to M—here we replaced z
−(1−p)p

1 = w−pλ · z−1
1 and y

(1−p)p

1 =
y1 · vpλ

. Hence, M � H. Finally, by definition H = M · Xp, and moreover

M ∩ Xp ⊆ Ker(θ) ∩ Xp = {1},

so that H = M � Xp. This completes the proof of (ii).
Finally, by (i) and (ii) one has the isomorphism of p-elementary abelian

groups

M/Φ(M) 	 N1/Φ(N1) × N2/Φ(N2) × T/T p

H/Φ(H) 	 Xp/Xp2 × M/Mp[M,H].
(5.9)

From (5.8) one has that [T,Xp] ⊆ Φ(M), and since H = MXp, U1 = N1X
p,

and U2 = N2X
p, form (5.9) one deduces (iii). �
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5.3. The Subgroup H and Kummerianity

Proposition 5.3. The oriented pro-p group (H, θ|H) is not Kummerian.

Proof. Let N be the normal subgroup of H generated as a normal subgroup
by N1, N2, and set H̄ = H/N . Then N ⊆ Ker(θ|H), and clearly H̄ is finitely
generated. Moreover, by duality the restriction map res1H,N : H1(H, Z/pZ) →
H1(N, Z/pZ)H is surjective, as by Lemma 5.2 one has

N/Np[N,H] 	 N1/N
p
1 [N1, U1] × N2/N

p
2 [N2, U2],

which embeds in H/Φ(H). In particular, {uN, tN} is a minimal generating
set of H̄. Thus, by Proposition 2.10 if the oriented pro-p group (H̄, θ̄) is not
Kummerian—where θ̄ = (θ|H)/N : H̄ → 1 + pZp is the orientation induced
by θ|H—then also (H, θ|H) is not Kummerian.

By (5.8), in H one has that [t, u−1] ≡ 1 mod N , and thus H̄ is abelian.
Moreover,

θ̄(uN) = θ(u) = (1 − p)p and θ̄(tN) = θ(t) = 1,

so that Ker(θ̄) = 〈tN〉. Therefore, the subgroup Kθ̄(H̄) is generated by
(

t−θ(u)utu−1
)

N = tp
2λN.

Thus, the quotient Ker(θ̄)/Kθ̄(H̄) = 〈tN〉/〈tN〉p2
is not torsion-free, and by

Proposition 2.2, (H̄, θ̄) is not Kummerian. �

This completes the proof of Theorem 1.1 case (1.1.b).

Remark 5.4. If d1 = d2 = 1, case (1.1.b) of Theorem 1.1 is a particular case
of [3, Proposition 6.5].

6. Massey Products

6.1. Massey Products in Galois Cohomology

Here we recall briefly what we need in order to prove Proposition 1.3. For a
detailed account on Massey products for pro-p groups, we direct the reader
to [8,19,35].

Let G be a pro-p group. For n ≥ 2, the n-fold Massey product on
H1(G, Z/pZ) is a multi-valued map

H1(G, Z/pZ) × · · · × H1(G, Z/pZ)
︸ ︷︷ ︸

n times

−→ H2(G, Z/pZ).

For n ≥ 2, given a sequence α1, . . . , αn of elements of H1(G, Z/pZ) (with
possibly αi = αj for some 1 ≤ i < j ≤ n), the (possibly empty) sub-
set of H2(G, Z/pZ) which is the value of the n-fold Massey product as-
sociated to the sequence α1, . . . , αn is denoted by 〈α1, . . . , αn〉. If n = 2,
then the 2-fold Massey product coincides with the cup-product, i.e., for
α1, α2 ∈ H1(G, Z/pZ) one has

〈α1, α2〉 = {α � α2} ⊆ H2(G, Z/pZ). (6.1)

A pro-p group G is said to satisfy:
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(a) the n-Massey vanishing property (with respect to Z/pZ) if for every se-
quence α1, . . . , αn of elements of H1(G, Z/pZ), 〈α1, . . . , αn〉 �= ∅ implies
0 ∈ 〈α1, . . . , αn〉;

(b) the strong n-Massey vanishing property (with respect to Z/pZ) if for
every sequence α1, . . . , αn of elements of H1(G, Z/pZ), the condition on
the cup-products

α1 � α2 = α2 � α3 = · · · = αn−1 � αn = 0 (6.2)

implies 0 ∈ 〈α1, . . . , αn〉 (cf. [21, Definition 1.2])—we remind that the
triviality condition (6.2) is satisfied whenever 〈α1, . . . , αn〉 �= ∅, cf., e.g.,
[19, Sect. 2];

(c) the cyclic p-Massey vanishing property if for every element α ∈ H1(G,
Z/pZ), the p-fold Massey product 〈α, . . . , α〉 contains 0.

Remark 6.1. Given a sequence α1, . . . , αn of elements of H1(G, Z/pZ), if an
element ω of H2(G, Z/pZ) is a value of the n-fold Massey product 〈α1, . . . , αn〉,
then

ω + α1 � β ∈ 〈α1, . . . , αn〉 and ω + αn � β ∈ 〈α1, . . . , αn〉
for any β ∈ H1(G, Z/pZ) (cf. [19, Remark 2.2]).

In [18, Theorem 8.1], J. Minač and N.D. Tân proved that the maximal
pro-p Galois group of a field K containing a root of 1 of order p (and also√

−1 if p = 2) satisfies the cyclic p-Massey vanishing property. The proof of
the last property for a pro-p group G as in Theorem 1.1 is rather immediate.

Proof of Proposition 1.3–(ii). By Proposition 4.1 and Proposition 5.1, G may
complete into a Kummerian oriented pro-p group with torsion-free orienta-
tion. Hence, G satisfies the cyclic p-Massey vanishing property by [27, The-
orem 3.10]. �
6.2. Massey Products and Unipotent Upper-Triangular Matrices

Massey products for a pro-p group G may be translated in terms of unipotent
upper-triangular representations of G as follows. For n ≥ 2 let

Un+1 =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 a1,2 · · · a1,n+1

1 a2,3 · · ·
. . . . . .

...
1 an,n+1

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

| ai,j ∈ Z/p

⎫

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎭

⊆ GLn+1(Z/pZ)

be the group of unipotent upper-triangular (n + 1) × (n + 1)-matrices over
Z/p. Then Un+1 is a finite p-group. Moreover, for 1 ≤ h, l ≤ n + 1 let Eh,l

denote the (n + 1) × (n + 1) matrix with the (h, l)-entry equal to 1, and all
the other entries equal to 0.

Now let ρ : G → Un+1 be a homomorphism of pro-p groups. Observe
that for every h = 1, . . . , n, the projection ρh,h+1 : G → Z/p of ρ onto the
(h, h + 1)-entry is a homomorphism, and thus it may be considered as an
element of H1(G, Z/pZ). One has the following “pro-p translation” of a result
of W. Dwyer which interprets Massey product in terms of unipotent upper-
triangular representations (cf., e.g., [11, Lemma 9.3]).
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Proposition 6.2. Let G be a pro-p group, and let α1, . . . , αn be a sequence
of elements of H1(G, Z/pZ), with n ≥ 2. Then the n-fold Massey product
〈α1, . . . , αn〉:

(i) is not empty if, and only if, there exists a morphism of pro-p groups
ρ̄ : G → Un+1/Z(Un+1) such that ρ̄h,h+1 = αh for every h = 1, . . . , n;

(ii) vanishes if, and only if, there exists a morphism of pro-p groups ρ : G →
Un+1 such that ρh,h+1 = αh for every h = 1, . . . , n.

We recall that

Z(Un+1) = { In+1 + aE1,n+1 | a ∈ Z/pZ } 	 Z/pZ.

We use this fact to prove statements (iii.a)–(iii.b) of Proposition 1.3. First of
all, let G be as in Theorem 1.1, and let α1, . . . , αn be a sequence of elements
of H1(G, Z/pZ). Keeping the same notation as in Sect. 3.3, for h = 1, . . . , n
one has

αh = αh(x) · χ +
d1
∑

i=1

αh(yi) · ϕi +
d2
∑

j=1

αh(zj) · ψj .

Therefore, for h = 1, . . . , n − 1 one obtains

αh � αh = Sh · (χ � ϕ1) + S′
h · (χ � ψ1),

where
Sh =(αh(x)αh+1(y1) − αh(y1)αh+1(x))

+ (−1)ε
∑

2|i
(αh(yi)αh+1(yi+1) − αh(yi+1)αh+1(yi)),

S′
h =(αh(x)αh+1(z1) − αh(z1)αh+1(x))

+ (−1)ε
∑

2|j
(αh(zj)αh+1(zj+1) − αh(zj+1)αh+1(zj)),

with ε = 0 if G is as in (1.1.a), and ε = 1 if G is as in (1.1.b). If the
sequence α1, . . . , αn satisfies condition (6.2), then one has Sh = S′

h = 0 for
h = 1, . . . , n − 1, as {χ � ϕ1, χ � ψ1} is a basis of H2(G, Z/p).

From now on, we will assume that p > 3 while considering a pro-p group
G as in (1.1.b), unless stated otherwise.

6.3. 3-Fold Massey Products

We are ready to prove the following.

Proposition 6.3. A pro-p group G satisfies the 3-Massey vanishing property
in the following cases:
(a) if G is as in (1.1.a);
(b) if G is as in (1.1.b) and p > 3.

Proof. Let α1, α2, α3 be a sequence of elements of H1(G, Z/pZ) satisfying
(6.2). Then S1 = S′

1 = S2 = S′
2 = 0 (cf. Sect. 6.2). Our goal is to construct a

morphism ρ : G → U4 such that ρ1,2 = α1, ρ2,3 = α2, ρ3,4 = α3.
For every w ∈ X set

A(w) = I + α1(w)E1,2 + α2(w)E2,3 + α3(w)E3,4 ∈ U4,
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where I denotes the 4 × 4 identity matrix. If G is as in (1.1.a), then one
computes

C = [A(x), A(y1)] · · · [A(yd1−1), A(yd1)]

= I + E1,4

⎛

⎝α1(y1)α2(x)α3(y1) +
∑

2|i
α1(yi)α2(yi+1)α3(yi)

⎞

⎠

C ′ = [A(x), A(z1)] · · · [A(zd2−1), A(zd2)]

= I + E1,4

⎛

⎝α1(z1)α2(x)α3(z1) +
∑

2|j
α1(zj)α2(zj+1)α3(zj)

⎞

⎠ ;

(6.3)

while if G is as in (1.1.b), then one computes

C = A(y1)p[A(y1), A(x)] · · · [A(yd1−1), A(yd1)]

= I + E1,4

⎛

⎝α1(x)α2(y1)α3(x) +
∑

2|i
α1(yi)α2(yi+1)α3(yi)

⎞

⎠

C ′ = A(z1)p[A(z1), A(x)] · · · [A(zd2−1), A(zd2)]

= I + E1,4

⎛

⎝α1(x)α2(z1)α3(x) +
∑

2|j
α1(zj)α2(zj+1)α3(zj)

⎞

⎠ .

(6.4)

—observe that the exponent of U4 is p, as p > 4, and thus A(y1)p = A(z1)p =
I.

In both cases, C,C ′ ∈ Z(U4), and therefore the assignment w �→ A(w)
for every w ∈ X yields a morphism ρ̄ : G → U4/Z(U4) satisfying ρ̄h,h+1 = αh

for h = 1, 2, 3. Thus, 〈α1, α2, α3〉 �= ∅ by Proposition 6.2.
Moreover, if C = C ′ = I then the same assignment yields a morphism

ρ : G → U4 with the desired properties. In particular, by (6.3)–(6.4) one
has C = I if α1(w) = α3(w) = 0 for every w = y1, . . . , yd1 , or for every
w = y2, . . . , yd1 and w = x; and analogously C ′ = I if α1(w) = α3(w) = 0 for
every w = z1, . . . , zdd2

, or for every w = z2, . . . , zd2 and w = x.
On the other hand, if C �= I then χ � ϕ1 = ± trg(r1G(3)) belongs to

〈α1, α2, α3〉, and analogously if C ′ �= I then χ � ψ1 = ± trg(r2G(3)) belongs
to 〈α1, α2, α3〉 (cf. [19, Lemma 3.7])—here the sign depends on whether the
relations are as in (1.1.a) or in (1.1.b). Now, if αh(yi) �= 0 for some h = 1, 3
and i ∈ {2, . . . , d1}, then

χ � ϕ1 = αh � β for some β ∈ H1(G, Z/pZ).

Analogously, if αh(zj) �= 0 for some h = 1, 3 and j ∈ {2, . . . , d2}, then

χ � ψ1 = αh � β for some β ∈ H1(G, Z/pZ).

Moreover, if αh(x) �= 0 for some h = 1, 3, then

χ � ϕ1 = αh � β and χ � ψ1 = αh � β′

for some β, β′ ∈ H1(G, Z/pZ). Therefore, Remark 6.1 implies that if C �= I
or C ′ �= I then 0 ∈ 〈α1, α2, α3〉 anyway. �



56 Page 24 of 34 C. Quadrelli MJOM

Remark 6.4. If p = 3 and G as in (1.1.b), then G does not satisfy the 3-
Massey vanishing property. Indeed, set α1 = α3 = ϕ1 + ψ1, and α2 = ϕ1.
Then

α1 � α2 = α2 � α3 = ±(ϕ1 � ψ1) = 0.

It is easy to see that one may construct a morphism of pro-p groups ρ̄ : G →
U4/Z(U4) such that ρ̄1,2 = ρ̄3,4 = α1 and ρ̄2,3 = α2—and thus 〈α1, α2, α1〉 �=
∅ by Proposition 6.2—but, on the other hand, one may not construct a
morphism of pro-p groups ρ : G → U4 satisfying ρ1,2 = ρ3,4 = α1 and ρ2,3 =
α2—so that 0 /∈ 〈α1, α2, α1〉 by Proposition 6.2.

6.4. 4-Fold Massey Products

Proposition 6.5. A pro-p group G as in Theorem 1.1 satisfies the strong 4-
Massey vanishing property.

Proof. Let α1, . . . , α4 be a sequence of four elements of H1(G, Z/pZ) sat-
isfying (6.2). Our goal is to construct a homomorphism of pro-p groups
ρ : G → U5 such that ρh,h+1 = αh for h = 1, . . . , 5, so that the claim fol-
lows by Proposition 6.2.

Let I denote the identity matrix of the group U5. For every w ∈ X =
{x, y1, . . . , zd2} set

A(w) =

⎛

⎜

⎜

⎜

⎜

⎝

1 α1(w) 0 0 0
1 α2(w) 0 0

1 α3(w) 0
1 α4(w)

1

⎞

⎟

⎟

⎟

⎟

⎠

∈ U5.

Moreover, put

C = (chl) = A(y1)εp · [A(x), A(y1)](−1)ε · · · [A(yd1−1), A(yd1)] ,

C ′ = (c′
hl) = A(z1)εp · [A(x), A(z1)](−1)ε · · · [A(zd2−1), A(zd2)] .

We will consider the matrix C as a function of the matrices A(x), . . . , A(yd1),
and the matrix C ′ as a function of the matrices A(x), A(z1), . . . , A(zd2).

Since p ≥ 5, the exponent of the p-group U5 is p, and thus A(y1)p =
A(z1)p = I. Moreover, for every w,w′ ∈ X , the (h, h+1)-entry of [A(w), A(w′)]
is 0 for every h = 1, . . . , 4, and thus also ch,h+1 = c′

h,h+1 = 0. Moreover, for
h = 1, 2, 3 one has ch,h+2 = Sh and c′

h,h+2 = S′
h—which are equal to 0 by

(6.2).
We split the proof in the analysis of the following three cases. Our aim

is to modify suitably the matrices A(w)—without modifying the (h, h + 1)-
entries with h = 1, . . . , 4—to obtain C = C ′ = I.
Case 1. Suppose first that:
(1.a) α2(x) = α2(yi) = 0 for all 2 ≤ i ≤ d1; or
(1.b) α3(x) = α3(yi) = 0 for all 2 ≤ i ≤ d1.
Since S1 = S2 = S3 = 0 by (6.2), one has

α1(x)α2(y1) = α2(y1)α3(x) = 0, (6.5)
α2(x)α3(y1) = α3(y1)α4(x) = 0, (6.6)
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respectively, in case (1.a) and in case (1.b). Applying (6.5)–(6.6), one com-
putes

[A(y1), A(x)] =

{

I + (α3(y1)α4(x) − α3(x)α4(y1)) E3,5 in case (1.a),
I + (α1(y1)α2(x) − α2(x)α1(y1)) E1,3 in case (1.b),

and

[A(yi), A(yi+1)] =
{

I + (α3(yi)α4(yi+1) − α3(yi+1)α4(yi)) E3,5 in case (1.a),
I + (α1(yi)α2(yi+1) − α2(yi+1)α1(yi)) E1,3 in case (1.b),

for i = 2, 4, . . . , d1 − 1. Altogether, one has C = I + S3E3,5 in case (1.a) and
C = I + S1E1,3 in case (1.b), so that in both cases C = I by (6.2).

Analogously, if α2(x) = α2(zj) = 0 for all 2 ≤ j ≤ d2, or if α3(x) =
α3(zj) = 0 for all 2 ≤ j ≤ d2, then C ′ = I. This completes the analysis of
case 1.
Case 2. Now suppose that α1(x) = α4(x) = α1(yi) = α4(yi) = 0 for all
2 ≤ i ≤ d1. Since S1 = S2 = S3 = 0 by (6.2), one has

α1(y1)α2(x) = α3(x)α4(y1) = 0. (6.7)

Then one computes
[A(y1), A(x)] = I + (α2(y1)α3(x) − α2(x)α3(y1)) E2,4 + α2(x)α3(y1)α4(y1)E2,5,

[A(yi), A(yi+1)] = I + (α2(yi)α3(yi+1) − α2(yi+1)α3(yi)) E2,4,

where we apply (6.7) to obtain the first equality, and in the second one i runs
through the even positive integers between 2 and d1−1. If α2(x)α3(y1)α4(y1) =
0 then it is straightforward to see that C = I + S2E2,4 = I. Otherwise,
α2(x) �= 0, so that (6.7) implies that α1(y1) = 0. In this case, set

Ã = I − α3(y1)α4(y1)E3,5.

Then
[

Ã, A(x)
]

= I − α2(x)α3(y1)α4(y1)E2,5,

and
[

A(y1)Ã, A(x)
]

=
[

A(y1), [Ã, A(x)]
]

︸ ︷︷ ︸

=I

[

Ã, A(x)
]

[A(y1), A(x)]

= I + (α2(y1)α3(x) − α2(x)α3(y1)) E2,4.

Therefore, replacing A(y1) with A(y1)Ã yields c2,4 = S2 = 0 and Chl = 0 for
h < l, i.e., C = I.

An analogous argument yields C ′ = I—after replacing suitably the
matrix A(z1) if needed—if α1(x) = α3(x) = α1(zj) = α3(zj) = 0 for all
1 ≤ j ≤ d2. This completes the analysis of case 2.
Case 3. Finally, if none of the above two assumptions on the triviality of the
values αh(x) and αh(yi), with 2 ≤ i ≤ d1, hold true, then
(3.a) there are w,w′ ∈ {x, y2, . . . , yd1}—possibly w = w′—such that α1(w) �=

0 and α2(w′) �= 0, or
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(3.b) there are w,w′ ∈ {x, y2, . . . , yd1}—possibly w = w′—such that α4(w) �=
0 and α3(w′) �= 0.

Suppose we are in case (3.a). If w = x or w = yi with i odd, set

Ã =

{

I + c1,4
α1(w)E2,4 if w ∈ { x, y3, . . . , yd1 }

I − c1,4
α1(w)E2,4 if w ∈ { yi | i is even },

and replace A(y1) with A(y1)Ã, if w = x, or A(yi−1) with A(yi−1)Ã if w =
yi with i odd, or A(yi+1) with A(yi+1)Ã, if w = y with i even. After the
replacement, one has chl = 0 for h < l ≤ h + 2, and for (h, l) = (1, 4). Then,
set

Ã′ =

{

I + c2,5
α1(w′)E3,5 if w′ ∈ { x, y3, . . . , yd1 }

I − c2,5
α1(w′)E3,5 if w′ ∈ { yi | is even },

and replace A(y1) with A(y1)Ã′, if w = x, or A(yi−1) with A(yi−1)Ã′ if
w = yi with i odd, or A(yi+1) with A(yi+1)Ã′, if w = y with i even. After
this further replacement, one has chl = 0 for h < l ≤ h + 3. Finally, set

Ã′′ =

{

I + c1,5
α1(w)E2,5 if w ∈ { x, y3, . . . , yd1 }

I − c1,5
α1(w)E2,5 if w ∈ { yi | i is even },

and replace A(y1) with A(y1)Ã′′, if w = x, or A(yi−1) with A(yi−1)Ã′′ if
w = yi with i odd, or A(yi+1) with A(yi+1)Ã′′, if w = y with i even. After
this last replacement, one has C = I.

Now suppose we are in case (3.b). If w = x or w = yi with i odd, set

Ã =

{

I − c2,5
α4(w)E3,4 if w ∈ { x, y3, . . . , yd1 }

I + c2,5
α4(w)E3,4 if w ∈ { yi | i is even },

and replace A(y1) with A(y1)Ã, if w = x, or A(yi−1) with A(yi−1)Ã if w =
yi with i odd, or A(yi+1) with A(yi+1)Ã, if w = y with i even. After the
replacement, one has chl = 0 for h < l ≤ h + 2, and for (h, l) = (2, 5). Then,
set

Ã′ =

{

I − c1,4
α3(w′)E1,3 if w′ ∈ { x, y3, . . . , yd1 }

I + c1,4
α3(w′)E1,3 if w′ ∈ { yi | i is even },

and replace A(y1) with A(y1)Ã′, if w = x, or A(yi−1) with A(yi−1)Ã′ if
w = yi with i odd, or A(yi+1) with A(yi+1)Ã′, if w = y with i even. After
this further replacement, one has chl = 0 for h < l ≤ h + 3. Finally, set

Ã′′ =

{

I − c1,5
α1(w)E1,4 if w ∈ { x, y3, . . . , yd1 }

I + c1,5
α1(w)E1,4 if w ∈ { yi | i is even },

and replace A(y1) with A(y1)Ã′′, if w = x, or A(yi−1) with A(yi−1)Ã′′ if
w = yi with i odd, or A(yi+1) with A(yi+1)Ã′′, if w = y with i even. After
this last replacement, one has C = I.

Moreover, if none of the above two assumptions on the triviality of the
values αh(x) and αh(zj), with 2 ≤ j ≤ d2, hold true, the same argument



MJOM Chasing Maximal Pro-𝑝 Galois Groups via 1-Cyclotomicity Page 27 of 34 56

produces suitable matrices A(z1), . . . , A(zd2) such that the matrix C ′ is the
identity matrix. This concludes the analysis of case 3.

Altogether, the assignment w �→ A(x) for every w ∈ X—with the ma-
trices A(w)’s suitably modified in case of need—yields a homomorphism of
pro-p groups ρ : G → U5 with the desired properties. �

We believe that the answer to the following questions is positive.

Question 6.6. (a) Let G be as in (1.1.a). Does G satisfy the strong n-Massey
vanishing property for every n ≥ 3?

(b) Let G be as in (1.1.b). Does G satisfy the strong n-Massey vanishing
property for every 3 ≤ n < p?

7. The Minač–Tân Pro-p Group

We focus now on the Minač–Tân pro-p group

G = 〈 x1, . . . , x5 | r = 1 〉 with r = [[x1, x2], x3] [x4, x5].

Using Proposition 6.2, one may show that G does not satisfy the 3-Massey
vanishing property (cf. [19, Example 7.2]). Our aim is to show that G cannot
complete into a 1-cyclotomic oriented pro-p group with torsion-free orienta-
tion.

7.1. Kummerianity and 1-Cyclotomicity

Proposition 7.1. Let G be the Minač–Tân pro-p group, and let θ : G → 1 +
pZp be a torsion-free orientation. Then the oriented pro-p group (G, θ) is
Kummerian if, and only if, x4, x5 ∈ Ker(θ), and:
(a) x3 ∈ Ker(θ); or
(b) x1, x2 ∈ Ker(θ).

Proof. Let c : G → Zp(θ) be an arbitrary continuous 1-cocycle, and set
c(xi) = λi for i = 1, . . . , 5. Applying (2.2)–(2.3) one computes
c(r) = c([[x1, x2], x3]) + c([x4, x5]), and

c([[x1, x2], x3]) = θ(x1x2)−1
(

θ(x3)−1 − 1
)

(λ1(1 − θ(x2)) − λ2(1 − θ(x1))) ,

c([x4, x5]) = θ(x4x5)−1 (λ4(1 − θ(x5)) − λ5(1 − θ(x4))) . (7.1)

On the other hand, c(r) = 0 as r = 1.
Suppose that (G, θ) is Kummerian. Then by Lemma 2.9, we may pre-

scribe arbitrary values to λ1, . . . , λ5. If λ4 = 1 and λi = 0 for i �= 4, from
(7.1) and from the fact that c(r) = 0 one obtains 0 = 1 · (1 − θ(x5)), and
thus θ(x5) = 1. Analogously, if λ5 = 1 and λi = 0 for i �= 5, one deduces
θ(x4) = 1. Finally, if λ4 = λ5 = 0 from (7.1) one obtains

0 = c(r) = θ(x1x2)−1
(

θ(x3)−1 − 1
)

(λ1(1 − θ(x2)) − λ2(1 − θ(x1))) ,

and the arbitrariness of λ1, λ2 implies that θ(x3) = 1 or θ(x1) = θ(x2) = 1.
Conversely, suppose that x4, x5 ∈ Ker(θ), and at least one of the hy-

pothesis (i)–(ii) holds true. Then for any choice for λ4, λ5, by (7.1) one has
c([x4, x5]) = 0. On the other hand, one has
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c([[x1, x2], x3]) =

{

0 · (λ1(1 − θ(x2)) − λ2(1 − θ(x1))) = 0 if x3 ∈ Ker(θ),
(

θ(x3)
−1 − 1

)

(λ1 · 0 − λ2 · 0) = 0 if x1, x2 ∈ Ker(θ).

Altogether, any choice for λ1, . . . , λ5 yields a well-defined continuous 1-cocycle
c : G → Zp(θ), and thus (G, θ) is Kummerian by Lemma 2.9. �

Now consider the subgroup H of G generated by x3, x4, x5 and by y =
[x1, x2]. Then H is subject to the relation

r = [y, x3][x4, x5] = 1.

If (G, θ) is a 1-cyclotomic oriented pro-p group, with θ a torsion-free orien-
tation, then = (H, θ|H) is Kummerian. Therefore, if c′ : H → Zp(θ|H) is a
continuous 1-cocycle, applying (2.2)–(2.3) one obtains

0 = c′(r) = c′([y, x3]) + c′([x4, x5])

= θ(yx3)−1 (c′(y)(1 − θ(x3)) − c′(x3)(1 − θ(y))) + 0

= θ(yx3)−1c′(y)(1 − θ(x3)),

as θ(x4) = θ(x5) = 1 by Proposition 7.1, and y ∈ G′ ⊆ Ker(θ). Since c′(y)
may be arbitrarily chosen by Lemma 2.9, one deduces θ(x3) = 1. This proves
the following.

Lemma 7.2. Let G be the Minač–Tân pro-p group, and let θ : G → 1+pZp be
a torsion-free orientation. If the oriented pro-p group (G, θ) is 1-cyclotomic
then x3, x4, x5 ∈ Ker(θ).

Moreover, if (G, θ) is 1-cyclotomic we may suppose without loss of gen-
erality that x2 ∈ Ker(θ), too. Indeed, let vp : Zp → N denote the p-adic
valuation, and let k ≥ 1 be such that Im(θ) = 1 + pk

Zp.
Suppose first that vp(θ(x2) − 1) = k and vp(θ(x1) − 1) > k, and set

z = x2x1. Then {z, x2, x3, x4, x5} is a minimal generating set of G, vp(θ(z)−
1) = k, and G is subject to the relation

[[z, x2], x3] [x4, x5] = 1,

as [x2x1, x2] = [x1, x2]. Hence, we may assume vp(θ(x1) − 1) = k.
Consequently, there exists λ ∈ Zp such that θ(x2) = θ(x1)λ. Now set

z = x−λ
1 x2. Then {x1, z, x3, x4, x5} is a minimal generating set of G, θ(z) =

θ(x2)θ(x1)−λ = 1, and G is subject to the relation

[[x1, z], x3] [x4, x5] = 1,

as [x1, x
−λ
1 x2] = [x1, x2].

Therefore, from now on θ : G → 1 + pZp will denote a torsion-free ori-
entation satisfying x2, . . . , x5 ∈ Ker(θ).
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7.2. The Subgroup U

Put u = xp
1 and t = x−1

1 x3. Let φ : G → Z/p be the homomorphism defined
by φ(x1) = φ(x3) = 1 and φ(xi) = 0 for i = 2, 4, 5, and let U be the kernel
of φ. Then U is a normal subgroup of G of index p, and it is generated as a
normal subgroup of G by {u, t, x2, x4, x5}. In fact, U is generated as a pro-p
group by the set

XU =
{

u, tx
h
1 , x

xh
1

2 , x
xh
1

4 , x
xh
1

5 | h = 0, . . . , p − 1
}

,

as G/U = {U, x1U, . . . , xp−1
1 U}. We need to find a subset of XU which mini-

mally generates U as a pro-p group.

Proposition 7.3. The set

YU =
{

t, x2, xx1
2 , tx

h
1 , x

xh
1

4 , x
xh
1

5 | h = 0, . . . , p − 1
}

,

is a minimal generating set of U as a pro-p group. Moreover, the abelian
pro-p group Uab is not torsion-free.

Proof. The subgroup U is the pro-p group generated by XU and subject to
the p-relations rxh

1 = 1, h = 0, . . . , p − 1. Since x3 = x1t, one computes

[[x1, x2], x3] = [x1, x2]−1 · [x1, x2]x3

= [x2, x1] · [x1, x
x1
2 ]t

= x−1
2 · xx1

2 ·
(
(

x
x2
1

2

)−1

xx1
2

)t

.

(7.2)

From (7.2), and from the relation r = 1, one deduces the equivalence
(

x
x2
1

2

)−1

· (xx1
2 )2 · x−1

1 ≡ 1 mod U ′, (7.3)

as [x4, x5] ∈ U ′ and t ∈ U .
Hence, Uab is the abelian pro-p group generated by XUab = {wU ′ | w ∈

XU} and subject to the p relations induced by the equivalences
((xx2

1
2 )−1(xx1

2 )2x−1
1 )xh

1 ≡ 1 mod U ′, namely

x
x2
1

2 ≡ (xx1
2 )2 x−1

1 mod U ′, for h = 0,

x
x3
1

2 ≡
(

x
x2
1

2

)2

(xx2
1 )−1 ≡ (xx1

2 )3 x−2
1 mod U ′, for h = 1,

...

x
xp
1

2 ≡
(

x
xp−1
1

2

)2 (

xp−2
1

)−1

≡ (xx1
2 )p

x1−p
1 mod U ′, for h = p − 2,

x
xp+1
1

2 ≡ (xx1
2 )2 · x−1

1 ≡ (xx1
2 )p+1

x−p
1 mod U ′, for h = p − 1.

(7.4)

On the one hand, from (7.4) one deduces that the coset x
xh
1

2 U ′ is generated
by x2U

′ and xx1
2 U ′ for every h = 2, . . . , p − 1, so that YUab = {wU ′ | w ∈
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YU} generates Uab as an abelian pro-p group. On the other hand, from the
equivalences with h = p − 2 and h = p − 1 one deduces that

(xx1
2 )p

x1−p
1 (xu

2 )−1 ≡ (xx1
2 )p

x1−p−1
1 ≡

(

xx1
2 x−1

1

)p ≡ 1 mod U ′,

(xx1
2 )p+1

x−p
1 (xux1

2 )−1 ≡ (xx1
2 )p+1−1

x−p
1 ≡

(

xx1
2 x−1

1

)p ≡ 1 mod U ′,

as xu
2 ≡ x2 mod U ′; therefore, they yield equivalent relations in Uab. Al-

together, Uab is the abelian pro-p group minimally generated by XUab and
subject to the relation

(

(x2U
′)−1 · xx1

2 U ′)p = 1.

Hence, Uab is not torsion-free, and YU is a minimal generating set of U by
Fact 2.1. �

From Proposition 7.3, one deduces that G is not absolutely torsion-free,
and thus the oriented pro-p group (G,1) is not 1-cyclotomic.

7.3. 1-Cyclotomicity and the Minač–Tân Pro-p Group

We are ready to prove Theorem 1.4.

Proof. Suppose for contradiction that there exists a torsion-free orientation
θ : G → 1 + pZp such that the oriented pro-p group (G, θ) is 1-cyclotomic.
Then by Sect. 7.1, we may assume without loss of generality that x2, . . . , x5 ∈
Ker(θ), while θ(x1) �= 1 by Sect. 7.2. Set λ ∈ pZp�{0} such that θ(x1) = 1+λ.

Consider the oriented pro-p group (U, θ|U ), and set K = Kθ|U (U), Ū =
U/K. Our goal is to show that the oriented pro-p group (Ū , (θ|U )/K) is not
(θ|U )/K-abelian, so that (U, θ|U ) is not Kummerian by Proposition 2.8, and
thus (G, θ) is not 1-cyclotomic.

Since K ⊆ Φ(U), by Proposition 7.3 the set YŪ = {wK | w ∈ YU} is
a minimal generating set of Ū . Now, since θ(t) = θ(x1) = (1 + λ)−1, one has
wt ≡ w1+λ mod K for every w ∈ U . Therefore, from (7.2), and from the fact
that [x4, x5] ∈ Ker(θ|U )′ ⊆ K, one obtains

[x1, x2]−1 ([x1, x2]x1)t ≡ [x1, x2]−1 ([x1, x2]x1)(1+λ)−1

≡ 1 mod K,

and consequently
x1 ≡ [x1, x2]1+λ mod K,

[x1, x2]x
2
1 ≡ [x1, x2](1+λ)2 mod K,

...

[x1, x2]x
p−1
1 ≡ [x1, x2](1+λ)p−1

.

(7.5)

Set

μ = (1 + λ)0 + (1 + λ)1 + · · · + (1 + λ)p−1 =
(1 + λ)p − 1

λ
.

Then μ �= 0 (as λ �= 0), and p | μ. Since [x1, x2] = (xx1
2 )−1x2, replacing the

coset xx1
2 K with the coset [x1, x2]K in YŪ yields another minimal generating
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set—let us call it Y ′̄
U

—of Ū . Now, from (7.5) one obtains

= [x1, x2]x
p−1
1 · · · [x1, x2]x1 · [x1, x2]

≡ [x1, x2](1+λ)p−1 · · · [x1, x2]1+λ · [x1, x2] mod K

≡ [x1, x2]μ mod K

—observe that [x1, x2]x
h
i ∈ Ker(θ|U ) for every h, and thus all such elements

commute modulo K. Therefore, one has the relation

([x1, x2]K)μ = [uK, x2K]

between elements of the minimal generating set Y ′̄
U

, and by [11, Theorem 8.1]
this relation prevents the oriented pro-p group (Ū , (θ|U )/K) from being
Kummerian—and thus also (θ|U )/K-abelian. �

From Theorem 1.4, we obtain a new family of pro-p groups which cannot
complete into 1-cyclotomic oriented pro-p groups.

Corollary 7.4. Let G be the pro-p group with presentation

G = 〈x1, . . . , xn, xn+1, xn+2 | [[. . . [[x1, x2], x3], . . . xn−1] , xn] [xn+1, xn+2] = 1〉 ,

with n ≥ 3. Then G cannot complete into a 1-cyclotomic oriented pro-p group
with torsion-free orientation.

Proof. Set y = [. . . [x1, x2], . . . xn−2], and let H be the subgroup of G gener-
ated by {y, xn−1, . . . , xn+2}. Then

H = 〈 y, xn−1, . . . , xn+2 | [[y, xn−1], xn][xn+1, xn+2] 〉
is isomorphic to the Minač–Tân pro-p group, and hence it cannot complete
into a 1-cyclotomic oriented pro-p group with torsion-free orientation by The-
orem 1.4. �

The following question remains open (cf. [2, Example 3.2]).

Question 7.5. Is the Minač–Tân pro-p group G a Bloch–Kato pro-p group?
Namely, is the Z/pZ-cohomology algebra of every closed subgroup of G a
quadratic algebra?
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