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Abstract. Let p be a prime. We prove that certain amalgamated free
pro-p products of Demushkin groups with pro-p-cyclic amalgam cannot
give rise to a l-cyclotomic oriented pro-p group, and thus do not occur
as maximal pro-p Galois groups of fields containing a root of 1 of order p.
We show that other cohomological obstructions which are used to detect
pro-p groups that are not maximal pro-p Galois groups—the quadratic-
ity of Z/pZ-cohomology and the vanishing of Massey products—fail with
the above pro-p groups. Finally, we prove that the Mina¢—Tan pro-
p group cannot give rise to a 1-cyclotomic oriented pro-p group, and
we conjecture that every l-cyclotomic oriented pro-p group satisfy the
strong n-Massey vanishing property for n = 3, 4.
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1. Introduction

Let p be a prime number, and let 1+ pZ,, denote the pro-p group of principal
units of the ring of p-adic integers Z,—namely, 1 +pZ, = {1+pA | A € Z,}.
An oriented pro-p group is a pair (G, 0) consisting of a pro-p group G and
a morphism of pro-p groups 0: G — 1 + pZ,, called an orientation of G
(see [29]; oriented pro-p groups were introduced by Efrat [7], with the name
“cyclotomic pro-p pairs”). An oriented pro-p group (G, 6) gives rise to the
continuous G-module Z,(6), which is equal to Z,, as an abelian pro-p group,
and which is endowed with the continuous G-action defined by
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g-A=0(g) A for all g € G and X € Z,(0).

An oriented pro-p group (G, 6) is said to be Kummerian if the following
cohomological condition is satisfied: for every n > 1 the natural morphism

H(G, Z(0)/p" 2y (0)) — H'(G, Z/pL), (L.1)

induced by the epimorphism of continuous G-modules Z,(0)/p"Z,(0) — Z/p
is surjective (see [11])—here we consider Z/p as a trivial G-module. Moreover,
the oriented pro-p group (G, 9) is said to be 1-cyclotomic if the above coho-
mological condition is satisfied also for every closed subgroup of G—namely,
the natural morphism (1.1) is surjective also with H instead of G, and the
restriction 6| : H — 1+ pZ, instead of § for all closed subgroups H of G (in
[25,26] a 1-cyclotomic oriented pro-p group is called a “l-smooth” oriented
pro-p group). This cohomological condition was considered first by J. Labute,
who showed ante litteram that for every Demushkin group G there exists pre-
cisely one orientation which completes G into a Kummerian oriented pro-p
group, namely the orientation induced by the dualizing module of G (see
[13]).

In case of trivial orientations, 1-cyclotomicity translates into a purely
group-theoretical statement. Namely, an oriented pro-p group (G, 1)—where
1: G — 14 pZ, denotes the orientation which is constantly equal to 1—is 1-
cyclotomic if, and only if, the abelianization of every closed subgroup of G is
a free abelian pro-p group. Pro-p groups satisfying this group-theoretic condi-
tion are called absolutely torsion-free pro-p groups, and they were introduced
by Wiirfel [36].

The main goal of this work is to produce new examples of pro-p groups
which no orientations can turn into a 1-cyclotomic oriented pro-p group.

Theorem 1.1. Let G be a pro-p group with pro-p presentation
G={Z, Y1, YdysZ1y-+-12dy | T1 =T2=1), (1.2)
where dy,ds are two positive odd integers, and either:
(1.1.a) d1 +da >4 and
r1= [z, y1lly2, ys] - [Yay -1, Yar ],
re = [z, 21][20, 23] - - - [2d,-1, Zdn i
(1.1.b) orp is odd and
r1 =Yy [y, 2 [y2. ys] - (a1, ya, s
ro = 2V[21, %] [22, 23] - -+ [Zdy—1, 2dy -
Then there are no orientations 0: G — 1 4 pZ, such that the oriented pro-p
group (G, 0) is 1-cyclotomic.

It is worth underlining that the pro-p groups described in Theorem 1.1
are amalgamated free pro-p products of two Demushkin groups—the sub-
group generated by x,y1,...,yqs, and the subgroup generated by =z, z1,

.., Zdy— With pro-p-cyclic amalgam, generated by x. Despite Demushkin
groups and their free pro-p products are some of the (extremely few) exam-
ples of pro-p groups which are known to give rise to 1-cyclotomic oriented
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pro-p groups, the presence of a pro-p-cyclic amalgam is enough to lose 1-
cyclotomicity.

Oriented pro-p groups satisfying 1-cyclotomicity have great prominence
in Galois theory. Given a field K, let K, and K(p) denote respectively the
separable closure of K, and the compositum of all finite Galois p-extensions of
K. The maximal pro-p Galois group of K, denoted by Gk (p), is the maximal
pro-p quotient of the absolute Galois group Gal(K,/K) of K, and it coincides
with the Galois group of the Galois extension K(p)/K. Detecting maximal
pro-p Galois groups among pro-p groups, are crucial problems in Galois the-
ory. Already the pursuit of concrete examples of pro-p groups which do not
occur as maximal pro-p Galois groups of fields is already considered a very
remarkable challenge (see, e.g., [1,3,4,24,33]).

The maximal pro-p Galois group Gk (p) of a field K containing a root
of 1 of order p gives rise to the oriented pro-p group (Gk(p), k), where

Ox: Gk(p) — 1+ pZ,

denotes the pro-p cyclotomic character (see Example 2.4 below). By Kummer
theory, the oriented pro-p group (Gx(p),fxk) is 1-cyclotomic (see [13, p. 131]
and [11, Sect. 4])—in case p = 2 we need to assume further that /=1 € K.
Therefore, a pro-p group which cannot complete into a 1-cyclotomic oriented
pro-p group does not occur as the maximal pro-p group of a field containing
a root of 1 of order p—and hence neither as the absolute Galois group of
any field (see, e.g., [24, Remark 3.3]). Hence, the following corollary may be
deduced directly from Theorem 1.1.

Corollary 1.2. A pro-p group G as in Theorem 1.1 does not occur as the
maximal pro-p Galois group of any field containing a root of 1 of order p
(and also \/—1 if p = 2). Hence, G does not occur as the absolute Galois

group of any field.

In the recent past, other cohomological properties have been used to
study maximal pro-p Galois groups—and to find examples of pro-p groups
which do not occur as maximal pro-p Galois groups. By the Norm Residue
Theorem—proved by M. Rost and V. Voevodsky, with the contribution by
Ch. Weibel, see [12,34]—one knows that if K is a field containing a root of 1
of order p, the Z/p-cohomology algebra H*(Gxk(p),Z/pZ), endowed with the
cup-product

-~ -t H™(Gx(p), Z/pZ) x H"(Gx(p), Z/pZ) — H™"(Gk(p), Z/pZL),

is quadratic, i.e., its ring structure is completely determined by the 1st and
the 2nd cohomology groups (see, e.g., [22, Sect. 2]). Moreover, it was shown by
E. Matzri that if K is a field containing a root of 1 of order p, then Gk (p) satis-
fies the triple Massey vanishing property (see [9] and references therein)—for
an overview on Massey products in Galois cohomology see [19]. These two
cohomological properties were used to find examples of pro-p groups which
do not occur as maximal pro-p Galois groups of fields containing a root of 1
of order p, for example in [4, Sect. 8] and in [19, Sect. 7].
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We prove that the pro-p groups described in Theorem 1.1 cannot be
ruled out as maximal pro-p Galois groups employing the above two cohomo-
logical obstructions.

Proposition 1.3. Let G be a pro-p group as in Theorem 1.1.
(i) The Z/p-cohomology algebra H*(G,Z/pZ) is quadratic.
(ii) The pro-p group G satisfies the cyclic p-Massey vanishing property—
namely, the p-fold Massey product

(o, ..., )
———

p times

contains 0 for every o € HY(G,Z/pZ).

(ili.a) If G is as in (1.1.a), then G satisfies the 3- and the strong 4-Massey
vanishing property.

(iii.b) If G is as in (1.1.b) and p > 3 then G satisfies the 3- and the strong
4-Massey vanishing property.

(We recall the basic notions on Massey products in Galois cohomology in
Sect. 6.1 below.) Hence, Corollary 1.2 provides brand new examples of pro-p
groups which do not occur as maximal pro-p Galois groups of fields containing
a root of 1 of order p, and as absolute Galois groups. Moreover, we remark
that the relations which define the pro-p groups described in Theorem 1.1
are rather “elementary”—just elementary commutators of generator times,
possibly, the p-power of a generator—, unlike the examples provided in [1,4,
19,24], where the relations involve higher commutators.

Finally, we focus on the Mina¢-Tan pro-p group, i.e., the pro-p group
G with pro-p presentation

G = <$1,...,$5 | [[3?1,.’[72],1‘3][.’174,.’135] =1 >

In [19, Sect. 7], Mina¢ and Tan showed that G does not satisfy the 3-Massey
vanishing property, and thus it does not occur as the maximal pro-p Galois
group of any field containing a root of 1 of order p. We prove that G cannot
complete into a 1-cyclotomic oriented pro-p group.

Theorem 1.4. Let p be an odd prime. Then there are no orientations turning
the Minac—Tan pro-p group into a 1-cyclotomic oriented pro-p group.

Theorem 1.4 has been proved independently by I. Snopce and P. Za-
lesskii (unpublished). Theorem 1.4 provides a negative answer to the ques-
tion posed in [29, Remark 3.7]—mnamely, the Mina¢-Tan pro-p group may be
ruled out as a maximal pro-p Galois group of a field containing a root of 1 of
order p (and thus as an absolute Galois group) in a “Massey-free” way.

Altogether, 1-cyclotomicity of oriented pro-p groups provides a rather
powerful tool studying maximal pro-p Galois groups, and it succeeds in de-
tecting pro-p groups which are not maximal pro-p Galois groups when other
methods fail, as underlined above. We believe that further investigations in
this direction will lead to new obstructions for the realization of pro-p groups
as maximal pro-p Galois group.
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Actually, Theorem 1.4, and the main result in [33] (see in particular [33,
p. 1907]), may lead to the suspect that 1-cyclotomicity is a more restrictive
condition in comparison with the vanishing of Massey products. Thus, we
formulate the following conjecture.

Conjecture 1.5. Let (G,0) be an oriented pro-p group, such that Im(f) C
14 4Zs if p = 2. If (G, ) is 1-cyclotomic, then the pro-p group G satisfies
the 3-Massey vanishing property; if moreover G is finitely generated, then G
satisfies the strong n-Massey vanishing property for every n > 3.

After the publication on the arXiv of an earlier version of this paper,
A. Merkurjev and F. Scavia proved the first statement of Conjecture 1.5—
see [16, Theorem 1.3]—; while, on the other hand, there are 1-cyclotomic
oriented pro-2 groups (G, ) such that Im(6) C 1+4Z,, where G is not finitely
generated and does not satisfy the strong 4-Massey vanishing property—see
[15, Theorem 1.6]. In particular, [16, Theorem 1.3] implies Theorem 1.4 (see
also [16, Remark 6.3]).

2. Oriented Pro-p Groups and Cohomology

2.1. Notation and Preliminaries

Throughout the paper, every subgroup of a pro-p group is tacitly assumed to
be closed with respect to the pro-p topology. Therefore, sets of generators of
pro-p groups, and presentations, are to be intended in the topological sense.

Given a pro-p group G, we denote the closed commutator subgroup of G
by G'—namely, G’ is the closed normal subgroup generated by commutators

[h,g] = Rt ht=h"t.g thg, g,h € G.

The Frattini subgroup of G is denoted by ®(G)—mnamely, ®(G) is the closed
normal subgroup generated by G’ and by p-powers ¢g*, g € G (cf., e.g., [5,
Proposition 1.13]). A minimal generating set of G gives rise to a basis of the
Z/pZ-vector space G/®(G), and conversely (cf., e.g., [5, Proposition 1.9]).

Finally, we denote the abelianization G/G’ of G by G?*". Throughout
the paper, we will make use of the following straightforward fact.

Fact 2.1. Let G be a finitely generated pro-p group. Then a subset {x1,..., 24}
of G is a minimal generating set of G if, and only if, the subset {z1G’,
.., 24G"} of G® is a minimal generating set of the abelian pro-p group G*P.

2.2. Oriented Pro-p Groups

Let G be a pro-p group. An orientation 6: G — 1+ pZ, is said to be torsion-
free if p is odd, or if p = 2 and Im(f) C 1 4 4Zs. Observe that one may
have an oriented pro-p group (G, 6) where G has non-trivial torsion and 6
torsion-free (e.g., if G ~ Z/p and Im(0) = {1}).

A morphism of oriented pro-p groups (Gi1,601) — (Ga,02), is a ho-
momorphism of pro-p groups ¢: G; — Go such that 6; = 63 0 ¢ (cf. [29,
Sect. 3, p. 1888]).

Within the family of oriented pro-p groups one has the following con-
structions. Let (G, 6) be an oriented pro-p group.
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(a) If N is a normal subgroup of G contained in Ker(6), one has the oriented
pro-p group (G/N,0,y), where 0,5 : G/N — 1+ pZ, is the orientation
such that 0,y o7 = 0, with 7: G — G//N the canonical projection.

(b) If A is an abelian pro-p group (written multiplicatively), one has the
oriented pro-p group A x (G,0) = (A % G,é)7 with action given by
gag—t = a? for every g € G, a € A, where the orientation §: AxG —
1+ pZ, is the composition of the canonical projection A x G — G with
6.

2.3. Kummerianity and 1-Cyclotomicity

Let (G,60) be an oriented pro-p group. Observe that the G-action on the
G-module Z,(0)/pZ,(9) is trivial, as 6(g) = 1 mod p for all ¢ € G. Thus,
Z,(0)/pZ,(0) is isomorphic to Z/p as a trivial G-module.

An oriented pro-p group (G, 0) comes endowed with the distinguished
subgroup

Ko(G) = <9h 09 | g e G, h e Ker(h) >

(cf. [11, Sect. 3]). The subgroup Ky(G) is normal in G, and it is contained
in both Ker(d) and ®(G). On the other hand, Ky(G) D Ker(d)’, so that
Ker(0)/Ky(G) is an abelian pro-p group. Moreover, if 6 is a torsion-free ori-
entation, G/Ker(6) ~ Im(6) is torsion-free, and thus either trivial or iso-
morphic to Z,. Hence, the epimorphism G — G/Ker(§) splits, and since
ghg™" = k%9 mod Ky(G) for every g € G and h € Ker(#), one concludes
that

Ker(6
(G/Ko(G),0/rc)) = Kg((G;

(cf., e.g., [30, Sect. 2.2, Eq. (2.1)]).
One has the following result relating the subgroup Ky(G) and the surjec-
tivity of the maps (1.1) (cf. [11, Theorem 7.1], see also [30, Proposition 2.6]).

x (G/Ker(6),0, e (o))

Proposition 2.2. Let (G,60) be an oriented pro-p group with 6 a torsion-free
orientation. The following are equivalent.

(i) The natural map
HY(G, Z,(0)/p"Zy(0)) — H'(G, Z/pZ),

18 surjective for every positive integer n.
(ii) The quotient Ker(8)/Ky(G) is a free abelian pro-p group.

If an oriented pro-p group (G, ) with torsion-free orientation satisfies
the above two equivalent properties, then it is said to be Kummerian. More-
over, (G,0) is said to be 1-cyclotomic if (H,6|y) is Kummerian for every
subgroup H C G.

Remark 2.3. The original definition of 1-cyclotomic oriented pro-p group re-
quires only that for every open subgroup U of GG, the oriented pro-p group
(U,0|y) is Kummerian (cf. [29, Sect. 1]). By a continuity argument, this is
enough to imply that the oriented pro-p group (H, 0|y ) is Kummerian also
for every subgroup H C G (cf. [29, Corollary 3.2]).
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If (G,1) is an oriented pro-p group with 1: G — 1+ pZ, the orientation
constantly equal to 1, then K;(G) = G’, and by Proposition 2.2 (G, ) is
Kummerian if, and only if, G/G’ = Ker(1)/K1(G) is a free abelian pro-p
group (cf. [11, Example 3.5—(1)]). Hence, (G, 1) is 1-cyclotomic if, and only
if, H/H' is a free abelian pro-p group for every subgroup H C G, i.e., G is
absolutely torsion-free (cf. [25, Remark 2.3]).

2.4. Examples

Ezample 2.4. Let K be a field containing a root of 1 of order p, and also
/=1 if p = 2. Then the pro-p cyclotomic character 0 of G i (p)—induced by
the action of Gk(p) on the roots of 1 of p-power order contained in K(p)—
has image contained in 1 + pZ,. Observe that Im(6x) = 1 + p/Z,, where
f € NU{oc} is maximal such that K contains a root of 1 of order p/ (if f = oo,
we set p>° = 0). In particular, 0k is a torsion-free orientation. The module
Zp(0x) is called the 1st Tate twist of Zj, (cf., e.g., [20, Definition 7.3.6]).

For the convenience of the reader, here we recall J. Labute’s argument
to show that the oriented pro-p group (Gk(p),0k) is Kummerian—and thus
also 1-cyclotomic, as every subgroup H C Gk (p) is the maximal pro-p Galois
group of an extension of K, with pro-p cyclotomic character 0x|g—as it is
presented in [13, p. 131] (where the module Z,(fk) is denoted by I = I(x')).
For every n > 1 one has an isomorphism of continuous Gk (p)-modules

Zal06) /0"y 0) = e = { CE R ) | 7" =1},

Let K* and K(p)* denote the multiplicative groups of units of K and K(p)
respectively. By Hilbert 90, the short exact sequence of continuous Gk(p)-
modules

{1} —— ppr —K(p)* —K(p)* {1} (2.1)
induces a commutative diagram

KX/(KX)‘D” I Hl(GK(p)aﬂp”) ——H' (GK(p),Zp(e]K)/anp(aK)) ’

- | |

K* /(K*)? —=—= H'(Gx(p), np) - H' (Gx(p), Z/pZ)

where the left-side vertical arrow 7, and the central vertical arrow are in-
duced by the p"~'th power map *": K(p)* — K(p)*, and the right-side
vertical arrow is induced by the epimorphism of continuous Gx(p)-modules
Z,(0x)/p"Z,(0x) — Z/pZ. Since the map m, is surjective, also the other
vertical arrows are surjective.

Ezxample 2.5. Let G be a free pro-p group. Then the oriented pro-p group
(G, 0) is 1-cyclotomic for any orientation 6: G — 1+ pZ, (cf. [29, Sect. 2.2]).

Ezample 2.6. Let G be an infinite Demushkin group (cf., e.g., [20, Defini-
tion 3.9.9]). By [13, Theorem 4], G comes endowed with a canonical orienta-
tion x: G — 14 pZ, which is the only one completing G into a 1-cyclotomic
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oriented pro-p group. In particular, if d = dim(H!(G,Z/pZ)) is even (which
is always the case if p # 2), then G has a presentation

s
G:<x1,...,xd | 2% [x1,x2] - [Ta—1, 4] >

with f > 1 (f > 2 if p = 2). In this case x(z2) = (1 — p/)™' and y(z;) = 1
for i #£ 2.

Ezample 2.7. Let (G,0) be an oriented pro-p group, with 6 a torsion-free
orientation. The oriented pro-p group (G, 0) is said to be #-abelian if the
subgroup Ky(G) is trivial and if Ker(#) is a free abelian pro-p group—in this
case (G is a free abelian-by-cyclic pro-p group, i.e.,

_G

Ker(#)

(cf. [30, Remark 2.2]). In other words, G has a presentation

G ~ Ker(6) x

G = <x07xi | iel, z° :xf(%)il,[:ﬂi,xj] =1Vi,j €I>,

for some set of indices I, and 6(x;) = 1 for all ¢ € T (cf. [22, Proposition 3.4]).
A f-abelian oriented pro-p group (G, ) is Kummerian by Proposition 2.2,
as by definition Ky(G) is trivial and Ker(6) is a free abelian pro-p group.
Moreover, if H is a subgroup of G, then one has

H
Ker(f|x)
(cf. [30, Remark 2.4]), so that the oriented pro-p group (H,0|m) is 0|g-
abelian, and thus Kummerian, and consequently (G, 0) is 1-cyclotomic.

H ~ (H NnKer()) x

One has the following result to check whether an oriented pro-p group
is Kummerian (cf. [30, Propositions 2.6, 3.6]).

Proposition 2.8. Let (G,0) be an oriented pro-p group, with 0 a torsion-free
orientation. Then (G, 0) is Kummerian if, and only if, there exists a normal
subgroup N of G such that N C Ker(6)N®(G), and the quotient (G/N,0,y),
is a 0n-abelian oriented pro-p group. If such a normal subgroup N exists,
then N = Ky(G).

2.5. Kummerianity and 1-Cocyles
Let (G, 0) be an oriented pro-p group. Recall that for n € NU{oo}, a I-cocycle
c: G — Zy(8)/p"Zy(0) is a continuous map satisfying

c(gh) = c(g) + 0(g)c(h) for every g,h € G, (2.2)
where 6(g) denotes the image of 8(g) modulo p™. From (2.2) one deduces

e(lg:h]) = 0gh) T (clg) (1 —0R) — e(m)(1 - 0(g))) . (23)

For n € NU {oc}, every element of H(G, Z,(0)/p"Z,(0)) is represented by
a l-cocycle ¢: G — Z,(0)/p"Z,(8). The following result is due to J. Labute
(cf. [13, Proposition 6]).
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Lemma 2.9. Let (G,0) be a finitely generated oriented pro-p group with
torsion-free orientation, and let X = {x1,...,zq4} be a minimal generating
set of G. The following are equivalent.
(i) (G,0) is Kummerian.
(ii) For all n € NU {oo} and for any sequence Ai,...,\q of elements of
Zp(8)/p"Zy(0) there exists a continuous 1-cocycle G — Zy(8)/p"Z,(0)
satisfying c(x;) = A; for alli=1,...,d.

Proposition 2.10. Let G be a finitely generated pro-p group, and let (G, 0) be
a Kummerian oriented pro-p group with torsion-free orientation. If N is a
normal subgroup of G such that N C Ker(0) and the restriction map

resg; n: H'(G, Z/pZ) — H'(N,Z/pZ)°
is surjective, then also (G/N,0,y) is Kummerian.

In order to prove Proposition 2.10 we need the following fact, whose
proof—rather straightforward—is left to the reader.

Fact 2.11. Let G be a finitely generated pro-p group, and let (G,0) be an
oriented pro-p group with torsion-free orientation.
(1) Ife: G — Z,(0)/p"Zy(8) is a continuous I-cocycle, with n € NU {oo},
then ¢=1(0) N Ker(0) is a normal subgroup of G.
(ii) Let N C G be a normal subgroup satisfying N C Ker(0), with canonical
projection m: G — G/N. For n € NU {oco} one has the following:
(a) a continuous I-cocycle c: G — Z,(0)/p"Z,(0) satisfying c|n =
0 induces a continuous I1-cocycle ¢: G/N — Zyp(0/n5)/P"Zp(0/N)
such that ¢ = com;
(b) a continuous I1-cocycle ¢: G/N — Zy(0,n5)/P"Zp(0/n) induces a
continuous 1-cocycle ¢: G — Zy(0)/p"Zy(0) satisfying c|nv = 0
and c=com.

Proof of Proposition 2.10. Set G = G/N and § = 0/n. For every n > 1, the
canonical projection 7: G — G induces the inflation maps

o BYG, Zp(0)/p"Zp(0)) — HY(G, Z,(0) /9" Zy(9)),
f+ HYG,Z/pZ) — H'(G,Z/pL),

which are injective by [20, Proposition 1.6.7]. Also, the epimorphisms (respec-
tively, of continuous G-modules and continuous G-modules) Z,,(0) /p"Z,(6) —
Z/pZ and Z,(0)/p™ — Z/pZ induce, respectively, the morphisms

7—7]1\[ : Hl(G” ZP(G)/pn) - Hl((;” Z/p),
HY(G, Z,(0)/p") — H'(G,Z/p).
Altogether, by [20, Proposition 1.5.2] one has the commutative diagram

(2.4)

(2.5)

HY (G, Z,(8)/p" 2y (B)) — " H(G. Z/pT)

- if

H' (G, Zy(9) /p" Ly (6)) —— H'(G, Z/pZ)
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Since (G, 0) is Kummerian, 7, is surjective for every n > 1.
HY(G,Z/pZ), B # 0, our goal is to find o € H'(G, Z,(0) /p"Z,(0)
B =1N(a).

Set B = Borm = f(B). Then B: G — Z/p is a non-trivial continu-
ous homomorphism such that Ker(3) 2 N. By hypothesis, the morphism
N/NP[G,N] — G/®(G) induced by the inclusion N — G, and dual to
resa ~ is injective. Thus, one may find a minimal generating set X’ of G such
that Y = A N N generates N as a normal subgroup of G. By Lemma 2.9,
there exists a continuous 1-cocycle c: G — Z,(8)/p™Z,(0) satisfying

Given 3 €
) such that

c(z) = B(x) mod pZy(6) for every z € X
—i.e., Tn([c]) = B, where [c] € H (G, Z,(0)/p"Z,(0)) denotes the cohomology
class of c—and moreover ¢(z) = 0 for every « € Y. Therefore, by Fact 2.11-
(i), the restriction

cIn: N — Z,(0)/p"Lp(0)
is the map constantly equal to 0. By Fact 2.11-(ii), ¢ induces a continuous
1-cocycle
¢ G — Zy(0)/p"Zy(0)

such that com = ¢, and [c] = f,.([¢]), where [¢] € HY(G,Z,(0)/p"Z,(0))
denotes the cohomology class of ¢. Altogether, one has

FB) =B =ma([e]) =m0 fulle]) = f o7 ([€])
Since f is injective, one obtains 8 = 7.V ([¢]). O

Remark 2.12. Proposition 2.10 may be proved also in a purely group-theoretic
way, see [3, Remark 3.9].

3. The Z/pZ-Cohomology of G

The purpose of this section is to prove the first statement of Proposition 1.3,
and more in general to describe the Z/pZ-cohomology algebra H®*(G,Z/pZ)
with G as in Theorem 1.1.

3.1. Degree 1 and 2
Let G be a pro-p group. We set the subgroup G s) of G as follows:

G 167G G if p # 2,
@7 eleye.a)  itp=2,

i.e., G(g) is the third term of the p-Zassenhaus filtration of G (cf., e.g., [23,
Sect. 3.1]). In particular, G(3) is a normal subgroup of the Frattini subgroup
®(G), and the quotient ®(G)/G 3y is a p-elementary abelian pro-p group—
and thus also a Z/p-vector space.

Recall that the cohomology group H!(G,Z/pZ) is equal to the group of
pro-p group homomorphisms from G to Z/p, namely, one has

HY(G,Z/pZ) = Hom(G, Z/pZ) ~ (G/®(G))*, (3.1)
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where _* denotes the Z/p-dual (cf., e.g., [32, Chap. I, Sect. 4.2]). Thus, the
dimension of H!(G,Z/pZ) is equal to the cardinality d(G) of any minimal
generating set of G. On the other hand, the dimension of H?(G, Z/pZ) is equal
to the number r(G) of defining relations of G (cf. [32, Chap. I, Sect. 4.3]).
Moreover, if both HY(G,Z/pZ) and H?(G,Z/pZ) are finite, and if the cup-
product yields an epimorphism H(G, Z/pZ)®? — H?(G,Z/pZ), one has an
isomorphism of elementary abelian p-groups

(B(G)/C3)" —£~H(G, Z/pZ) (3.2)

(cf. [17, Theorem 7.3]). For further properties of the cohomology of pro-p
groups we refer to [32, Chap. I, Sect. 4] and to [20, Chap. III, Sect. 9].

3.2. Amalgams
Henceforth, G will denote a pro-p group as in Theorem 1.1. Set

Gi=(z,y1,--,¥a, | 2Pz, 0] [Ya,—1,9a,] = 1),
Go={(z,21,...,24, | P2, 21] - [2dp—1,2d,] = 1),
with e = 0,1 depending on whether we are considering case (1.1.a) or (1.1.b).

Then G1,G4 are Demushkin groups, and G is the amalgamated free pro-p
product

G =Gy 115 Gy, (3.3)

with amalgam the subgroup X C Gip,Gy generated by z. Observe that
X ~ Zyp, as X has infinite index in both G, G2, and subgroups of infinite in-
dex of Demushkin groups are free pro-p groups (cf. [32, Chap. I, Sect. 4.5, Ex-
ample 5—(b)]). Therefore, the amalgamated free pro-p product is proper, i.e.,
Gl,GQ Q G (Cf [31])

3.3. Quadratic Cohomology
Let

B:{Xv P1y ovey @dﬂwla "'awdg}

be the basis of HY (G, Z/pZ) = Hom(G, Z/pZ) dual to X = {x,y1,..., 24, }—
ie.,

1 fw=ux

x(w) = { and

0 if w=1y;, 2

- 51'71‘/ if w= Y o 5j7j/ if w= zZjt
pilw) = {0 if w=uz,z;, ¥s(w) = 0 ifw=u=,y,
for every 1 < 4,4’ <d; and 1 < 4,5 < dy (cf. (3.1)). With an abuse of no-
tation, we may consider the subsets By = {x,¥1,...,%4,}, B2 = {x, ¢¥1,
.,%a,}, and Bx = {x}, as bases of HY(G1,Z/pZ), H'(Go,Z/pZ), and
HY(X,Z/pZ) respectively.

Proposition 3.1. The algebra H*(G,Z/pZ) is quadratic.
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Proof. As stated in Sect. 3.2, G = G, H’;( G- is a proper amalgamated free
pro-p product. Since Bx C B, Bs, the restriction maps

resg, x: H'(G, Z/pZ) — H' (X, Z/pZ), with ¢ = 1,2,

are surjective. Moreover, H?(X,Z/pZ) = 0, as X ~ Z,, and thus
Ker(resg,, x) = H*(Gi,Z/pZ) for both i = 1,2. On the other hand,
HY(G41,Z/pZ) and H' (G, Z/pZ) are generated by x ~ ¢1 and x — ) re-
spectively, as G, G2 are Demushkin groups (cf., e.g., [20, Proposition 3.9.16]),
and thus

Ker(resg, x)
=H*(G;,Z/pZ) = Ker(resg, x) ~ H'(G;,Z/pZ), with i = 1,2,

asresg, x(p1) = 0 and resf;, x(¢1) = 0. Finally, Demushkin groups are well-
known to yield a quadratic Z/pZ-cohomology algebra, while H®* (X, Z/pZ) is
obviously quadratic, as X ~ Z,. Therefore, we may apply [28, Theorem B],
so that also H*(G,Z/pZ) is quadratic. O

We describe now more in detail the structure of H*(X,Z/pZ). By
duality—cf. [17, Theorem 7.3] and (3.2)—the set {x ~ w1,x ~ Y1} is a
basis of H%(G, Z/pZ), and in H%(G, Z/pZ) one has the relations

forall 1 <4, <dj and 1 < 7,5 <ds, with 7,5 # 1, and
(—1)5Xv<p1 if2|i:i’—17
Pi ~ Pir =

0 otherwise,
(3.5)

Dy i2]i=4 -1,
Yy~ Py = (=1) ! | )
0 otherwise

(see also [23, Sect. 3.2]).
Finally, one has an exact sequence

» H2(X,Z/pZ)

H(G,Z/pZ) H*(G1,Z/pZ) & H*(Ga, Z/pZ)

(cf. [28, p. 653]). Since H?(X,Z/pZ) = H3(G;,Z/pZ) = 0 for both i = 1,2,
one has H3(G,Z/pZ) = 0, and thus by quadraticity also H*(G,Z/pZ) = 0
for all n > 3.

Remark 3.2. Tt is well-known that if a pro-p group has non-trivial torsion,
then its nth Z/p-cohomology group is non-trivial for every n > 0; hence, G
is torsion-free.
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4. Proof of Theorem 1.1 Case (1.1.a)

Let G be a pro-p group as defined in Theorem 1.1, with defining relations as
in (1.1.a)—mamely,

G={(Z, Y1y s YdysZ1y-+-12dy | 1 =T2=1),
with d; +ds > 4 and
r1= [z, p1] - [Ya -1, va, ],
re = [z, 21] - [2d,-1, Za5 ]

Without loss of generality, we may assume that d; > 3.

4.1. Kummerianity

Let G1,G2 be the two Demushkin groups as in Sect. 3.2, with ¢ = 0. By
Example 2.6, if

0:: Gy — 1+pZ, and 0: Go — 1+ pZ,

are two torsion-free orientations completing respectively G; and G2 into
Kummerian oriented pro-p groups, then necessarily 6;(z) = 01(y1) = -+ =
01(yq,) = 1, and analogously O(z) = 02(z1) = -+ = 01(z4,) = 1.

Proposition 4.1. Let 0: G — 14 pZ,, be a torsion-free orientation. Then the
oriented pro-p group (G, 0) is Kummerian if, and only if, 0 is constantly equal
to 1.

Proof. It § = 1, then (G, 1) is Kummerian if, and only if, the abelianization
G?b is a free abelian pro-p group. But this is easily verified, as clearly G2 ~
Zgl+d2_1.

Conversely, suppose that (G, 0) is Kummerian. Let N7 and N3 denote
the normal subgroups of G generated as normal subgroups by zi,..., 24,
and y1,...,Yyq4, respectively. Then G/N; ~ G and G/Ny ~ Gs. Moreover,
Proposition 2.10 implies that (G/N;,0,y,) is Kummerian for both i = 1, 2.
Since G/N; ~ @G, for both i, Example 2.6 and the argument before the
statement of the proposition imply that the torsion-free orientations 6,y,
and 6y, are constantly equal to 1. Hence, also 6 is constantly equal to 1, as
O(w) = 0N, (wNy) for every w € Gy, and analogously 6(w) = 6y, (wN2) for
every w € Gs. g

Therefore, if G may complete into a 1-cyclotomic oriented pro-p group,
then necessarily G is absolutely torsion-free. In order to prove Theorem 1.1
in case (1.1.a), we aim at exhibiting an open subgroup H of G, of index p?,
whose abelianization H®P has non-trivial torsion.

4.2. The Subgroup U

h
Set u = y&, to = 27 'y, and t, = toty®---ty* for all h = 0,...,p — 1. A
straightforward computation shows that

B () L BT (o LR T (4.1)

forall h=0,...,p— 1.
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Let ¢g: G — Z/p be the homomorphism of pro-p groups defined by

dc(ys) = og(z1) = 1 and ¢g(z) = oc(yi) = da(z;) = 0 for all i =
1,2,4,...,dy and j = 2,...,ds, and set U = Ker(¢). Then U is an open
subgroup of GG of index p, generated as a normal subgroup by the subset

X:{U,.’E,to,yi,Zj|i:1,2,47...,d1,j:2,...,d2},
and G/U = {U,y3U,...,y5 'U}.
Lemma 4.2. The subset

h h
yU:{u, x, y2, th, ¥23, 233 | i=1,4,...,d1,7=2,...,ds, h:07...,p—1}
of U is a minimal generating set of U as a pro-p group.
Proof. Since U is normally generated by X and G/U = {U, ... 7yg_lU}, Uis

generated as a pro-p group by the set {wyg |we X, h=0,...,p—1}. Also,
U is subject to the relations

h h h h h

,r.:ild — |:1~y3 , yzlldj| . [ny—l’ ygf:| = ]_, (42)
h , h h h

ry? = [l’ys zlyB} . {zzs_l,zzg’} =1, (4.3)

with h =0,...,p— 1.

Consider the abelianization U?P. Since the only factor in (4.2) which

h h
does not lie in U’ is [y5° , y3), the relation (4.2) implies that [y5*,y3] € U’ as
well, and therefore
h
yy? =yo mod U’ forall h=0,...,p— 1.
. h

Analogously, the only factor in (4.3) which does not lie in U’ is [xyé , 23], s0

that the relation (4.2) implies that [xyg , zzfg ] € U’ as well. Hence, one has
=1mod U’ = 2% =gz modU’
= 2% = 2! mod U’,
[2%%,2%) = 1 mod U’ = (a¥)#") = 23t )" = g% mod U’
= 2¥% =z mod U,
and so on. Thus,
2¥s = gth-1 mod U’ forall h=1,...,p— 1.

Altogether, U2 is the free abelian pro-p group generated by the cosets {wU’ |
w € Yy}, so that Fact 2.1 yields the claim. O

Now set U; = G1NU and Uy = GoNU. Then Uy, Us are open subgroups
of G1, G2, respectively, of index p, and thus they are again Demushkin groups,
on 2+4p(dy —1) and 2+4p(da —1) generators respectively (cf. [6]). In particular,
the defining relation of U; is

0
h

h h h h n
51 = H ([923 7915/3} {ygf—lvyéﬂ {xys »yi/?’D [y2,u] =1, (4.4)
h=p—1
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while the defining relation of Us is

0
h h h h
S9 = H ([zgl ,zgl} [zsé_l,zsé]) [z, 2¥]
h=p—1
g hy—1 hy—1 hy—1 hy—1 (45)
- H <{z33thl,z§3thl] {zgzthil,zgzthl]> [x,ut;_ll] =1.
h=p—1
Also, from the relations (4.4)—(4.5) and from (4.1), one computes
¥ = 2% = 1" ([24,, 2a,-1] -+ [23, 22]),
2 t_lt
o = 2 ([aays 2]+ ([ ] ) (ws)
3 . =1 2 2 ty o
o = a2 ([agy 2] ) (2] ) ([ )

and so on. In fact, the two relations (4.4)—(4.5)—with the 2¥’s replaced
using (4.6)—are all the defining relations we need to get U, as shown in the
following.

Lemma 4.3. The pro-p group U has r(U) = 2 defining relations.

Proof. Since H"(G,Z/pZ) = 0 for every n > 3 (cf. Sect.3.3) and [G : U] = p,
one has H"(U,Z/pZ) = 0 for every n > 3 as well (cf. [20, Proposition 3.3.5]).
Moreover, one has

r(U)—dU)+1=p((G)—-d(G) +1) (4.7)
(cf. [20, Proposition 3.3.13]). By definition, r(G) = 2 and d(G) = 1+ d; + ds,

while d(U) = 3 + p(d; + d2 — 2) by Lemma 4.2. Therefore, from (4.7) one
computes r(U) = 2. O

4.3. The Subgroup H

Let ¢y : U — Z/p be the homomorphism of pro-p groups defined by ¢y (y1),
ou(yi?) = —1, and ¢y(w) = 0 for any other element w of Yy, and put
H = Ker(¢y). Then H is an open subgroup of U of index p. Set v = y;.
Since U/H = {H,vH,...,vP"*H}, H is the pro-p group (non-minimally)
generated by

h h
XH:{UP, (vy?)" ,w”} |we Yy, w#v,y*, h=0,....,p—1 },

and subject to the 2p relations s}’h =1 and s’z’h =1, with h=0,....,p—1.
We claim that the abelianization H® yields non-trivial torsion.

Proposition 4.4. The abelian pro-p group H?® is not torsion-free.

Proof. Since all the elements of )Yy showing up in the last terms of the
equalities (4.6) belong to H, one deduces that 2% = zmod H' for all
h=0,....,p—1.

Now, each factor of so—-cf. (4.5)—is a commutator of elements of H,
and thus the relations sgh = 1 yield trivial relations in H*. On the other
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hand, every factor of s;—cf. (4.4)—but [z,y1] and [z¥2, y*], is a commutator
of elements of H. From (4.4) one obtains

(%3, y¥?] [z, 1] = [m,v_l(vy’f?’)} [z,v] = [z,v"][z,v] =1 mod H’, (4.8)

as vyi® € H. Altogether, H?" is the abelian pro-p group (non-minimally)
generated by the set X = {wH’ | w € Xy}, and subject to the p relations

[x“"H’, v—lH’} {x”hH',vH’} —H', withh=0,...,p—1,

as U/H = {H,vH,...,vP~" H}. From these relations, one deduces the equiv-
alences:

8
If

(z°)* 2" mod H'  with h=1,

2
P (m”z) () '=(2")® 272 mod H'  with h =2,

("' 2* P mod H  withh=p—2,

8
<
kS
|
—
Il
—~
8
<
kS
o
~—
N
—
8
<
]
&
~—
N
Il

N2 bz —1
T (m”p 1) : (x”p 2) = (")’ 2" mod H  withh=p—1.

But 2" = x mod H’, as v € H, and thus from the last of the above equiv-
alences one obtains

r=(z")Px'"? mod H = (2*)Px P = (22 )’ =1 mod H'. (4.9)
Altogether, H?" is the abelian pro-p group minimally generated by

h
Vigar = { WH', eH', 2 H', (vy?®)" H', w*" H' | h=0,...,p—1 }

where w € Yy \ {v,y??, 2}, and subject to the relation ((zH')~! -z H')P =

2
H'—in particular, H* is isomorphic to Z» 7*7 (di+d2=2) 7./pZ. O

5. Proof of Theorem 1.1 Case (1.1.b)

Let p be an odd prime, and let G be a pro-p group as defined in Theorem 1.1,
with defining relations as in (1.1.b)—namely,

G=(Z,Y1, s Ydy, 21y, 2dy | TL=T2=1),
with

[yhx] e [ydl—lvydl]a

[Zlvx] T [Zdz—h Zdz»}'

=Y

z

=Yg

T2
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5.1. Kummerianity

Let G1,G2 be the two Demushkin groups as in Sect. 3.2, with ¢ = 1. By
Example 2.6, if

01: Gy — 1+ pZ, and 0y: Go — 1+ pZ,

are two torsion-free orientations completing respectively GG; and G2 into

Kummerian oriented pro-p groups, then necessarily 61(y1) = -+ = 01(yq,) =
1, and analogously 69(21) = -+ = 01(zq,) = 1, while 61(z) = O2(x) =
(1-pt

Proposition 5.1. An orientation 6: G — 1+ pZ, completes G into a Kum-
merian oriented pro-p group (G,0) if, and only if,

0@)=(1—p)"  and  O(y;) = 0(z) =1
foralli=1,...,dy and j=1,...,ds.

Proof. Suppose that 0: G — 1+ pZ, is the orientation defined as above, and

pick arbitrary p-adic integers )\7>\¢,)\; €Z,forl1 <i<dyandl<j<d,.
The assignment x — X, y; — \; and z; — )\;- for every i, j yields a well-defined

continuous 1-cocycle c: G — Z,(0), as (2.3) implies that

c(r1) = c(yy) + c(lyr, 2]) + e[y2, ys]) + -+ + e([Ya, -1, Y )
=p- M +0(x) T M1 —-0(2)—0)+0+---40
=0

and

c(ra) = c(27) + c([z1, 7)) + c([22, z3]) + - - + e([2a,-1, 25))
=p- N +0(z) '\ (1-0(x)-0)+0+---+0
=0.

Therefore, (G,0) is Kummerian by Lemma 2.9.

Conversely, suppose that (G,0) is Kummerian. Let N7 and Ny denote
the normal subgroups of G generated as normal subgroups by zi,..., 24,
and y1,...,Y4,, respectively. Then G/N; ~ G; and G/Ny ~ G5. Moreover,
Proposition 2.10 implies that (G/N;,6,y,) is Kummerian for both i = 1, 2.

Since G/N; ~ G; for both i, Example 2.6 and the argument before the
statement of the proposition imply that 6y, (y1N1) = -+ = x5, (ya, N1) = 1,
and analogously 0y, (21N2) = -+ = 0/n,(2a,N2) = 1, while 0y, (xN1) =
0/n,(xN2) = (1 —p)~*. Hence, 6 is as defined above, as 6(w) = 0y, (wNy)
for every w € G1, and analogously 6(w) = 0, (wN2) for every w € G3. [

Henceforth, 8: G — 1 + pZ, will denote the orientation as in Proposi-
tion 5.1.
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5.2. The Subgroup H

Let ¢1: G1 — Z/p® Z/p and ¢o: G2 — Z/p ® Z/p be the homomorphisms
of pro-p groups defined by

¢1(l‘) = ¢2<$) = (170),

¢1(y1) = p2(21) = (0,1), (5.1)

¢1(yi) = d2(2;) = (0,0) for 4, j > 2.
Put Uy = Ker(¢;1) and Uy = Ker(¢2), and also

t =2y, u=zP, v=uyl, w =2z,

Then U, is an open normal subgroup of G; of index p?, and likewise for Us
and Ga—note that by [6] both U; and Uy are Demushkin groups.

Finally, put Ny = Ker(0|y,), No = Ker(0|y, ), and let T be the subgroup
of G generated by t. Observe that N7 and Ny are free pro-p groups, as they are
subgroups of infinite index of Demushkin groups (cf. [32, Chap. I, Sect. 4.5, Ex-
ample 5—(b)]), while T' ~ Z, as G is torsion-free (cf. Remark 3.2).

Let H be the subgroup of G generated by Uy, Us and T, and let M be
the subgroup of H generated by Ny, Ny and T. Observe that M C Ker(6).

Our aim is to show that the oriented pro-p group (H, 6|x) is not Kummerian.
For this purpose, we need the following.

Lemma 5.2. (i) M =N, IIN, IIT.

(ii) M is a normal subgroup of H, and H ~ M x XP

(iii) One has an isomorphism of p-elementary abelian groups

G Xr Ny No T

®(G) ~ X7 N[N, Uy] - NE[Na,Us) TP

Proof. Consider the pro-p tree 7 associated to the amalgamated free pro-p

product (3.3). Namely, 7 consists of a set vertices V and a set of edges &,

where

(5.2)

V={hG1,hGs | he G} =G/G1UG/Gy,
E={hX | he G} =G/X,
and it comes endowed with a natural G-action, i.e.,
g.(hG1) = (gh)G1 for every g € G, hG1 € G/G1 CV
g.(hG1) = (gh)Gs for every g € G, hGy € G/G2 C V, (5.3)
g9.(hX) = (gh)X for every g€ G, hX e G/X = €.
Pick g € M and hX € £. Then g.hX = hX if, and only if, g € hXh ™1,
i.e., g = ha’h~! for some \ € Z,. Since M C Ker(f), it follows that
1=0(g) =0 (ha*h™!) = () = (1 - p)*, (5.4)

and therefore A = 0, as 1 4+ pZ, is torsion-free. Hence, the subgroup M
intersects trivially the stabilizer Stabg(hX) of every edge hX € £. By [14,
Theorem 5.6], M decomposes as free pro-p product as follows:

M = ( 11 StabM(w)> I F, (5.5)

wey’
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where F'is a free pro-p group, and V' C V is a continuous set of representatives
of the space of orbits M\ V. Clearly, the vertices G; and G2 belong to different
orbits, thus in the decomposition (5.5) one finds the two factors

StabM(Gl):{geM ‘ gGlzGl}:MﬂGl,
StabM(Gg):{QEM ‘ gGQZGQ}:MﬁGQ.

Since Ny € M N G; C Ker(8) N Gy = Ny, one has Stabys(Gy) = Ny, and
analogously Staby;(G2) = Na. Therefore, from (5.5) one obtains

M = N, II N, I 11 Staby (W) ITF | . (5.6)
WEV/\{Gl,GQ}

It is straightforward to see that ¢t ¢ Ny II N». Since M is generated as pro-p
group by Np, N3 and t, the right-side factor in (5.6) is necessarily T, and this
proves (i).

To prove (ii), we need only to show that uMu~! = M, as H = (u, M ).
Since N; is normal in U;, and uw € Uy, then uNju~! = N;—analogously,
uNou~! = Ny. Now, observe that the integer

=g -1= (1= (Nps (D)= -p) 1

is divisible by p? but not by p3, so we put (1—p)? = 1+p?\, with A € 1+ pZ,.
From the relation r; = 1 one deduces

v =y " (ly2,ys] - [Wa—1,9a]) (5.7)

and by iterating (5.7) p times, one obtains y}' = ygl_p)pnl for some ny €

N{—for this purpose, observe that for every v > 0 and ¢ > 1, the triple
commutator
voow -1
[, [yis yira]] = [y?ﬁyiﬁl} - [ir yita]
belongs to Nj, as yfg € Ni. Analogously, 2} = zfl_p)
Altogether,

P
ng for some ny € NJ.

= (20 'y = 2fyr = ny o w TPt 0P g, (5.8)

which belongs to M—here we replaced z; ' = w=PA . ;71 and y"P" =

Y1 P Hence, M < H. Finally, by definition H = M - XP, and moreover
M N XP CKer(f) N XP = {1},
so that H = M x XP. This completes the proof of (ii).

Finally, by (i) and (ii) one has the isomorphism of p-elementary abelian
groups

M/®(M) ~ Ny /®(Ny) x Na/®(Ns) x T/T?
H/®(H) ~ X? /X" x M/MP[M, H).

From (5.8) one has that [T, X?] C ®(M), and since H = M X?, U; = N1 X?,
and Uy = N2 XP, form (5.9) one deduces (iii). O

(5.9)
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5.3. The Subgroup H and Kummerianity
Proposition 5.3. The oriented pro-p group (H,0|y) is not Kummerian.

Proof. Let N be the normal subgroup of H generated as a normal subgroup
by Ny, N2, and set H = H/N. Then N C Ker(0|g), and clearly H is finitely
generated. Moreover, by duality the restriction map resy; y: H'(H,Z/pZ) —
HY(N,Z/pZ)! is surjective, as by Lemma 5.2 one has
N/NP[N,H] ~ Nl/N{)[NhUl] X NQ/Ng[NQ,UQ],

which embeds in H/®(H). In particular, {uN,tN} is a minimal generating
set of H. Thus, by Proposition 2.10 if the oriented pro-p group (H, @) is not
Kummerian—where § = (0|y)/n: H — 1+ pZ, is the orientation induced
by 0| z—then also (H,0|y) is not Kummerian. B

By (5.8), in H one has that [t,u~!] =1 mod N, and thus H is abelian.
Moreover,

O(uN) = 0(u) = (1 — p)P and O(tN) = 0(t) =1,
so that Ker(f) = (tN). Therefore, the subgroup Ky(H) is generated by
(tfe(“)utu%) N = PN,

Thus, the quotient Ker(0)/Ky(H) = (tN)/{tN)?" is not torsion-free, and by
Proposition 2.2, (H,0) is not Kummerian. O

This completes the proof of Theorem 1.1 case (1.1.b).

Remark 5.4. If d; = d2 = 1, case (1.1.b) of Theorem 1.1 is a particular case
of [3, Proposition 6.5].

6. Massey Products
6.1. Massey Products in Galois Cohomology

Here we recall briefly what we need in order to prove Proposition 1.3. For a
detailed account on Massey products for pro-p groups, we direct the reader
to [8,19,35].

Let G be a pro-p group. For n > 2, the n-fold Massey product on
HY(G,Z/pZ) is a multi-valued map

HY(G,Z/pZ) x --- x HY(G, Z/pZ) — H*(G, Z/p7Z).

n times
For n > 2, given a sequence ar,...,q, of elements of H'(G,Z/pZ) (with
possibly o; = «a; for some 1 < i < j < n), the (possibly empty) sub-
set of H2(G,Z/pZ) which is the value of the n-fold Massey product as-
sociated to the sequence ai,...,q, is denoted by {(ai,...,a,). If n = 2,
then the 2-fold Massey product coincides with the cup-product, i.e., for
a1, ay € HY(G,Z/pZ) one has

(a1, 00) = {a ~ an} C H*(G,Z/pZ). (6.1)
A pro-p group G is said to satisfy:
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(a) the n-Massey vanishing property (with respect to Z/pZ) if for every se-
quence a, . . ., a, of elements of H (G, Z/pZ), (a1, ..., a,) # & implies

0€ (a,...,0n);

(b) the strong n-Massey vanishing property (with respect to Z/pZ) if for
every sequence oy, . . ., oy, of elements of H' (G, Z/pZ), the condition on
the cup-products

O~y =0y~ Q3="-=0p_1~ Oy =0 (6.2)
implies 0 € (aq,...,a,) (cf. [21, Definition 1.2])—we remind that the
triviality condition (6.2) is satisfied whenever (a1, ..., a,) # &, cf., e.g.,
[19, Sect. 2[;

(c) the cyclic p-Massey vanishing property if for every element o € H*(G,
Z/pZ), the p-fold Massey product {a,...,a) contains 0.

Remark 6.1. Given a sequence oy, ..., q, of elements of H'(G,Z/pZ), if an
element w of H2(G, Z/pZ) is a value of the n-fold Massey product (a1, ..., a,),
then

wHar~ B e(ar,...,an) and wHa,~ Belar,...,an)
for any 3 € HY(G,Z/pZ) (cf. [19, Remark 2.2]).

In [18, Theorem 8.1], J. Mina¢ and N.D. Téan proved that the maximal
pro-p Galois group of a field K containing a root of 1 of order p (and also

Vv —1if p = 2) satisfies the cyclic p-Massey vanishing property. The proof of
the last property for a pro-p group G as in Theorem 1.1 is rather immediate.
Proof of Proposition 1.3—(ii). By Proposition 4.1 and Proposition 5.1, G may
complete into a Kummerian oriented pro-p group with torsion-free orienta-
tion. Hence, G satisfies the cyclic p-Massey vanishing property by [27, The-
orem 3.10]. O
6.2. Massey Products and Unipotent Upper-Triangular Matrices

Massey products for a pro-p group G may be translated in terms of unipotent
upper-triangular representations of G as follows. For n > 2 let

1 ap -+ a1,n+1
1 (12,3 .
Upy1 = ‘ a5 € Z]p p € GLyy1(Z/pZ)
1 Gp,n+1
1

be the group of unipotent upper-triangular (n + 1) x (n + 1)-matrices over
Z/p. Then U, 1, is a finite p-group. Moreover, for 1 < h,l < n+1 let Ep;
denote the (n + 1) x (n + 1) matrix with the (h,[)-entry equal to 1, and all
the other entries equal to 0.

Now let p: G — U, 41 be a homomorphism of pro-p groups. Observe
that for every h = 1,...,n, the projection pp p+1: G — Z/p of p onto the
(h,h + 1)-entry is a homomorphism, and thus it may be considered as an
element of H! (G, Z/pZ). One has the following “pro-p translation” of a result
of W. Dwyer which interprets Massey product in terms of unipotent upper-
triangular representations (cf., e.g., [11, Lemma 9.3]).
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Proposition 6.2. Let G be a pro-p group, and let aq,...,a, be a sequence
of elements of HY(G,Z/pZ), with n > 2. Then the n-fold Massey product
(a1, am):
(i) is not empty if, and only if, there exists a morphism of pro-p groups
p: G —Uny1/Z(Uyy1) such that pppe1 = ap for everyh=1,...,n;
(ii) wvanishes if, and only if, there exists a morphism of pro-p groups p: G —
Up41 such that pp pt1 = oy for every h=1,...,n.

We recall that
Z(Un+1) = {In,+1 + QE17n+1 | a < Z/pZ} >~ Z/pZ

We use this fact to prove statements (iii.a)—(iii.b) of Proposition 1.3. First of
all, let G be as in Theorem 1.1, and let aq, ..., a, be a sequence of elements
of HY(G,Z/pZ). Keeping the same notation as in Sect. 3.3, for h = 1,...,n
one has

d1 d2
an=an(@) X+ Y an(y) - @i+ > an(z) - ¥
i=1 =1

Therefore, for h =1,...,n — 1 one obtains

ap~ap =Sk (x> 1)+ S, (x ~ ¥1),

where
Sp =(an(z)ans1(y1) — an(yr)ant1(v))
+ (=D (an(i)ansr Wiv1) — an(irn)on (v:),
2|
S =(an(z)ant1(z1) — an(z)ans1(2))
+ (=)D (n(z)ans1(z41) — an(z41)ant(2)),
2[4
with e = 0 if G is as in (1.1.a), and € = 1 if G is as in (1.1.b). If the
sequence s, ..., oy, satisfies condition (6.2), then one has S;, = Sj, = 0 for

h=1,....,n—1,as {x v ¢1,Xx — 1} is a basis of H*(G,Z/p).
From now on, we will assume that p > 3 while considering a pro-p group
G as in (1.1.b), unless stated otherwise.

6.3. 3-Fold Massey Products
We are ready to prove the following.

Proposition 6.3. A pro-p group G satisfies the 3-Massey vanishing property
in the following cases:

(a) if G is as in (1.1.a);

(b) if G is as in (1.1.b) and p > 3.
Proof. Let ai,as,a3 be a sequence of elements of H'(G,Z/pZ) satisfying
(6.2). Then S; = 51 =S = 55 =0 (cf. Sect. 6.2). Our goal is to construct a
morphism p: G — U4 such that P12 = 1, P23 = Q2, P34 = (3.

For every w € & set

A(w) =T+ aq(w)E1 2 + az(w)Eq 3 + as(w)Es 4 € Uy,
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where I denotes the 4 x 4 identity matrix. If G is as in (1.1.a), then one
computes

C=[Ax), A(y1)] - [A(Ya,-1), A(ya, )]

=T+ Era | oa(yr)oz(@)as(yy) + Y o1 (yi)aa(yip1)as(yi)
20

6.3
Aty 1), Alza) 63
=1+ E4 | aa(z1)e(z)as(z1) —|—Za1 zj)ao(zj41)as(24) |
2[5
while if G is as in (1.1.b), then one computes
C = A(y1)P[A(y1), A(@)] - - - [A(Ydy -1), A(Ya, )]
=1+ B4 | ar(z)aa(yr)as(x +Za1 i) oo (Yiv1)as(yi)
2|7
: (6.4)

C" = A(21)'[A(21), A(z)] - - [A(2d,-1), A(za,)]

=T+ Er4 | ar(@)as(z1)as(z) + > ar(z;)an(z1)as(z)
2[5

—observe that the exponent of Uy is p, as p > 4, and thus A(y)? = A(z1)? =
1.

In both cases, C,C" € Z(Uy), and therefore the assignment w +— A(w)
for every w € X yields a morphism p: G — Uy /Z(Uy) satistying pp p41 = an
for h =1,2,3. Thus, (a1, s, as) # & by Proposition 6.2.

Moreover, if C = C’ = I then the same assignment yields a morphism
p: G — Uy with the desired properties. In particular, by (6.3)—(6.4) one

has C = I if ay(w) = asz(w) = 0 for every w = y1,...,yq,, Or for every
w = Ya,...,yq, and w = z; and analogously C’ = I if a;(w) = az(w) = 0 for
every w = 21,...,2d,,, or for every w = z3,..., 24, and w = z.

On the other hand, if C' # I then x « @1 = +trg(r1Gs)) belongs to
(a1, az,as), and analogously if C” # I then x -« 1)1 = £trg(roG s)) belongs
to (a1, s, as) (cf. [19, Lemma 3.7])—here the sign depends on whether the
relations are as in (1.1.a) or in (1.1.b). Now, if ap(y;) # 0 for some h = 1,3
and i € {2,...,d;}, then

X~ @1 =ap~f for some 3 € HY(G, Z/pZ).
Analogously, if a(z;) # 0 for some h = 1,3 and j € {2,...,d>}, then

X~ =ap~ for some 3 € HY(G,Z/pZ).
Moreover, if ayp,(x) # 0 for some h = 1, 3, then

xver=ap~f and  xvi=ap~f

for some 3,3 € H'(G,7Z/pZ). Therefore, Remark 6.1 implies that if C # I
or C" # I then 0 € (a1, g, a3) anyway. O
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Remark 6.4. If p = 3 and G as in (1.1.b), then G does not satisfy the 3-
Massey vanishing property. Indeed, set a; = ag = ¢1 + ¥1, and as = ¢;.
Then

alvagzagvagzi(wlvwl)zo.

It is easy to see that one may construct a morphism of pro-p groups p: G —
U4/Z(Uy4) such that p1 o = p3 4 = a1 and pa 3 = as—and thus (a1, e, 1) #
& by Proposition 6.2—but, on the other hand, one may not construct a
morphism of pro-p groups p: G — Uy satisfying p12 = p34 = aq and pa 3 =
as—so that 0 ¢ (ay, as, a1) by Proposition 6.2.

6.4. 4-Fold Massey Products

Proposition 6.5. A pro-p group G as in Theorem 1.1 satisfies the strong 4-
Massey vanishing property.

Proof. Let aq,...,a4 be a sequence of four elements of H'(G,Z/pZ) sat-
isfying (6.2). Our goal is to construct a homomorphism of pro-p groups
p: G — Us such that pppi1 = oy for A = 1,...,5, so that the claim fol-
lows by Proposition 6.2.

Let I denote the identity matrix of the group Us. For every w € X =

{z,y1,..., 24, } set

1 ag(w) 0 0 0
1 az(w) 0 0
A(w) = 1 as(w) 0 € Us.
1 ay(w)
1
Moreover, put
C = (em) = Aly)? - [A@), Ay)] ™" - [Alyay 1), Aya,)]
C" = (chy) = A1) - [A(2), A(0)] 7" - [A(za,-1)s Alza, )] -
We will consider the matrix C' as a function of the matrices A(z), ..., A(yq4,),
and the matrix C” as a function of the matrices A(x), A(z1), ..., A(zd,)-

Since p > 5, the exponent of the p-group Us is p, and thus A(y;)P =
A(z1)P = I. Moreover, for every w,w’ € X, the (h, h+1)-entry of [A(w), A(w’)]
is 0 for every h = 1,...,4, and thus also ¢cj p4+1 = C;L,h-i-l = 0. Moreover, for
h = 1,2,3 one has ¢, py2 = S and ¢}, 5, ,, = Sj,—which are equal to 0 by
(6.2).

We split the proof in the analysis of the following three cases. Our aim
is to modify suitably the matrices A(w)—without modifying the (h,h + 1)-
entries with h = 1,...,4—to obtain C = C' = I.

Case 1. Suppose first that:

(L.a) as(z) = aa(y;) =0 for all 2 <i<d;or
(1b) as(x) =as(y;) =0 for all 2 <i < d;.
Since S; = Sy = S3 = 0 by (6.2), one has

ar(z)az(yr) = az(yr)as(z) =
az(w)az(yr) = az(yr)aa(z) =

; (6.5)

0
0, (6.6)
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respectively, in case (1.a) and in case (1.b). Applying (6.5)—(6.6), one com-
putes

T+ (a3(yr)aa(r) — az(z)aa(yr)) Ezs  in case (1.a),
[A(y1), A(z)] = {I + (a1 (y1)aa(z) — as(@)or (y1)) Ers in case (1.b),

and

[A(y:), A(yir1)] =

I+ (o3(yi)oa(yir1) — as(yivr)aa(ys)) Ess in case (1.a),
I+ (a1 (yi)aa(yir1) — a2(yiv1)oa (vi) Eis in case (1.b),
for i = 2,4,...,dy — 1. Altogether, one has C = I 4 S3E3 5 in case (l.a) and

C =1+ S1E 3 in case (1.b), so that in both cases C' = I by (6.2).
Analogously, if as(z) = as(z;) = 0 for all 2 < j < do, or if az(z) =

az(zj) = 0 for all 2 < j < dy, then C" = I. This completes the analysis of

case 1.

Case 2. Now suppose that aq(z) = as(r) = a1(y;) = asa(y;) = 0 for all

2 <i<d;. Since S; = Sy = S3 =0 by (6.2), one has

a1 (y1)as(x) = ag(z)as(ys) = 0. (6.7)
Then one computes
[A(y1), A(z)] = I + (e2(y1)as(@) — az(z)as(y1)) E2a + a2 (@)as(y1)aa(yr) Ezs,
[A(yi), A(yi+1)] = I + (a2(yi)az(yiv1) — a2(yit1)as (i) Ea,a,
where we apply (6.7) to obtain the first equality, and in the second one 4 runs
through the even positive integers between 2 and dy —1. If aa ()3 (y1) s (y1)

0 then it is straightforward to see that C = I + SaF>4 = I. Otherwise,
as(z) # 0, so that (6.7) implies that a;(y1) = 0. In this case, set

A=1T—-oa3(y1)a(y1)Ess.

Then
[A’A(m)} =1 — ax(@)as(yr)aa(y) Bz s,
and
Al A, A@)] = [A@), 14, A@)| |4, A@)] [A@n), A@)]
=I
=1+ (e2(y1)as(@) — az(z)as(y1)) Eza.

Therefore, replacing A(y;) with A(yl);l yields c2 4 = S = 0 and Cj,; = 0 for
h <l ie., C=1.

An analogous argument yields C’ = [—after replacing suitably the
matrix A(z1) if needed—if a1(z) = as(z) = a1(z;) = az(z;) = 0 for all
1 < j < ds. This completes the analysis of case 2.

Case 3. Finally, if none of the above two assumptions on the triviality of the
values oy (x) and ap,(y;), with 2 < i < dy, hold true, then

(3.a) there are w,w’ € {x,ya,...,yd, }—possibly w = w'—such that oy (w) #
0 and aq(w’) # 0, or
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(3.b) there are w,w’ € {x,ya,...,yq, }—possibly w = w'—such that ay(w) #
0 and as(w’) # 0.

Suppose we are in case (3.a). If w = 2 or w = y; with ¢ odd, set

G J e Hwelays e )
I‘%EEA ifwe{y; | iiseven},

and replace A(y;) with A(y1)A, if w = z, or A(y;_1) with A(y;_1)A if w =
y; with ¢ odd, or A(y;+1) with A(yi+1)14, if w =y with ¢ even. After the
replacement, one has ¢y = 0 for h <1 < h+ 2, and for (h,l) = (1,4). Then,
set
A/:{I—i—afflﬁ,)ﬂgo ifw e{z,ys,...,ya, }
I—-22-F35 ifw €{y | iseven},

ay(w’)
and replace A(y;) with A(y))A’, if w = z, or A(y;—1) with Aly;_1) A’ if
w = y; with ¢ odd, or A(y;+1) with A(y;4+1)A’, if w = y with i even. After
this further replacement, one has cp; = 0 for h <1 < h + 3. Finally, set

ifwe{z,ys ..., ya }

dr =t T
I—a(w)Egg) ifwe{y; | iiseven},

and replace A(y;) with A(y))A”, if w = z, or A(yi_1) with A(y;_1)A" if
w = y; with i odd, or A(y;41) with A(y;41)A”, if w = y with i even. After
this last replacement, one has C' = I.

Now suppose we are in case (3.b). If w = z or w = y; with ¢ odd, set

A—{I_ 02(’5)E34 if we{zys,...,ya }

I+ Es,4 ifwe{y | iiseven},

aq (w)
and replace A(y;) with A(y,)A, if w = z, or A(y;—1) with Alyi_1)A if w =
y; with ¢ odd, or A(y;+1) with A(y;+1)A, if w = y with ¢ even. After the
replacement, one has ¢, = 0 for h <1 < h+ 2, and for (h,l) = (2,5). Then,
set

I+ Cz;},)El 3 ifw e€{y | iiseven},

and replace A(y;) with A(y)A', if w = z, or A(y;—1) with Ay A if
w = y; with ¢ odd, or A(y;+1) with A(y;+1)A4’, if w = y with ¢ even. After
this further replacement, one has ¢, = 0 for h < 1 < h + 3. Finally, set

A/{Io«gzw’)EH3 ifwle{l',y&---,ydl}

A = I- al(w)E14 ifwe{zys,. ...y }
I+ Ei4 ifwe {y; | iiseven},

ai (w)
and replace A(y) with A(y;)A”, if w = z, or A(y;—1) with Aly;_1)A" if
w = y; with ¢ odd, or A(y;4+1) with A(y;+1)A”, if w = y with i even. After
this last replacement, one has C' = 1.

Moreover, if none of the above two assumptions on the triviality of the
values ap(x) and ap(z;), with 2 < j < dj, hold true, the same argument
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produces suitable matrices A(z1), ..., A(z4,) such that the matrix C’ is the
identity matrix. This concludes the analysis of case 3.

Altogether, the assignment w — A(x) for every w € X—with the ma-
trices A(w)’s suitably modified in case of need—yields a homomorphism of
pro-p groups p: G — Us with the desired properties. O

We believe that the answer to the following questions is positive.

Question 6.6. (a) Let G be as in (1.1.a). Does G satisfy the strong n-Massey
vanishing property for every n > 37
(b) Let G be as in (1.1.b). Does G satisfy the strong n-Massey vanishing
property for every 3 <n < p?

7. The Mina¢c-Tan Pro-p Group
We focus now on the Mina¢—Téan pro-p group
G=(x1,...,25 | r=1) with r = [[x1, x2], 23] [24, 5]

Using Proposition 6.2, one may show that G does not satisfy the 3-Massey
vanishing property (cf. [19, Example 7.2]). Our aim is to show that G cannot
complete into a 1-cyclotomic oriented pro-p group with torsion-free orienta-
tion.

7.1. Kummerianity and 1-Cyclotomicity

Proposition 7.1. Let G be the Minac—Tan pro-p group, and let 0: G — 1 +
PZy be a torsion-free orientation. Then the oriented pro-p group (G,0) is
Kummerian if, and only if, 4,25 € Ker(0), and:

(a) x3 € Ker(); or

(b) 21,22 € Ker(0).

Proof. Let ¢: G — Zy(0) be an arbitrary continuous 1l-cocycle, and set

cle;)) = N for i = ,5. Applying (2.2)—(2.3) one computes

C(T) = c([[xlalé] ]) ([.1?4,1‘5]) and

c([fw1, x2], 23]) = O(z122) ™ (0(23) ™" = 1) (\(1 = O(22)) — A2(1 = 0(21))),
c([wa,25]) = O(zaz5) ™" (Aa(1 = O(x5)) = Xs(1 = 0(x4))) - (7.1)

On the other hand, ¢(r) =0 as r = 1.

Suppose that (G, 6) is Kummerian. Then by Lemma 2.9, we may pre-
scribe arbitrary values to A1,...,A5. If Ay = 1 and A\; = 0 for i # 4, from
(7.1) and from the fact that ¢(r) = 0 one obtains 0 = 1- (1 — 6(z5)), and
thus 0(x5) = 1. Analogously, if \s = 1 and A\; = 0 for ¢ # 5, one deduces
0(x4) = 1. Finally, if Ay = A5 = 0 from (7.1) one obtains

0=c(r) = 0(z122) ™" (B(z3) ™" = 1) (M (1 = 0(2)) — Aao(1 = B(x1))),
and the arbitrariness of A1, Ao implies that (x3) =1 or 8(x1) = 0(z2) = 1.
Conversely, suppose that 24,25 € Ker(6), and at least one of the hy-

pothesis (i)—(ii) holds true. Then for any choice for Ag, A5, by (7.1) one has
¢([z4,25]) = 0. On the other hand, one has
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0- ()\1(1 — 9(%2)) — )\2(1 — 9(:51))) =0 if z3 € Ker(@),

e(ller, wal, al) = {(9(:53)-1 1) (A 0=z 0) =0 if 21, 70 € Ker(6).

Altogether, any choice for A1, ..., A5 yields a well-defined continuous 1-cocycle
¢: G — Zy(0), and thus (G, 0) is Kummerian by Lemma 2.9. O

Now consider the subgroup H of G generated by x3, x4, x5 and by y =
[z1, z2]. Then H is subject to the relation

r =y, zs][re, x5] = 1.

If (G,0) is a 1-cyclotomic oriented pro-p group, with 6 a torsion-free orien-
tation, then = (H,0|y) is Kummerian. Therefore, if ¢': H — Z,(0|g) is a
continuous 1-cocycle, applying (2.2)—(2.3) one obtains

0=c(r) = c([y, ws]) + ¢/ ([, w5])
= 0(ya3) ™" (¢ (y)(1 — O(x3)) — ¢ (23)(1 — 6(y))) + 0

= 0(yzs) ' (y)(1 = O(x3)),
as 6(x4) = 0(x5) = 1 by Proposition 7.1, and y € G’ C Ker(#). Since ¢ (y)

may be arbitrarily chosen by Lemma 2.9, one deduces 6(x3) = 1. This proves
the following.

Lemma 7.2. Let G be the Minac—Tan pro-p group, and let 0: G — 1+pZj, be
a torsion-free orientation. If the oriented pro-p group (G,0) is 1-cyclotomic
then x3, x4, x5 € Ker(0).

Moreover, if (G, ) is 1-cyclotomic we may suppose without loss of gen-
erality that x5 € Ker(6), too. Indeed, let v,: Z, — N denote the p-adic
valuation, and let k > 1 be such that Im(6) = 1 + p*Z,,.

Suppose first that v,(0(z2) — 1) = k and v,(0(z1) — 1) > k, and set
z = xawy. Then {z,z2,x3, x4, 25} is a minimal generating set of G, v,(0(z) —
1) = k, and G is subject to the relation

[[Z,$2],$3] [l’4,:175] =1,

8 [Tax1, x2] = [x1,22]. Hence, we may assume v, (60(x1) — 1) = k.
Consequently, there exists A\ € Z, such that 6(z3) = 6(x1)*. Now set
z = Il_)\l’g. Then {1, z,x3,24, 25} is a minimal generating set of G, 6(z) =
0(x2)0(x1)~* =1, and G is subject to the relation

[[21, 2], x3] [X4, 25] = 1,

as [x1, 2] o] = [x1, Ta].
Therefore, from now on 6: G — 1 4 pZ, will denote a torsion-free ori-
entation satisfying zs,...,z5 € Ker(0).
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7.2. The Subgroup U

Put u =2} and t = xflscg. Let ¢: G — Z/p be the homomorphism defined
by ¢(x1) = ¢(x3) = 1 and ¢(z;) = 0 for ¢ = 2,4,5, and let U be the kernel
of ¢. Then U is a normal subgroup of G of index p, and it is generated as a
normal subgroup of G by {u,t,x2,x4,25}. In fact, U is generated as a pro-p
group by the set

h n h n
— T Zy Ty Ty —
XU—{u,tl,mQ,x4,x5 | h=0,...,p 1},

as G/U ={U,x1U,... ,xfl’_lU}. We need to find a subset of Xy which mini-
mally generates U as a pro-p group.

Proposition 7.3. The set
_ T m}f z}f 93? — _
yU_ tax25x27t , Ly 5 Ty |h_077p 1 )

is a minimal generating set of U as a pro-p group. Moreover, the abelian
pro-p group U is not torsion-free.

Proof. The subgroup U is the pro-p group generated by Xy and subject to

the p-relations rol = 1, h=0,...,p—1. Since 3 = x1t, one computes
([21, 2], 23] = [w1, 2] " - a1, 0] ™
¢

= bzl o) (72)

=yt xlt <(x21) x?) .
From (7.2), and from the relation r = 1, one deduces the equivalence

x% -1 r1\2 -1 _ !
T (x5r) 27 =1 mod U, (7.3)

as [z4,25) € U and t € U.
Hence, U?P is the abelian pro-p group generated by Xpa» = {wU’ | w €
Xy} and subject to the p relations induced by the equivalences

2 3
((23) Y (22*)227 )™ = 1 mod U, namely

23t = (22?27t mod U, for h =0,

2
Ty = (acgl) (z%2)7" = (@2’ 272 mod U, for h =1,
(7.4)
zP 2?1\ 2 o\ ! z1\p 1— ’
Ty = (:E21 ) (mf ) = (z3")’ 2,7 mod U’, forh=p—2,
3t = @) a7t = (@) 2P mod U, for h=p—1.

h
On the one hand, from (7.4) one deduces that the coset x5' U’ is generated
by xoU’ and z3'U’ for every h = 2,...,p — 1, so that Yy = {wU’ | w €
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Yy} generates U2P as an abelian pro-p group. On the other hand, from the
equivalences with h = p — 2 and h = p — 1 one deduces that

(@5 a1 P (a8) " = (@3 ay P = (a5ta ) =1 mod U,

(@) ey (@) = (@) e = (030 ) =1 mod U,

as % = w2 mod U’; therefore, they yield equivalent relations in U?P. Al-
together, U2 is the abelian pro-p group minimally generated by Xy.» and
subject to the relation

((x2U") -2 U)? = 1.

Hence, U?" is not torsion-free, and Yy is a minimal generating set of U by
Fact 2.1. g

From Proposition 7.3, one deduces that G is not absolutely torsion-free,
and thus the oriented pro-p group (G,1) is not 1-cyclotomic.

7.3. 1-Cyclotomicity and the Mina¢-Tan Pro-p Group
We are ready to prove Theorem 1.4.

Proof. Suppose for contradiction that there exists a torsion-free orientation
0: G — 1+ pZ, such that the oriented pro-p group (G, 6) is 1-cyclotomic.
Then by Sect. 7.1, we may assume without loss of generality that zo, ..., z5 €
Ker (), while §(z1) # 1 by Sect. 7.2. Set A € pZ,~{0} such that §(z1) = 1+A.

Consider the oriented pro-p group (U, 0|y ), and set K = Ky, (U), U=
U/K. Our goal is to show that the oriented pro-p group (U, (6|v), k) is not
(0] ) k-abelian, so that (U, 6|y ) is not Kummerian by Proposition 2.8, and
thus (G, 0) is not 1-cyclotomic.

Since K C ®(U), by Proposition 7.3 the set Vg = {wK | w € Yy} is
a minimal generating set of U. Now, since 6(t) = 6(z1) = (14 A)~!, one has
wt = wl** mod K for every w € U. Therefore, from (7.2), and from the fact
that [z4, 5] € Ker(0|y)' C K, one obtains

—1
(21, 22] 7 ([21, 22)™)" = |1, 22] " ([xl,xz]ml)(1+>‘) =1 mod K,
and consequently
T = [z1, 5] mod K,

[Il,zg}zf = [ml,xg](1+)‘)2 mod K,

(7.5)
o1, 22 = [y, VT
Set
14+ A)P —1
/LZ(1+)\)0+(1+)\>1+...+(1+)\)p—1:%.

Then p # 0 (as A # 0), and p | p. Since [z1,22] = (25') " Lzo, replacing the
coset x5! K with the coset [r1, x2] K in Vg yields another minimal generating
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set—let us call it Y, —of U. Now, from (7.5) one obtains

= [z, 2] - [xr, o)™ - @1, @)

= [xhxg](l"”\)pfl [xl,x2]1+)‘ [x1,29] mod K

[z1,22]* mod K

—observe that [z1, J:Q]x? € Ker(0|y) for every h, and thus all such elements
commute modulo K. Therefore, one has the relation

([x1, 22] K)* = [uK, 22 K]

between elements of the minimal generating set Jf;, and by [11, Theorem 8.1]
this relation prevents the oriented pro-p group (U,(6|v) k) from being
Kummerian—and thus also (0|¢)x-abelian. O

From Theorem 1.4, we obtain a new family of pro-p groups which cannot
complete into 1-cyclotomic oriented pro-p groups.

Corollary 7.4. Let G be the pro-p group with presentation

G = (w1, s Tn, Tnt1, Tny2 | [[---[[T1, 2], 23], . . 1], Tn] [Tng1, Tnya] = 1),

withn > 3. Then G cannot complete into a 1-cyclotomic oriented pro-p group
with torsion-free orientation.

Proof. Set y =[...[x1,x2],...2n_2], and let H be the subgroup of G gener-
ated by {y,zn—1,...,Zns2}. Then

H= < Y Tn—15---,Tn42 | Hya In—1]7 mn} [xn-&-la m71-‘,-2] >

is isomorphic to the Mina¢—Tan pro-p group, and hence it cannot complete
into a 1-cyclotomic oriented pro-p group with torsion-free orientation by The-
orem 1.4. O

The following question remains open (cf. [2, Example 3.2]).

Question 7.5. Is the Minac-Tdn pro-p group G a Bloch—Kato pro-p group?
Namely, is the Z/pZ-cohomology algebra of every closed subgroup of G a
quadratic algebra?
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