ALMOST ALL SETS OF NONNEGATIVE INTEGERS AND THEIR SMALL PERTURBATIONS ARE NOT SUMSETS

PAOLO LEONETTI

Abstract

Fix $\alpha \in(0,1 / 3)$. We show that, from a topological point of view, almost all sets $A \subseteq \mathbb{N}$ have the property that, if $A^{\prime}=A$ for all but $o\left(n^{\alpha}\right)$ elements, then A^{\prime} is not a nontrivial sumset $B+C$. In particular, almost all A are totally irreducible. In addition, we prove that the measure analogue holds with $\alpha=1$.

1. Introduction

A subset A of the nonnegative integers \mathbb{N} is said to be irreducible if there do not exist $B, C \subseteq \mathbb{N}$ such that $|B|,|C| \geq 2$ and

$$
A=B+C
$$

where $B+C:=\{b+c: b \in B, c \in C\}$. In addition, we say that $A \subseteq \mathbb{N}$ is totally irreducible (or totally primitive) if there are no sets $B, C \subseteq \mathbb{N}$ such that $|B|,|C| \geq 2$ and

$$
A={ }_{\star} B+C
$$

meaning that the symmetric difference $A \triangle(B+C)$ is finite, cf. [4, 24]; equivalently, A and $B+C$ belong to the same equivalence class in $\mathcal{P}(\mathbb{N}) /$ Fin, where Fin stands for the family of finite subsets of \mathbb{N}. An old conjecture of Ostmann [18, p. 13], which is still open, states that the set of primes is totally irreducible, cf. [7, 8] for partial results. See also [4, 19] for sumsets of symmetric sets of integers $S \subseteq \mathbb{Z}$ and references therein.

Let Σ and Σ_{\star} be the family of irreducible and totally irreducible sets, respectively, so that $\Sigma_{\star} \subseteq \Sigma$. Also, identify the family of infinite sets $S \subseteq \mathbb{N}$ with the set of reals in $(0,1]$ through their unique nonterminating dyadic expansions. Also, denote by $\lambda: \mathscr{M} \rightarrow \mathbb{R}$ the Lebesgue measure, where \mathscr{M} stands for the completion of the Borel σ-algebra on $(0,1]$. Accordingly, a theorem of Wirsing [24] states that almost all infinite sets are totally irreducible, in the measure theoretic sense:

Theorem 1.1. $\lambda\left(\Sigma_{\star}\right)=1$. In particular, also $\lambda(\Sigma)=1$.
Results on the same spirit have been studied by Sárközy [21, 22] for the Hausdorff dimension. Another related result has been recently obtained by Bienvenu and Geroldinger in $\left[5\right.$, Theorem 6.2]. Here, once we identify $\mathcal{P}(\mathbb{N})$ with the Cantor space $\{0,1\}^{\mathbb{N}}$, we show that the analogue of Theorem 1.1 holds in the category sense, so that almost all sets are totally primitive also topologically (recall that a set is said to be comeager if its complement is of the first Baire category, namely, its complement is contained in a countable union of closed sets with empty interior):

1991 Mathematics Subject Classification. Primary: 11B13, 54E52; Secondary: 11B05, 11B30.
Key words and phrases. Sumset; irreducible set; totally irreducible set; meager set.

Theorem 1.2. Σ_{\star} is a comeager subset of $\mathcal{P}(\mathbb{N})$. In particular, also Σ is comeager.
Our Theorem 1.2 will be obtained as a consequence of a stronger result, which need some additional notation.

Definition 1.3. Given a family $\mathcal{I} \subseteq \mathcal{P}(\mathbb{N})$ closed under finite unions and subsets, a set $A \subseteq \mathbb{N}$ is said \mathcal{I}-irreducible if there are no $B, C \subseteq \mathbb{N}$ such that $|B|,|C| \geq 2$ and

$$
A=\mathcal{I} B+C
$$

meaning that the symmetric difference $A \triangle(B+C) \in \mathcal{I}$. The family of \mathcal{I}-irreducible sets is denoted by $\Sigma(\mathcal{I})$.

Note that \emptyset-irreducible and Fin-irreducible are simply the classical irreducible and totally irreducible sets, respectively; similarly, also $\Sigma(\emptyset)=\Sigma$ and $\Sigma($ Fin $)=\Sigma_{\star}$. It is clear that $\Sigma(\mathcal{I}) \subseteq \Sigma(\mathcal{J})$ whenever $\mathcal{J} \subseteq \mathcal{I}$. Given $\alpha \in(0,1]$, define the family

$$
\mathcal{Z}_{\alpha}:=\left\{S \subseteq \mathbb{N}: \lim _{n \rightarrow \infty} \frac{|S \cap[0, n]|}{n^{\alpha}}=0\right\}
$$

Hereafter, we will use the shorter notations $S(n):=S \cap[0, n]$ and $\mathcal{Z}:=\mathcal{Z}_{1}$. Of course, \mathcal{Z} is simply the zero set of the upper asymptotic density on \mathbb{N}, cf. [16]. Structural properties of the families \mathcal{Z}_{α} are studied, e.g., in $[2,11,12]$. With this notation, Erdős conjectured that the set $Q:=\left\{n^{2}: n \in \mathbb{N}\right\}$ of nonnegative squares belongs to $\Sigma\left(\mathcal{Z}_{1 / 2}\right)$. Then, Sárközy and Szemerédi proved in [23] a slightly weaker statement, namely, $Q \in \Sigma\left(\mathcal{Z}_{\alpha}\right)$ for all $\alpha \in\left(0, \frac{1}{2}\right)$.

With the same spirit of Erdős' conjecture, Sárközy and Szemerédi's result, and the claimed analogue stated in Theorem 1.2, we show that, from a topological point of view, almost all sets belong to \mathcal{Z}_{α}, provided that α is sufficiently small:
Theorem 1.4. $\Sigma\left(\mathcal{Z}_{\alpha}\right)$ is a comeager subset of $\mathcal{P}(\mathbb{N})$ for each $\alpha \in\left(0, \frac{1}{3}\right)$.
Observe that Theorem 1.2 is now immediate since $\Sigma\left(\mathcal{Z}_{1 / 4}\right) \subseteq \Sigma_{\star}$. Results in the same spirit, but completely different contexts, appeared, e.g., in [1, 3, 13, 14, 15].

In addition, we prove that the measure analogue Theorem 1.4 holds, hence providing a generalization of Wirsing's Theorem 1.1:

Theorem 1.5. $\lambda(\Sigma(\mathcal{Z}))=1$.
It is remarkable that Sárközy and Szemerédi proved in [23] a general criterion for a set $S \subseteq \mathbb{N}$ and all its small perturbations to be totally irreducible. However, the hypotheses of such result do not seem to apply in our case for a proof of Theorem 1.5.

Before we proceed to the proofs of Theorem 1.4 and Theorem 1.5, some remarks are in order. First, suppose that the family \mathcal{I} contains the finite sets Fin. Since $\{0,1\}+\{0,1\}=$ $\{0,1,2\}==_{\mathcal{I}} A$ for all $A \in \mathcal{I}$ then $\mathcal{I} \cap \Sigma(\mathcal{I})=\emptyset$. In particular, if \mathcal{I} is a maximal ideal, that is, the complement of a free ultrafilter on \mathbb{N}, then \mathcal{I} is not a meager subset of $\mathcal{P}(\mathbb{N})$, hence $\Sigma(\mathcal{I})$ is not comeager. However, the families \mathcal{Z}_{α} are $F_{\sigma \delta}$-subsets of $\mathcal{P}(\mathbb{N})$ for each $\alpha \in(0,1]$, hence they are meager, cf. [2, Proposition 1.1].

Second, Sárközy proved in [20] that there exists a constant $c>0$ such that, if $A \subseteq \mathbb{N}$ is infinite, then there exist a totally irreducible $B \in \Sigma_{\star}$ and $n_{0} \in \mathbb{N}$ such that

$$
\forall n \geq n_{0}, \quad|(A \triangle B)(n)| \leq c \frac{|A(n)|}{\sqrt{\log \log |A(n)|}}
$$

In particular, since the function $t \mapsto t / \sqrt{\log \log t}$ is definitively increasing, it follows that $A=\mathcal{Z} B$, therefore every equivalence class of $\mathcal{P}(\mathbb{N}) / \mathcal{Z}$ contains a totally irreducible set.

Lastly, solving another conjecture of Erdős, it has been shown in [9, 17] that, if $A \subseteq \mathbb{N}$ has positive upper asymptotic density, i.e., $A \notin \mathcal{Z}$, then there exist two infinite sets $B, C \subseteq \mathbb{N}$ such that $B+C \subseteq A$. Hence, even in the optimistic case that one could prove the comeagerness of $\Sigma(\mathcal{Z})$, cf. Section 3, there is no hope to show that also the smaller family of sets $A \subseteq \mathbb{N}$ such that, if $A^{\prime}=\mathcal{Z} A$, then A^{\prime} does not contain a nontrivial sumset is comeager. (Note that the same remark holds also in the measure sense: indeed, since almost all numbers are normal, then almost all subsets of \mathbb{N} of them have asymptotic density $\frac{1}{2}$, hence almost all of them contains a sumset between two infinite sets.)

We conclude with an easy consequence of Theorem 1.2:
Corollary 1.6. Fix two families $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}(\mathbb{N})$ containing $\{0\}$. Then

$$
\mathcal{A}+\mathcal{B}:=\{A+B: A \in \mathcal{A}, B \in \mathcal{B}\}
$$

is meager if and only if both \mathcal{A} and \mathcal{B} are meager.

2. Proofs

Proof of Theorem 1.4. Fix $\alpha \in\left(0, \frac{1}{3}\right)$. We are going to use the Banach-Mazur game defined as follows, see [10, Theorem 8.33]: Players I and II choose alternatively nonempty open subsets of $\{0,1\}^{\mathbb{N}}$ as a nonincreasing chain

$$
U_{0} \supseteq V_{0} \supseteq U_{1} \supseteq V_{1} \supseteq \cdots,
$$

where Player I chooses the sets U_{0}, U_{1}, \ldots; Player II is declared to be the winner of the game if

$$
\begin{equation*}
\bigcap_{m \geq 0} V_{m} \cap \Sigma\left(\mathcal{Z}_{\alpha}\right) \neq \emptyset \tag{2.1}
\end{equation*}
$$

Then Player II has a winning strategy (that is, he is always able to choose suitable sets V_{0}, V_{1}, \ldots so that (2.1) holds at the end of the game) if and only if $\Sigma\left(\mathcal{Z}_{\alpha}\right)$ is a comeager set in the Cantor space $\{0,1\}^{\mathbb{N}}$. Since $\mathcal{P}(\mathbb{N})$ is identified with $\{0,1\}^{\mathbb{N}}$, a basic open set in $\mathcal{P}(\mathbb{N})$ will be a cylinder of the type $\{A \subseteq \mathbb{N}: A(k)=F\}$ for some integer $k \in \mathbb{N}$ and some (possibly empty) finite set $F \subseteq[0, k]$.

At this point, we define define the strategy of player II recursively as it follows. Suppose that the nonempty open sets $U_{0} \supseteq V_{0} \supseteq \cdots \supseteq U_{m}$ have been already chosen, for some $m \in \mathbb{N}$. Then there exists a finite set $F_{m} \in$ Fin and an integer $k_{m} \geq \max \left(F_{m} \cup\{0\}\right)$ such that

$$
\forall A \subseteq \mathbb{N}, \quad A\left(k_{m}\right)=F_{m} \Longrightarrow A \in U_{m}
$$

Without loss of generality we can assume that $\left|F_{m}\right| \geq 2$. Using the continuity of the map $\beta \mapsto \alpha \beta$ and recalling that $\alpha<\frac{1}{3}$, we can fix a real $\beta \in\left(\frac{3}{4}, 1\right)$ such that $\alpha \beta<\frac{1}{4}$.

Thus, define $t_{m}:=\left\lfloor k_{m}^{\beta}\right\rfloor$ and

$$
V_{m}:=\left\{A \subseteq \mathbb{N}: A\left(7 k_{m}+t_{m}^{2}\right)=F_{m} \cup\left(k_{m}, 2 k_{m}\right] \cup \bigcup_{i=1}^{t_{m}}\left\{5 k_{m}+i t_{m}\right\}\right\}
$$

In other words, a set $A \in U_{m}$ belongs to V_{m} if it contains the block of integers [$k_{m}+$ $\left.1,2 k_{m}\right]$ and, then, it is followed by an arithmetic progression of t_{m} elements and distance t_{m}; note that each $A \in V_{m}$ ends with a further gap of lenght $2 k_{m}$.

Hence, by construction, V_{m} is a nonempty open set contained in U_{m}. Finally, observe that there exists a unique set $A \subseteq \mathbb{N}$ such that

$$
\{A\}=\bigcap_{m \geq 0} V_{m}
$$

Indeed, since the sequence $\left(k_{m}\right)_{m \geq 0}$ is strictly increasing, the definition of the sets V_{m} gives us, in particular, all the finite truncations $A\left(k_{m}\right)$.

To complete the proof, we have to show that $A \in \Sigma\left(\mathcal{Z}_{\alpha}\right)$. For, let us suppose for the sake of contradiction that there exist $A^{\prime}, B, C \subseteq \mathbb{N}$ such that $|B|,|C| \geq 2$ and

$$
A=\mathcal{Z}_{\alpha} A^{\prime}=B+C
$$

Let m be a sufficiently large integer with the property that $\left|\left(A \triangle A^{\prime}\right)(n)\right| \leq \frac{1}{2} n^{\alpha}$ for all $n \geq 2 k_{m}$, which is possible since $A \triangle A^{\prime} \in \mathcal{Z}_{\alpha}$ (further properties will be specified in the course of the proof recalling simply that " m is large" $)$. Since $\left(k_{m}, 2 k_{m}\right] \subseteq A$ by construction, then

$$
\begin{aligned}
\left|A^{\prime}\left(2 k_{m}\right)\right| & \geq\left|A\left(2 k_{m}-\frac{1}{2}\left(2 k_{m}\right)^{\alpha}\right)\right| \\
& \geq \left\lvert\,\left(A \cap\left(k_{m}, 2 k_{m}-\frac{k_{m}^{\alpha}}{2^{1-\alpha}}\right] \left\lvert\,=\left\lfloor k_{m}\left(1-\frac{1}{\left(2 k_{m}\right)^{1-\alpha}}\right)\right\rfloor \geq \frac{k_{m}}{2}\right.\right.\right.
\end{aligned}
$$

where the last inequality holds since m is large. On the other hand, $A^{\prime}(n)$ is contained in $B(n)+C(n)$ for all $n \in \mathbb{N}$, so that

$$
\left|A^{\prime}\left(2 k_{m}\right)\right| \leq\left|B\left(2 k_{m}\right)\right| \cdot\left|C\left(2 k_{m}\right)\right|,
$$

which implies that

$$
\max \left\{\left|B\left(2 k_{m}\right)\right|,\left|C\left(2 k_{m}\right)\right|\right\} \geq \sqrt{\frac{k_{m}}{2}}
$$

Up to relabeling of the sets B and C, we can assume without loss of generality that $\left|B\left(2 k_{m}\right)\right| \geq\left|C\left(2 k_{m}\right)\right|$.

Now, observe that, since m is large,

$$
\begin{equation*}
\left|\left(A \triangle A^{\prime}\right)\left(7 k_{m}+t_{m}^{2}\right)\right| \leq \frac{1}{2}\left(7 k_{m}+t_{m}^{2}\right)^{\alpha} \leq t_{m}^{2 \alpha} \tag{2.2}
\end{equation*}
$$

which is smaller than $\frac{1}{2} t_{m}$. This implies that there exists a subset $S_{m} \subseteq\left\{1, \ldots, t_{m}\right\}$ such that $\left|S_{m}\right| \geq \frac{1}{2} t_{m}$ and

$$
\left\{5 k_{m}+i t_{m}: i \in S_{m}\right\} \subseteq A^{\prime}
$$

Hence, for each $i \in S_{m}$ there exist $b_{i} \in B$ and $c_{i} \in C$ such that $5 k_{m}+i t_{m}=b_{i}+c_{i}$. Therefore

$$
\forall i \in S_{m}, \quad \max \left\{b_{i}, c_{i}\right\} \geq \frac{5 k_{m}+i t_{m}}{2}>2 k_{m}
$$

At this point, let us suppose that there exists $i \in S_{m}$ such that $c_{i}>2 k_{m}$. It follows that

$$
B\left(2 k_{m}\right)+\left\{c_{i}\right\} \subseteq(B+C) \cap\left(2 k_{m}, 7 k_{m}+i t_{m}\right] \subseteq A^{\prime} \cap\left(2 k_{m}, 7 k_{m}+t_{m}^{2}\right]
$$

so that, since m is large, we have

$$
\begin{aligned}
\left|\left(A \triangle A^{\prime}\right)\left(7 k_{m}+t_{m}^{2}\right)\right| & \geq\left|B\left(2 k_{m}\right)\right|-\frac{2 k_{m}}{t_{m}} \\
& \geq \sqrt{\frac{k_{m}}{2}}-\sqrt{\frac{k_{m}}{8}}=\sqrt{\frac{k_{m}}{8}}
\end{aligned}
$$

However, this contradicts (2.2): indeed, since $2 \alpha \beta<\frac{1}{2}$ and m is large, we have

$$
\begin{equation*}
\left|\left(A \triangle A^{\prime}\right)\left(7 k_{m}+t_{m}^{2}\right)\right| \leq t_{m}^{2 \alpha} \leq k_{m}^{2 \alpha \beta} \leq \sqrt{\frac{k_{m}}{16}} \tag{2.3}
\end{equation*}
$$

This means that $c_{i} \leq 2 k_{m}<b_{i}$ for all $i \in S_{m}$. Let $i, j \in\left[1, t_{m}\right]$ such that $i-j \geq 4 k_{m}^{1-\beta}$. Since m is large, then

$$
\begin{aligned}
b_{i}-b_{j}=(i-j) t_{m}-c_{i}+c_{j} & \geq(i-j) t_{m}-2 k_{m} \\
& \geq 4 k_{m}^{1-\beta} t_{m}-2 k_{m} \geq 3 k_{m}-2 k_{m}=k_{m}
\end{aligned}
$$

Hence there exist integers $1=i_{1}<i_{2}<\cdots<i_{q_{m}} \leq t_{m}$ such that

$$
\forall j=1, \ldots, q_{m}-1, \quad i_{j+1}-i_{j} \geq 4 k_{m}^{1-\beta} \quad \text { and } \quad b_{i_{j+1}}-b_{i_{j}} \geq k_{m}
$$

and, since m is large,

$$
q_{m} \geq \frac{t_{m}}{5 k_{m}^{1-\beta}} \geq \frac{1}{6} k_{m}^{2 \beta-1}
$$

Let us call $c^{\prime}:=\min C$ and $c^{\prime \prime}:=\min C \backslash\left\{c^{\prime}\right\}$. Since m is large, we can assume that $t_{m} \geq 2 c^{\prime \prime}$. It follows that

$$
b_{i_{1}}+c^{\prime}<b_{i_{1}}+c^{\prime \prime}<b_{i_{2}}+c^{\prime}<b_{i_{2}}+c^{\prime \prime}<\cdots<b_{i_{q_{m}}}+c^{\prime}<b_{i_{q_{m}}}+c^{\prime \prime}
$$

Therefore we have $2 q_{m}$ distinct elements in $(B+C) \cap\left(2 k_{m}, 7 k_{m}+t_{m}^{2}\right)=A^{\prime} \cap\left(2 k_{m}, 7 k_{m}+\right.$ $\left.t_{m}^{2}\right)$ and at most half of them are nor equal to any $5 k_{m}+h t_{m}, 1 \leq h \leq t_{m}$. Indeed since $c^{\prime \prime}-c^{\prime} \leq \frac{1}{2} t_{m}, b_{i_{j}}+c^{\prime}$ and $b_{i_{j}}+c^{\prime \prime}$ cannot be together written as $5 k_{m}+h^{\prime} t_{m}$ and $5 k_{m}+h^{\prime \prime} t_{m}$, respectively. It follows that

$$
\left|\left(A \triangle A^{\prime}\right)\left(7 k_{m}+t_{m}^{2}\right)\right| \geq q_{m} \geq \frac{1}{6} k_{m}^{2 \beta-1}
$$

which contradicts again (2.3), since m is large and $2 \beta-1>\frac{1}{2}$.
Proof of Theorem 1.5. Hereafter, denote explicitly by $h:$ Fin $^{+} \rightarrow(0,1]$ the bijection between the family Fin $^{+}:=\mathcal{P}(\mathbb{N}) \backslash$ Fin of all infinite subsets of \mathbb{N} and the set of reals in $(0,1]$ through their unique nonterminating dyadic expansions. Also, let Ω be the set of normal numbers in $(0,1]$. It follows by Borel's normal number theorem that $\Omega \in \mathscr{M}$ and $\lambda(\Omega)=1$, see e.g. [6, Theorem 1.2]. Observe that, if a set A belongs to $\widehat{\Omega}:=h^{-1}[\Omega]$, then, by the definition of normal numbers,

$$
\begin{equation*}
|\{j \in[0, n]: A(n+|F|) \cap(I+j)=F+j\}|=2^{-|I|} n+o(n) \tag{2.4}
\end{equation*}
$$

as $n \rightarrow \infty$, for all nonempty finite sets $F \subseteq I$ such that $I \subseteq \mathbb{N}$ is an interval containing 0 . Then the claim can be rewritten equivalently as

$$
\lambda(h[\widehat{\Omega} \backslash \Sigma(\mathcal{Z})])=0
$$

and note that, by definition,

$$
\widehat{\Omega} \backslash \Sigma(\mathcal{Z})=\left\{A \in \widehat{\Omega}: \exists A^{\prime}, B, C \subseteq \mathbb{N}, A=\mathcal{Z} A^{\prime}=B+C \text { and }|B|,|C| \geq 2\right\}
$$

First, we claim that, if $A \in \widehat{\Omega}$ and $A=B+C$ for some $B, C \subseteq \mathbb{N}$ with $|B|,|C| \geq 2$, then both B and C need to be infinite sets. Indeed, suppose for the sake of contradiction that B is a finite set and define $m:=1+\max B$. Since $A \in \widehat{\Omega}$ there exists an integer $a \in A$ bigger than m such that $A \cap[a-m, a+m]=\{a\}$. However, since $a \in A$ there exist $b \in B$ and $c \in C$ such that $a=b+c$. Since $|B| \geq 2$ there exists $b^{\prime} \in B \backslash\{b\}$. This is a contradiction because $a^{\prime}:=b^{\prime}+c$ would be an integer in $A \cap[a-m, a+m]$ which is different from a. By symmetry, also C needs to be infinite.

Second, we claim that, if $A \in \widehat{\Omega}$ and $A=B+C$ for some infinite sets $B, C \subseteq \mathbb{N}$, then both B and C belong to \mathcal{Z}. For, let ($b_{n}: n \in \mathbb{N}$) be the increasing enumeration of the integers in B and define $I_{k}:=\left[0, b_{k+1}-1\right]$ for all $k \in \mathbb{N}$. Fix $k \in \mathbb{N}$ and note that, if $c \in C(n)$ then $c+b_{i} \in(B+C)\left(n+b_{k+1}\right)=A\left(n+b_{k+1}\right)$ for all $i \in[0, k]$ and all $n \in \mathbb{N}$. Letting \mathscr{S}_{k} be the family $\left\{S \subseteq \mathbb{N}:\left\{b_{0}, b_{1}, \ldots, b_{k}\right\} \subseteq S \subseteq I_{k}\right\}$, we obtain

$$
|C(n)| \leq \sum_{S \in \mathscr{S}_{k}}\left|\left\{j \in\left[0, n+b_{k+1}\right]: A\left(n+b_{k+1}\right) \cap\left(I_{k}+j\right)=S+j\right\}\right|
$$

for all $n \in \mathbb{N}$. At this point, since $A \in \widehat{\Omega}$ and $\left|\mathscr{S}_{k}\right|=2^{\left|I_{k}\right|-(k+1)}$, it follows by (2.4) that

$$
|C(n)| \leq\left|\mathscr{S}_{k}\right| \cdot\left(2^{-\left|I_{k}\right|} n+o(n)\right) \leq 2^{-k} n
$$

for all sufficiently large $n \in \mathbb{N}$. By the arbitrariness of $k \in \mathbb{N}$, we conclude that $C \in \mathcal{Z}$ and, by symmetry, $B \in \mathcal{Z}$ as well.

Third, note that, if $A \in \widehat{\Omega}$ and $A^{\prime}={ }_{\mathcal{Z}} A$, then, by the definition of normal numbers, $A^{\prime} \in \widehat{\Omega}$ as well. Putting everything together it follows the set $\widehat{\Omega} \backslash \Sigma(\mathcal{Z})$ can be rewritten equivalently as the family of all $A \in \widehat{\Omega}$ such that $A=\mathcal{Z} A^{\prime}=B+C$ for some $A^{\prime} \in \widehat{\Omega}$ and some infinite $B, C \in \mathcal{Z}$. Therefore, by monotonicity, it is enough to check that $\lambda(h[\mathscr{A}])=0$, where

$$
\mathscr{A}:=\left\{A \subseteq \mathbb{N}: \exists A^{\prime} \subseteq \mathbb{N}, \exists B, C \in \mathcal{Z} \cap \operatorname{Fin}^{+}, A=\mathcal{Z} A^{\prime}=B+C\right\}
$$

Let k be a sufficiently large integer that will be chosen later (it will be enough to set $k=17$). Suppose that $A \in \mathscr{A}$ and pick $A^{\prime} \subseteq \mathbb{N}$ and infinite sets $B, C \in \mathcal{Z}$ such that $A=\mathcal{Z} A^{\prime}=B+C$. Then there exists $n_{0}=n_{0}(k) \in \mathbb{N}$ such that $A^{\prime}(n)=$ $(B(n)+C(n)) \cap[0, n]$ and

$$
\max \left\{\left|\left(A \triangle A^{\prime}\right)(n)\right|,|B(n)|,|C(n)|\right\} \leq n / k
$$

for all $n \geq n_{0}$. At this point, for each $n \in \mathbb{N}$, let \mathcal{E}_{n} be the family of all $X \subseteq[0, n]$ such that $\max \left\{\left|X \triangle X^{\prime}\right|,|Y|,|Z|\right\} \leq n / k$ and $X^{\prime}=(Y+Z) \cap[0, n]$ for some $X^{\prime}, Y, Z \subseteq[0, n]$. Hence $A(n) \in \mathcal{E}_{n}$ for all $n \geq n_{0}$, which implies that

$$
\begin{equation*}
\mathscr{A} \subseteq \bigcap_{n \geq n_{0}} \mathcal{E}_{n} \subseteq \bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m} \mathcal{E}_{n} \subseteq \bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m} \mathcal{E}_{n} \tag{2.5}
\end{equation*}
$$

To conclude the proof, let us compute the probability $P\left(\mathcal{E}_{n}\right)$ of the event \mathcal{E}_{n} with respect to the uniform probability measure P on $[0, n]$. Observe that both Y and Z can be chosen
in at most

$$
w_{n, k}:=\sum_{i=0}^{n / k}\binom{n+1}{i}
$$

ways and, for each $X^{\prime}:=(Y+Z) \cap[0, n]$, the set X can be obtained with at most $w_{n, k}$ modifications. Hence X^{\prime} can be chosen in at most $w_{n, k}^{2}$ possibilities and, for each such X^{\prime}, its modification X will be obtained in at most $w_{n, k}$ ways. Using Stirling's approximation, it follows that

$$
\begin{aligned}
P\left(\mathcal{E}_{n}\right) & \leq \frac{1}{2^{n+1}} \cdot w_{n, k}^{2} \cdot w_{n, k} \ll \frac{n^{3}}{2^{n}} \cdot\binom{n}{n / k}^{3} \\
& \ll \frac{n^{3}}{2^{n}} \cdot\left(\frac{n^{n+\frac{1}{2}}}{\left(\frac{n}{k}\right)^{\frac{n}{k}+\frac{1}{2}} \cdot\left(\frac{k-1}{k} n\right)^{\frac{k-1}{k} n+\frac{1}{2}}}\right)^{3}=\frac{k^{3}}{(k-1)^{3 / 2}} \cdot \frac{n^{2}}{2^{n}} \cdot \alpha_{k}^{3 n}
\end{aligned}
$$

as $n \rightarrow \infty$, where

$$
\alpha_{k}:=k^{1 / k} \cdot\left(\frac{k}{k-1}\right)^{(k-1) / k}
$$

Since $\alpha_{t} \rightarrow 1^{+}$as $t \rightarrow \infty$, we can fix an integer $k \in \mathbb{N}$ for which $\alpha_{k} \in\left(1,2^{1 / 3}\right)$. Hence there exists $c \in(1 / 2,1)$ for which

$$
P\left(\mathcal{E}_{n}\right) \leq c^{n}
$$

for all sufficiently large n. Since $\sum_{n} P\left(\mathcal{E}_{n}\right)<\infty$, it follows by Borel-Cantelli lemma and inclusion (2.5) that $\lambda(h[\mathscr{A}])=0$, which concludes the proof.
Proof of Corollary 1.6. First, suppose that \mathcal{A} is not meager (the case \mathcal{B} not meager is analogous). Then $\mathcal{A}+\mathcal{B}$ contains $\mathcal{A}+\{\{0\}\}=\mathcal{A}$, so that $\mathcal{A}+\mathcal{B}$ is not meager.

Conversely, suppose that both \mathcal{A} and \mathcal{B} are meager, and note that

$$
\mathcal{A}+\mathcal{B} \subseteq \bigcup_{a \in \mathbb{N}:\{a\} \in \mathcal{A}}(\{a\}+\mathcal{B}) \cup \bigcup_{b \in \mathbb{N}:\{b\} \in \mathcal{B}}(\mathcal{A}+\{b\}) \cup(\mathcal{P}(\mathbb{N}) \backslash \Sigma)
$$

The claim follows by the fact that all sets $\{a\}+\mathcal{B}$ and $\mathcal{A}+\{b\}$ are meager, and that $\mathcal{P}(\mathbb{N}) \backslash \Sigma$ is meager as well by Theorem 1.2.

3. Concluding Remarks and Open Questions

In the same spirit of [5, Section 6], the statement of Theorem 1.4 holds also replacing \mathbb{N} with a numerical submonoid of \mathbb{N}, that is, a pair $(M,+)$ where M is a cofinite subset of \mathbb{N} closed under sum. Indeed, the very same proof holds substituting the definition of $k_{0}=\max F_{0}$ with $k_{0}=\max \left(F_{0} \cup M^{c}\right)$.

We leave as an open question for the interested reader to check whether Theorem 1.4 can be strenghtened to prove the comeagerness of $\Sigma\left(\mathcal{Z}_{1 / 2}\right)$, on the same lines of Erdős' conjecture, or even of the smaller subset $\Sigma(\mathcal{Z})$, in analogy with Theorem 1.5.

Lastly, we conclude with an evocative question: is it true that every (set identified with a) normal number is not a nontrivial sumset? With the notation of the proof of Theorem 1.5, this amounts to ask whether the inclusion $\widehat{\Omega} \subseteq \Sigma$ holds.
3.1. Acknowledgements. The author is grateful to an anonymous referee for a careful reading of the manuscript and several useful suggestions.

References

1. A. Aveni and P. Leonetti, Most numbers are not normal, Math. Proc. Cambridge Philos. Soc., to appear, doi:10.1017/S0305004122000469.
2. M. Balcerzak, P. Das, M. Filipczak, and J. Swaczyna, Generalized kinds of density and the associated ideals, Acta Math. Hungar. 147 (2015), no. 1, 97-115.
3. M. Balcerzak and P. Leonetti, Convergent subseries of divergent series, Rend. Circ. Mat. Palermo (2) 71 (2022), no. 2, 879-886
4. P.-Y. Bienvenu, Metric decomposability theorems on sets of integers, arXiv:2204.11773.
5. P.-Y. Bienvenu and A. Geroldinger, On algebraic properties of power monoids of numerical monoids, arXiv:2205.009829.
6. P. Billingsley, Probability and measure, third ed., Wiley Series in Probability and Mathematical Statistics, John Wiley \& Sons, Inc., New York, 1995, A Wiley-Interscience Publication.
7. C. Elsholtz, Additive decomposability of multiplicatively defined sets, Funct. Approx. Comment. Math. 35 (2006), 61-77.
8. C. Elsholtz and A. J. Harper, Additive decompositions of sets with restricted prime factors, Trans. Amer. Math. Soc. 367 (2015), no. 10, 7403-7427.
9. B. Host, A short proof of a conjecture of Erdös proved by Moreira, Richter and Robertson, Discrete Anal. (2019), Paper No. 19, 10.
10. A. S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, SpringerVerlag, New York, 1995.
11. A. Kwela, Erdốs-Ulam ideals vs. simple density ideals, J. Math. Anal. Appl. 462 (2018), no. 1, 114-130.
12. A. Kwela, M. Popławski, J. Swaczyna, and J. Tryba, Properties of simple density ideals, J. Math. Anal. Appl. 477 (2019), no. 1, 551-575.
13. P. Leonetti, Limit points of subsequences, Topology Appl. 263 (2019), 221-229.
14. P. Leonetti, Tauberian theorems for ordinary convergence, J. Math. Anal. Appl. 519 (2023), doi:10.1016/j.jmaa.2022.126798.
15. P. Leonetti and A. Khorrami Chokami, The maximum domain of attraction of multivariate extreme value distributions is small, Electron. Comm. Probab., 27 (2022), 1-8, doi:110.1214/22-ECP501.
16. P. Leonetti and S. Tringali, On the notions of upper and lower density, Proc. Edinb. Math. Soc. (2) 63 (2020), no. 1, 139-167.
17. J. Moreira, F. K. Richter, and D. Robertson, A proof of a sumset conjecture of Erdös, Ann. of Math. (2) 189 (2019), no. 2, 605-652
18. H.-H. Ostmann, Additive Zahlentheorie. Teil I: Allgemeine Untersuchungen. Teil II: Spezielle Zahlenmengen, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bände 7, vol. 11, SpringerVerlag, Berlin-New York, 1968, Unveränderter Nachdruck der 1, Auflage von 1956.
19. I. Z. Ruzsa, Additive decomposition of signed primes, arXiv:2204.140139.
20. A. Sárközy, Über totalprimitive Folgen, Acta Arith. 8 (1962/63), 21-31.
21. A. Sárközy, Some metric problems in the additive number theory. I, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 19 (1976), 107-127 (1977).
22. A. Sárközy, Some metric problems in the additive number theory. II, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 20 (1977), 111-129
23. A. Sárközy and E. Szemerédi, On the sequence of squares, Mat. Lapok 16 (1965), 76-85.
24. E. Wirsing, Ein metrischer Satz über Mengen ganzer Zahlen, Arch. Math. (Basel) 4 (1953), 392-398.

Department of Economics, Università degli Studi dell'Insubria, via Monte Generoso 71, 21100 Varese, Italy

Email address: leonetti.paolo@gmail.com
URL: https://sites.google.com/site/leonettipaolo/

