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TURNPIKE IN INFINITE DIMENSION

PAOLO LEONETTI AND MICHELE CAPRIO

Abstract. Let Φ be a correspondence from a normed vector space X into itself, let u :
X → R be a function, and I be an ideal on N. Also, assume that the restriction of u on the
fixed points of Φ has a unique maximizer η⋆. Then, we consider feasible paths (x0, x1, . . .)
with values in X such that xn+1 ∈ Φ(xn) for all n ≥ 0. Under certain additional conditions,
we prove the following turnpike result: every feasible path (x0, x1, . . .) which maximizes the
smallest I-cluster point of the sequence (u(x0), u(x1), . . .) is necessarily I-convergent to η⋆.

We provide examples that, on the one hand, justify the hypotheses of our result and, on
the other hand, prove that we are including new cases which were previously not considered
in the related literature.

1. Introduction

Let X be a normed real vector space, and fix a correspondence Φ from X into itself and
a functional u : X → R which may be interpreted as a utility function. Then, a sequence
x = (x0, x1, . . .) with values in X is said to be feasible if xn+1 ∈ Φ(xn) for all n ≥ 0. Note
that this sequence is simply the orbit of the starting point x0 if Φ is singleton-valued. Fix
also an ideal I on the nonnegative integers N, which will represent the family of "small"
sets (see Section 1.1 for definitions). Assuming that x belongs to a given constraint set C of
feasible sequences, we say that x is I-optimal if it maximizes the smallest I-cluster point of
the real sequence (u(x0), u(x1), . . .); here, an I-cluster point is, informally, an accumulation
point which is not small with respect to I.

Our aim is to study the asymptotic stability of I-optimal paths, which is often referred
to as turnpike property, see e.g. [26, 27] for a textbook exposition. Roughly, this property
states that an I-optimal path spends "most" of the time within a small neighborhood of
some optimal stationary point, which is an identified fixed point of Φ. Here, following the
same lines of [5, 20, 25], the adjective "most" is intended with respect to the ideal I. In
particular, I-optimal paths are potentially not convergent to the optimal stationary point.
As remarked in [26], the turnpike property has the following interpretation: if one is looking
for an optimal way to reach A from B by car, then he should enter onto a turnpike, spend
most of the time there, and finally leave the turnpike to reach the claimed point. There is
an extensive literature which studies this phenomenon, see e.g. [3, 4, 12, 18, 21, 23].

Our main result (Theorem 2.1) generalizes the main ones obtained in [5, 20]. We discuss
later how our assumptions are related to the ones in these articles. In addition, we show with
some novel examples that:
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(i) The turnpike property provided in Theorem 2.1 does not hold without any restriction
on the ideal I (see Example 2.3);

(ii) An I-optimal path may not converge, in the classical sense, to the optimal stationary
point (see Example 2.5);

(iii) The turnpike property holds also in infinite dimension (see Example 5.1).

Our main result and its consequences follow in Section 2.

1.1. Preparation. An ideal I ⊆ P(N) is a family closed under finite union and subsets. It
is also assumed that I contains the family of finite sets Fin and it is different from P(N). Let
also I⋆ := {S ⊆ N : Sc ∈ I} be its dual filter and I+ := {S ⊆ N : S /∈ I} be the collection
of I-positive sets. We denote by Z be the ideal of asymptotic density zero sets, i.e.,

Z = {A ⊆ N : |{a ∈ A : a ≤ n}| = o(n) as n → ∞} .

An ideal I on N is said to be translation invariant if (A + k) ∩N ∈ I for all A ∈ I and all
(possibly negative) integers k ∈ Z. Note that the ideal Z is translation invariant. Classes of
translation invariant ideals have been widely studied, see e.g. [6, 9] and the ideals generated
by the upper densities considered in [17]. However, there exist ideals which are not translation
invariant: for instance, all the maximal ideals (indeed exactly one between the even and the
odd integers belongs to a maximal ideal) and much simpler ones as the family of all sets
A ⊆ N containing finitely many even integers.

Let x = (xn) be a sequence taking values in a topological vector space S. Then we say
that x is I-convergent to η ∈ S, shortened as I- limx = η, if {n ∈ N : xn ∈ U} ∈ I⋆

for all open neighborhoods U of η. Moreover, we say that η ∈ S is an I-cluster point of
x if {n ∈ N : xn ∈ U} ∈ I+ for all open neighborhoods U of η. The set of I-cluster
points of x is denoted by Γx(I). Usually Z-convergence and Z-cluster points are referred to
as statistical convergence and statistical cluster points, respectively, see e.g. [10, 24]. Note
that Fin-convergence coincides with the ordinary convergence and that Γx(Fin) is the set
of ordinary accumulation points of x. It is worth noting that I-cluster points have been
studied much before under a different name. Indeed, as it follows by [16, Theorem 4.2] and
[14, Lemma 2.2], they correspond to classical “cluster points” of a filter (depending on x) on
the underlying space, cf. [2, Definition 2, p.69].

Finally, following [11], for each real sequence x such that {n ∈ N : |xn| ≥ M} ∈ I for
some M ∈ R, we define its I-limit inferior as

I- lim inf x := inf{r ∈ R : {n ∈ N : xn > r} ∈ I+}.

Simmetrically, we let I- lim supx := −I- lim inf(−x) be the I-limit superior. Again, it is
easy to see that if I = Fin then they coincide with the ordinary limit inferior and limit
superior of x, respectively. It is remarkable that they can be rewritten also as the smallest
and the biggest I-cluster point of x, respectively, cf. Corollary 3.3 below.

Given sets A,B, we say that α : A ⇒ B is a correspondence if α(x) is a (possibly empty)
subset of B for each x ∈ A. Moreover, we denote the set of its fixed points by

Fix(α) := {x ∈ A : x ∈ α(x)}.

We recall that, if A and B are endowed with some topologies, then the correspondence α is
upper hemicontinuous at x ∈ A if for each open U ⊇ α(x) there exists an open neighborhood
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V of x such that z ∈ V implies ϕ(z) ⊆ U . Moreover, α is lower hemicontinuous at x ∈ A
if for every open U ⊆ B with ϕ(x) ∩ U 6= ∅ there exists an open neighborhood V of x such
that z ∈ V implies ϕ(z)∩U 6= ∅. Finally, the correspondence α is said to be continuous if it
is both upper and lower hemicontinuous at each point x ∈ A, see [1, Definition 17.2].

Given a function h : A → B and a sequence x = (x0, x1, . . .) with values in A, we write
h(x) for the sequence (h(x0), h(x1), . . .). Lastly, if B = R, we say that x0 ∈ A is a maximizer

of h if h(x) ≤ h(x0) for all x ∈ A (and similarly for minimizers).

2. Main result

Let X be a real normed vector space and denote by K the collection of its nonempty com-
pact subsets. Also, let I be an ideal on the nonnegative integers N, and fix a correspondence
Φ : X ⇒ X and a function u : X → R. In this setting, the function u will take the role of a
utility function which induces a total preorder on X.

Let K be the family of sequences x = (x0, x1, . . .) taking values in X which are I-contained
in a compact, that is, such that {n ∈ N : xn /∈ K} ∈ I for some K ∈ K. Moreover, we let
F be the collection of feasible paths x which satisfy xn+1 ∈ Φ(xn) for all n, that is,

F = {x ∈ XN : ∀n ∈ N, xn+1 ∈ Φ(xn)}.

It is easy to see that, if u is continuous, then I- lim inf u(x) and I- lim sup u(x) are well
defined for each sequence x ∈ FK, where

FK := F ∩ K ,

cf. Section 3. Fix also a nonempty subset C ⊆ FK, which will take the role of the collection
of constraints. Note that the primitive elements of this system are represented by the tuple
〈X,Φ, u, I,C 〉. Finally, we say that a sequence x ∈ C is I-optimal if

∀y ∈ C , I- lim inf u(x) ≥ I- lim inf u(y). (1)

In other words, an I-optimal path x is a maxmin solution in a precise sense: it maximizes
the minimal I-cluster point of the sequence (u(y0), u(y1), . . .) among all feasible paths y in
the constraint set C , cf. Corollary 3.3 below.

The aim of this work, in the same spirit of [5, 20, 21, 25], is to find sufficient conditions
on the system 〈X,Φ, u, I,C 〉 such that every I-optimal path is necessarily I-convergent to
some identified fixed point of Φ (in this setting, a fixed point of Φ is usually called stationary

point). We are going to show that certain feasible paths satisfy this property whenever the
following conditions on 〈X,Φ, u, I,C 〉 hold:

(A1) Φ is continuous and takes values in K;
(A2) u is continuous;
(A3) I is translation invariant;
(A4) There exists a unique η⋆ ∈ Fix(Φ) which maximizes the restriction of u on Fix(Φ);
(A5) There exists a continuous linear functional T : X → R such that

∀x ∈ F, ∀y ∈ Φ(x), Tx ≤ Ty =⇒ x = y = η⋆, (2)

where F := {x ∈ X : u(x) ≥ u(η⋆)};
(A6) sup

y∈C I- lim inf u(y) ≥ u(η⋆).
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We remark that condition (A1) is equivalent to the fact that the function X → K defined by
x 7→ Φ(x) is continuous with respect to the Hausdorff metric, see [1, Theorem 17.15].

Note that the separation property given in condition (A5) has been already used in [5, 20]
for the case X = R

n, replacing (2) with the weaker variant

∀x ∈ F, ∀y ∈ Φ(x), Tx ≤ Ty =⇒ x = η⋆. (3)

However, a careful analysis of their proofs reveals that, in fact, they were both implicitly
using (2). Indeed, as pointed out by Piotr Szuca in a private communication [22], condition
(3) is in fact not sufficient for their purposes. On this direction, see also Remark 4.1 below.
Condition (3) appeared also in [19] in the study of turnpike theorems for integral functionals
in a continuous time setting. A somehow related condition can be found in [21, Lemma 4.3].

Our main result follows.

Theorem 2.1. Let 〈X,Φ, u, I,C 〉 be a system which satisfies conditions (A1)–(A6). Let also

x ∈ C be an I-optimal path. Then I- limx = η⋆.

It is worth to remark that, differently from most of the literature on turnpike theorems,
we do not assume neither the concavity of the utility function u nor the convexity of the
images Φ(x) for each x ∈ X. Moreover, a sufficient condition to imply condition (A6) is the
existence of a sequence y ∈ C which is I-convergent to η⋆, which gives us the following.

Corollary 2.2. Let 〈X,Φ, u, I,C 〉 be a system which satisfies conditions (A1)–(A5) and

suppose that there exists y ∈ C such that I- limy = η⋆. Let also x ∈ C be an I-optimal

path. Then I- limx = η⋆.

Corollary 2.2 generalizes the main results obtained in [5, 20]. Indeed, in [20] Mamedov
and Pehlivan assumed, in addition, that: X is the finite dimensional vector space R

k, F is
compact, there exists a compact set containing (the image of) each feasible sequence in FK,
the set of contraints C depends on the sequence x so that C is of the type {z ∈ FK : x0 = z0},
and there exists y ∈ C which is convergent to η⋆ (in the place of the weaker assumption of
I-convergence). The same hypotheses have been also used by Das et al. in [5], where the
authors considered certain correspondences Φ : Rk ⇒ R

k such that Φ(x) = {h(x, y) : y ∈ U}
for all x ∈ R

k, where h : Rk → R
m is a continuous function and U ⊆ R

m is a fixed nonempty
compact set (it is routine to show that all correspondences Φ of this type are continuous).
Lastly, Mamedov and Pehlivan [20] focused on the case I = Z. Hence, Corollary 2.2 proves
that all these assumptions are not really needed.

In the next example, we show that Corollary 2.2 (and, hence, also Theorem 2.1) cannot
be extended to all the ideals I.

Example 2.3. Let I be an ideal on N such that 2N ⊆ I. Note that such ideals exist,
e.g., the family of subsets of N containing finitely many odd integers, or the maximal ideals
extending 2N. Now, let X = R, and define Φ(x) = {−x, x/2} and u(x) = x3 for each
x ∈ R. Moreover, set C := {y ∈ FK : y0 = 1}. Then the continuous correspondence Φ
has a unique fixed point, i.e., Fix(Φ) = {0}. It is easily seen that the system 〈X,Φ, u, I,C 〉
satisfies conditions (A1)–(A4). Moreover, also condition (A5) holds: indeed, notice that
F = {x ∈ R : u(x) ≥ u(0)} = [0,∞). Then, setting T (r) = r for all r ∈ R, we obtain that
Ty < Tx for all (x, y) 6= (0, 0) with x ∈ F and y ∈ Φ(x), i.e., for all x > 0 and y ∈ {−x, x/2}.
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At this point, let x = (x0, x1, . . .) ∈ C be the sequence defined by xn = (−1)n for all
n ∈ N. Then, x ∈ C and u(x) = x, so that I- lim u(x) = 1. Since |u(yn)| ≤ 1 for all y ∈ C

and n ∈ N, it follows that x is I-optimal. Also, the sequence y defined by yn = 2−n for all
n ∈ N belongs to C and it is convergent (in the classical sense) to 0. Hence, all hypotheses
of Corollary 2.2 hold. However, the sequence x is clearly not I-convergent to 0.

Note that the same construction given in Example 2.3 does not contradict Corollary 2.2
in the case that I is a translation invariant ideal. Indeed, in such case, 2N ∈ I if and
only if 2N + 1 ∈ I. However, since their union is N, then they are both I-positive sets,
so that Γu(x)(I) = {1,−1} and I- lim inf u(x) = −1. Therefore x would be not I-optimal.
Moreover, this provides an example of a system 〈X,Φ, u, I,C 〉 such that u is neither concave
nor convex, Φ is not convex-valued, and F is not compact.

Suppose now that Φ is singleton-valued, that is, there exists a function φ : X → X such that
Φ(x) = {φ(x)} for all x ∈ X. Note that the continuity of Φ in condition (A1) is equivalent
to the continuity of φ, see [1, Lemma 17.6]. Here, let us identify Φ with φ. Notice also that
a feasible sequence x ∈ F is simply an orbit (x0, φ(x0), φ

2(x0), . . .). Hence the constraint set
C can be identified with the set of starting values C := {x ∈ X : ∃x ∈ C , x0 = x}. To sum
up, the system can be identified with the tuple 〈X, φ, u, I, C〉, and a sequence x with x0 ∈ C
is I-optimal provided that

∀y ∈ C, I- lim infn u(φ
n(x0)) ≥ I- lim infn u(φ

n(y)),

where φ0(x) := x for all x ∈ X. With these premises, we have the following corollary.

Corollary 2.4. Let 〈X, φ, u, I, C〉 be a system which satisfies conditions (A1)–(A5) and

suppose that there exists y0 ∈ C such that lim infn u(φ
n(y0)) ≥ u(η⋆). Fix also x0 ∈ X such

that the orbit (φn(x0)) is I-optimal. Then I- limn φ
n(x0) = η⋆.

At this point, one may wonder if the standing assumptions of Theorem 2.1 together with
the I-optimality of the sequence x imply the stronger conclusion that limx = η⋆, so that, in
a sense, it would be not necessary to speak about ideals. In the next example we show that
this is not the case. Indeed there exists a system 〈X,Φ, u, I,C 〉 which satisfies conditions
(A1)–(A6) and an I-optimal sequence x ∈ C which is not convergent in the ordinary sense
(however, thanks to Theorem 2.1, it is I-convergent to η⋆).

Example 2.5. Set X = R, I = Z, C = FK, Φ(x) := [−2x,−x
2
], and u(x) = x for all x ∈ R.

It is not difficult to see that conditions (A1)–(A6) hold and Fix(Φ) = {0}, cf. Example 2.3.
At this point, let x = (x0, x1, . . .) be the sequence such that xn = (−1)nzn, where z =

(z0, z1, . . .) is defined as it follows:

(

B1︷︸︸︷
1, 1/2,

B2︷ ︸︸ ︷
1, 1/2, 1/4, 1/4, 1/2, . . . ,

Bk︷ ︸︸ ︷
1, 1/2, 1/4, . . . , 1/2k−1, 1/2k, 1/2k, . . . , 1/2k︸ ︷︷ ︸

k! times

, 1/2k−1, 1/2k−2, . . . , 1/2, . . .).

Here, for each k ≥ 1, the block Bk has 2k − 1 + k! terms and its middle part is made by k!
consecutive terms equal to 1/2k.

Let us show that x is Z-optimal: first of all, using the fact that
∑

k≤n−1 |Bk| ≤
∑

k≤n−1 3 · (k − 1)! = o(n!) as n → ∞,
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thus Z- limx = 0, cf. also [17, Lemma 1]. In particular, Z- lim inf x = Z- lim inf u(x) = 0.
Let us suppose for the sake of contradiction that there exists a sequence y ∈ FK such that
κ := I- lim inf y > 0. Hence κ is a statistical cluster point of y, see Corollary 3.3 below. It
follows that

A := {n ∈ N : yn > κ/2} ∈ I+.

However, by construction we have that ynyn+1 < 0 whenever yn 6= 0. Therefore yn+1 < −κ/4
for all n ∈ A. Considering that Z is a translation invariant ideal, it follows that y is a
bounded sequence such that {n ∈ N : yn < −κ/4} ⊇ A + 1 ∈ I+. We conclude by Lemma
3.1(ii) below that the sequence y has a negative statistical cluster point, contradicting the
standing hypothesis that I- lim inf y > 0.

Hence x is Z-optimal. However, since the length of block Bk is odd for each k ≥ 2, it
follows that lim inf x = −1 and lim supx = 1.

With these premises, we give below a practical application of our main result in the context
of (correspondences generated by) iterated function systems, a basic tool in fractal geometry,
see e.g. [8]. Additional examples can be found also in [22].

Example 2.6. Set X = R, let I be a translation invariant ideal on N, and u : R → R be a
strictly increasing continuous function. In addition, let {φ1, . . . , φk} be an iterated function
system on R, that is, a finite number of contractions on R, and define the correspondence
Φ : R ⇒ R by

∀x ∈ R, Φ(x) := {φ1(x), . . . , φk(x)}.

Accordingly, let C be an arbitrary subset of bounded feasible sequences such that

∀i = 1, . . . , k, ∃x ∈ R, (x, φi(x), φ
2
i (x), . . .) ∈ C . (4)

(It is remarkable that there exists a unique nonempty compact set S ⊆ R, called attractor,
such that limn H

n({x0}) = S for all x0 ∈ R, in the Hausdorff metric, where H stands for
Hutchinson operator defined by H(A) :=

⋃
x∈AΦ(x) for all A ⊆ R, see [13].)

For each i = 1, . . . , k, let ηi be the fixed point of φi, hence the restriction of u on Fix(Φ) =
{η1, . . . , ηk} is maximized at the unique point η⋆ = max{η1, . . . , ηk}. In particular, conditions
(A1)–(A4) hold. At this point, note that F = [η⋆,∞) and

∀i = 1, . . . , k, ∀η > ηi, φi(η)− ηi ≤ |φi(η)− φi(ηi)| < η − ηi,

hence φi(η) < η whenever η > ηi. In particular, maxΦ(η⋆) = η⋆ and maxΦ(η) < η for all
η > η⋆. Therefore condition (A5) holds letting T be the identity map. Lastly, let j be an
index such that ηj = η⋆. Then it follows by (4) and the Banach contraction theorem that
there exists x ∈ R such that (x, φj(x), φ

2
j(x), . . .) ∈ C and limn φ

n
j (x) = η⋆.

We conclude by Corollary 2.2 that, if a sequence x in the constraint set C is I-optimal,
then I- limx = η⋆. In particular, in the special case C = FK, u(x) = x, and I = Fin, we
obtain that: if a bounded feasible sequence x maximizes its smallest accumulation point,
then it is convergent to the maximal fixed point η⋆ (this could be obtained, of course, also
by a direct method.)

As a last motivation for the assumptions given in Theorem 2.1, we provide in Section 5 an
example where our main result holds in an infinite dimensional vector space X (we postpone
it because of its length). The proofs of our results are given in Section 4.
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3. Preliminaries on I-cluster points

We collect in the next lemma the basic properties of I-cluster points and I-convergence.
These properties hold in greater generality, which we do not require here.

Lemma 3.1. Let x be a sequence taking values in a metric space S and fix an ideal I. Then

(i) Γx(I) is closed ;
(ii) Γx(I) ∩K 6= ∅, provided that there exists a compact K ⊆ S such that {n ∈ N : xn ∈

K} ∈ I+;
(iii) I- limx = η implies Γx(I) = {η};
(iv) I- limx = η if and only if Γx(I) = {η}, provided that there exists a compact K ⊆ S

such that {n ∈ N : xn ∈ K} ∈ I⋆;
(v) Γx(I) is the smallest closed set C such that {n ∈ N : xn ∈ U} ∈ I⋆ for all open sets

U ⊇ C, provided that there exists a compact K ⊆ S such that {n ∈ N : xn ∈ K} ∈ I⋆.

Proof. See [16, Lemma 3.1, Corollary 3.2, Corollary 3.4, and Theorem 4.3]. �

To the best of authors’ knowledge, the following result is the first one of this type, even if
some consequences were known, cf. Corollary 3.3 below. Informally, it states that, for each
sequence contained in a compact, the set of I-cluster points of its continuous image coincides
with the continuous image of its I-cluster points.

Proposition 3.2. Let S, S ′ be metric spaces and let I be an ideal. Fix also a continuous

function h : S → S ′ and let x be a sequence with values in S such that {n ∈ N : xn ∈ K} ∈ I⋆

for some compact K ⊆ S. Then h(Γx(I)) = Γh(x)(I).

Proof. First, suppose that η ∈ Γx(I). Then it follows by the continuity of h that h(η) ∈
Γh(x)(I): indeed for each open neighborhood U of h(η) there exists an open neighborhood V
of η such that {n ∈ N : xn ∈ V } ⊆ {n ∈ N : h(xn) ∈ U}. Hence h(Γx(I)) ⊆ Γh(x)(I).

Conversely, suppose that ν ∈ Γh(x)(I). Note that F := h−1({ν}) is closed and that
{n ∈ N : h(xn) ∈ H} ∈ I⋆, where H := h(K) is compact. Since ν belongs to H then
K0 := F ∩K is a nonempty compact set. We claim that there exists η ∈ K0 which is also
an I-cluster point of x. To show this, for each r > 0, let Vr be the closed ball with center ν
and radius r. Moreover, for each x ∈ F , let Ux,r be the open ball with center x and radius r.

Since h is continuous and K is compact, then Gr := K ∩ h−1(Vr) is compact and contains
K0 for each r > 0. Let h0 be the restriction of h to the compact set K, so that h0 is uniformly
continuous. It follows that h0 admits a modulus of continuity, i.e., there exists a function
ω : [0,∞] → [0,∞] such that

limr→0 ω(r) = 0 and ∀a, b ∈ K, d′(h0(a), h0(b)) ≤ ω(d(a, b)),

where d and d′ represent the metric on S and S ′, respectively. In particular, ω is finite
in a (right) neighrborhood of 0, let us say [0, ε]. Replacing, if necessary, each ω(r) with
supq≤r ω(q), we can assume without loss of generality that ω is nondecreasing. Lastly, let
ω−1 be the generalized inverse of ω, i.e., ω−1(r) := inf{q : ω(q) > r} for each r > 0. For each
r > 0, we obtain that r ≤ supω(d(a, b)), where the supremum is taken with respect to all
a ∈ F and b ∈ Ua,ω−1(r). This implies that

∀r > 0, Gr ⊆
⋃

x∈F Ux, 2ω−1(r). (5)
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However, since Gr is compact, there exists xr,1, . . . , xr,mr ∈ F such that Gr is contained into⋃
i≤mr

Uxr,i,2ω−1(r). To conclude, for each r > 0, we have that Ar := {n ∈ N : h(xn) ∈ Vr} ∈
I+, hence it follows by (5) that

Ar \ I = {n ∈ N : xn ∈ Gr} ⊆
⋃

i≤mr
{n ∈ N : xn ∈ Uxr,i,2ω−1(r)},

where I := {n ∈ N : xn /∈ K} ∈ I. Since Ar \ I ∈ I+ and I is closed under finite unions, it
follows that for each t ∈ N there exists k(t) ∈ {1, . . . , m1/t} such that

Bt := {n ∈ N : xn ∈ Ux1/t,k(t),2ω−1(1/t)} ∈ I+.

Since (x1/t,k(t) : t ∈ N) is a sequence in the compact set K0, there exists a convergent
subsequence with limit, let us say, η ∈ K0. Considering that limt 2ω

−1(1/t) = 0 and that for
every r > 0 the set Cr := {n ∈ N : xn ∈ Uη,r} contains Bt for every t sufficiently large in
the latter subsequence, we obtain that Cr ∈ I+ for all r > 0. In other words, η ∈ Γx(I) and
h(η) = ν. This shows that Γh(x)(I) ⊆ h(Γx(I)), concluding the proof. �

Corollary 3.3. Let S be a metric space and I be an ideal. In addition, fix a continuous

function h : S → R and a sequence x in S such that {n ∈ N : xn ∈ K} ∈ I⋆ for some

compact K ⊆ S. Then

I- lim inf h(x) = min Γh(x)(I) = minη∈Γx(I) h(η). (6)

and, simmetrically,

I- lim sup h(x) = maxΓh(x)(I) = maxη∈Γx(I) h(η). (7)

Proof. The first equality of (6) is a consequence of [15, Corollary 2.3], cf. also [11, Theorem
1′] for the case I = Z. The second equality of (6) follows directly by Proposition 3.2. The
proof for the case S = R

n and I = Z can be found also in [25, Lemma 3.1].
The proof of (7) is analogous. �

4. Proofs

Proof of Theorem 2.1. Suppose that x is an I-optimal path. Since x ∈ C ⊆ K , there exists
a compact set K ⊆ X such that {n ∈ N : xn /∈ K} ∈ I. It follows by (1), Corollary 3.3, and
conditions (A2) and (A6), that

min
η∈Γx(I)

u(η) = I- lim inf u(x) ≥ sup
y∈C

I- lim inf u(y) ≥ u(η⋆),

hence Γx(I) ⊆ K ∩ F , where we recall that F is the closed set {x ∈ X : u(x) ≥ u(η⋆)}.
Since K is compact and Γx(I) is closed by Lemma 3.1(i), we obtain that Γx(I) is compact.
In addition, it is nonempty by Lemma 3.1(ii), therefore Γx(I) ∈ K.

Suppose that F = {η⋆}. Since Γx(I) is a nonempty subset of F , it follows that Γx(I) =
{η⋆}, hence I- limx = η⋆ by Lemma 3.1(iv).

Let us suppose hereafter that |F | ≥ 2, so that the linear operator T in (A5) is nonzero.
Replacing T with T/‖T‖, we can assume without loss of generality that ‖T‖ = 1.

Claim 1. The map Gr(Φ) → R : (x, y) 7→ T (x− y) is continuous.

Proof. The claimed map can be rewritten as the restriction on Gr(Φ) of the composition
T ◦ g, where g is the continuous function g : X2 → X : (x, y) 7→ x− y. �
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Since T is continuous and Φ(x) ∈ K for each x ∈ X, the function

T̂ : X → R : x 7→ max
y∈Φ(x)

T (y − x)

is well defined. Since the maximum is reached, we have T̂ x < 0 for all x ∈ F \ {η⋆} by (A5).

Claim 2. T̂ is continuous and T̂ η⋆ = 0.

Proof. Since Φ is a continuous correspondence by (A1) and the map defined in Claim 1 is

continuous, it follows by Berge’s maximum theorem [1, Theorem 17.31] that T̂ is continuous.
For the second part, we obtain by (A5) that T (y − η⋆) < 0 for all y ∈ Φ(η⋆) with y 6= η⋆.

Since η⋆ ∈ Fix(Φ), we conclude that T̂ η⋆ = T (η⋆ − η⋆) = 0. �

Since T is continuous and x ∈ C ⊆ K , it follows that there exists M ∈ R such that
{n ∈ N : |Txn| ≥ M} ∈ I. Hence, the I-limit inferior and the I-limit superior of the real
sequence (Txn) are well defined.

Claim 3. Fix η ∈ Γx(I) such that I- lim infn Txn = Tη. Then η = η⋆.

Proof. Assume that there exists η0 ∈ Γx(I) different from η⋆ such that I- lim infn Txn = Tη0.

Since Γx(I) ⊆ F and η0 6= η⋆, then T̂ η0 < 0. Since T̂ is continuous by Claim 2, there exist

ε, δ > 0 such that T̂ x < −ε whenever ‖x−η0‖ < δ. Moreover, it can be assumed without loss
of generality that δ < ε/2. At this point, fix x, y ∈ X such that ‖x − η0‖ < δ and y ∈ Φ(x),

and let πy be a minimizer of ‖π − y‖ with π ∈ Γx(I). Since T̂ x < −ε, we get

Ty < Tx− ε = Tη0 + T (x− η0)− ε ≤ Tη0 + ‖T‖‖x− η0‖ − ε < Tη0 − ε/2.

At the same time, we have

Ty = Tπy + T (y − πy) ≥ Tη0 − ‖y − πy‖,

which implies that ‖y − πy‖ > ε/2.
To sum up, if ‖x − η0‖ < δ then ‖y − πy‖ > ε/2 for all y ∈ Φ(x). Since η0 is an I-cluster

point of x, we have A := {n ∈ N : ‖xn − η0‖ < δ} ∈ I+. Thus, since I is translation
invariant by (A3), then also A + 1 ∈ I+. However, considering that xn+1 ∈ Φ(xn) for all
n ∈ A, we obtain by the preceeding part that ‖xn+1 − πxn+1‖ > ε/2. To sum up, the open set
U := {z ∈ X : ∃η ∈ Γx(I), ‖z− η0‖ < ε/2} contains Γx(I) and it has empty intersection with
the I-positive set A+ 1. This contradicts Lemma 3.1(v). �

Claim 4. Fix η ∈ Γx(I) such that I- lim supn Txn = Tη. Then Tη = Tη⋆.

Proof. Assume that there exists η0 ∈ Γx(I) such that I- lim supn Txn = Tη and Tη 6= Tη⋆.
Since η⋆ is a minimizer of Tη with η ∈ Γx(I) by Claim 3, then κ := T (η0 − η⋆) > 0.

Since T̂ is continuous and T̂ η⋆ = 0 by Claim 2, there exist ε, δ ∈ (0, κ/4) such that T̂ x < ε
whenever ‖x− η⋆‖ < δ. Therefore, for each y ∈ Φ(x) such that ‖x− η⋆‖ < δ we obtain

Ty ≤ Tx+ ε = Tη⋆ + T (x− η⋆) + ε < Tη⋆ + δ + ε < Tη⋆ + κ/2

and, at the same time,

Ty = Tη0 + T (y − η0) ≥ Tη⋆ + κ− ‖y − η0‖.
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Therefore ‖y − η0‖ > κ/2 whenever ‖x − η⋆‖ < δ and y ∈ Φ(x). It follows that, if x ∈ X
is chosen such that ‖x − η‖ < δ/2 and ‖η − η⋆‖ < δ/2 for some η ∈ Γx(I), then ‖x − η⋆‖ ≤
‖x− η‖+ ‖η − η⋆‖ < δ and hence ‖y − η0‖ < κ for all y ∈ Φ(x).

At this point, note that the set Q := {η ∈ Γx(I) : ‖η − η⋆‖ ≥ δ/2} is compact. Suppose

that Q 6= ∅. By the continuity of T̂ , we have maxη∈Q T̂ η < 0. It follows there exist λ, τ > 0

such that T̂ x < −λ whenever ‖x − η‖ < τ for some η ∈ Q. In addition, it can be assumed
without loss of generality that τ < λ/2. Now, let us suppose that x ∈ X is chosen such that
‖x− η‖ < τ for some fixed η ∈ Q. Fix y ∈ Φ(x); then

Tη0 − ‖y − η0‖ ≤ Ty < Tx− λ ≤ Tηx + ‖x− η‖ − λ ≤ Tη0 − λ/2,

so that ‖y − η0‖ > λ/2.
Set ν := min{δ/2, κ/2, τ, λ/2} > 0 and fix x, y ∈ X with y ∈ Φ(x). To sum up the previous

observations, we have that:

(i) If there exists η ∈ Γx(I) such that ‖x− η‖ < ν and ‖η− η⋆‖ < δ/2 then ‖y− η0‖ > ν;
(ii) If there exists η ∈ Γx(I) such that ‖x − η‖ < ν and ‖η − η⋆‖ ≥ δ/2 (so that Q 6= ∅)

then ‖y − η0‖ > ν.

Putting everything together, if ‖y − η0‖ ≤ ν then ‖x− η‖ > ν for all η ∈ Γx(I).
We conclude as in the proof of Claim 3: since A := {n ∈ N : ‖xn+1 − η0‖ ≤ ν} ∈ I+

and I is translation invariant by (A3), then A − 1 ∈ I+. However, A − 1 is a subset of
{n ∈ N : ∀η ∈ Γx(I), ‖xn − η‖ > ν}, which belongs to I thanks to Lemma 3.1(v). This
contradiction concludes the proof. �

To complete the proof, note that by Corollary 3.3 there exist nonempty compact sets
Γmin,Γmax ⊆ Γx(I) such that I- lim infn Txn = Tη for all η ∈ Γmin and I- lim supn Txn = Tη
for all η ∈ Γmax. Hence, Claim 3 and Claim 4 imply that

{η⋆} = Γmin and η⋆ ∈ Γmin ∩ Γmax.

In other words, the function Γx(I) → R defined by η 7→ Tη has a unique point of minimum
which is also a maximizer. Therefore Γx(I) = {η⋆}, which is equivalent to I- limx = η⋆ by
Lemma 3.1(iv). �

Remark 4.1. As it is evident from the proof of Theorem 2.1, the full strenght of condition

(A5) has not been used. Indeed, we needed it only in Claim 3 to show that T̂ η0 < 0 for some

η0 ∈ Γx(I) and in Claim 4 to show that maxη∈Q T̂ η < 0 for a suitable subset Q ⊆ Γx(I).
Therefore, it is enough to replace (2) with the weaker condition

∀x ∈ Γx(I), ∀y ∈ Φ(x), Tx ≤ Ty =⇒ x = y = η⋆.

However, this condition, differently from (A5), is depends on a given sequence x.

Proof of Corollary 2.2. Thanks to Theorem 2.1, it is sufficient to show that the existence of
a sequence y ∈ C which is I-convergent to η⋆ implies condition (A6). To this aim, observe
that Γy(I) = {η⋆} by Lemma 3.1(iii). It follows by Corollary 3.3 that

I- lim inf u(y) = min
η∈Γy(I)

u(η) = u(η⋆),

concluding the proof. �
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Proof of Corollary 2.4. It is enough to note that every I-cluster point is an ordinary accu-
mulation point, so that by Corollary 3.3 we obtain

supy∈C I- lim infn u(φ
n(y)) ≥ I- lim infn u(φ

n(y0))

= min Γ(u(φn(y0)))(I) ≥ lim infn u(φ
n(y0)) ≥ u(η⋆).

Hence condition (A6) holds, and the conclusion follows by Theorem 2.1. �

5. An infinite dimensional example

As promised, we provide a practical example where Theorem 2.1 holds in infinite dimension.

Example 5.1. Let X be the Hilbert space ℓ2 of square summable real sequences, i.e., se-
quences x = (x0, x1, . . .) such that

‖x‖ :=
√∑

i≥0 x
2
i < ∞.

Fix a sequence x
⋆ ∈ ℓ2 and define C = {(x(n)) ∈ FK : x(0) = x

⋆}. Let also I be an arbitrary
translation invariant ideal, and, for each x ∈ ℓ2, set u(x) = x0 and

Φ(x) =
{
(−

∑
i≥1 x

2
i , y1, y2, . . .) : 2xi ≤ yi ≤ xi + 1/i for all i ≥ 1

}
∪ {1

2
x}, (8)

where 1
2
x = (x0/2, x1/2, . . .). First of all, let us show that Φ is well defined. To do this,

fix x ∈ ℓ2 and let us prove that Φ(x) ⊆ ℓ2. If y ∈ Φ(x) is equal to 1
2
x then it clearly

belongs to ℓ2. Otherwise, since ℓ2 is a vector space, it is sufficient to show that z = y−x =
(−x0 −

∑
i≥1 x

2
i , z1, z2, . . .) ∈ ℓ2 where xi ≤ zi ≤ 1/i for all i ≥ 1. Therefore

∑
i≥0 z

2
i ≤ z20 +

∑
i≥1

(
|xi|+

1
i

)2
≤ z20 +

∑
i≥0 x

2
i +

∑
i≥1

1
i2
+ 2

∑
i≥1

|xi|
i

≤ z20 +
∑

i≥0 x
2
i +

∑
i≥1

1
i2
+ 2

√∑
i≥1 x

2
i ·

∑
i≥1

1
i2
< ∞,

where the last ≤ follows by the Cauchy–Schwarz inequality. In addition, Φ(x) is compact.
To this aim, since {1

2
x} is compact, it is sufficient to show that a translation of the first set

in the definition (8) of Φ(x) is compact. Let us define

ϕ(x) :=
{
(−x0 −

∑
i≥1 x

2
i , z1, z2, . . .) : xi ≤ zi ≤ 1/i for all i ≥ 1

}
. (9)

Let a be the sequence defined by a0 := −x0 −
∑

i≥1 x
2
i and ai := |xi| +

1
i
. Note that a ∈ ℓ2

and that ϕ(x) is a closed subset of {z ∈ ℓ2 : |zi| ≤ ai for all i ≥ 0}. However, the latter set
is compact thanks to [7, p. 453], hence ϕ(x) is compact too. To sum up, Φ(x) is compact
subset of ℓ2 which is nonempty (since it contains 1

2
x).

At this point, let us show that Φ is continuous. Reasoning as above, it is sufficient to show
that the correspondence ϕ defined in (9) is continuous at x. Assume that ϕ(x) 6= ∅, i.e.,
xi ≤ 1/i for all i ≥ 1, otherwise the claim is trivial.

First, let us show that ϕ is upper hemicontinuous. Fix ε > 0 and define the open set
Uε := {z ∈ ℓ2 : ∃y ∈ ϕ(x), ‖z − y‖ < ε}. We need to find a constant δ > 0 such that, for
each x

′ ∈ ℓ2, if ‖x−x
′‖ < δ then ϕ(x′) ⊆ Uε. Hence, fix also x

′ ∈ ℓ2 such that ‖x−x
′‖ < δ

for a suitable δ > 0 that will be chosen later and pick y
′ ∈ ϕ(x′). In particular, |xi − x′

i| < δ
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for all i ≥ 0. Similarly, we can assume without loss of generality that x′
i ≤ 1/i for all i ≥ 1,

otherwise ϕ(x′) = ∅. Then

∀y ∈ ϕ(x), |y0 − y′0| ≤ |x0 − x′
0|+ |

∑
i≥1 x

2
i −

∑
i≥1(x

′
i)
2 |

≤ |x0 − x′
0|+ |x2

0 − (x′
0)

2|+ |‖x‖2 − ‖x′‖2 |

≤ δ + δ|x0 + x′
0|+ δ(‖x‖+ ‖x′‖)

≤ δ (1 + 2(‖x‖+ ‖x′‖))

≤ δ (1 + 4‖x‖+ 2δ) .

(10)

Now, recall that for each integer i ≥ 1 we have x′
i ≤ y′i ≤ 1/i and xi ≤ yi ≤ 1/i. In particular,

there exists y ∈ ϕ(x) such that |yi − y′i| ≤ |xi − x′
i| for all i ≥ 1. It follows that

∑
i≥1(yi − y′i)

2 ≤
∑

i≥1(xi − x′
i)

2 ≤ ‖x− x
′‖2 ≤ δ2. (11)

Putting together the above estimates we obtain that, for each given y
′ ∈ ϕ(x′), there exists

y ∈ ϕ(x) such that

‖y − y
′‖ =

√
|y0 − y′0|

2 +
∑

i≥1(yi − y′i)
2 ≤ δ

√
(1 + 4‖x‖+ 2δ)2 + 1 < ε, (12)

where the last inequality holds if δ is sufficiently small.
Second, let us show that ϕ is lower hemicontinuous. To this aim, fix an arbitrary y ∈ ϕ(x)

and some ε > 0. We claim that there exists δ > 0 such that if ‖x−x
′‖ < δ then ‖y−y

′‖ < ε
for some y

′ ∈ ϕ(x′). Note that estimates (10) and (11) hold simmetrically also in this case,
with the conclusion that we have exactly the same upper bound computed in (12) for ‖y−y

′‖.
Therefore Φ is a nonempty compact-valued continuous correspondence on ℓ2, I is transla-

tion invariant, and u is clearly continuous. Hence conditions (A1)–(A3) hold.
The set of fixed points of Φ is neither convex nor compact and it is equal to

Fix(Φ) = {x ∈ ℓ2 : x0 = −
∑

i≥1 x
2
i and xj ≤ 0 for all j ≥ 1}

It follows that the restriction of u on Fix(Φ) has a unique maximizer, which is the zero
sequence 0 of ℓ2, hence condition (A4) holds. Moreover, we have that

F = {x ∈ C : u(x) ≥ u(0)} = {x ∈ C : x0 ≥ 0}.

Fix sequences x ∈ F and y ∈ Φ(x) such that (x,y) 6= (0, 0). Note that Φ(0) = {0}, hence
x 6= 0 (in particular, if x0 = 0, then xi 6= 0 for some i ≥ 1). Thus, setting T = u (which
is a continuous linear functional on ℓ2), we obtain that Ty = −

∑
i≥1 x

2
i < x0 = Tx, i.e.,

condition (A5) holds. Lastly, note that the sequence (x⋆, 1
2
x
⋆, 1

4
x
⋆, . . .) is convergent to 0

and belongs to C (indeed, it is starts at x
⋆, it is feasible, and its image is contained in the

compact set {kx⋆ : k ∈ [0, 1]}).
We conclude by Corollary 2.2 that each I-optimal sequence (x(n)) ∈ C in the system

〈 ℓ2,Φ, u, I,C 〉 is necessarily I-convergent to 0.
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