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Abstract

Let ϕ be Euler’s function and fix an integer k ≥ 0. We show that for every initial value x1 ≥ 1, the sequence
of positive integers (xn)n≥1 defined by xn+1 = ϕ(xn) + k for all n ≥ 1 is eventually periodic. Similarly, for
all initial values x1, x2 ≥ 1, the sequence of positive integers (xn)n≥1 defined by xn+2 = ϕ(xn+1) + ϕ(xn) + k
for all n ≥ 1 is eventually periodic, provided that k is even.
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1. Introduction and main results

LetN be the set of positive integers and fix an arithmetic function f : Nd → N for some
d ∈ N. Let (xn)n≥1 be a sequence of positive integers which satisfies the recurrence

xn+d = f (xn, . . . , xn+d−2, xn+d−1) for all n ∈ N, (1.1)

with starting values x1, . . . , xd ∈ N. In the case where d = 1, the sequence (xn)n≥1 is
simply the orbit of x1 with respect to f. The aim of this note is to study whether certain
recurrence sequences (xn)n≥1 of the type (1.1) are eventually periodic independent of
their starting values, that is, for all x1, . . . , xd ∈ N, there exists T ∈ N such that xn =

xn+T for all sufficiently large n.
We will frequently use the basic observation that a recurrence sequence (xn)n≥1, as

in (1.1), is eventually periodic if and only if it is bounded (see [5, page 45]).
We start with a simple result for functions f which are not too large.

PROPOSITION 1.1. Let f : Nd → N be an arithmetical function, with d ∈ N, and
suppose that there exists C ∈ N such that

f (n1, . . . , nd) < max{n1, . . . , nd} (1.2)
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for all n1, . . . , nd ∈ N with ni ≥ C for some i ∈ {1, . . . , d}. Let (xn)n≥1 be a recurrence
sequence as in (1.1), with starting values x1, . . . , xd ∈ N. Then

lim sup
n→∞

xn ≤ max{ f (n1, . . . , nd) : n1, . . . , nd ≤ C − 1}. (1.3)

In particular, (xn)n≥1 is bounded above and hence eventually periodic.

Special instances of Proposition 1.1 in the one-dimensional case d = 1 have been
previously obtained in the literature. For example, Porges [15] considered the case
where f (n) is the sum of squares of the digits of n (see also [7, 11, 19]). Note that (1.2)
holds if f (n1, . . . , nd) = o(N) as N = max{n1, . . . , nd} → ∞.

Of course, there exist other functions f which do not satisfy (1.2) and such that
every sequence (xn)n≥1, as in (1.1), is eventually periodic: as a trivial example, one
can consider f (n1, . . . , nd) := max{n1, . . . , nd} for all (n1, . . . , nd) ∈ Nd. At the opposite
extreme, if f is slightly bigger (for instance, f (n1, . . . , nd) := max{n1, . . . , nd} + 1), then
there are no eventually periodic sequences (xn)n≥1 as in (1.1). This is the starting point
for this work, which motivates the heuristic: if a function f satisfies (1.2) ‘on average’,
then every sequence (xn)n≥1 as in (1.1) should be eventually periodic, independent of
its starting values.

We are going to confirm the above heuristic in two cases which involve (shifted
iterates of) Euler’s function ϕ (recall that ϕ(n) is the number of integers in {1, . . . , n}
which are coprime with n). Our first main result is the following theorem.

THEOREM 1.2. Fix an integer k ≥ 0 and let (xn)n≥1 be the recurrence sequence
defined by

xn+1 = ϕ(xn) + k for all n ∈ N,

with starting value x1 ∈ N. Then,

sup
n∈N

xn ≤ max{x1, k4} + (k + 1)2. (1.4)

In particular, (xn)n≥1 is eventually periodic.

Note that the dependence of the upper bound (1.4) on x1 cannot be removed: indeed,
if k := x1 − ϕ(x1) for some x1 ∈ N, then the sequence (xn)n≥1 is constantly equal to x1.

The trivial case k = 0 in Theorem 1.2 has been already considered in the literature
from different viewpoints (and, of course, it follows by Proposition 1.1 since ϕ(n) ≤
n − 1 for all n ≥ 2). Indeed, given a starting value x1 ∈ N, then xn+1 = ϕ

(n)(x1) for all
n ∈ N, where ϕ(m) is the m-fold iteration of ϕ. For instance, Pillai [12] showed that

⌊ log x1 − log 2
log 3

⌋
+ 1 ≤ N(x1) ≤

⌊ log x1

log 2

⌋
+ 1 for all x1 ∈ N,

where N(x1) is the minimal integer n for which xn = 1 (see also [17]) and it has been
conjectured by Erdős et al. [4] that N(x1) ∼ α log x1 as x1 → ∞, for some α ∈ R. It is
known that the understanding of the multiplicative structure of ϕ and its iterates is, in
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some sense, equivalent to the study of the behaviour of the integers of the form p − 1,
where p is a prime. See also [8, 10, 14, 18] for related work.

However, if k ≥ 1, then the function f (n) := ϕ(n) + k does not satisfy (1.2): indeed,
ϕ(p) = p − 1 for all primes p, and hence f (p) ≥ p. However, it is well known that

1
n

n∑
i=1

ϕ(i) =
3
π2 n + O(log n) as n→ ∞ (1.5)

(see, for example, [2, Theorem 8.6]). Hence, approximating roughly f (n) with cn + k,
where c = 3/π2 ∈ (0, 1), we expect that (1.2) holds ‘on average’, which is the heuristic
behind Theorem 1.2.

Our second main result is the following theorem.

THEOREM 1.3. Fix an even integer k ≥ 0 and let (xn)n≥1 be the recurrence sequence
defined by

xn+2 = ϕ(xn+1) + ϕ(xn) + k for all n ∈ N,

with starting values x1, x2 ∈ N. Then,

sup
n∈N

xn ≤ 4X3k+1

, where X :=
3x1 + 5x2 + 7k

2
. (1.6)

In particular, (xn)n≥1 is eventually periodic.

The heuristic supporting Theorem 1.3 is similar: thanks to (1.5), the value f (n, m) :=
ϕ(n) + ϕ(m) + k can be roughly bounded above by 2c max{n, m} + k, which is definitely
smaller than max{n, m} since 2c = 6/π2 < 1.

We end with an open question to check if d is sufficiently large, then there exist
starting values x1, . . . , xd ∈ N such that the sequence (xn)n≥1 defined as in (1.1) with

f (n1, . . . , nd) = ϕ(n1) + · · · + ϕ(nd)

is not eventually periodic. In a sense, this is related to the open question known as
Lehmer’s totient problem [9], which asks about the existence of a composite q ≥ 2
such that ϕ(q) divides q − 1: indeed, if r := (q − 1)/ϕ(q), d = r and x1 = · · · = xd = q,
then the sequence (xn)n≥1 would be constant.

Lastly, as suggested by the referee, it would be interesting to check whether the
upper estimates of our main results are, in some sense, sufficiently sharp and whether
some nontrivial lower bounds on the size of (xn)n≥1 could be obtained. We do not have
an answer to these questions. However, we suspect that they are quite difficult. Indeed,
in the setting of Theorem 1.2, one could try to obtain a cycle with period (x1, . . . , xT )
made by all primes in arithmetic progression but the last one (so that x1 = xT+1 =

ϕ(xT ) + k). A possible interpretation may amount to asking whether such examples
exist with comparable sizes of T and k.
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2. Proofs

PROOF OF PROPOSITION 1.1. Let Q be the set of d-uples (n1, . . . , nd) ∈ Nd with
ni ≤ C − 1 for all i ∈ {1, . . . , d}. Suppose that (n1, . . . , nd) ∈ N \ Q. Hence, we can pick
the largest index i ∈ {1, . . . , d} such that ni = max{n1, . . . , nd}. In particular, ni ≥ C.
We claim that there exists m ∈ N such that (nm+1, . . . , nm+d) ∈ Q. In addition, if m
is the least such integer, then max{nj, . . . , nj+d−1} is decreasing for j ∈ {1, . . . , m}.
To this aim, suppose for the sake of contradiction that the claim does not hold.
By the standing hypothesis (1.2), we get nd+1 = f (n1, . . . , nd) < ni. Repeating this
reasoning, we obtain nd+j < max{nj, . . . , nd+j−1} = ni for all j ∈ {1, . . . , i}. Hence,
max{ni+1, . . . , ni+d} ≤ ni − 1. Proceeding similarly, it follows that

max{ni+(k−1)d+1, . . . , ni+kd} ≤ ni − k for all k ∈ N.

However, if k = ni + 1 − C, then (ni+(k−1)d+1, . . . , ni+kd) ∈ Q, which proves the claim.
To complete the proof, fix starting values x1, . . . , xd ∈ N. By the above claim and the

finiteness of Q, it follows that the sequence (xn)n≥1 is bounded above by the constant

max({x1, . . . , xd} ∪ { f (n1, . . . , nd) : (n1, . . . , nd) ∈ Q})

and that the upper limit in (1.3) holds. �

PROOF OF THEOREM 1.2. First, let us suppose k ≤ 1 and fix a starting value x1 ∈ N.
Then,

xn+1 = ϕ(xn) + k ≤ max{1, xn − 1} + 1 = max{2, xn}

for all n ∈ N, with the consequence that xn ≤ max{x1, 2} for all n ∈ N.
Suppose hereafter that k ≥ 2. Note that for all n, m ∈ N,

xn+m ≤ max{xn+m−1 − 1, 1} + k
= max{xn+m−1 + k − 1, k + 1} ≤ max{xn + m(k − 1), k + 1}.

(2.1)

Let us suppose for the sake of contradiction that (xn)n≥1 is not bounded above.
Hence, there exists a minimal r1 ∈ N such that xr1 ≥ k4 (in particular, xr1 > 4).

CLAIM 2.1. There exists i ∈ {1, . . . , k} such that xr1+i < xr1 .

PROOF. Since ϕ(n) ≤ n −
√

n whenever n is composite (by the fact that there exists
a divisor of n which is at most

√
n), it follows that, if xr1+i−1 is composite for some

i ∈ {1, . . . , k}, then

xr1+i = ϕ(xr1+i−1) + k ≤ xr1+i−1 −
√

xr1+i−1 + k.

Considering that the map x �→ x −
√

x is increasing on (4,∞) and using (2.1), we obtain

xr1+i ≤ xr1 + (i − 1)(k − 1) −
√

xr1 + (i − 1)(k − 1) + k

≤ xr1 + (k − 1)2 −
√

k4 + k < xr1 .
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To conclude, we show that there exists some i ∈ {1, . . . , k} for which xr1+i−1 is
composite. Indeed, in the opposite case, these xr1+i−1 terms are all primes (and greater
than k), and hence

xr1+i−1 = xr1 + (i − 1)(k − 1) ≡ xr1 − (i − 1) mod k

for all i ∈ {1, . . . , k}. This is impossible, because there would exist i ∈ {1, . . . , k} such
that k divides xr1+i−1. �

At this point, (2.1) and Claim 2.1 imply that there exists a minimal i1 ∈ {1, . . . , k}
such that xr1+i1 < xr1 ; and hence

max{x1, . . . , xr1+i1−1} ≤ xr1 + (i1 − 1)(k − 1) < xr1 + k2. (2.2)

With the same reasoning, we can construct recursively sequences of positive
integers (rn) and (in) such that for all n ∈ N:

(i) rn+1 is the minimal integer such that rn+1 ≥ rn + in and xrn+1 ≥ k4;
(ii) in+1 is the minimal integer in {1, . . . , k} such that xrn+1+in+1 < xrn ; and hence,

max{xrn+in , . . . , xrn+1+in+1−1} ≤ xrn+1 + (in+1 − 1)(k − 1) < xrn+1 + k2. (2.3)

Lastly, note that

xrn = ϕ(xrn−1) + k ≤ xrn−1 + k ≤ k4 + k ≤ xr1 + k (2.4)

for all n ∈ N. Using (2.2), (2.3) and (2.4), we conclude that

xn < xr1 + k2 + k ≤ max{x1, k4 + k} + k2 + k < max{x1, k4} + (k + 1)2

for all n ∈ N. This proves (1.4), concluding the proof.

REMARK 2.2. A sketch of a shorter proof that the sequence (xn)n≥1 in Theorem 1.2 is
eventually periodic goes as follows. Set yn := ϕ(xn) for all n ∈ N and note that yn ≤ Cn
with C := max{x1, k}. Hence, {y1, . . . , yn} is contained in Vn := ϕ(N) ∩ [1, Cn]. By a
classical result of Pillai [13] (see also [6] and references therein), we have |Vn| = o(n) as
n→ ∞, and hence there exist distinct i, j ∈ Nwith yi = yj. This implies that xi+1 = xj+1;
therefore, (xn)n≥1 is eventually periodic. However, this does not lead to an effective
upper bound as in (1.4).

In the proof of Theorem 1.3, we will need also the effective version of the third
Mertens’ theorem given by Rosser and Schoenfeld [16] in 1962 (see also [1, 3]). As
usual, hereafter, we reserve the letter p for primes.

PROPOSITION 2.3. Let γ := limn(
∑

i≤n 1/i − log n) = 0.57721 . . . be the Euler–
Mascheroni constant. Then the following inequality holds for all x ≥ 2:

e−γ

log x

(
1 − 1

log2 x

)
<
∏
p≤x

(
1 − 1

p

)
<

e−γ

log x

(
1 +

1
2 log2 x

)
.

PROOF. See [16, Theorem 7 and its Corollary]. �
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COROLLARY 2.4. If x ≥ 6, then
∏

x<p≤x3

(
1 − 1

p

)
<

1
2

.

PROOF. Thanks to Proposition 2.3, for each r ≥ 2, there exists cr ∈ (−1, 1
2 ) such that

∏
p≤r

(
1 − 1

p

)
=

e−γ

log x

(
1 +

cr

log2 x

)
.

At this point, fix x ≥ 6. It follows that
∏

x<p≤x3

(
1 − 1

p

)
=

∏
p≤x3 (1 − 1/p)∏
p≤x(1 − 1/p)

=
e−γ/(log x3)
e−γ/ log x

· (1 + cx3/(log x3)2)
1 + cx/(log x)2

<
1
3
· 1 + 0.5/(9 log2 x)

1 − 1/(log2 x)
<

1
2

.

Indeed, the last inequality is equivalent to

2
3

(
1 +

1
18 log2 x

)
< 1 − 1

log2 x
,

which holds if and only if

x > e
√

3(1+1/27).

The conclusion follows since the value of the right-hand side above is smaller
than 6. �

PROOF OF THEOREM 1.3. If max{x1, x2} ≤ 2 and k = 0, then xn = 2 for all n ≥ 3, so
the claimed (1.6) holds since 4X3k+1

≥ 4 > xn for all n ∈ N.
Suppose now that max{x1, x2} ≥ 3 or k ≥ 1, and note that X = 1

2 (3x1 + 5x2 + 7k) ≥ 6.
Then, min{x3, x4} ≥ 3; and hence, xn is even for all n ≥ 5. In addition, since
max{x1, . . . , x6} ≤ 2X and

4X3k+1

≥ 4X = 22X > 2X,

it follows that the claimed inequality holds for all n ≤ 6.
Let (pn)n≥1 be the increasing enumeration of the primes greater than X. Since∏n

i=1(1 − 1/pi) converges to zero as n→ ∞ by Proposition 2.3, one can find integers
1 =: r0 < r1 < · · · < rk+1 such that

rj+1−1∏
i=rj

(
1 − 1

pi

)
<

1
2
<

rj+1−2∏
i=rj

(
1 − 1

pi

)
for all j ∈ {0, 1, . . . , k}. (2.5)
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Define also

qj :=
rj+1−1∏

i=rj

pi for all j ∈ {0, 1, . . . , k}.

Since {q0, q1, . . . , qk} are pairwise coprime, the Chinese remainder theorem yields the
existence of some y ∈ N such that y ≡ j mod qj for all j ∈ {0, 1, . . . , k}. In particular,

y ≥ q0 ≥ pr0 > X. (2.6)

Let us suppose for the sake of contradiction that (xn)n≥1 is not bounded. Then, there
exists a minimal v ∈ N such that xv ≥ 2y. Since max{x1, . . . , x6} ≤ 2X, it follows by
(2.9) that v ≥ 7. In particular, xv−1 and xv−2 are even.

CLAIM 2.5. max{ϕ(xv−1),ϕ(xv−2)} < y − k. �

PROOF. If xv−1 < 2y − 2k then, by the fact that xv−1 is even, ϕ(xv−1) ≤ 1
2 xv−1 < y − k.

Otherwise, recalling that v is the minimal integer such that xv ≥ 2y, then 2y − 2k ≤
xv−1 < 2y. In addition, xv−1 is even, so xv−1 = 2y − 2j for some j ∈ {1, . . . , k}. It follows
that

ϕ(xv−1) = xv−1

∏
p |xv−1

(
1 − 1

p

)
= (y − j)

∏
p |xv−1

′(
1 − 1

p

)
,

where the last product is extended over the odd prime divisors of xv−1. Since, by
construction, we have y ≡ j mod qj, we obtain by (2.8) that

ϕ(xv−1) ≤ (y − j)
rj+1−1∏

i=rj

(
1 − 1

pi

)
<

y − j
2

< y − k.

Note that the last inequality holds because y > 2k, thanks to (2.9).
The same argument can be repeated for xv−2. �

We conclude by Claim 2.5 that

2y ≤ xv = ϕ(xv−1) + ϕ(xv−2) + k < 2(y − k) + k ≤ 2y,

which is contradiction. It follows that xn < 2y for all n ∈ N.
To complete the proof, it will be enough to show that 2y ≤ 4X3k+1

. For this, define
Xn := X3n

for all n ≥ 0 and note that, thanks to Corollary 2.4, we have
∏

Xn<p≤X3
n

(
1 − 1

p

)
<

1
2

for all n ≥ 0.

By the definition of rj, it follows that

rj ≤ Xj for all j ∈ {0, 1, . . . , k + 1}.
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Lastly, since
∏

p≤x p < 4x for all x ≥ 1 (see, for example, [2, Lemma 2.8]), we conclude
that

2y ≤ 2
k∏

j=0

qj ≤
rk+1∏
i=1

pi ≤
∏

p≤Xk+1

p ≤ 4Xk+1 .

Therefore, xn ≤ 4Xk+1 for all n ∈ N.
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