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Abstract

In the recent paper [3] it was shown that the consistency of the quantum theory of a sterile
scalar coupled to massive fermions requires the inclusion of odd-power terms in the potential of
scalar self-interaction. One of the most important examples of a sterile scalar is the inflaton, that
is typically a real scalar field which does not belong to representations of particle physics gauge
groups, such as SU(2). Here we explore the effects of the odd-power terms in the inflation potential
on main observables, such as the scalar spectral index ns and the tensor-to-scalar ratio r, in the
case in which the inflaton is strongly and non-minimally coupled to gravity. It is shown that the
predicted ng deviates from the standard —2/N value (corresponding to the simplest one-parametric
viable inflationary models) by terms proportional to the new couplings of the odd-power terms,
among which the largest one and potentially detectable is g/N 1/2  where ¢ is the coupling of the

self-interaction 3.
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I. INTRODUCTION

Inflaton-based models play an important role in the understanding of inflation. There
is an extensive variety of inflaton models [1], however typically the inflaton is a specially
designed real scalar field with the potential providing a special dynamics of the vacuum,
such that the Universe can inflate in a proportion required by existing observational data.
Since the inflaton is a scalar which is not a representation of a gauge group of the Standard
Model, it can be called a sterile scalar. On the other hand, this scalar has to be coupled to
ordinary matter in order for the reheating phase to take place at the end of the inflationary
period [2].

Recently, it was shown that a sterile scalar coupled to massive fermions has to satisfy
certain consistency conditions, related to quantum corrections [3]. In particular, the renor-
malizability of such theory can be achieved only if the inflaton potential is supplemented by
three terms which have odd powers of the sterile scalar field. A relevant detail is that these
odd-power terms are not necessary in other models e.g. in the Higgs inflation [4]. In this
model the loop corrections are also important, as they define the value of the non-minimal
parameter £ and even impose the constraints on the Higgs mass (see e.g. [5, 6] and [7-9)]),
but there is no need to include odd terms, since the Higgs field is not a sterile field.

The situation described above opens the following interesting possibility. Up to some
extent, the inflaton-based models can be mapped to the f(R)-type modified theory of gravity.
In general, this requires a conformal transformation (or even two of them in case of a non-
minimal coupling of inflaton to gravity), but in the case of strong non-minimal coupling, this
can be achieved for inflationary trajectories in the phase space even without using it. This
was done for example in [10] for the case of the a-Attractors class of inflationary models
[11], and in [12] for the mixed Higgs-R? inflationary model. This feature certainly remains
valid for the inflaton models with odd potential. But if the inflaton is a real field, after
such a mapping we shall meet very specific additions to the function f(R) that may produce
observables which are different from the ones of other, most frequently used, functions. As
far as odd terms in the potential are typical only for the inflaton-based models, one can
use the observable consequences of these terms to learn whether inflation is caused by the
inflaton, or by some form of modified gravity theory.

In the present work we shall explore this possibility. To do so, we use the following



strategy. We map the inflaton potential with odd terms to a f(R) gravity model without a
conformal transformation, i.e. staying in the same Jordan frame. This can be done approx-
imately in the case of strong non-minimal inflaton coupling to gravity and of sufficiently
smooth behaviour of the inflaton, such as the one during slow-roll inflation. Thus, particle
masses, the Hubble parameter and space-time curvature keep their original physical values
during this mapping. The corresponding function f(R) has additional terms due to the odd
powers in the inflaton potential, and further work will concern these additional terms. Since
the odd terms are assumed to be numerically small, the resulting f(R) will be a sum of the
usual R%-term, typical of the Starobinsky model of inflation [13, 14], plus extra terms which
produce the effect of our interest.

The paper is organized as follows. In Sec. IT we use the perturbation theory and conformal
transformation to perform the mapping of the original potential with odd terms [3] to the
Einstein frame, that is the most standard way for the analysis of inflationary parameters. An
alternative mapping without the use of a conformal transformation is considered in Sec. III.
It leads to the f(R) model having the same inflationary stage with the same predictions for
primordial perturbation spectra as the original model. In Sec. IV we derive and analyze the

inflationary slow-roll parameters. Finally, in Sec. V we draw our conclusions.

II. SCALAR FIELD WITH ODD TERMS AND TRANSFORMATION TO THE
EINSTEIN FRAME

Assuming that the inflaton (or other kinds of sterile scalar) ¢ couples to fermions )y
by means of a Yukawa-type interaction, i.e., hytrpty, the picture is qualitatively different
from the one for the fermion-Higgs interactions. The Higgs scalar belongs to the fundamental
representation of the SU(2) gauge group and therefore has the corresponding group index,
® = @, withi = 1,2. As aresult, the divergences of the odd powers of ® are forbidden. For a
sterile scalar this is not the case and one can expect that the corresponding divergences show
up, according to power counting. The explicit calculations using the heat-kernel method
[3] have shown that the corresponding counterterms emerge already at the one-loop level.
According to standard arguments, this means that the odd terms should be included already
at the classical level, in order for the theory to be renormalizable. If we do not follow

this standard procedure, the odd terms will emerge anyway, proportional to the leading



logarithms in momenta or scalar field, and will be more difficult to control.
Taking into account the non-minimal interaction between the sterile scalar field and the

scalar curvature, the potential of the sterile scalar reads

1 A 1
Vi) = §m2¢2 + ESOA‘ - 558023
g N
+§<p3 — 10+ gRy, (1)

where A is the usual dimensionless scalar self-coupling parameter and m is the scalar mass.
The three terms containing ¢, ¢* and Ry are the novel elements of the model involved
compared to a Higgs-like potential with V' (¢) = V(—¢) and standard non-minimal coupling
to gravity oc Rp?. Their appearance follows from the renormalizabity in the flat space-
time if interaction with fermions is present as was discussed in the Introduction. For the
same renormalizability requirement, we do not introduce higher order odd powers of ¢ and
do not consider alpha-attractor models like V' = V; tanh? (ap) for which viable inflationary
models can be constructed even in the absence of non-minimal coupling to gravity ¢ = 0. The
minimal inflationary models, like the Higgs inflation and the Starobinsky inflation, have only
one free parameter related to gravity (£ in the former case) which value is unambiguously
fixed by the measured amplitude of the primordial power spectrum of scalar perturbations.
In our model, we have three additional parameters g, g and 7 (m? does not contribute to
the leading terms in the expressions for ny — 1 and r) from which only one (g) is related to
gravity. Thus, the model still has significant predictive power. This means that new mass
scales appear in our problem. Since these mass scales are not invariant under the conformal
transformation, we have to present our novel final results for them in the original Jordan
frame.

We are using the notations 7, = diag(—1,1,1,1). As a consequence, R > 0 during
inflation, and so & > 0 is the necessary condition for the non-minimal coupling. In fact,
we assume strong non-minimal coupling, £ > 1, similar to what is required for the Higgs
inflationary model, since otherwise it is not possible to have primordial scalar perturbations
being small in the regime of weak coupling when || < 1, but not too small. On the top
of this, we need A\ > 0 for the stability of the vacuum state. Furthermore, g, 7 and A are
the non-minimal parameters corresponding to the odd powers of the scalar. Different from
A and ¢ these parameters are dimensional, [g] = [mass], [§] = [mass] and [7] = [mass?].

The analysis of the renormalization group equations for g, 7 and g shows that the minimal



possible magnitudes of these parameters are defined by the masses of heaviest fermions, i.e.
the top quark, in the Standard Model. Compared to the value of the Hubble parameter, even
at the end of inflation, these values are small. However, even relatively small parameters
can produce measurable effects if the corresponding terms are qualitatively different. Thus,
in what follows we shall try to explore such traces for the odd terms in the potential (1).
Note that though |Vi] < Vi during inflation, the contribution of V; to small observable
quantities |ng — 1| and r is not small compared to that from V{ due to the specific symmetry
of the problem (the approximate flatness of the inflaton potential in the Einstein frame,
or closeness of the function f(R) to AR*/M?% with A being dimensionless and large in the
approximate f(R) representation of the problem in the original Jordan frame).

As a first step, let us transform the action of gravity and non-minimal scalar with potential
(1),

M? 1
S — /d4x\/_g{TPR -+ 59‘”8#9081/90_ V(@)}u <2)

into the Einstein frame. We assume that the terms Vy(¢) = ﬁ(p‘l — %§Rg02 are dominating

and treat the rest of the potential,

1 g -
Vilp) = §m2902 - gw?’ — 19+ gRe,

as a small perturbation, taking only first order effects into account. Also, during the infla-
tionary epoch, the kinetic term can be neglected, so we shall not take it into account, even
as a perturbation. Though our calculations could be equally well done using the total sum
Vo + Vi, this would only complicate the answer, since it is known already that V; produces
a very good fit to the measured value of ny, — 1. Thus, any additional contribution from
V) should be small, that is why we consider it as a small perturbation relative to V5. We
shall denote the solution of the corresponding equation of motion with Vy(¢) as ¢g, and the
solution of the full equation, with V(¢) = Vo(p) + Vi(p), as ¢o + ¢1.

First we consider the theory with the basic potential Vy(¢). It proves useful to perform

the following change of variables in the zero-order action:
MpB = &4y, (3)
where B is a new scalar field. Then the reduced (without the kinetic term) form of the

action (2) is

So = /d4x\/—_g{%1%(3+1)]%— %’%BQ}, (4)

2 4o



where « is the first of the useful new parameters

2
o= B=grl 0=y )

Note that the parameter 3 is invariant under an arbitrary shift in ¢: ¢ — ¢ + dp.

Making the conformal transformation of the metric (not of the scalar field)
G = G, e =1+ B, (6)
after some algebra we arrive at the action
/d“az\/i{ M 1g“”ﬁﬂxayx Un(x )} (7)

and the minimal potential term is

UO(X) = 8—(5 0232> (8)
written in terms of the variables
o=o(x)=c Vit p=pu)=eVith_1 ©

This potential is the Einstein-frame mapping of the R + R? action of the Starobinsky infla-
tionary model.
As the next step, consider the first order in perturbations. Starting from the modified

version of the change of variables (3), we get

M}B = £9* — 2Gp. (10)

Replacing ¢ = ¢y + ¢1 into this equation, in the first order in g, we get

, MiB  2gMpB'/? .
- f §3/2 . ( )

The action in terms of the field B has the form

S, = /d4:p\/—{ R(B+1)

¥

A\M3B?
- - (12)
where
2M2 B M3 33/2
W(B) = = +
28 &8/
gAM}B*?  tMpB'/?
6£5/2 o €172 (13)
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Before making the conformal transformation, let us write the action (12) in terms of a
more useful notation. From now on, we shall express the parameters in units of the (reduced)

Planck mass Mp = (87G)~1/2, that is

m / T ~/ g / g
Mp’ T M3’ g Mp’ g Mp (14)

In these units, according to what we have discussed above, m/, |7/, |§'|, |¢'| < 1.

!/
m =

It is important that the conformal transformation is not affected by the small perturbation
terms, and should have the same form (9) is in the unperturbed version of the theory. The
reason is that the curvature R enters Eq. (12) in exactly the same form as in the action
(4), so this is the unique form of conformal transformation providing the canonical kinetic
term for the scalar .

Dropping the primes, the new action has the form (7) with the full potential of the form

V2 BMp o2B3/2 _ Ty Mp
40s3/? V2a

As it should be expected, Eq. (15) includes the potential corresponding to the R+ R? model,

U(x) = o’B (15)

0231/27

plus a perturbation.
It is remarkable that the small parameters g, A, g, and 7 and the parameters A and &,
enter the expression (15) only in the combinations «, 3, 7 and 7, the first three defined in
(5). The scalar field x combine into the quantities defined in (9).
The derivative of the above potential (15) is the following:
U = ooy Mem?
2V/6a V6¢

3
%031/2 (3 —40B)
4\/§a3/2

TYME o
2v/3a B2

In this expression, the first term is the usual one in the Starobinsky model. Now, for y — oo,

(20 — 1)

_|_

(1—40B) . (16)

we have that o — 0. Noting that ¢ B = 1 — ¢ and keeping the leading orders in o, in this
limit we have then:
Mg Mpm2
o— o
2v/6a V6¢
VBM} ol/2 4 3T’YM1?503/2_
4+/303/2 2v/ 3

8

U'(x) ~ (17)




It is easy to see that U’ — 0 in the limit y — oco. Indeed, there are various contributions,
the first term being of the same order o as for the Starobinsky model, plus the third one,

which is of order o/?

and, therefore, dominant for the large number of e-folds N counted
from the end of inflation (of course, not taking into account the smallness of the parameters
in the coefficients). The last one which is subdominant for N > 1. However, it should
not exceed the first term at N ~ 1 when inflation ends in order to avoid premature end of

inflation compared to the unperturbed model with 5 = 7 = 0. The resulting strong upper

limits on these coeflicients will be derived in Sec. IV.

III. INDUCED ACTION OF GRAVITY WITH ODD TERMS

Another way of obtaining the results of the previous section, which is even simpler in
fact, is to use the possibility of the approximate representation of the theory (2) with £ > 1
as f(R) gravity in the same Jordan frame (i.e. without a conformal transformation) up to
small terms oc €1, This possibility follows already from the fact that the effective Brans-
Dicke parameter wgy is very small (= é) for this theory while it is exactly zero for f(R)
gravity. The alternative derivation presented below demonstrates the possibility to avoid
conformal transformation and to work directly in the Jordan frame all the time. It is useful
in the case of large fermion masses since neither particle rest masses, nor the physical values
of the Hubble function H(t) are invariant under the conformal transformation.

Our strategy will be as follows. We perform mapping of the scalar theory with the
potential (1) strongly coupled to the Ricci scalar R to the form of modified f(R) gravity

S = MTI%/d“x\/—_gf(R). (18)

We shall describe it here in more details than in [3]. After that the analysis of consequences
for inflation, for the odd terms in the action of original scalar, becomes trivial and can be
done either directly in the physical (Jordan) frame or, after the conformal transformation,
in the Einstein frame, see e.g. [15] where this procedure is used for a wide class of models.
Let us start with the potential (1) and, as in the previous section, assume that the main
non-minimal term gRQOQ and the interacting term %@4 are dominating over other terms,
which are regarded small corrections. The effects of these small terms using perturbations.

The kinetic term in the classical action of scalar field ¢, will be simply neglected. This



approximation corresponds to the part of the inflationary epoch, when the potential term
dominates. As we shall see in what follows, this approximation provides the mapping of
the scalar potential to the R + aR?/M% action with a sufficiently large dimensionless coef-
ficient a. The known fact is that this theory fits well with the observations, justifying the
approximation.

Without the kinetic term (taking this term into account leads to the non-localities, which

were discussed in [16, 17]), from Eq. (1), follows

\ 3 2
Vi(g) =m¥o+ -+ T m 4 GR - GpR = 0. (19)
Let us solve Eq. (19) perturbatively, in the first order in the small parameters 7, § and

g. It is useful to separate the potential in two parts, V(¢) = Vo(¢) + Vi(p), where

1 A 1
Volp) = §m2s02 + I<P4 - 5538027
g -
Vip) = gwg + 70+ GRe. (20)

For the sake of generality, we keep the mass-dependence exact until the end of the consid-

eration. The zero-order reduction of (19) has the form

A
Vi(e) = mPpg + 5908 —&poR = 0

= @ = Ser-m). 21)

Substituting this result into the first-order equation, with ¢ = g+ @1, after a small algebra
we obtain from Eq. (19)

3g T+ gR

2\ 2(ER—m2) 22)

Y1 =

According to the simplified version of the mapping (see, e.g., [18]), the function f(R), in
the first order of perturbation theory, has the form

F(R) = R =~ [Valgo) + Valgo) + ¢1V'(sp0)] (23)

al
M3
where the last term obviously vanishes. In this way, substituting (21) into the potential, we

arrive at the expression

MR oo 3, (MEO3E L\ L3¢,
‘7ﬂm—ﬁm+(7“§” LT

+W[%(£R—m2)+r+§ﬂ’] (24)
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The first term in this expression is the induced cosmological constant, the second is the
Einstein-Hilbert term with an induced correction to the gravitational constant, c.f. Eq. (26),
which is irrelevant under the condition ém? < AM2% mentioned above. The third term is
the R?, which is an important element of the inflationary model of [13]. According to the
standard evaluation [14], the magnitude of the coefficient % should be of the order 5 x 108;

hence, the natural value of the main non-minimal parameter is £ ~ 10%. In the inflationary

2
regime, ER > Mgp > m?.
All odd parameters and m? are small and their effect on the cosmic perturbations should
be considered in the linear approximation. As we are interested in the odd terms, we can

safely set m? to zero in Eq. (24). In this way, we arrive at the action

M3 3Em? 3€2
— 4 _ Pp_ =577
S—/d:c\/ g{QR )\R—i—”\

i S8 s~ (55 ] &

As far as ém? < AM3, the second term in the integrand produces only a small shift in the

R2

inverse Newton constant,

6Em?

Mz — M3 — T

(26)
so it can be omitted and we arrive at

M2
S = /d4x\/_{R+ WRQ

+— o \/@ (M}7 — BR) ] (27)

We note that, due to the odd terms in the potential (1), the resulting function f(R) has an
unusual form with the non-integer powers % and % of the scalar curvature.

The following observation is in order. It is clear that the term proportional to the root of
scalar curvature in the gravitational action leads to an inconsistency, since in the presence
of this term there is no flat metric solution to the equations for the metric. In the present
case, this does not mean that the theory which we are dealing with is inconsistent. Let us
remember that (25) is not the fundamental action of gravity, but only the intermediate form
of a mapping of the scalar theory with the potential (1), which is valid in the inflationary

epoch only, more precisely in the slow-role phase.

11



Indeed, the above effective action is valid only when the R? term dominates, and therefore
the new contributions R'/? and R*? can indeed be treated as perturbations. For low energies,
one has £ — 0 and so the mapping from the potential (1) to the action (25) cannot be
performed. This allows us to avoid a possible disruption of the graceful exit or effects such
as strong particle production or tachyonic instabilities, see e.g. [19].

If one aims to consider action (25) as a fundamental theory, valid for all R, then many
conditions and requirements apply for its viability, as discussed extensively e.g. in Ref. [20].
For example, one must have f'(R) > 0 and f”(R) > 0 in order to guarantee that gravity
is an attractive force and in order to avoid ghosts, and these requirements put constraints
on the parameter space (§,\,7,7,g). In the present case, these constraints do not apply
because (25) is not regarded as a fundamental action, but only as an intermediate stage
of the mapping of the scalar theory with the potential (1) to the minimal scalar model.
Furthermore, according to the analysis of Ref. [20], one must extend a f(R) theory to
negative values of R in order to guarantee a graceful exit from the inflationary case. As it
stands, the f(R) theory of Eq. (25) has not this extension because of the v/R term, and
thus can only be regarded as an effective theory for large R.

Further analysis will be based on the action (27), that can be regarded as a particular
case of the f(R) theory (18). This action can be mapped to the usual scalar-metric action

(see, e.g., [18] and further references therein), in the Jordan frame:

5= [ dav=glor -V (6] (25)

where
6 = f'(R) = 1+%R+7<%—ﬁ\/ﬁ),
P
V(o) = ¢R — f(R). (29)

Here the prime denotes derivation with respect to R and we used notation (5). As before, we
assume all “odd” parameters to be small and perform all calculations perturbatively, in the
first order in these parameters. This approach simplifies the general procedure of [18]. Let
us call Ry the solution without odd terms and AR; the first order correction to it. Writing

R as

12



where |AR; ~ OW(r, 8)| < |Ro

, We arrive at

W (1482,

2Ry
_ AR
12 2 (g 1 1
g (150, o
Solving Eq. (29), at the zero order we get
M2
(b—l_'_WRO = Ro= %@—1) (32)

and at the first order
3MpByRy* — MRy

AR, =
R, - (33)
The explicit form of the solution is
Av(e) M}
=—(p—1 4
Rio) = 52 = 526 -1) (34)
3\/_M2 By (¢ — )1/2 _ Ty M} (6 — 1)—1/2
4 3/2 /20[ '
Finally, after integration, we obtain the potential
M2 V2M}E By
V(¢) (¢ - ) 9 E 3/2 <¢ - 1)3/2
2 M3
_ w@ _ 1)1/2_ (35)

V2a

It is useful to work with the action of the standard form, in the Einstein frame:

/ d%\/—{ M2 g — g 0 — Uly )} (36)

Since the terms originating from the odd terms in Eq. (1) contribute only to the potential
part of the action, after the Weyl transformation we get the usual relation between the field
x with canonically normalized kinetic term and the scalar ¢,

M3 7 X

502 V(600),  where 9(x) = eV, (37)

After a small algebra, we find for the potential the expression (15). In the m? = 0 approxi-

U(x) =

mation, it boils down to

Mg VM B
Sa 4 a3?
Mpry

V2a

U(x) =

o2 B2, (38)

13



The two new terms R'/? and R*?, with the corresponding two corrections in the above
potential, therefore modify the dynamics of inflation. Which of the two dominates depends
on the parameters, but if these are of the same order, then the R%? term dominates. Grav-
itational vacuum polarization from massive fermions (i.e. with masses m > H) during
inflation provides a contribution ~ R3/M2% [3] (see also [21] and also [22] for more exam-
ples), but, owing to the Planck suppression, this is small compared to the new terms due to
fermions. See also Ref. [23] in connection with RG corrections to £ resulting in its running

which transforms to the running of the R? coefficient in the f(R) representation.

IV. DERIVATION OF THE SLOW-ROLL PARAMETERS

In the previous sections we derive the potential (15) in the Einstein frame from the original
potential (1). Now we are in a position to use this expression to obtain the parameters
characterizing the inflation.

It is useful to derive the first and second derivatives of the potential, which have the form

() — ByM}oB'/? 5 iR V2M3} o*B
(X)——4\/— a8 40B)+ ——=—
3o 4+/3x
M3
Tp (0—4023),

a 2v/3aB/?

2

M
U'(x) = 6—01; (207 — o)

V267 M} ( 9 3)

L VIR (4p2p2 _ Zop 4O
6V 3B 2 4

— %(40232 — @ — 1) (39)
3vaB? 2 4/

As in the general case (see e.g. [15]), in the slow-roll approximation the slow-roll parameters

are related to the scalar field potential as follows (see e.g. [24]):

_ %}%[U’(x)r _ MpU'(X) (40)

2 LUKX) U(x)

14



Keeping only the O (7, B) terms, we get

4 86v(3—40B) 8myV2a (1l —40B)
3B 30V2a° 30BT2

420 1) N V23~ (16 B?0? — 18Bo + 3)
73R 302V aB?

277V 2a (16 B*0% — 60 B — 1)
302V B7 '

Deep in the inflationary regime, that is, for large values of y, one can take only the leading

(41)

term in each expression,
e x AoV _ V2P a T
3 3 \/_
+ 82y ae Vs,
~ _éei\/gl\fp + \/_ /87 1 %ﬁ

U 3 /at
—6V2ryyae PV, (42)
or
4 45y
€ = gO’Q 5;\/_ + 877V 2a0°. (43)
2
n= -2 Ve~ 6rVaad® (44)

To calculate the number of e-folds, we express € as a sum € = ¢y + de;, where ¢ ~ O0(7, 3)

and de; ~ OW (7, B),

N = —— [T (45)
X) = 7 e
MP Xend 2€<X/)
Expanding the square root in the integrand, leads to
3 (7 do 20
N(x)=—- 1+ —-3 — 46
=1 G+ (16)
where
2 o'dy’
do' = — /= . 47
o 3 M, (47)

15



After integration and using the condition ye,q < X (i.e. assuming that y is deep in the

inflationary era), we find

N(x) = % [0_1 + 3\/\/5% - 6\/%7‘70_1/2] . (48)

We can expand on ¢ in Eq. (48) to find the field x in terms of the number of e-folds:

3 2 3\

3 Ja
5\ 32
—6 . 49
vaar) (1) (49
Then, by plugging it in Eqgs. (43) and (44), and keeping only the terms up to O (7, B), we
get
_ 3 VBB 1 9vE Jal
IV 6 Ve TWYoREm

1 6By 1 6
R A S S Y (50)
N RBYaNE ' 4 N3P

The main inflationary observables are the scalar spectral index ns and the tensor-to-scalar

ratio r (see e.g. [24]), whose expressions in terms of the slow-roll parameters are:
ns — 1 = —6e+ 2n, r = 16e. (51)

These observables have been constrained by the Planck mission [25] to ns = 0.9649 £ 0.0042
at 68% CL and T0.002 < 0.056 at 95% CL.

Therefore, we arrive at
A2 — 1 N2 (14 2\/_67]\]1/2 4 ovoary 3v6ary
144 nla 9/« N1/2 ’
2 V63 3vV6aty

g —1=——o— ,

N~ 9VaNz " oN3”

12 8v/6 By 361/ 6Ty 59
N2 3/aNd? N2 (52)

where A? is the scalar dimensionless power spectrum, obtained by using standard textbook

formulas. See e.g. Ref. [26]. In terms of the original parameters,

PP 1+—4f< + )N1/2+ 18vsre ™

T 1320282 0V/E NIZT N |
ne — __3_27%( 9_6) 9V3 ¢

TN TN 9N\ TN TNy

12 16 g€\ 2164/3 7€3/2
" Wﬂ/@vs/z(g 7)_ N2 N

(53)
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Now we can obtain inequalities which the parameters § and 7 should satisfy in order for
our perturbative approach to be valid. The smallness of the perturbations requires that the
first correction to A% must be < 1 both at N >> 1, corresponding to the present cosmological
scales, and at N ~ 1 when inflation ends. As it was mentioned above, the first condition

restricts 3, while the second one concerns 7.

as the limiting value of the e-fold number for which our perturbative approach makes sense

We can identify

for N > 1 when the correction term oc R3? dominates. In order to be consistent with
the inflationary paradigm, we need N > 55. This leads to the condition /o > 4|3|y, or
4]8| < V€. Note also for generality that for a very large N and R, when the perturbative
approach does not hold true anymore and the gravitational action is dominated by the R3/2
term , slow-roll inflation still can happen, but spacetime evolves to larger values of curvature,
i.e., no exit to a low-curvature universe is possible.

On the other hand, the condition that the end of inflation should occur approximately at
the same value of R (corresponding to N ~ 1 in Eq. (45)) produces the strong restriction
of the parameter 7: y/ay|7| < 1, or |7| < A¢3/2,

Egs. (53) are among the main results of this paper. The different dependence on N (from
the observational point of view, N = const — Ink where k is the inverse present scale of
perturbations) in various terms in Egs. (53) provides a remarkable possibility to distinguish
between the contributions from 7 and the combination g + g—f, would the scale dependence
ns — 1(N) be measured with sufficient accuracy.

We have derived the results (53) in the Einstein frame, but as long as we retain up to
first order corrections, they are valid also in the Jordan one, although the number of e-
folds N becomes a different function of the present wave vector modulus k. Moreover, the
results (53) can be derived directly in the Jordan frame, without the conformal transfor-
mation to the Einstein frame, by using the formulas presented in Ref. [26] where a generic
f(R) = A(R)R?/M} model, with A(R) slowly varying, is explored. Note that for the case
investigated in the present paper, cf. Eq. (27), the corresponding A(R) function is:

2
A(R) = % +a+2Mp f—ég (M}T — BR) . (55)
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So, it is slowly varying for large values of R for which the slow-roll inflationary regime is
realized in this model.

In order to estimate the value of the inflationary observables coming from the new terms
we need the value of the parameters &, X, §, g, 7. If A = 1, we can set £ ~ 1 x 10*, so that we
recover Starobinsky inflation when § = g = 7 = 0. The value of g, g and 7 depends on the
mass of the fermions to which the scalar is coupled, via the renormalization group equations,
as explained in [3]. Without repeating the corresponding arguments, we just mention that
the quantum contributions to the dimensional parameters g, g and 7 from a fermion loop
are proportional to the respective power of the mass of a fermion.

For the first evaluation let’s assume the fermion masses at the upped bound of the
Standard Model, with m; ~ 1TeV. Then, according to the previous considerations,
g = g~ 1TeV and 7 ~ 103TeV. For these values of the parameters and N = 60 we
find:

ns = 0.965417, r = 0.003333, (56)
and for N = 50:
ns = 0.9582, r = 0.0048, (57)

which are the same, to this precision, to the R* case. If we increase the magnitude of my
to the GUT’s scale, for m; &~ 10" GeV we find n, = 0.965374 and r = 0.003313. For the
supersymmetric GUT models, with m; ~ 10’ GeV, there is ny = 0.961231 (a difference of
0.43% from R + R? model) and r = 0.001332 (a difference of 60% from R + R? model).
We can compare the contribution to the inflationary observables coming from the induced
action (27) with the second order corrections coming from pure Starobinsky inflation. The

next-to-leading order contributions to € and 7 are, when N = 60:

9
eNL = gnE = 5.21 x 107¢, (58)
3
T]NL = —W = —417 X 1074. (59)

For my ~ 1 TeV we have that the corrections for € and 7 from the VR and R%? terms,
when N = 60, are €yqq = —1.24 x 1077 and 1,qq = —2.48 x 10716, and are indeed smaller
than the next-to-leading order corrections of the R + R* model. However, if m; is as large

as my ~ 10'% GeV, the new contributions to € and 7 are €,qq = —1.25 x 10™* and 7qq =
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—2.47 x 1072 become more relevant than the second order corrections for the Starobinsky
model.

In figure (IV) we can see the potential of Eq. (15) for a few different magnitudes of my,
together with the pure Starobinsky model. It is worth noting that the values of the three
parameters corresponding to the odd terms in (1) have been set to their maximal possible
values. This corresponds to the usual practise of searching for upper bounds of the new
parameters. Indeed, as the off parameters are all regarded small, their effects can be also
explored separately. However, following the way we show the results here, the qualitative
output is clear and thus, we skip the more detailed consideration. For negative values of the
field, our potential becomes imaginary because of the square root. But inflation corresponds

to R > 0 and the plateau, so in principle this does not represent a problem.

5x 1056

4x10%;

3x10%6

U(x) (GeV*)
N
x
2

. Pure R? (Starobinsky) model
=100 S/ e my = 10" GeV
/20— my =108 GeV

ol
0 1x10" 2x10" 3x10" 4x10™® 5x10' 6x10' 7x10"
X (GeV)

FIG. 1: Potentials for large values of typical masses my, together with the reference plot for the

R?-model without odd terms. In all cases, & = 10

In order to understand better the results, at this point we have to come back to the
definition of the problem in [3] and describe the physical situation in which the sterile scalar
can be coupled to the Standard Model fermions.

The Standard Model left-handed fermions are doublets under the SU(2) gauge group
L
U

of the form ZL in the case of left-handed quarks. We have uf = {ur,tr,cr} and
d;

7

df = {dy,br,s.}. On the other hand, the right-handed fermions are singlets under SU(2)
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i 3x10%6;
[
e
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. —— Pure R?(Starobinsky) model
1x10%) A e m; =10™ GeV
D m; = 10" GeV

0 -".( L L L L L L L
0 1x10"° 2x10"™ 3x10" 4x10" 5x10" 6x10" 7x10™
X (GeV)

FIG. 2: Potentials for different large values of typical masses my, when g < 0 and § = 10%, and
the reference plot for the R%2-model without odd terms. Note that the odd-terms effect is almost

invisible for my = 10 GeV.

5x10%8 .
£=10°
4x10°8} QU
T 3x10%8)
-
e
§ 2x10%8}
. —— Pure R?(Starobinsky) model
ix08f 7 e my =10 GeV
2 m; =106 GeV

0 1x10" 2x10" 3x10" 4x10" 5x10" 6x10"® 7x10"
x (GeV)

FIG. 3: Potentials for different large values of the mass my, together with the reference plot for

the Starobinsky model without odd terms, ¢ = 103.

group, namely u!* and d*. So, in order to have Yukawa interaction in the Lagrangian being
invariant under the SU(2) gauge group, the scalar must be at least a doublet under SU(2),
so it can multiply the SU(2) index of the left-handed fermions. This is exactly why we
cannot introduce directly the fermions mass terms into the Lagrangian, and we have to do
so using the Higgs mechanism.

The only possibility to couple a sterile scalar to Standard Model fermions is when the
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FIG. 4: Potentials for large values of typical masse my, together with the reference plot for the

Starobinsky model without odd terms, where £ = 102.

SU(2) x U(1) symmetry is broken by the Higgs mechanism, at energies below 125 GeV. At
this regime, terms in the effective low-energy Lagrangian don’t need to be invariant under
SU(2), as this is no longer a manifest symmetry of the theory. In particular, if the sterile
scalar is mixed with the Higgs at high energies, in the process of symmetry breaking the
Yukawa interactions with the sterile scalar emerge in a natural way.

On the other hand, as we have seen above, the coupling of a sterile scalar (inflaton) with
fermions at the Standard Model energy and mass scale does not produce essential changes in
the inflationary observables. If thinking about the physics beyond the Standard Model, there
may be new heavy fermion singlet fields, that could couple to a sterile scalar. Alternatively,
the coupling of the inflaton with the Higgs-like scalar of GUT model can give the effect of
mixing similar to the one described above for the Standard Model. This possibility gives a

chance to detect the traces of GUT’s in the cosmological observations.

V. CONCLUSIONS

We have explored basic consequences of odd terms in the inflaton potential in the case
when the inflaton is strongly non-minimally coupled to gravity. The presence of these odd
terms is motivated by the structure of renormalization of a generic sterile scalar coupled

to fermions by means of the Yukawa interaction. The analysis has been performed both
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by a direct transformation to the Einstein frame, and also by means of mapping to the
f(R) inflationary model in the original Jordan frame which has the same predictions for
primordial perturbation spectra, as discussed in Sec. III. Along with an additional control,
this second approach provides more intuitive understanding of the role of the odd terms.
An advantage of our approach is that the physical analysis can be performed in terms of
the underlying particle physics model to which the inflaton is coupled. The values of the
constants of the odd terms in the potential satisfy the lower bounds related to the running
of the corresponding parameters. In practice, this means that these dimensional constants
should be of at least the same order of magnitude as the heaviest fermions of the model.
The main result which we obtained is that the effect of the odd terms is negligible of the
typical mass m; of the heaviest fermions is smaller than the GUT scale about 10 GeV.
Thus, the odd terms in the inflaton potential become relevant only in the presence of a GUT
with the corresponding fermions. If these conditions are satisfied, there is, in principle, a
chance to distinguish the inflaton models from the legitimate f(R) models by measuring the

quantities such as the spectral index n, and tensor-to-scalar ratio r.
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