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FINITE PARTIALLY EXCHANGEABLE LAWS ARE SIGNED

MIXTURES OF PRODUCT LAWS

PAOLO LEONETTI

Abstract. Given a partition {I1, . . . , Ik} of {1, . . . , n}, let (X1, . . . , Xn) be random vector with

each Xi taking values in an arbitrary measurable space (S,S ) such that their joint law is invariant

under finite permutations of the indexes within each class Ij . Then, it is shown that this law has to

be a signed mixture of independent laws and identically distributed within each class Ij .

We provide a necessary condition for the existence of a nonnegative directing measure. This is

related to the notions of infinite extendibility and reinforcement. In particular, given a finite ex-

changeable sequence of Bernoulli random variables, the directing measure can be chosen nonnegative

if and only if two effectively computable matrices are positive semi-definite.

1. Introduction

de Finetti’s theorem, in one of its most general forms, states that if (Xn : n ∈ N) is a sequence

of random variables such that each Xn takes values in a Borel space (S,S ) and their joint law is

invariant under finite permutations of the indexes, then there exists a unique probability measure µ

on the set P(S) of probability measures on S such that

Pr ((Xn : n ∈ N) ∈ A) =

∫

P(S)

ν∞(A)µ(dν) (1)

for all A ∈ S N. Here, ν∞ stands for the (countably infinite) product measure ν×ν×· · · , and P(S) is

equipped with the σ-field generated by the weak⋆ topology; see, for instance, [17, Theorem 1.1]. More

generally, the result holds if S is a locally compact Hausdorff space and S its Baire σ-field, as shown

by Hewitt and Savage in [9, Theorem 7.2]. On the other hand, some kind of assumptions on S are

needed to ensure representation (1) holds: indeed, Dubins and Freedman have shown that there exists

a separable metric space S for which the result fails [7, Theorem 2.14].

The finite case is completely different. Recently, Kerns and Székely proved in [18, Theorem 1.1]

that, if (S,S ) is an arbitrary measurable space and (X1, . . . , Xn) is exchangeable, then there exists a

bounded signed measure µ on the set P(S) of probability measures on S such that

Pr ((X1, . . . , Xn) ∈ A) =

∫

P(S)

νn(A)µ(dν) (2)

for all A ∈ S n. Similarly, νn stands for the product measure ν × · · · × ν, and P(S) is equipped

with the smallest σ-field for which all the maps ν 7→ ν(B) are measurable, where B ranges over S .

Accordingly, the directing measure µ cannot be assumed to be nonnegative, as it is shown in the well-

known example provided by Diaconis and Freedman [6]. An interpretation of the geometric structure

underlying the proof of representation (2) can be found in [4].

With these premises, the article focuses entirely on the finite case. In the first part, Theorem 1

provides a generalization of the finite representation (2) to the case of finite partially exchangeable
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sequences, i.e., whenever the law of (X1, . . . , Xn) is invariant under permutations of the indexes within

each class Ij , for some partition {I1, . . . , Ik} of {1, . . . , n}. Under rather weak topological assumptions,

this finite representation is unique if and only if the set of signed directing measures µ is compact.

This type of invariance could be termed subgroup exchangeability, cf. Remark 2. Relationships with

other types of partial exchangeability studied in the literature will be clarified in Section 2. As pointed

out in [18] and remarked in [12], the result still allows to prove the consistency of Bayesian estimators,

namely, the sequence of posterior distributions relative to the true unknown parameter θ of the model

converges to the degenerate distribution on θ; cf. e.g. [18, Proposition 4.1] for the finite exchangeability

case. See [2] for an application to the Bayesian properties of normalized maximum likelihood.

In the second part, we provide a necessary condition to ensure the existence of a nonnegative

directing measure among all signed measures µ which satisfy the representation result, see Theorem

2. It turns out that the question is related to the notions of infinite extendibility and reinforcement.

Lastly, we obtain necessary and sufficient conditions on exchangeable sequences taking values in {0, 1}
to be mixtures, in the classical sense, of i.i.d. (Bernoulli) random variables, see Theorem 3. In this

regard, the problem can be equivalently reformulated to question whether a point belongs to the convex

hull of a known finite set of extremal points; see, for instance, [4, p. 275]. Here, differently from the

geometric characterization, we show that an exchangeable law on {0, 1}n is a mixture of i.i.d. random

variables if and only if two effectively computable matrices are positive semi-definite.

2. The finite representation

Given an index set I and a subset G of the group of permutations on I, a sequence (Xi)i∈I of

random variables defined on a probability space (Ω,F ,P) with each Xi taking values in a measurable

space (S,S ) is said to be exchangeable over G whenever (Xi : i ∈ I)
d
= (Xσ(i) : i ∈ I) for all σ ∈ G.

Hereafter, let us suppose that G can be written as the product of the symmetric groups on I1, . . . , Ik,

for some partition {I1, . . . , Ik} of {1, . . . , n}. In other words, the joint law of (X1, . . . , Xn) is invariant

under permutations of the indexes within each class Ij .

Then, our main result, which will be proved in Section 5, can be stated as follows:

Theorem 1. Let (X1, . . . , Xn) be an exchangeable sequence over G of random variables with each Xi

taking values in a measurable space (S,S ). Then there exists a bounded signed measure µ on P(S)k

such that

P ((Xi : i ∈ Ij) ∈ Aj , j = 1, . . . , k) =

∫

P(S)k
νn1
1 (A1) · · · νnk

k (Ak)µ(dν1, . . . , dνk) (3)

for all A1 ∈ S n1 , . . . , Ak ∈ S nk , where nj stands for the cardinality of Ij for each j.

As usual, here “bounded” means that if µ has Hahn decomposition µ+ − µ− then µ+ + µ− is a

finite measure. It is worth noting that Theorem 1 generalizes the results of Jaynes [13] and Kerns and

Székely [18, Theorem 1.1].

The main machinery of the proof can be tracked back to Janson, Konstantopoulos and Yuan [12,

Theorem 1]. On the other hand, it solves an open question in the same article, see [12, Section 4.8].

However, our main interest in Theorem 1 is related to its consequences.

Corollary 1. With the notation of Theorem 1, let us assume that S is a separable Banach space with

induced Borel σ-field S . Then there exists a bounded signed measure η on Sk such that

P ((Xi : i ∈ Ij) ∈ Aj , j = 1, . . . , k) =

∫

Sk

νn1

θ1
(A1) · · · νnk

θk
(Ak) η(dθ1, . . . , dθk) (4)
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for all A1 ∈ S n1 , . . . , Ak ∈ S nk , where each νθj is a probability measure on S depending measurably

on the parameter θj.

Note that the result holds in the case of real-valued random variables. If the directing measure η

can be chosen nonnegative, this may provide a sort of justification for the use of priors in Bayesian

parametric.

Lastly, the representation provided in Theorem 1 gives, informally, the same amount of information

when the assumption of exchangeability over an arbitrary subset G is replaced by the exchangeability

over the largest subgroup contained in G, cf. Remark 2. This highlights the differences with other

types of exchangeability considered in the literature. To make some examples, fix an array of random

variables X = (Xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m). In the case of partial exchangeability á la de Finetti [3]),

the joint law of X is invariant under permutations of the random variables within each column: the

information provided by our representation is maximal, since G can be written exactly as product of

symmetric groups on the indexes of the columns. On the other hand, if X is partially exchangeable

á la Aldous and Kallenberg, cf. [1] and [16], then its law is invariant under all pairs of [respectively,

the same] permutations of the indexes of rows and columns; this is commonly known as separately

row-column exchangeability [resp., jointly row-column exchangeability]. For instance, a 2× 2 array is

separately row-column exchangeable if and only if, up to relabelings to indexes, it holds
(

X1 X2

X3 X4

)

d
=

(

X2 X1

X4 X3

)

d
=

(

X3 X4

X1 X2

)

d
=

(

X4 X3

X2 X1

)

.

This implies that the unique contained subgroup of permutations is the trivial one. In a sense, this

minimizes the amount of information provided by our representation because it is as if there were no

constraints. Similar considerations apply to other types of invariance considered in literature, e.g.,

Markov exchangeability introduced by Diaconis and Freedman [5].

3. True Mixtures

In most cases, the main difference between the finite and the infinite case is that the directing

measure µ may be signed. Therefore, it looks natural to ask about the positiveness of µ and, more in

general, about the infinite extendibility of an exchangeable sequence (X1, . . . , Xn).

In this respect, Konstantopoulos and Yuan have shown in [19, Theorem 2] that if S is a locally

compact Hausdorff space and the law of X1 is inner and outer regular, then such an infinite extension

exists if and only if for each integer N ≥ n there is an exchangeable sequence (Y1, . . . , YN ) with each

Yi taking values in (S,S ) such that (X1, . . . , Xn)
d
= (Y1, . . . , Yn). In turn, this is equivalent to be a

true mixture of i.i.d. random variables whenever S is equipped with its Baire σ-field (hereafter, “true”

underlines that the directing measure is nonnegative), see [19, Theorem 3].

In this section, we provide a set of necessary conditions on the joint law of a random vector

(X1, . . . , Xn) exchangeable over G which can be represented as true mixture of independent random

variables and identically distributed within each class Ij . To this aim, we fix some additional notation:

given a square matrix M = (mi,j) with entries in S n1 × · · · ×S nk , we shorten the real-valued matrix

(P(X ∈ mi,j)) with PM. Moreover, given positive integers a, b and matrices A,B with entries in S a

and S b, respectively, we denote by A�B the matrix with entries in S a+b, constructed as the analogue

of Kronecker product, where the multiplication of entries is replaced by their cartesian products.

Accordingly, we obtain the following result:
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Theorem 2. Let (X1, . . . , Xn) be an exchangeable sequence over G of random variables with each Xi

taking values in a measurable space (S,S ), and let us suppose that the signed measure µ in the the

finite representation (3) is nonnegative.

Then, the following matrix

P�k
j=1











A
2mj

j ×Bj A
2mj−1
j × S ×Bj · · · A

mj

j × Smj ×Bj

A
2mj−1
j × S ×Bj A

2mj−2
j × S2 ×Bj · · · A

mj−1
j × Smj+1 × Bj

...
...

. . .
...

A
mj

j × Smj ×Bj A
mj−1
j × Smj+1 ×Bj · · · S2mj ×Bj











is positive semi-definite for all even nonnegative integers 2m1 ≤ n1, . . ., 2mk ≤ nk, for all A1, . . . , Ak ∈
S , and for all B1 ∈ S n1−2m1 , . . . , Bk ∈ S nk−2mk .

The main result of von Plato [28, Theorem 4] follows in the special case where n = 4, k = 2,

n1 = n2 = 2, m1 = m2 = 1, S = {0, 1}, and A = {1}; cf. Remark 4.

Moreover, it follows that, if k = 1, m1 = 1, and P(X ∈ S2 ×B) > 0, then

P(X1 ∈ A|X2 ∈ A, (X3, . . . , Xn) ∈ B) =
P(X ∈ A2 ×B)

P(X ∈ A× S ×B)

≥ P(X ∈ A× S ×B)

P(X ∈ S2 ×B)
= P(X2 ∈ A|(X3, . . . , Xn) ∈ B).

This can be intepreted as a reinforcement property; see, e.g., [22] and [24]. The same observation

applies to partially exchangeable sequences, once we set each mj = 1 in Theorem 2.

In the special case where G is the symmetric group on {1, . . . , n} and S = {0, 1}, we provide an

explicit characterization of the finite exchangeable sequences which can be written as true mixtures of

i.i.d. (Bernoulli) random variables.

To this aim, define xi = P(X1 = · · · = Xi = 0, Xi+1 = · · · = Xn = 1) for each i = 0, 1, . . . , n, and,

for each positive integer n, the Hankel matrices Hn =
(

h
(n)
i,j

)

and Kn =
(

k
(n)
i,j

)

by

h
(n)
i,j =







n+2−i−j
∑

k=0

(
n+ 2− i− j

k

)

xk if n is even and 1 ≤ i, j ≤ n+ 2

2
n+1−i−j
∑

k=0

(
n+ 1− i− j

k

)

xk if n is odd and 1 ≤ i, j ≤ n+ 1

2

,

and

k
(n)
i,j =







n−i−j
∑

k=0

(
n− i− j

k

)

xk+1 if n is even and 1 ≤ i, j ≤ n

2
n+1−i−j
∑

k=0

(
n+ 1− i− j

k

)

xk+1 if n is odd and 1 ≤ i, j ≤ n+ 1

2

.

With these premises, we obtain the following necessary and sufficient condition:

Theorem 3. Let (X1, . . . , Xn) be an exchangeable sequence of {0, 1}-valued random variables. Then

the joint law of (X1, . . . , Xn) is a true mixture of i.i.d. random variables if and only if Hn and Kn are

positive semi-definite.

Interestingly, Wood [29, Theorem 2] calculated the probability that, picking at random an exchange-

able sequence of {0, 1}-valued random variables (X1, . . . , Xn), this is infinitely extendible; in particular,

this probability goes to 0 as n → ∞.
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Lastly, we obtain the following corollary, which turns out to be a generalization of [28, Theorem 1

and 2]:

Corollary 2. Let (X1, . . . , Xn) be a {0, 1}-valued exchangeable sequence which can be represented as

a true mixture of i.i.d. random variables. Then, for all i = 1, . . . , n− 1, it holds

xi ≤
√
xi−1xi+1. (5)

On the other hand, these conditions are also sufficient if and only if n ≤ 3.

An alternative proof of the first part of Corollary 2 has been given in a manuscript of Muliere and

Walker [23], which, however, focuses on the relationship between the concepts of reinforcement and

finite exchangeability. Proofs of Theorem 2 and Theorem 3 follow in Section 6.

4. Notations and Preliminaries

The sets of reals and positive integers are denoted, respectively, by R and N. Each of these sets is

endowed with its usual addition, multiplication, and (total) order ≤.

Given sets X,Y, Z and functions f : X → Y and g : Y → Z, we write f [X ] for the image set (or

range) of f , namely f [X ] := {f(x) : x ∈ X} ⊆ Y , and g ◦ f for the composition X → Z : x 7→ g(f(x)).

Moreover, for each nonempty subset A ⊆ X , the indicator function 1A : X → {0, 1} is defined by

1A(x) = 1 if and only if x ∈ A.

Given a probability space (X,Σ, µ) and a measurable space (Y,G ), we say that two random variables

α, β : X → Y have the same distribution, shortened with α
d
= β, whenever µ◦α−1 = µ◦β−1. Also, for

each x ∈ X , let δx be the Dirac measure at x, that is, the probability measure Σ → R : A 7→ 1A(x).

Lastly, the symbol ⊗ will be reserved for the Kronecker product. We refer to [8], [11], [15], and [26],

respectively, for basic aspects of topology, matrix analysis, probability theory, and functional analysis

(including notation and terms not defined here).

Remark 1. Notice that the integral on the right hand side of (3) is well defined. Indeed, for each

A1 ∈ S n1 , . . . , Ak ∈ S nk , each map (ν1, . . . , νk) 7→ νn1
1 (A1) · · · νnk

k (Ak) is measurable.

To this aim, it will be sufficient to show the statement for k = 1. The σ-field defined on P(S), here-

after shortened with σ(P(S)), may be written explicitly as σ ({ν ∈ P(S) : ν(A) ∈ B} : A ∈ S , B ∈ B),

where B stands for the usual Borel σ-field on R. Then it is claimed that the map P(S) → R defined

by ν 7→ νn(A) is measurable for each n ∈ N and A ∈ S n, that is, {ν ∈ P(S) : νn(A) ∈ B} belongs to

σ(P(S)) for each B ∈ B. Let E be the collection of all A ∈ S n such that the mapping ν 7→ νn(A)

is measurable. Then E contains all rectangles A = A1 × · · · ×An with A1, . . . , An ∈ S , as far as the

product of measurable functions ν 7→ ν(Ai) is measurable. In particular, E contains Sn. Moreover,

it is easily seen that E is closed under finite intersection and countable disjoint union. Therefore, it

follows by the monotone class theorem that E = S n.

Remark 2. As anticipated in the Introduction, the type of partial exchangeability used in Theorem

1 could be termed subgroup exchangeability. Indeed, let G be a subgroup of the symmetric group on

{1, . . . , n}. Then there exists a unique partition {I1, . . . , Ik} of {1, . . . , n} such that G is equal to the

product of the symmetric groups on I1, . . . , Ik.

This is trivially true for n = 1. Let us assume that it holds for n− 1 and consider all permutations

of G which leaves the element n unchanged. This subset, being isomorphic to a subgroup of the

symmetric group on {1, . . . , n−1}, can be written as the group the generated by the symmetric groups

on I1, . . . , Ik, for a necessarily unique partition {I1, . . . , Ik} of {1, . . . , n− 1}. If the subset is equal to
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G itself, then the required partition equals {I1, . . . , Ik, {n}}; otherwise, let J be the subset of integers

in {1, . . . , n−1} which are connected with n, for some permutations in G. Then the required partition

is a coarsening of {I1, . . . , Ik, {n}}, obtained making the union of {n} with all Ij containing at least

one element of J . The claim follows by induction.

Remark 3. Notice that if G is the trivial subgroup of the symmetric group on {1, . . . , n}, then all

joint laws of random vectors (X1, . . . , Xn) are exchangeable over G. Hence, Theorem 1 implies the

existence of a bounded signed measure µ such that for all A1, . . . , An ∈ S it holds

P (X1 ∈ A1, . . . , Xn ∈ An) =

∫

P(S)n
ν1(A1) · · · νn(An)µ(dν1, . . . , dνn).

This is not surprising. Indeed, joint laws can be always represented as true mixtures of product laws.

To prove this, denote by q the measurable map Sn → P(S)n : (s1, . . . , sn) 7→ (δs1 , . . . , δsn). Then,

it follows that, for all measurable sets A1, . . . , An ∈ S , the probability P(X1 ∈ A1, . . . , Xn ∈ An) is

equal to
∫

Sn

1A1×···×An
(s1, . . . , sn)P(ds1, . . . , dsn) =

∫

Sn

δs1(A1) · · · δsn(An)P(ds1, . . . , dsn)

=

∫

P(S)n
ν1(A1) · · · νn(An)(P ◦ q−1)(dν1, . . . , dνn).

The next identity will be useful in the proof of Theorem 3:

Lemma 1. Let n be a positive integer. Then, for each nonnegative integer j ≤ n− 1 it holds

n−1∑

i=j

(
n

i

)(
i

j

)

(−1)i =

(
n

j

)

(−1)n−1.

Proof. We have equivalently to prove that
∑n

i=j

(
n
i

)(
i
j

)
(−1)i = 0. To this aim, rewrite it as

n∑

i=j

(
n

i

)(
i

j

)

(−1)i =

(
n

j

) n∑

i=j

(
n− j

i− j

)

(−1)i = (−1)j
(
n

j

) n−j
∑

k=0

(
n− j

k

)

(−1)k.

The claim follows by the fact that the last sum is the binomial expansion of (1 − 1)n−j. �

We conclude the section with a result about positive semi-definite matrices:

Lemma 2. Let (X,F , µ) be a finite (nonnegative) measure space and let f1, g1, . . . , fk, gk : X → R

be nonnegative measurable functions. Fix also positive integers n1, . . . , nk such that f i1
1 g1 · · · f ik

k gk are

integrable for all nonnegative integers i1 ≤ 2n1, . . . , ik ≤ 2nk, and define the matrix M = (mi,j) by

k⊗

j=1











f
2nj

j gj f
2nj−1
j gj · · · f

nj

j gj

f
2nj−1
j gj f

2nj−2
j gj · · · f

nj−1
j gj

...
...

. . .
...

f
nj

j gj f
nj−1
j gj · · · gj











.

Then,
(∫

X mi,j dµ
)

is positive semi-definite.

Proof. Let ν be the function F → R : F 7→
∫

F
g1 · · · gk dµ. Then, it is straightforward to check that

ν is a finite (nonnegative) measure such that
∫

X

hg1 · · · gk dµ =

∫

X

h dν
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whenever h : X → R is measurable. It means that it is enough to prove the claim for g1 = · · · = gk =

1X . In addition, the statement is trivial if µ(X) = 0, hence we can assume without loss of generality

that µ is a probability measure on X .

At this point, for each z ∈ R
n1···nk , we have to show that z′ (∫

X
mi,j dµ

)
z is nonnegative, where z

′

stands for the transpose of z. Accordingly, define the measurable functions hj,1, . . . , hj,n1···nk
: X → R,

for each j = 1, . . . , k, such that they have distribution fj and all hj,i’s are jointly independent. Consider

the following Kronecker product

k⊗

j=1











f
2nj

j f
2nj−1
j · · · f

nj

j

f
2nj−1
j f

2nj−2
j · · · f

nj−1
j

...
...

. . .
...

f
nj

j f
nj−1
j · · · 1











and replace each function fj in the i-th column with a hj,i, for all i = 1, . . . , n1 · · ·nk. Averaging

over all (n1 · · ·nk)!
k permutations of the columns, we obtain by a symmetric argument that the above

matrix is equal to

1

(n1 · · ·nk)!k

k⊗

j=1

n1···nk∑

i=1











h
2nj

j,i h
2nj−1
j,i · · · h

nj

j,i

h
2nj−1
j,i h

2nj−2
j,i · · · h

nj−1
j,i

...
...

. . .
...

h
nj

j,i h
nj−1
j,i · · · 1











.

Taking the expected values at each entry, and using independence, it follows that

z
′
(∫

X

mi,j dµ

)

z =
1

(n1 · · ·nk)!k
z
′











∫

X

k⊗

j=1

n1···nk∑

i=1











h
2nj

j,i h
2nj−1
j,i · · · h

nj

j,i

h
2nj−1
j,i h

2nj−2
j,i · · · h

nj−1
j,i

...
...

. . .
...

h
nj

j,i h
nj−1
j,i · · · 1











dµ











z

=
1

(n1 · · ·nk)!k

∫

X

z
′

k⊗

j=1

n1···nk∑

i=1











h
2nj

j,i h
2nj−1
j,i · · · h

nj

j,i

h
2nj−1
j,i h

2nj−2
j,i · · · h

nj−1
j,i

...
...

. . .
...

h
nj

j,i h
nj−1
j,i · · · 1











z dµ

=
1

(n1 · · ·nk)!k

∫

X

z
′

k⊗

j=1

HjH
′
j z dµ,

where we define

Hj =











h
nj

j,1 h
nj

j,2 · · · h
nj

j,n1···nk

h
nj−1
j,1 h

nj−1
j,2 · · · h

nj−1
j,n1···nk

...
...

. . .
...

1 1 · · · 1











for each j = 1, . . . , k. This is clearly nonnegative since the Kronecker product of positive semi-definite

matrices is positive semi-definite. �
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Remark 4. It turns out that Lemma 2 is the determinant analogue of the Cauchy–Schwarz’s inequality

[20, Chapter 2.6], indeed: Let (X,F , µ) be a finite measure space and let f, g : X → R be measurable

nonnegative square-integrable functions. Then fg is integrable and
(∫

X

fg dµ

)2

≤
(∫

X

f2 dµ

)(∫

X

g2 dµ

)

.

To this aim, set k = 2, n1 = n2 = 1 and g1 = g2 = 1X in Lemma 2 and assume without loss of

generality that µ is a probability measure (the case µ(X) = 0 being trivial). Then, setting f1 = f and

f2 = g, we obtain that the matrix with entries given by the µ-integrals of each entry in
(

f2 f

f 1

)

⊗
(

g2 g

g 1

)

is positive semi-definite. The claim follows by Sylvester’s criterion [11, Theorem 7.2.5], indeed the

principal minor




∫

X
g2 dµ

∫

X
fg dµ

∫

X fg dµ
∫

X f2 dµ





has a nonnegative determinant.

5. Proofs of Theorem 1 and Corollary 1

Proof of Theorem 1. Denoting with nj the cardinality of Ij , we obtain by the exchangeability assump-

tion that

P ((Xi : i ∈ Ij) ∈ Aj , j = 1, . . . , k) = |G|−1
∑

σ∈G

P (σX ∈ A) =

∫

Ω

UX(A) dP

for each A1 ∈ S n1 , . . . , Ak ∈ S nk , where A = A1 × · · ·Ak, σX = (Xσ(1), . . . , Xσ(n)), and UX(A) :

Ω → P(S) is the mapping defined by the arithmetic mean of empirical distributions over permutations

on G, i.e.,

ω 7→ |G|−1
∑

σ∈G

δσX(ω)(A).

Let T be the σ-field generated by S and the singletons in S. Moreover, given x = ((xi) : i ∈
Ij , j = 1, . . . , k) ∈ Sn, let νj(x) be the point measure on S defined by

∑

i∈Ij
δxi

for each j = 1, . . . , k.

It follows by the exchangeability assumption that, for each x ∈ Sn and A ∈ S n, it holds

Ux(A) = |S(x)|−1
∑

y∈S(x)

δy(A),

where S(x) stands for the set of all y ∈ Sn such that νj(x) = νj(y) for each j = 1, . . . , k. Observe that

the set S(x) has exactly
(

n
ν1(x),...,νk(x)

)
elements, where

(
n

λ1, . . . , λk

)

=
n!

∏k
j=1

∏

s∈S λj{s}!

whenever λ1, . . . , λk are point measures on S such that λj(S) = nj for each j = 1, . . . , k. In other

words, Ux represents the uniform distribution on S(x).
Hereafter, the set of these point measures λ = (λ1, . . . , λk) will be denoted by L . In particular, for

each λ ∈ L , the product measure
k×

j=1

(
λj

nj

)nj
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is a probability measure on (Sn,T n). Given x ∈ Sn, denote also by Vx the subset of point measures

ν = (ν1, . . . , νk) in L supported on {x1, . . . , xn}. Lastly, notice that the collection {S(x) : x ∈ Sn} is

made of pairwise disjoint subsets in T n and their union is Sn.

With these premises, it follows that, for each x ∈ Sn and λ ∈ L , it holds

(
k×

j=1

λ
nj

j )(S(x)) = |S(x)|λν(x),

where αβ :=
∏k

j=1

∏

s∈S αj{s}βj{s} for each α, β ∈ L . Hence, for each x ∈ Sn, λ ∈ Vx, and B ∈ T n,

we obtain

(
k×

j=1

λ
nj

j )(B) =
∑

ν∈Vx

(
n

ν1, . . . , νk

)

λν
Uη(ν)(B),

with η(ν) being any element of Sn for which ν(η(ν)) = ν. In particular, it represents a linear system

of identities between measures on (Sn,T n). Having fixed an order on the finite set Vx = {γ1, . . . , γm},
the m×m square symmetric matrix of coefficients with (i, j)-th entry given by

(
n
γi

)
γ
γj

i can be seen a

leading principal minor of the bigger matrix obtained similarly by setting k = 1.

It has been shown in [21, Theorem 2] that all eigenvalues of the latter bigger matrix are (real, of

course, and) positive, which is well known to be equivalent of being positive definite. In turn, all leading

principal minors are positive definite by Sylvester’s criterion. This implies that the above matrix of

coefficients has full rank. Therefore, for each x ∈ Sn, there exist real coefficients {cx,λ, λ ∈ Vx} such

that for all A ∈ S n it holds

Ux(A) =
∑

λ∈Vx

cx,λ(
k×

j=1

λ
nj

j )(A).

At this point, define the bounded signed measure µ : σ(P(S))k → R on the k-fold product P(S)k

by

Q 7→
∫

Ω

∑

ν∈VX(ω)

nn1
1 · · ·nnk

k cX(ω),ν(
k×

j=1

δνj/nj
)(Q) P(dω).

Hence we obtain that

P((Xi : i ∈ Ij) ∈ Aj , j = 1, . . . , k) =

∫

Ω

UX(ω)(A1 × · · · ×Ak) P(dω)

=

∫

Ω

∑

λ∈VX(ω)

cX(ω),λ(
k×

j=1

λ
nj

j )(A1 × · · · ×Ak) P(dω)

=

∫

Ω

∑

λ∈VX(ω)

nn1
1 · · ·nnk

k cX(ω),λ

k×
j=1

(
λj

nj
)nj (A1 × · · · ×Ak) P(dω),

which can be rewritten as
∫

Ω

∑

λ∈VX(ω)

nn1
1 · · ·nnk

k cX(ω),λ

(
∫

P(S)k
νn1
1 · · · νnk

k (
k×

j=1

δλj/nj
)(dν1, . . . , dνk)

)

(A1 × · · · ×Ak) P(dω)

or, equivalently
∫

Ω

∫

P(S)k
νn1
1 · · · νnk

k

∑

λ∈VX(ω)

nn1
1 · · ·nnk

k cX(ω),λ(
k×

j=1

δλj/nj
)(dν1, . . . , dνk)(A1 × · · · ×Ak) P(dω).

This is equal by Fubini’s theorem to

∫

P(S)k
νn1
1 (A1) · · · νnk

k (Ak)





∫

Ω

∑

λ∈VX(ω)

nn1
1 · · ·nnk

k cX(ω),λ(
k×

j=1

δλj/nj
)P(dω)



 (dν1, . . . , dνk),
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hence

P((Xi : i ∈ Ij) ∈ Aj , j = 1, . . . , k) =

∫

P(S)k
νn1
1 (A1) · · · νnk

k (Ak)µ(dν1, . . . , dνk).

�

Proof of Corollary 1. More generally, let us assume that S is a locally convex topological vector space

with induced Borel σ-field S . Then there exists a bounded signed measure η on Sn such that

P ((Xi : i ∈ Ij) ∈ Aj , j = 1, . . . , k) =

∫

Sn

νn1

(θi:i∈I1)
(A1) · · · νnk

(θi:i∈Ik)
(Ak) η(dθ1, . . . , dθn) (6)

for all A1 ∈ S n1 , . . . , Ak ∈ S nk , where each ν(θi:i∈Ij) is a probability measure on S depending

measurably on nj parameters (θi : i ∈ Ij).

This is a straighforward generalization of [12, Theorem 2], to which we refer the reader for the proof,

taking in account also [26, Theorem 3.4]. In particular, since any two uncountable Polish spaces are

isomorphic in the category of measurable spaces, it follows by a change of variable argument that the

number of indexes reduces to one for each class Ij . �

6. Proofs of Theorem 2 and 3

Proof of Theorem 2. According to the standing assumptions, there exists a probability measure µ on

P(S) such that, for all nonnegative integers pj, qj , rj summing up to nj, and for each Aj ∈ S and

Bj ∈ S qj , it holds

P((Xi)i∈Ij ∈ A
pj

j ×Bj × Srj , j = 1, . . . , k) =

∫

P(S)k

k∏

j=1

νj(Aj)
pj (νj × · · · × νj)
︸ ︷︷ ︸

qj times

(Bj)µ(dν1, . . . , dνk).

The claim follows by Lemma 2, where each function fj is given by P(S) → R : ν 7→ ν(Aj) and the

function gj by P(S) → R : ν 7→ νqj (Bj). �

Proof of Theorem 3. By the exchangeability assumption, it holds
∑n

i=0

(
n
i

)
xi = 1. Hence, we are

asking for necessary and sufficient conditions on the (column) vector x = (x0, . . . , xn)
′ such that

there exists a probability measure µ : B[0, 1] → R for which xi =
∫

[0,1] p
n−i(1 − p)iµ(dp)for all

i = 0, 1, . . . , n. Moreover, let us define yi as the (n − i)-th moment of µ. It follows that the above

conditions are equivalent to

xi =

i∑

j=0

(
i

j

)

(−1)i+jyj (7)

for each i = 0, 1, . . . , n, where by convention
(
0
0

)
= 1. In addition, define y = (yn, . . . , y0)

′ and let A

be the square matrix of dimension (n+ 1) where the (i, j)-th element is

(
i− 1

n+ 2− i− j

)

(−1)i+j+n
1[n+2,∞)(i + j).

Accordingly, the system (7) can be rewritten in matrix form as x = Ay. Since the determinant of A is

1, each yi can be rewritten uniquely as a linear combination of the xj .

Let us prove by induction that yi =
∑i

j=0

(
i
j

)
xj for each i = 0, 1, . . . , n. It is trivially true for n = 0,

and let us suppose that it holds for all nonnegative integers smaller than n. Then, by the system (7)
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and the inductive hypothesis, we obtain

yn = xn −
n−1∑

i=0

(
n

i

)

(−1)n+iyi = xn −
n−1∑

i=0

(
n

i

)

(−1)n+i
i∑

j=0

(
i

j

)

xj

= xn − (−1)n
n−1∑

i=0

(
n

i

)

(−1)i
i∑

j=0

(
i

j

)

xj = xn − (−1)n
n−1∑

j=0

xj

n−1∑

i=j

(
n

i

)(
i

j

)

(−1)i.

Hence, it follows by Lemma 1 that

yn = xn − (−1)n
n−1∑

j=0

(
n

j

)

(−1)n−1xj =

n∑

j=0

(
n

j

)

xj . (8)

Having this in mind, the joint law of (X1, . . . , Xn) is a true mixture of i.i.d. {0, 1}-valued random

variables if and only if there exists a probability measure µ : B[0, 1] → R which satisfies
∫

[0,1]

piµ(dp) = yn−i

for each i = 0, 1, . . . , n. This problem, commonly known as “reduced Hausdorff moment problem,”

have been extensively studied in literature; see, for instance, [27, pp. 8-9] and [10]. According to [14,

Theorem 1], a necessary and sufficient condition for the existence of a solution is that, if n is even,

both matrices








yn yn−1 · · · yn
2

yn−1 yn−2 · · · yn
2 −1

...
...

. . .
...

yn
2

yn
2
−1 · · · y0









and









yn−1 − yn−2 yn−2 − yn−3 · · · yn
2
− yn

2
−1

yn−2 − yn−3 yn−3 − yn−4 · · · yn
2 −1 − yn

2 −2

...
...

. . .
...

yn
2
− yn

2
−1 yn

2
−1 − yn

2
−2 · · · y1 − y0









are positive semi-definite, whereas in case n is odd, both matrices









yn−1 yn−2 · · · yn−1
2

yn−2 yn−3 · · · yn−3
2

...
...

. . .
...

yn−1
2

yn−3
2

· · · y0










and










yn − yn−1 yn−1 − yn−2 · · · yn+1
2

− yn−1
2 −1

yn−1 − yn−2 yn−2 − yn−3 · · · yn−1
2

− yn−3
2

...
...

. . .
...

yn+1
2

− yn−1
2

yn−1
2

− yn−3
2

· · · y1 − y0










are positive semi-definite too. The claim follows by equation (8) and standard properties of the binomial

coefficients. �

Proof of Corollary 2. For each i = 1, . . . , 2⌊n/2⌋ − 1, the inequality (5) follows by Lemma 2. Indeed,

having fixed k = 1, m1 = ⌊n/2⌋, A = {1}, and B = {0, 1} if n is odd, we obtain that the matrix








x2m x2m−1 · · · xm

x2m−1 x2m−2 · · · xm−1

...
...

. . .
...

xm xm−1 · · · x0









is positive semi-definite. In particular, each principal minor

(

xi+1 xi

xi xi−1

)

has nonnegative determi-

nant whenever i+ 1 ≤ 2⌊n/2⌋.
Therefore, we miss only to prove that, if n is odd, then xn−1 ≤ √

xnxn−2. This is easily seen,

according to Theorem 3, by choosing the 2 × 2 leading principal minor of Kn, which has to have
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nonnegative determinant. Indeed, by the standard properties of the determinant, we conclude that

det

(

yn − yn−1 yn−1 − yn−2

yn−1 − yn−2 yn−2 − yn−3

)

= det

(

xn xn−1

xn−1 xn−2

)

≥ 0.

On the other hand, for n ≤ 3, the sufficiency of these inequalities, follows by Theorem 3. Conversely,

again by Theorem 3, given an integer n ≥ 4, it is enough to show the existence of a sequence (x0, . . . , xn)

such that the inequalities xi ≤ √
xi−1xi+1 hold for all i = 1, . . . , n− 1, while the matrix Hn admits a

principal minor with negative determinant. To this aim, set

(x0, . . . , xn) =
1

3 · 2n + 2n+ 6
(9, 5, 3, 3, . . . , 3

︸ ︷︷ ︸

n−1 times

).

Then, it is routine to check that this defines an exchangeable law on {0, 1}n, while, on the other hand,

the 3× 3 south-east principal minor has a negative determinant. �

By Sylvester’s criterion, a matrix is positive semi-definite if and only if its principal minors have

nonnegative determinant. Therefore, Theorem 3 allows to establish whether each {0, 1}-valued ex-

changeable sequence (X1, . . . , Xn) is a true mixture of i.i.d. laws in o(2n) operations (indeed the

number of principal minors of a matrix of dimension n is
∑n

i=1

(
n
i

)2
, which is asymptotically equal

to 4n√
πn

). Just to realize the computational burden related to Theorem 3, for n = 4, notice that the

exchangeable law defined by the sequence (x0, . . . , x4) is a true mixture of {0, 1}-valued i.i.d. random

variables if and only if each of the following numbers are nonnegative:

(i) x0x2 − x2
1;

(ii) x1x3 − x2
2;

(iii) 2x0x2 − 2x2
1 − x2x1 + x0x3;

(iv) x0x3 − x2
1 − x1x2 + x3x1 − x2

2 + x0x2;

(v) x0x4x2 − x4x
2
1 + 2x1x2x3 − x3

2 − x0x
2
3;

(vi) 4x0x3 − 4x2
1 − 4x1x2 − x2

2 + 4x0x2 + x0x4;

(vii) 2x0x2 + 3x0x3 − 3x1x2 + x0x4 + 2x1x3 + x1x4 − x2x3 − 2x2
1 − 3x2

2;

(viii) x0x2 + 2x0x3 − 2x1x2 + x0x4 + 2x1x3 + 2x1x4 − 2x2x3 + x2x4 − x2
1 − 3x2

2 − x2
3.

Nevertheless, it would be sufficient that the leading principal minors of Hn and Kn have positive

determinants (in the above example, e.g., it means that x0, . . . , x4, and numbers (i), (ii), and (vii) are

strictly positive). It is unclear whether this result could be extended to arbitrary spaces S.

7. Open questions

Generally, given a bounded signed measure µ on P(S) such that µ(P(S)) = 1, it is not true that

the map

S
n → R : A 7→

∫

P(S)

νn(A)µ(dν)

represents the joint law of some exchangeable sequence (X1, . . . , Xn) with values in S. Indeed, the

integral may attain negative values. Accordingly, can we provide a characterization of the set M of

such signed measures µ? Is there a way to represent µ itself?

In addition, with the notations of Theorem 1, is it true that

n1 + · · ·+ nk

k
→ ∞ implies µ−(P(S)k) → 0 ?

Finally, given subgroups G and G′ such that G ⊆ G′, can we quantify how much M(G) is “larger”

than M(G′)?
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