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ABSTRACT

Context. While orbital analysis studies were so far mainly focused on the Galactic halo, it is possible now to do these studies in the
heavily obscured region close to the Galactic Centre.
Aims. We aim to do a detailed orbital analysis of stars located in the nuclear stellar disc (NSD) of the Milky Way allowing us to trace
the dynamical history of this structure.
Methods. We integrated orbits of the observed stars in a non-axisymmetric potential. We used a Fourier transform to estimate the
orbital frequencies. We compared two orbital classifications, one made by eye and the other with an algorithm, in order to identify the
main orbital families. We also compared the Lyapunov and the frequency drift techniques to estimate the chaoticity of the orbits.
Results. We identified several orbital families as chaotic, z-tube, x-tube, banana, fish, saucer, pretzel, 5:4, and 5:6 orbits. As expected
for stars located in a NSD, the large majority of orbits are identified as z-tubes (or as a sub-family of z-tubes). Since the latter are
parented by x2 orbits, this result supports the contribution of the bar (in which x2 orbits are dominant in the inner region) in the
formation of the NSD. Moreover, most of the chaotic orbits are found to be contaminants from the bar or bulge which would confirm
the predicted contamination from the most recent NSD models.
Conclusions. Based on a detailed orbital analysis, we were able to classify orbits into various families, most of which are parented
by x2-type orbits, which are dominant in the inner part of the bar.
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1. Introduction

The nuclear stellar disc (NSD) is a dense stellar structure
in the centre of the Milky Way and surrounds the massive
nuclear star cluster (NSC) with its central massive black hole
(Launhardt et al. 2002). The NSD is a flattened disc with a radius
of ∼200 pc and a scale height of ∼50 pc (Launhardt et al. 2002;
Nishiyama et al. 2013, Gallego-Cano et al. 2020). Increasing
evidence is reported that the NSD is a distinct structure from the
NSC and the nuclear bulge: Nogueras-Lara et al. (2020) deter-
mined the SFH in the NSD using the GALACTICNUCLEUS
data (Nogueras-Lara et al. 2018) and analysing the luminosity
function together with stellar evolutionary models. They found
that ∼80% of the stars formed more than 8 Gyr ago, followed
by a quenching phase and then by a recent star formation activ-
ity, about 1 Gyr ago, in which about 5% of the NSD mass was
formed. While most of studies agree that the NSD has a rela-
tively early formation time, the detailed SFH is still under dis-
cussion (see e.g. Nogueras-Lara et al. 2023, Sanders et al. 2024),
and much more work is clearly needed.

By using a large sample of KMOS observations in the NSD
(Fritz et al. 2021), Schultheis et al. (2021) found a difference in
the chemistry, that is, in the metallicity distribution function,
between the NSC, NSD, and the nuclear bulge that reinforces

a different formation scenario of the NSD. Furthermore, they
found some evidence that metal-rich stars may have formed in
the central molecular zone, while metal-poor stars show more
similarities to the surrounding Galactic bulge.

Kinematic studies relying on radial velocity measurements
or proper motion studies show evidence that the NSD is rotating
(see e.g. Lindqvist et al. 1992, Schönrich et al. 2015, Fritz et al.
2021, Shahzamanian et al. 2022). Linking the rotation to the
chemistry, Schultheis et al. (2021) found that metal-rich stars
rotate faster than metal-poor stars, with some hints of counter-
rotation for the most metal-poor stars.

Extragalactic studies showed that many barred galaxies host
nuclear discs or rings (Gadotti et al. 2019, 2020). So far, the most
likely formation scenario of a nuclear disc, called inside-out for-
mation, is linked to the galactic bar (Bittner et al. 2020). Accord-
ing to this scenario, a nuclear disc is a built up from a series of
gaseous rings (i.e. nuclear rings) that grow in radius over time.
The growth is caused by the gas that is moved towards the galac-
tic centre by the bar.

Based on the 3D velocities, Sormani et al. (2022) con-
structed axisymmetric self-consistent equilibrium dynamical
models of the NSD providing the full 6D distribution func-
tion (position and velocity) of the NSD. These models provide
the best description of the rotation curve in the innermost few
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Fig. 1. Upper panel: histograms of the radial velocities and proper motions in µl and µb, respectively. Lower panel: same, but for the uncertainties.
The grey sample is the full sample, and our final sample, used for the analysis, is shown in magenta.

hundred parsecs of the Milky Way, and they are implemented in
the AGAMA (Vasiliev 2019) software package.

A powerful method for obtaining a complete picture of the
properties of the individual orbits is the so-called frequency anal-
ysis (Laskar 1993, Valluri & Merritt 1998, Vasiliev 2013) where
the three fundamental frequencies of the orbit oscillation can be
extracted accurately. This frequency analysis can be used to dis-
tinguish between regular and chaotic orbits and to classify the
main orbital families. So far, this technique has mainly been
used for studies in the Galactic halo and disc. Amarante et al.
(2020) used frequency maps to show that the proposed wedges
in the Rapo − zmax plane identified by Haywood et al. (2018) as
possible signs of accretion can be explained by the existence of
different orbital families. Koppelman et al. (2021) revealed the
prominent presence of resonances. According to this, ∼30% of
the halo stars are associated with resonant families.

In this paper, we calculate the orbital parameters of a repre-
sentative sample of stars belonging to the NSD and we use fre-
quency analysis to classify the different types of orbits present in
the NSD.

2. Observations

2.1. Data sample

We used the NSD data obtained with the KMOS (Sharples et al.
2013) spectrometer at the ESO VLT. The detailed survey strat-
egy and data reduction procedures are described by Fritz et al.
(2021). As well as their radial velocities, we used the proper
motions derived from the preliminary VIRAC2 (Smith et al.
2018) photometric and astrometric reduction of the VVV data
(Minniti et al. 2010). We refer to Sormani et al. (2022) for a
more thorough description of the data. Our sample includes only
stars that are primary sources of the survey leaving us a total of
2501 stars.

2.2. Catalogue selection

Sormani et al. (2022) pointed out that stars belonging to the
Galactic bar contribute significantly in the outermost fields of the
NSD sample of Fritz et al. (2021). In their Table 10, they quanti-

fied the contamination of the bar: It ranges from 20–30% in the
inner fields to up to 75% in the outermost fields. For this reason,
we decided to use only the innermost fields, that is, |l| < 1.5o and
|b| < 0.3o, where the probability of NSD membership is higher
than 70% (see Table 2 of Sormani et al. 2022). In addition, we
used the same colour cut (H − Ks) > max(1.3,−0.0233 K +
1.63) as in Schultheis et al. (2021) to remove foreground
stars.

In order to obtain highly reliable orbital parameters, we con-
structed a golden sample and chose to keep stars with small
proper motion uncertainties: µl,err < 0.6 mas yr−1 and µb,err <
0.6 mas yr−1 (corresponding to the 98th percentile; see the verti-
cal dashed line in Fig. 1), leading to a total sample of 1130 stars.
As pointed out by Sormani et al. (2022), this proper motion cut
also removes very bright stars (K < 10), for which the proper
motion errors become large due to saturation effects. Figure 2
shows the corresponding HK colour-magnitude diagram after
removing the bright stars. The final sample contains stars in the
interval 6.6575 < K − 1.37 (H − K) < 9.1575, corresponding to
a dereddened magnitude of 7.0 < K0 < 9.5. The main purpose
of our selection criteria was to obtain an unbiased sample in the
metallicity distribution as discussed in Schultheis et al. (2021).
We caution that our sample is far from complete, which affects
the fraction of the different orbital families (see Sect. 5). To over-
come this, we plan to address this issue in a forthcoming paper
by using N-body simulations of the NSD.

3. Analysis

3.1. Orbit integration

We used the software package AGAMA (Vasiliev 2019) to deter-
mine the orbital parameters. It is both fast in terms of compu-
tation time and provides methods for the easy handling of the
computation of different potentials. This gives us the flexibility
to test different potentials (e.g. axisymmetric, non-axisymmetric,
or different bar pattern speeds).

One main source of uncertainties when calculating the
orbital parameters is the distance uncertainty. While previ-
ous studies of the GC used a constant distance (e.g. 8.25 kpc,
GRAVITY Collaboration 2020), we implemented a distance dis-
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Fig. 2. K vs. H–K colour magnitude diagram of the total Fritz et al.
(2021) sample in grey. Our sample after application of the proper
motion cuts is shown in magenta. Colour cut 1: (H − K) >
max(1.3,−0.0233K +1.63). Colour cuts 2 and 3: 6.6575 < K−1.37(H−
K) < 9.1575. The typical error for each axis is indicated in the lower
left corner of the figure.

tribution in our analysis. As the NSD is an extended stellar
feature with a scale length of ∼100 pc (e.g. Gallego-Cano et al.
2020, Sormani et al. 2022, Nogueras-Lara 2022), we assumed
this typical scale length and integrated the orbits 100 times
by using different distances chosen from a Gaussian distribu-
tion (µ = 8.2 kpc, σ = 50 pc) between 8.1 kpc and 8.3 kpc
(Launhardt et al. 2002, Nogueras-Lara 2022).

In addition, we carried out two other tests in which we
assigned the distances of the stars in two different ways: (i)
We used the colour cuts made by Nogueras-Lara et al. (2023)
to identify, the stars in our sample that belong to the close edge
(i.e. bluer in H–K) and those that belong to the inner region of
the NSD (i.e. redder in H–K). Typical distances of 8.05 kpc and
8.2 kpc with a standard deviation of 50 pc were used for the clos-
est edge and the inner population, respectively. (ii) We computed
the most likely distances for each star, by using their probability
to belonging to the NSD. The probabilities were derived from the
distribution function provided by the self-consistent model from
Sormani et al. (2022). The results obtained with these different
distance values are discussed in Sects. 4 and 5.

For the purpose of this paper, we constructed a non-
axisymmetric potential by combining the potentials that cor-
respond to the main components of the Galaxy that affect
the dynamics of stars in the NSD: the inner bulge/bar, NSD,
and NSC. The total density is ρtot = ρbar + ρNSD + ρNSC
where (i) the bar/bulge density is taken from Launhardt et al.
(2002); (ii) We adopted the NSD density from Sormani et al.
(2020) (see their Eq. (27)); (iii) We used the NSC density from
Chatzopoulos et al. (2015) (see their Eq. (17)). We show a com-
parison with other potentials in Appendix B.

We took into account a typical (clock-wise) rotation pattern
speed of Ωb = 40 km s−1 kpc−1 (Portail et al. 2017) for the bar
component of the potential which is at an angle of α = 25◦ from
the line of sight towards the Galactic Centre (GC).

For the purpose of this study, it is not necessary to set a long
integration time because stars located near the GC rotate quickly
around it. As explained in Valluri et al. (2016), an accurate

determination of the fundamental orbital frequencies requires
that orbits are integrated for at least 20 orbital periods. During
500 Myr, most of the stars of our sample have therefore made
hundreds to thousands of periods, which is enough to estimate
orbital frequencies (see Sect. 3.2). We chose a short timestep of
4000 yr for a good sampling of the orbits.

3.2. Orbital frequency determination

Bounded regular orbits in a triaxial potential have three funda-
mental frequencies, Ω, that determine the periodic behaviour of
motion (Binney & Tremaine 2008). This motion can be decom-
posed as a Fourier sum, where the Fourier frequencies are lin-
ear combinations of the fundamental frequencies. These fun-
damental frequencies can be recovered, as shown by Laskar
(1993), using the so-called numerical approximation of funda-
mental frequencies (NAFF), which has been applied in plane-
tary dynamics. Price-Whelan (2015) developed an open-source
code called SuperFreq, which is a Python implementation sim-
ilar to the NAFF code. This code finds the fundamental fre-
quencies (starting with the highest amplitude) by computing the
Fourier spectra for the phase-space coordinates used to describe
the orbit. A plot of these fundamental frequencies of a set of
orbits gives then a frequency map that allows identifying res-
onances. Resonant orbits are those for which the fundamental
frequencies Ω = Ωx,Ωy,Ωz (or ΩR,ΩΦ,Ωz depending on the
selected coordinate system) can be measured and where n·Ω = 0
for n = (nx, ny, nz), where the vector n only contains integer num-
bers and at most one zero (Koppelman et al. 2021). For example,
in Cartesian coordinates, nxΩx + nyΩy + nzΩz = 0, and the reso-
nance is then called nx:ny:nz. Moreover, boxlets are special cases
of resonant orbits in which one of the integers nx, ny, nz is zero.

Frequency maps are a powerful tool for obtaining an auto-
matic classification of the different orbital families with a much
clearer separation when plotting the fundamental frequencies in
Cartesian coordinates (Valluri et al. 2016).

We can classify orbits into two main categories: tubes (short-
axis or long-axis)1, and box orbits (chaotic orbits correspond
to orbits that cannot be identified with one of these categories,
see Sect. 3.3). Based on the frequencies in Cartesian coordinates
(Ωx,Ωy,Ωz), we can identify most of the orbital families corre-
sponding to the different resonances. However, since the cho-
sen coordinate system only allows us to trace symmetries within
the system, short-axis and long-axis tube orbits in the Carte-
sian case are clustered to a trivial resonance (e.g. 1:−1:0 reso-
nance for short-axis tube orbits). It is then more effective to study
orbital frequencies in several coordinate systems even though the
Cartesian frequencies give us a general picture of the orbital fam-
ilies. To study tube orbits more precisely and identify their true
resonances, it can be better to examine the frequencies in cylin-
drical coordinates (ΩR,ΩΦ,Ωz). However, Valluri et al. (2016)
showed that Cartesian orbital frequencies are more reliable for
bar orbit classification.

3.3. Chaoticity

To study chaoticity and particularly identify chaotic orbits, we
used two different methods that we introduce in this section.

1 Tube orbits circulate around a certain axis: z for short-axis tubes and
x for long-axis tubes.
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Fig. 3. Histogram of the frequency drift. The dashed red area denotes
the 98.5 percentile limit above which all orbits are classified as chaotic
orbits.
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Fig. 4. Comparison between highest Lyapunov exponent and frequency
drift. The red points show the chaotic orbits identified with the visual
classification (see Sect. 4.2.2) while the red shaded area indicates the
zone containing only chaotic orbits according to the frequency drift
method (see Sect. 3.3.2). Only orbits with a highest Lyapunov exponent
greater than 0 are shown in this diagram.

3.3.1. Lyapunov exponent

The Lyapunov exponent (Lyapunov 1992) is a fundamental con-
cept in the field of non-linear dynamics and chaos theory. It
quantifies the sensitivity of a dynamical system to initial con-
ditions. In a global context, the Lyapunov exponent character-
izes how the trajectories in a system diverge or converge as time
progresses, providing insights into the long-term behaviour of
complex systems.

When considering a dynamical system, even tiny differences
in initial conditions can lead to drastically different trajectories
over time. The Lyapunov exponent captures this phenomenon by
measuring the rate of exponential separation between initially
close trajectories. A high Lyapunov exponent indicates chaotic
behaviour, where trajectories diverge exponentially over time,
making long-term predictions inherently uncertain. Conversely,
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Fig. 5. Rmax vs. zmax diagram colour-coded with eccentricity. The typical
error on both parameters arising from the propagation of the observa-
tional uncertainties and the distance uncertainty is indicated in the lower
right corner.

a low Lyapunov exponent indicates convergence towards a stable
equilibrium or periodic behaviour.

We used the highest Lyapunov exponent estimation method
provided by AGAMA (Vasiliev 2019). For more details about
the method, see Sect. 4.3 of Vasiliev (2013).

3.3.2. Frequency drift

Another way to study chaoticity is to directly use the orbital fre-
quencies. Valluri et al. (2010) (see their Sect. 3.1) showed that
it is possible to measure the stochasticity of an orbit based on
the change in the fundamental frequencies over two consecutive
time intervals. For each frequency component fi, they computed
what they called the frequency drift:

log(∆ fi) = log

∣∣∣∣∣∣Ωi(t1) −Ωi(t2)
Ωi(t1)

∣∣∣∣∣∣ (1)

where i defines the frequency component in Cartesian coordi-
nates (i.e. log(∆ fx), log(∆ fy) and log(∆ fz)). The highest value
of the three frequency drift parameters log(∆ fi) is then associ-
ated with the frequency drift parameter log(∆ f ). The higher the
value of log(∆ f ), the more chaotic the orbit. However, as shown
by Valluri et al. (2010), the accuracy of the frequency analysis
requires at least 20 oscillation periods in order to avoid a mis-
classification of the orbits as chaotic. Figure 3 shows the dis-
tribution of the frequency drift parameter log(∆ f ). In order to
define a threshold value of log(∆ f ) at which orbits are classified
as chaotic, we followed a similar approach as in Valluri et al.
(2010). 1.5 % of the orbits have log(∆ f ) > −0.2 which we
consider as the threshold of being chaotic orbits. In total, we
obtained 18 chaotic orbits in our sample. Figure 4 shows the
comparison between the frequency drift parameter and the high-
est Lyapunov exponent. These two measurements of the chaotic-
ity are generally correlated but the dispersion is high. Our visual
classification of chaotic orbits (see Sect. 4.2.2, red points in
Fig. 4) nicely shows that chaotic orbits can indeed be identified
based on their large Lyapunov exponent and high frequency drift
parameter.

4. Results

4.1. Rmax vs. zmax diagram

Figure 5 shows the apocentric radius (Rmax) versus the max-
imum height (zmax) of our NSD sample colour-coded by the
eccentricity.
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This diagram shows several features: (i) One striking feature
is that the stars are not homogeneously distributed, but congre-
gate in distinct diagonal wedges in which zmax increases with
Rmax. (ii) Highly eccentric orbits are confined to one wedge. (iii)
Some of these highly eccentric orbits extend beyond the typical
radius of the NSD and are likely stars related to the Galactic bar.
Figure 6 shows the impact for a relaxed assumption of a constant
distance and when the distances of the stars are instead allowed
to vary within a spread of 100 pc for the NSD, using MCMC
simulations (as detailed in Sect. 3). The key characteristics men-
tioned earlier clearly persist. This indicates that the uncertainty
in the distances of NSD stars can safely be disregarded.

Figure 7 shows the same feature, but as a function of
rotational velocity Vφ. The NSD clearly rotates with typi-
cal velocities of 80 km s−1, which agrees with the works of
Lindqvist et al. (1992), Schönrich et al. (2015), Schultheis et al.
(2021), Shahzamanian et al. (2022), and Sormani et al. (2022).
The figure also shows stars with slower rotation and even
counter-rotating stars, which have been identified previously by
Schultheis et al. (2021).

4.2. Orbit classification

We discuss and compare the two methods we used to classify
orbits in various orbital families.

4.2.1. Automatic method

We call this method “automatic” because no visual inspection of
the orbits is used to classify them (compared to the other classi-
fication method presented in Sect. 4.2.2).

Firstly, to differentiate tube orbits from chaotic/box orbits,
we determined whether the orbit circulates around a specific axis
(e.g. a circulation around the x-axis results in an x-tube) or not
(box orbit or chaotic orbit). To do this, we verified whether there
was a change in the sign of the angular momentum about an
axis. We find 34% box orbits and 66% tube orbits among our
1130 stars.

Secondly, to identify the different orbital families, we studied
the resonances on the frequency map as explained in Sect. 3.2. In
the Cartesian version of the frequency map, Fig. 8, we observe
two main structures: (i) a diagonal line called the 1:−1:0 reso-
nance, where short-axis tubes (called here after “z-tubes”) lie,
and (ii) a cloud located above the latter resonance and below
the 0:1:−1 resonance that is thought to contain mainly box and
chaotic orbits. In addition to these two large structures that
clearly dominate our frequency map, a few orbits lie close to
the 0:1:−1 resonance where long-axis tubes, called here after x-
tubes, are located. An example of the morphology of an x-tube
is given in Fig. A.2.

Based on the three main types of orbits (box/chaotic, z-tube,
x-tube), we proceeded with the classification in order to distin-
guish the resonant orbits that populate the two large structures of
the map.

Classical tube orbits are simply orbits with a resonance 1:1
between two of the three frequency ratios. In the same way,
we obtained banana orbits with a 2:1 resonance (see Fig. A.3),
fish orbits with 3:2 (see Fig. A.4), pretzel orbits with 4:3 (see
Fig. A.6), and so on. By plotting lines that correspond to res-
onances on the frequency map, we gained a first idea of the
orbital families that populate our sample. For the same global
resonance, for instance, 4:3, this kind of orbit can be observed in
different planes (x, y), (x, z), or (y, z), that match the resonances
4:−3:0, 4:0:−3, and 0:4:−3, respectively. In addition to the pre-
viously introduced families, we also searched for other pretzel
varieties: 5:4 orbits (see Fig. A.7) and 5:6 orbits (see Fig. A.8).

As explained Sect. 3.2, we also considered the frequencies
in cylindrical coordinates (see Fig. 9), which were only com-
puted for z-tubes (because our sample contains very few x-tubes,
we did not consider it necessary to study the frequency map in
their corresponding cylindrical coordinates). There is no bisym-
metry around Ωφ/ΩR = 0, which is another way of detecting
the rotation of the NSD. More stars orbit in the positive than
in the negative sense. The resonances also appear as straight
lines here (horizontal lines for a resonance between the vertical
oscillation frequency Ωz and the radial oscillation frequency ΩR
and vertical lines between the azimuthal oscillation frequency
Ωφ and the radial oscillation frequency ΩR). We discern then
some resonances, Ωz : ΩR = 1:1, 3:4, 1:2, and Ωφ:ΩR = 1:2.
Saucer orbits (Sambhus & Sridhar 2000;Vasiliev 2014) (see an
example Fig. A.5) were found via the resonance Ωz:ΩR = 1:1
(Yavetz et al. 2023), and we therefore have an estimate of their
number.

We call a chaotic orbit a weakly chaotic or sticky orbit when
it lies near a resonance (Valluri et al. 2016). It might appear reg-
ular for some time, but will finally exhibit chaotic behaviour.
With this method, we selected (see Figs. 8 and 9) all orbits close
enough to the resonances in the frequency maps. More precisely,
we made the selection at ±0.01 (in frequency ratio), which is
enough for contamination by sticky chaotic orbits. However, we
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Fig. 8. Frequency map in Carte-
sian coordinates vs. highest Lyapunov
exponent. For reasons of legibility, the
banana, fish, pretzel, 5:4 and 5:6 reso-
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plane case. The typical error on both
frequency ratios arising from the propa-
gation of the observational uncertainties
and the distance uncertainty is indicated
in the lower right corner.

1:1

3:4

1:2

1:
2

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
/ R

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

z/
R

Integration time: 0.5 Gyr
Time step: 0.004 Myr Only z-tubes

0.0

0.1

0.2

0.3

0.4

0.5

Hi
gh

es
t L

ya
pu

no
v 

ex
po

ne
nt

Fig. 9. Frequency map in cylindrical
coordinates for z-tubes alone (orbits for
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been detected), i.e. orbits from the reso-
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Table 1. Family membership results for the automatic and visual methods

Chaotic/Box x-tube z-tube (1) Banana Fish Saucer Pretzel 5:4 5:6

Automatic Total 34.0% 1.1% 64.9% 4.7% 9.0% 13.6% 3.5% 1.5% 1.6%
With identified chaotics – 2.1% – – 11.2% – 5.0% 1.9% 1.8%

Visual Total 24.7% 1.5% 68.2% 5.7% 11.2% 8.7% 4.5% 0.6% 1.1%
Centrophobic – – – 4.0% 9.6% – 1.8% – –
Centrophilic – – – 1.7% 1.6% – 2.6% – –

Notes. (1) the “z-tube” family contains all orbits with a circulation around the z-axis and includes therefore fish, saucer, pretzel, 5:4, 5:6 orbits.

limited this contamination by removing orbits from the selection
of tubes, that were identified as box/chaotic orbits (without any
circulation around an axis). We list in Table 1 the percentage for
each family with and without these latter contaminants.

4.2.2. Visual method

To evaluate the validity of the automatic orbit classification, we
carried out a visual classification by studying each of our 1130
orbits. We were able to identify orbits belonging to the families
presented in Sect. 4.2.1 that are chaotic, x-tube, z-tube, saucer,
banana, fish, pretzel, 5:4 and 5:6 orbits. In addition to this, unlike
the automatic method, the visual identification allowed us to dif-
ferentiate centrophobic and centrophilic orbits of the same fam-
ily (i.e. of the same resonance). Therefore, we have an estimate
of the quantity of anti-banana,-fish, and -pretzel orbits. We are
also able to identify orbits precisely whose own well-known res-
onance is lacking in the Cartesian/cylindrical frequency maps as
for example saucer orbits. Because it was too difficult to visually
identify box from chaotic orbits, we decided to class them in the
same category for the rest of the orbital analysis as in Sect. 4.2.1.

As explained in Sect. 4.2.1, resonant orbits have specific
ratios of frequencies that correspond to their resonance. This
information is clearly visible in the orbital shape. Therefore, we
can visually determine the resonance of an orbit by counting how
many times the orbit crossed each of the axes and obtain ratio
from this. We identified the different orbital families by using
this method.

The results of this classification show in the frequency maps
of the Figs. A.1–A.8 that the stars belonging to the identified
orbital families lie near the corresponding resonances with a
larger scattering than the maximum distance from the resonance
we took for the automatic method in Sect. 4.2.1. However, most
of the stars for each family are still located very close to the res-
onance. The identified chaotic/box orbits populate the frequency
map in a less regular manner, as expected.

The location of the stars belonging to the identified orbital
families in the Rmax vs. zmax diagram shows that they are
arranged in preferential zones:

(i) Chaotic orbits that are scattered all over the frequency
map, are only located along the observed filament in the Rmax vs.
zmax diagram (see Fig. A.1).

(ii) x-tubes only populate the uppermost part of the Rmax vs.
zmax diagram, that is, they have the highest zmax values for a wide
range of Rmax (see Fig. A.2).

(iii) Banana (and anti-banana) orbits are found to occupy a
few wedges, but seem to be mainly present in the upper part of
the Rmax vs. zmax diagram (see Fig. A.3).

(iv) Fish (and anti-fish) orbits are scattered and lack a strong
tendency for any wedge (see Fig. A.4).

(v) Saucer orbits populate the middle part of the diagram
and only appear to correspond to these Rmax, zmax values (see
Fig. A.5).

(vi) Pretzel (and anti-pretzel) orbits and their derivatives (5:4
and 5:6 orbits) are mainly located in the upper wedges (see
Figs. A.6–A.8 respectively).

5. Discussion

We made the first orbital analysis of stars located in the NSD
and also using a non-axisymmetric potential. The purpose of this
study therefore is to obtain a general picture of the dynamical
signatures in the NSD by studying the orbital resonances.

Wedges in the Rmax vs. zmax diagram have been detected
in the Galactic halo by Haywood et al. (2018), who attributed
these substructures to some heating process related to the early
phase of the Galactic disc. Koppelman et al. (2021) investigated
these features in the halo in detail using orbital frequencies and
axisymmetric potentials. They demonstrated that these structures
are due to resonant families and that the depletion around these
resonances is related to non-integrable potentials with some indi-
cation of chaotic orbits (Price-Whelan et al. 2016).

As explained Sect. 3.1, we integrated orbits using four dif-
ferent distance estimations: a case with a fixed distance value,
another case with distances chosen from a Gaussian distribu-
tion, one case with two different distances depending on the esti-
mated position of stars along the line of sight, that is, in front
or behind, and a final case where the distance of each star was
derived from its position probability along the line of sight. For
all the cases, we found the similar Rmax vs. zmax diagrams and
frequency maps, showing a very similar orbit distribution. These
wedges therefore do not depend on the assumed distance inputs.
This confirms that the observed substructures are indeed real and
that our frequency maps are reliable. Therefore, we clearly detect
wedges in the NSD, as shown in Fig. 5, where the resonances
are visible as thin straight lines. In addition, we conducted many
tests with different Galactic potentials, for instance, assuming a
classical Milky Way potential with and without a rotating bar
(non-axisymmetric and axisymmetric; see Fig. B.1) with which
the resonances still occur. This confirms that the conclusions of
Koppelman et al. (2021) are relevant in this case as well.

The Rmax vs. zmax diagrams Figs. 10 and A.1 show a “fila-
ment” at high zmax that dives into the structure at low Rmax. It
is mainly composed of chaotic orbits, regardless of the method
used to identify them (highest Lyapunov exponent Sect. 3.3.1,
frequency drift Sect. 3.3.2 and visual classification Sect. 4.2.2).
Because this structure is only visible when the bar potential is
used in the combination of potentials and because it becomes
denser with increasing integration time, we can conclude that
the bar disturbs orbits to the point of making them chaotic. With
an axisymmetric potential (i.e. without a bar), this filament dis-
appears. This supports the argument of a clear bar signature
of this filament. In addition, a projection of these stars in the
(l,b) plane shows that these stars are mostly located in the outer
parts of the NSD (|l| > 1.0◦), where the contamination of the
bulge/bar stars in the NSD increases significantly (see Fig. 10 of
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Fig. 10. Upper panel: Rmax vs. zmax vs. Lyapunov. Lower panel: Rmax vs. zmax vs. frequency drift. Red indicates the most chaotic orbits in both
methods. The typical error on both parameters arising from the propagation of the observational uncertainties and the distance uncertainty is
indicated in the lower right corner of each plot.

Sormani et al. 2022). Our observed filament consists of ∼20%
stars of our sample, which agrees with the predicted contamina-
tion rate from the NSD models of ∼25% (Sormani et al. 2022).

The distribution of orbits in the Cartesian frequency map
Fig. 8, shows a large majority of z-tubes that is expected for
stars forming a disc structure such as the NSD and a minority
of x-tubes. In addition, we were able to identify a variety of
families that mostly belong to z-tubes. We introduced in Sect. 4
two orbital classification methods used in this study: an auto-
matic (see Sect. 4.2.1) and visual method (see Sect. 4.2.2). Based
on previous works about orbit classification (Valluri et al. 2010,
2012, 2016), we were able to search several orbital families.
Therefore, the automatic and visual classifications contain the
same families and we compare their number in Table 1. The
results of the two methods agree very well for the different iden-
tified families. However, the automatic way seems to slightly
overestimate chaotic, saucer, 5:4, and 5:6 orbits and underesti-
mate z-tube, x-tube, banana, fish and pretzel orbits. Even though
the visual method can lead to false positives, it still remains
better than the automatic one because of the visual check that
allowed us to identify every orbital family without any depen-
dence on resonance knowledge. In the era of machine learn-

ing (ML) techniques, the visual classification might in future be
performed using different algorithms. de los Rios et al. (2021)
tested different ML techniques such as a random forest tech-
nique, which is a supervised decision tree algorithm, a sup-
port vector machine, or K-nearest neighbours to classify galax-
ies in, and around clusters according to their projected phase-
space position. In order to obtain a precise classification, a large
training set is necessary on which N-body simulations can be
used.

Figure 11 shows that fish and saucer orbits dominate the mid-
dle and low part of the Rmax vs. zmax diagram, unlike banana
and pretzel (and 5:4, 5:6) orbits, which cover the high part. In
addition, the few x-tubes are located at the highest zmax. There-
fore, the results given by the visual classification confirm the link
between the observed wedges in the Rmax vs. zmax diagram and
orbital resonances, and more precisely, orbital families.

One direct application of the orbital parameter is the deter-
mination of the radial and vertical extent of the NSD. Figure 12
shows the median apocentric radius Rmax (left panel) and zmax for
stars with a different minimum eccentricity threshold (eccmin).
For eccmin < 0.25, the truncation radius of the NSD (indi-
cated by the grey area) is 138 ± 5 pc and the vertical extent
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is 53 ± 1 pc. Schönrich et al. (2015) constructed a toy model
based on APOGEE kinematic data assuming a disk in which the
best fit suggest a truncation radius of 150 pc (see their Table 1).
This is very consistent with the values found in this work but
smaller than the radial scale of ∼230 pc found by Launhardt et al.
(2002). This could be due to the heavy differential reddening as
they used photometric data. The vertical extent is about 50 pc in
Schönrich et al. (2015), but they did not confine this parameter
from their toy model.

We stress that our sample size is limited due to our selec-
tion cuts (see Sect. 2.2), leading to statistically small sample
sizes for each derived family of orbits. A first rough estimate
of the completeness of our sample by using luminosity func-
tions (see e.g. Nogueras-Lara et al. 2023) shows that our work-
ing sample is indeed highly incomplete (∼15% completeness at
KS ∼ 11.5 mag).

Complementary high-resolution N-body simulations of the
NSD are necessary to (i) extend our study to a much larger sam-
ple, (ii) compare simulations and our observed data set in detail,
and (iii) study the effect of different Galactic potentials on the
derived orbital families.

In the vicinity of the Galactic bar, orbits perpendicular to the
bar are called x2-type, and orbits parallel to the bar are called
x1-type orbits. x2-type orbits are parents of the z-tube family,
occupying the 1:−1:0 main resonance line in the frequency map
(see Fig. 8), where about two-thirds of our sample lies. The for-

mation of nuclear stellar discs is strongly connected to the prop-
erties of the galactic bar. Hydrodynamical simulations suggest
that nuclear stellar discs form close to the inner Lindblad res-
onance of the main bar, where the x2-type orbital family domi-
nates (Athanassoula 1992a,b, Li et al. 2015, Sormani et al. 2018,
2024). After the Galactic bar was formed, gas was funnelled
along the bar towards the GC, where it settled down to form a
nuclear disc. The gas then formed stars, which keep their result-
ing x2 orbits, and the resulting stellar population resembles a
disc. Additional evidence comes from the spatial and kinemat-
ical overlap between the central molecular zone and the NSD
(Schönrich et al. 2015, Schultheis et al. 2021) in the Milky Way,
which supports this scenario that the stars in the NSD should
be more metal-rich and dynamically cooler than the surrounded
bar/bulge populations. This feature can also be seen in external
galaxies with NSDs (Bittner et al. 2020, Gadotti et al. 2019).

Planar periodic orbits x1, x2, and x4 share the 1:2 reso-
nance between the tangential oscillation frequency (Ωφ) and
the radial frequency (ΩR). Unfortunately, they are not antici-
pated to be abundant in N-body simulations (Valluri et al. 2016)
and it is a delicate task to identify these orbits visually. This
prevented us from distinguishing them properly. However, we
were able to detect bifurcations from the x1-tree (Athanassoula
2005) with banana orbits that were called “x1v1” by Skokos et al.
(2002). The presence of the latter would suggest the existence
of an inner bar embedded in the NSD, as observed in others
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galaxies (Méndez-Abreu et al. 2019), but a more in-depth study
is needed.

6. Conclusions

We presented a detailed orbital analysis of stars in the NSD by
using orbital frequencies and a visual classification of the orbits
obtained from the orbital integration. A comparison between
these two methods shows very similar results in the classifica-
tion of the different orbital families, such as chaotic/box, z-tube,
x-tube, banana, fish, saucer, pretzel, 5:4, and 5:6 resonances.
The large majority of sources are z-tubes, which is expected
for stars located in an NSD. We used two different methods:
the Lyapunov exponent, and the frequency drift. We estimated
the chaoticity of the orbits with these methods and showed by
using in addition a visual classification that chaotic orbits can
be identified by their high Lyapunov exponent as well as by
their high frequency drift parameter. They occupy in the Rmax vs.
zmax the filament at high zmax where the bar most likely causes
the highly chaotic orbits. About 20% of our stars are contam-
inated by the bar/bulge population which is very close to the
predicted 25% contamination from the most recent NSD mod-
els of Sormani et al. (2022). We emphasize that we performed
here a statistical approach and that the orbits of the individual
stars can be affected by the presence of molecular clouds as
well as by the disruption of their trajectory by tidal forces (e.g.
Portegies Zwart et al. 2002; Kruijssen et al. 2014).

We detected clear substructures in the Rmax vs. zmax dia-
gram in the NSD that were identified as wedges that are related
to different resonances and therefore different orbital families.
68.2% of our sample show z-tube orbits that are parented by
the x2-type orbits. This is indeed expected if the formation
of the NSD is coupled with the formation of the Galactic bar
where x2-type orbits are the dominant population. As a follow-
up work, a comparison with self-consistent models of the NSD
(e.g. Sormani et al. 2022) is necessary for a detailed comparison
between the observations and the predictions from the models
(e.g. fraction of different orbital families) and to improve our
orbital classification.

We used the Rmax vs. zmax diagram to constrain the radial
and vertical extent of the NSD with 138 ± 5 pc and 53 ±
1 pc, respectively, which is consistent with the values found in
Schönrich et al. (2015). Due to our limited sample size, no obvi-
ous trends between the orbital families and the chemistry (e.g.
metallicities) is detected. Future large surveys of the NSD, such
as the upcoming MOONS survey (Gonzalez et al. 2020) will
clearly benfit from the large number of stars to establish the
strong connection between dynamics and chemistry.
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Appendix A: Orbital families

We present here typical examples of orbits in the x, y, z plane as
well as the location in the Rmax vs. zmax diagram and in the fre-

quency map in Cartesian coordinates. We also show in Fig.A.9
the location of certain families in the cylindrical frequency map.
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Fig. A.1. Example of a chaotic orbit. Upper panel: Orbit plotted in the (x, y), (x, z) and (y, z) planes. Lower panel: Rmax vs. zmax diagram (left) and
Cartesian frequency map (right). The coloured markers correspond to the chaotic orbits identified with the visual method (see 4.2.2).
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Fig. A.2. Example of an x-tube, i.e. 1 : 1 resonance between Ωy and Ωz, also called (0 : 1 : −1). Upper panel: Orbit plotted in the (x, y), (x, z), and
(y, z) planes. Lower panel: Rmax vs. zmax diagram (left) and Cartesian frequency map (right). The coloured markers correspond to the x-tube orbits
identified with the visual method (see 4.2.2).
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Fig. A.3. Example of a banana orbit (here, a (x, z) banana), i.e. 2 : 1 resonance between two orbital frequencies (here, Ωz and Ωx, also called
(2 : 0 : −1)). Upper panel: Orbit plotted in the (x, y), (x, z), and (y, z) planes. Lower panel: Rmax vs. zmax diagram (left) and Cartesian frequency
map (right). The coloured markers correspond to the banana and anti-banana orbits identified with the visual method (see 4.2.2).
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Fig. A.4. Example of a fish orbit (here, a (y, z) fish), i.e. 3 : 2 resonance between two orbital frequencies (here, Ωz and Ωy, also called (0 : 3 : −2)).
Upper panel: Orbit plotted in the (x, y), (x, z) and (y, z) planes. Lower panel: Rmax vs. zmax diagram (left) and Cartesian frequency map (right). The
coloured markers correspond to the fish and anti-fish orbits identified with the visual method (see 4.2.2).
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Fig. A.5. Example of a saucer orbit, i.e. 1 : 1 resonance between Ωz and ΩR. Upper panel: Orbit plotted in the (x, y), (x, z), and (y, z) planes. Lower
panel: Rmax vs. zmax diagram (left) and Cartesian frequency map (right). The coloured markers correspond to the saucer orbits identified with the
visual method (see 4.2.2).
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Fig. A.6. Example of a pretzel orbit, i.e. 4 : 3 resonance between two orbital frequencies (here, Ωz and Ωy, also called (0 : 4 : −3)). Upper panel:
Orbit plotted in the (x, y), (x, z) and (y, z) planes. Lower panel: Rmax vs. zmax diagram (left) and Cartesian frequency map (right). The coloured
markers correspond to the pretzel and anti-pretzel orbits identified with the visual method (see 4.2.2).
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Fig. A.7. Example of a 5:4 orbit, i.e. 5 : 4 resonance between two orbital frequencies (here Ωz, and Ωy, also called (0 : 5 : −4)). Upper panel:
Orbit plotted in the (x, y), (x, z), and (y, z) planes. Lower panel: Rmax vs. zmax diagram (left) and Cartesian frequency map (right). The coloured
markers correspond to the 5:4 orbits identified with the visual method (see 4.2.2).
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Fig. A.8. Example of a 5:6 orbit, i.e. 5 : 6 resonance between two orbital frequencies (here, Ωy and Ωz, also called (0 : 6 : −5)). Upper panel:
Orbit plotted in the (x, y), (x, z), and (y, z) planes. Lower panel: Rmax vs. zmax diagram (left) and Cartesian frequency map (right). The coloured
markers correspond to the 5:6 orbits identified with the visual method (see 4.2.2).
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Appendix B: Comparison of potentials

To assess the sensitivity of the study outcomes to the selec-
tion of the mean potential, we integrated the orbits using
an axisymmetric potential or slightly varied combinations of
(non-axisymmetric) potentials. As detailed in section 3.1, our
approach involves considering three components: the bulge/bar,

the NSD, and the NSC. In the following figures (Fig. B.1, Fig.
B.2, B.3 and B.4), we compare the Rmax vs. zmax diagram pres-
ened in this paper (Fig. 5) with those obtained with an axisym-
metric potential (MWPotential14 from Bovy 2015) or by chang-
ing the NSD potential (Sormani et al. 2022 and Launhardt et al.
2002), the bar potential (Portail et al. 2017), or the bar angle.
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Fig. B.1. Rmax vs. zmax diagram comparison for the axisymmetric and non-axisymmetric cases. Left: Reference diagram, with the non-axisymmetric
combination of potentials presented in Section 3.1. Right: Using the axisymmetric potential MWPotential14 from Bovy (2015).
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Fig. B.2. Rmax vs. zmax diagram comparison with different NSD potentials. Upper panel: Reference diagram, with the NSD potential from
Sormani et al. (2020) (model 3) used in our study. Middle panel: Using the NSD potential from Sormani et al. (2022). Lower panel: Using
the NSD potential from Launhardt et al. (2002). In the three cases, the bar and the NSC potentials are not changed.
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Fig. B.3. Rmax vs. zmax diagram comparison with different bar potentials. Left: Reference diagram, with the bar potential from Launhardt et al.
(2002). Right: Using the bar potential from Portail et al. (2017). In both cases, the NSD and NSC potentials are not changed.
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Fig. B.4. Rmax vs. zmax diagram comparison with a different bar angle with respect to the line of sight towards the GC. Left: Reference diagram as
presented in Section 3.1. Right: Case with a 10% variation of the angle.
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