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Abstract: Signatures of neurodegeneration in clinical samples from a subject with multiple scle-
rosis (MS) acutely infected with HIV were investigated with single-cell transcriptomics using 10X
Chromium technology. Sequencing was carried out on NovaSeq-TM, and the analysis was performed
with Cell Ranger software (v 7.1.0) associated with a specifically established bioinformatic pipeline.
A total of 1446 single-cell transcriptomes in cerebrospinal fluid (CSF) and 4647 in peripheral blood
mononuclear cells (PBMCs) were obtained. In the CSF, many T-cell lymphocytes with an enriched
amount of plasma cells and plasmacytoid dendritic (pDC) cells, as compared to the PBMCs, were
detected. An unsupervised cluster analysis, putting together our patient transcriptomes with those
of a publicly available MS scRNA-seq dataset, showed up-regulated microglial neurodegenerative
gene expression in four clusters, two of which included our subject’s transcriptomes. A few HIV-1
transcripts were found only in the CD4 central memory T-cells of the CSF compartment, mapping to
the gag-pol, vpu, and env regions. Our data, which describe the signs of neurodegenerative gene ex-
pression in a very peculiar clinical situation, did not distinguish the cause between multiple sclerosis
and HIV infection, but they can give a glimpse of the high degree of resolution that may be obtained
by the single-cell transcriptomic approach.

Keywords: interactions between infective agents and immune responses; immune dysregulation in
infectious diseases

1. Introduction

HIV invades the central nervous system (CNS) of infected subjects soon after infection,
where it can persist, evolve, and become compartmentalized [1]. Although the produc-
tive infection in this compartment is low, the presence of the virus, together with local
inflammation, may lead to neurodegenerative disorders [2].

Cerebrospinal fluid (CSF) is a routinely and safely accessible component of the CNS.
It constitutes a unique local immune medium that can be used to diagnose inflammatory
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and degenerative diseases affecting the CNS [3–6]. CSF cells derive exclusively from the
hematopoietic lineage and exhibit a tightly regulated cellular composition that differs
significantly from that of blood [7].

Single-cell transcriptomics can define the heterogeneity of the cellular immune re-
sponse to different autologous and external stimuli. Analyzing the types of cells that show
up in the CSF with their specific transcriptomes could clarify the events involved in the
development of neuroinflammatory and neurodegenerative diseases in the CNS.

In multiple sclerosis (MS), the most common inflammatory demyelinating disease of
the CNS, single-cell transcriptomics has already highlighted an increased transcriptional
diversity in the blood, together with an increased cell type diversity in the CSF compared to
healthy donors. This suggests a compartmentalized mechanism leading to autoimmunity
in the brain [8].

Previous studies of the CSF during HIV infection have primarily focused on the
soluble immune markers of inflammation [9–12]. More recently, by applying a single-cell
transcriptomic experimental approach, a subset of myeloid cells was identified in the
CSF of infected subjects, expressing a transcriptomic signature similar to that found in
neurodegenerative disease-associated microglia [13,14].

The present study aimed to establish single-cell transcriptomes in the CSF and pe-
ripheral blood mononuclear cells (PBMCs) in a person diagnosed with an HIV primary
infection (PHI), naïve to antiretroviral therapy and already affected by MS, to charac-
terize the possible signatures of neurodegeneration and to find viral transcripts in the
examined cells.

2. Results

This study was conducted on a person with MS who was developing a primary
infection with HIV-1. At the time, a lumbar puncture (LP) was performed, and a CSF
examination revealed a protein concentration of 70.5 mg/dL (normal values range from 8
to 32 mg/dL). The CSF and plasma albumin were 4.6 mg/L (normal values range from 3.5
to 5.1 mg/L) and 4250 mg/dL (normal values range from 3200 to 4800 mg/dL), respectively.
We did not observe any evidence of blood–brain barrier damage. All microbiological tests,
including rapid plasma reagin (RPR) and polymerase chain reaction (PCR), were negative
for Treponema pallidum. The HIV RNA levels in the CSF/plasma pair were 7195/69,396
copies/mL and his CD4 T-cell count was 323/mm3 (29.9%), with a CD4/CD8 ratio of
0.63. Other blood chemistry tests were within normal limits. The HIV gag, pol, and env
sequencing identified an HIV-1 G subtype (submitted to NCBI’s BankIt platform Accession
numbers: PQ287393, PQ287392, and PQ287394, respectively, and will be available from
3 January 2025). Single-cell whole transcriptomes, from high-quality cDNA, produced a
mean of 1594 transcripts/cell in the CSF and 6255 transcripts/cell in the PBMCs, with a
low proportion of mitochondrial genes (<5%). A total of 1446 single-cell transcriptomes
were obtained from the CSF, and 4647 from the PBMCs. To identify classical cell clusters in
the separated diffusion maps obtained from the transcriptomes of the two clinical samples
and, therefore, to characterize the whole compartment-specific composition of the CSF
and PBMCs, we used the same canonical marker genes as described in the Section 4
(Figure 1A,B).

The analysis indicated that most cells (85.5%) in the CSF were T lymphocytes, with
an enriched amount of plasma cells and plasmacytoid dendritic (pDC) cells, compared to
PBMCs. Conversely, B cells and natural killer (NK) cells were less represented in the CSF
than in PBMCs (Table 1).
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Figure 1. Uniform manifold approximation and projection (UMAP) plots representing cell clusters 
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from single-cell transcriptomic analysis of CSF (A) and PBMC (B) samples are shown. To assess the 
cellular identity of each cluster, canonical cell markers were used (see Section 4). 
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Table 1. Cell type frequencies in the CSF and PBMCs. The identification of different cell types in the 
CSF and PBMCs was performed using canonical marker genes as shown in Figure 1. 

Cell Type CSF (%) PBMC (%) 
CD4+ T-Cells 32.92 20.46 
CD8+ T-Cells 52.63 42.31 
Granulocytes 1.73 15.73 

NK 3.60 4.41 
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Monocytes 2.28 9.12 
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Megakaryocytes 1.04 0.67 
Plasma cells 2.21 1.25 
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pDCs 0.41 0.24 

Then, to highlight potential rare cells with specific transcriptomic signatures of neu-
rodegeneration, in this case, an unsupervised cluster analysis was performed. This analy-
sis did not rely on known cell type markers, but instead combined the patient’s single-cell 
transcriptomes, derived from the CSF and PBMC clinical samples, with those of publicly 
available scRNA-seq data. The resulting diffusion map (Figure 2) identified 16 cell clusters 
with significant differential gene expression (clusters 0–15). Clusters 6, 12, 14, and 15 

Figure 1. Uniform manifold approximation and projection (UMAP) plots representing cell clusters
identified in patient’s CSF and PBMC single-cell transcriptomes. Color-coded cell clusters derived
from single-cell transcriptomic analysis of CSF (A) and PBMC (B) samples are shown. To assess the
cellular identity of each cluster, canonical cell markers were used (see Section 4).

Table 1. Cell type frequencies in the CSF and PBMCs. The identification of different cell types in the
CSF and PBMCs was performed using canonical marker genes as shown in Figure 1.

Cell Type CSF (%) PBMC (%)

CD4+ T-Cells 32.92 20.46

CD8+ T-Cells 52.63 42.31

Granulocytes 1.73 15.73

NK 3.60 4.41

B Cells 0.90 4.26

Monocytes 2.28 9.12

mDCs 0.55 1.08

Megakaryocytes 1.04 0.67

Plasma cells 2.21 1.25

Erythrocytes 1.73 0.47

pDCs 0.41 0.24

Then, to highlight potential rare cells with specific transcriptomic signatures of neu-
rodegeneration, in this case, an unsupervised cluster analysis was performed. This analysis
did not rely on known cell type markers, but instead combined the patient’s single-cell
transcriptomes, derived from the CSF and PBMC clinical samples, with those of pub-
licly available scRNA-seq data. The resulting diffusion map (Figure 2) identified 16 cell
clusters with significant differential gene expression (clusters 0–15). Clusters 6, 12, 14,
and 15 exhibited up-regulated gene expression, previously associated with a microglial
neurodegenerative phenotype, as described in Farhadian et al. [13] (see arrows).
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Figure 2. Uniform manifold approximation and projection (UMAP) plots representing 0–15 clusters
identified in unsupervised cluster analysis performed on the total CSF and PBMC transcriptomes.
The 16 identified clusters are shown using different colors (see legend on the right) and the arrows
indicate those displaying up-regulated neurodegenerative microglial gene expression.

In these clusters, gene expression analysis revealed the presence of several cell-specific
markers. Among these, the Macrophage Scavenger Receptor 1 (MSR-1) was identified in clus-
ter 6; the myeloid dendritic (mDC) marker high-affinity IgE Receptor (FcεRI) emerged in
clusters 12 and 14; the generic myeloid marker CD33 was detected in clusters 14 and 15; and
non-classical resident monocyte markers as the CX3C motif chemokine receptor 1 (CX3CR1),
the Macrophage Activating Factor (MAF), and the Colony Stimulating Factor 1 Receptor (CSF1R)
were identified in cluster 15. The results indicated that some of the patient’s single-cell
transcriptomes were included in both cluster 6 (2.3% of the total CSF and 10.4% of the total
PBMC patient-specific transcriptomes) and cluster 14 (0.02% of total the PBMC patient-
specific transcriptomes). Among the microglial neurodegenerative phenotype-associated
gene expression, we observed in cluster 6 an upregulation of transcripts coding for sev-
eral proteins, including complement C1q subcomponent subunits A (C1QA), B (C1QB),
and C (C1QC), the class II major histocompatibility complex-associated protein CD74,
cathepsin L, ferritin light chain (FTL), and both the Macrophage Receptor with Collagenous
Structure (MARCO) and MSR-1. In cluster 14, we observed upregulated transcripts for
Apolipoprotein C1 (APOC1), the AXL receptor tyrosine kinase, Human Leukocyte Antigen
(HLA) molecules, the IL18 gene, the Solute Carrier Family 25 Member 5 (SLC25A5), which
is involved in RNA binding and adenine transmembrane transport, and the Parathymosin
gene (PTMS). Additionally, clusters 6 and 14 shared the upregulation of three genes related
to neurodegenerative patterns, such as the transcript coding for Dihydropyrimidinase
Like 2 (DPYSL2), Thymosin Beta 10 (TMSB), and Vesicle Associated Membrane Protein 8
(VAMP8). The complete list of up-regulated gene expressions for each cluster, shown in
Figure 2, is included in Table S1.

A few HIV-1 transcripts (a total of eleven) mapping to the gag, pol, vpu, and env
regions were detected only in the CSF compartment, specifically within three CD4+ central
memory T-cells (Figure 3).
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Figure 3. Alignment track of HIV transcripts in single cells from the CSF across the annotated HIV
subtype G (KU168277). On the top, the HIV reference sequence and annotated genes (in dark blue) are
displayed. (A–C): the read coverage and stacked individual reads, represented as arrows, are shown
in different panels enlarged below. Different colors within the reads highlight present nucleotide
variations compared to the reference sequence: red is used for T, green is used for A, orange is used
for G, and blue for C. Picture obtained from the IGV Web App.

3. Discussion

Although limited to a single individual with a very specific clinical situation, i.e., a
patient affected by MS with a superimposed primary HIV infection, our findings provide
a glimpse into the potential of a single-cell transcriptomic experimental approach for
understanding pathogenetic events at the single-cell level in a complex disease scenario.

First, with unbiased cell type characterization, the cell types present in the CSF
of the MS/HIV-1-infected patient were successfully defined. This finding confirms a
compartment-specific cell composition of the CSF, consistent with previous studies [8,14].
Notably, there is a particular enrichment of plasma cells concerning peripheral blood, a
phenomenon already shown in other MS patients [15].

The second result is the identification of the early signs of neurodegeneration in the
myeloid cells. Specifically, some patients’ myeloid cells share a specific transcriptomic
profile with those from patients with neurodegenerative disorders previously described in
other studies [8]. A particularly significant finding is that the patient’s cell transcriptomes,
represented in cluster 6 of Figure 2, display an upregulated expression of the MSR-1 gene,
a well-known hallmark of activated microglia and CNS perivascular macrophages [14].
However, we cannot exclude the possibility of underestimating the complete cellular
transcription landscape, potentially linked to neurodegenerative phenotypes, due to the
relatively low number of analyzed transcriptomes. This limitation arises from analyzing
data from just one subject and the difficulty of finding similar cases with the same clinical
characteristics. Finally, HIV transcripts within the cellular transcripts from the analyzed
CSF and PBMC samples were detected. These were found only in a few CD4 T central
memory cells in the CSF compartment, but not in cells of myeloid origin. The cellular-
associated HIV transcripts detected in the CSF compared to the plasma are consistent with
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findings reported by Farhadian et al. [14], although their study involved HIV patients
undergoing antiretroviral therapy. This discrepancy can also be attributed to a relative
enrichment of infected cells within the CSF compartment as compared to the total leukocyte
population. HIV infection in leukocytes has been shown to enhance their transmigration
across the blood–brain barrier (BBB), a process facilitated by soluble inflammatory factors,
including Chemokine (C-C motif) Ligand 2 (CCL2), which is also a key mediator in the
pathogenesis of multiple sclerosis [16,17]. One limitation of our study is the lack of a
simultaneous immunological characterization of the CSF sample, due to the need to use
a large volume of CSF for virologic analysis. Additionally, the non-specific nature of the
observed signs of myeloid neurodegeneration makes it difficult to determine the relative
contribution of multiple sclerosis and the primary HIV infection as the causative agents of
the observed condition.

In conclusion, this study, which addresses a peculiar clinical case of primary HIV
infection in a subject already affected by MS, demonstrates the power of single-cell tran-
scriptomic technology to either characterize, using an unbiased approach, the cellular
composition of the CSF and to appreciate the initial signs of the neurodegenerative phe-
notype in myeloid cells. However, efforts are needed to improve the sensitivity of the
detection of viral transcripts among host cellular transcriptomes to better evaluate direct
host–pathogen interactions.

4. Materials and Methods
4.1. Clinical and Virological Patient Characteristics

A 37-year-old individual with a prior diagnosis of MS acutely infected with HIV was
studied. The subject was diagnosed with MS twelve years earlier and underwent treatment
with γ-interferon and steroid therapy for the first five years, experiencing alternating phases
of remission and recrudescence. The subject was then lost to follow-up. Approximately ten
years prior, a diagnosis of syphilis was reported, which was treated with intramuscular
benzyl penicillin. The subject returned to the neurology ward about a year ago due to a
recurrence of neurological symptoms with a gradual worsening of hyposthenia in the left
lower limb. A magnetic resonance imaging (MRI) scan of the brain and cervical spine was
conducted to reassess the disease status (see Figure S1). During screening examinations
prior to potential administration of MS immune-modulating therapy, the patient tested
positive for HIV (a previous negative test was reported about a year earlier). The diagnosis
of PHI was based on a low avidity index of the anti-HIV antibodies and clinical evaluation.
The subject reported engaging in unprotected intercourse with a partner who had been
previously diagnosed with HIV and was on antiretroviral therapy with poor adherence. The
HIV-1 RNA levels in the plasma and CSF were quantified by a commercial assay (Aptima™
HIV-1 Quant Dx Assay, Hologic, Bedford, MA, USA). Molecular characterization of the
HIV strain was performed by PCR amplification of three regions of the viral genome (gag,
env, and pol) as described in the literature [18,19]. HIV subtyping was performed using
REGA software available on the Genome Detective platform, version 3.46 (https://www.
genomedetective.com/app/typingtool/hiv/, accessed on 25 July 2024). The patient started
combination antiretroviral therapy with tenofovir, emtricitabine, and dolutegravir only
after undergoing lumbar puncture. The therapy is ongoing and well tolerated. The study
participant provided informed consent.

4.2. Single-Cell Transcriptomic Libraries and Sequencing

For single-cell transcriptomics, 9 mL of CSF obtained by lumbar puncture was cen-
trifuged, and the cellular pellet, in parallel with PBMCs collected from peripheral blood by
centrifugation on the Fycoll gradient, was washed before cell counting. The viable cells
were measured using trypan blue. Approximately, 5000 cells per sample were processed to
reverse transcription and barcoding using 10X Chromium Single Cell reagents and plat-
form (10X Genomics, Pleasanton, CA, USA). Each single barcoded cell generated a cDNA
library according to the Single Cell 3′ Reagent Kits v3 protocol (10X Genomics) and was

https://www.genomedetective.com/app/typingtool/hiv/
https://www.genomedetective.com/app/typingtool/hiv/


Int. J. Mol. Sci. 2024, 25, 10459 7 of 9

fragmented and ligated to adapters for sequencing on the Illumina platform NovaSeqTM
6000 System (Illumina, San Diego, CA, USA), using at least 20,000 read pairs per single
barcoded cell.

4.3. Bioinformatic Analysis

The bioinformatic analysis was conducted with the Cell Ranger software (version
7.1.0) [20], which analyzed the transcripts derived from each single cell. Subsequently, a
clustering analysis was performed, and the gene expression was compared among the
clusters. LogFC > |0.1| e p < 0.05 were considered statistically significant. Canonical
markers were used to assign the identity of the cell clusters, as in [8]. To increase the
likelihood of detecting rare cells displaying transcriptomic signatures of neurodegenerative
disease, a publicly available scRNA-seq dataset (GEO accession code: GSE141797) was
retrieved from [8] and included in a second cluster analysis.

The presence of HIV-1 transcripts was investigated by a specifically established bioin-
formatic pipeline. Briefly, to detect HIV viral transcripts in 10X Genomics scRNA-Seq data
from blood and CSF, a complete consensus genome sequence of HIV-1 subtype G (NCBI nu-
cleotide code: KU168271) was utilized to generate a custom reference with the CellRanger
mkref function within the 10X Genomics Cell Ranger pipeline. FASTA and the GFF3 files
were acquired from NCBI. Since the CellRanger mkref pipeline requires FASTA sequences
and GTF files, the gffreads utility from Cufflinks (version 2.2.1) was used to convert the
GFF3 file into GTF format [21]. Subsequently, reads mapped to the reference genome were
identified using Samtools (version 1.13) [22], and their alignment with the reference HIV
genome was visualized using the Integrative Genomics Viewer (IGV) Web App [23]. To
identify the cells containing HIV transcripts, the barcodes of the cells associated with the
retrieved transcripts were used. The analysis was conducted using the statistical software
R (version 4.3.2) along with the following packages: Seurat v.3.0.2 [24], SingleR v.2.4.0, and
celldex v.1.12.0 [25]. The data analysis followed a procedure similar to that reported by
Léon-Rivera et al. [26]. The dataset was filtered using the Seurat package to remove all cells
that did not express at least 200 genes and contained less than 25% mitochondrial DNA. In
total, 65,237 cells were analyzed. Subsequently, dimensionality reduction and clustering
analysis were performed using UMAP [27]. Clustering was carried out using the default
graph-based Louvain algorithm, and the FindClusters function was used with a resolution
range of 0.5. The cell type inference for each cluster was then performed using the SingleR
package, utilizing the “PBCM” collection from the celldex package.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms251910459/s1.
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