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Abstract

Studying nocturnal bird migration is challenging because direct visual observa-

tions are difficult during darkness. Radar has been the means of choice to study

nocturnal bird migration for several decades, but provides limited taxonomic

information. Here, to ascertain the feasibility of enhancing the taxonomic reso-

lution of radar data, we combined acoustic data with vertical-looking radar

measurements to quantify thrush (Family: Turdidae) migration. Acoustic

recordings, collected in Helsinki between August and October of 2021–2022,
were used to identify likely nights of high and low thrush migration. Then, we

built a random forest classifier that used recorded radar signals from those

nights to separate all migrating passerines across the autumn migration season

into thrushes and non-thrushes. The classifier had a high overall accuracy

(�0.82), with wingbeat frequency and bird size being key for separation. The

overall estimated thrush autumn migration phenology was in line with known

migratory patterns and strongly correlated (Pearson correlation coefficient

�0.65) with the phenology of the acoustic data. These results confirm how the

joint application of acoustic and vertical-looking radar data can, under certain

migratory conditions and locations, be used to quantify ‘family-level’ bird

migration.

Introduction

Every year, billions of migratory birds travel tremendous

distances in pursuit of improved feeding opportunities,

safety and higher reproductive output (Bauer &

Hoye, 2014). The magnitude of long-range autumn

migration between Europe and Africa of passerines and

near-passerines has been estimated at 2.1 billion individ-

uals (Hahn et al., 2009). Similar or even higher numbers

have been estimated for passerine migration in and out of

the USA (Dokter et al., 2018), and the majority of these

birds migrate at night (McLaren et al., 2018). In Finland

alone, more than 22 million of them are believed to be

thrushes (Weisshaupt et al., 2024).

Radar monitoring by far has been the most widely used

technique to study nocturnal bird migration, with exam-

ples ranging from local (Giuntini et al., 2023; Michev

et al., 2017; Shi et al., 2021; Weisshaupt et al., 2023) over

regional (Farnsworth et al., 2004; Tschanz et al., 2020) to

continental-scale (Dokter et al., 2018; Nussbaumer
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et al., 2019) quantification. Some dedicated bird radars

allow characterizing individual birds by their size and

flight pattern, albeit with varying precision (Schmid

et al., 2019); direction and speed of each of the flying

birds are also determined (Shi et al., 2021). These radars

record the signature of returned echoes from the trans-

mitted radar pulses, i.e. the energy reflected by the bird,

and its temporal variation is then used to extract several

features employed for object identification. For birds,

echo signatures mirror the wingbeat pattern of the indi-

vidual in flight, allowing to derive several

wingbeat-related measures such as the wing-beat fre-

quency, i.e. the number of wingbeats in one flapping

phase divided by its duration (Bruderer, 1997). Similarly,

the radar cross-section (RCS), which refers to the size of

the bird as perceived by the radar, depends not only on

certain characteristics of the radar pulse itself but also on

attributes of the flying animal/bird, such as its shape and

reflecting properties. These and other characteristics of

the radar echoes, commonly referred to as ‘echo features’,

are used to automatically classify the echoes into broad

categories or classes. These classes roughly mirror taxo-

nomic groups such as ‘passerine-type’ (with regular inter-

mittent wingbeat pattern; i.e. most passerines, excluding

corvids and swallows), ‘wader-type’ (with continuous

wingbeat pattern, e.g. waterbirds, quails, rails), ‘swift-type’

(with wingbeat phase irregularly interrupted by gliding

phase, e.g. swifts and bee-eaters), ‘large bird’ (with no or

irregular wingbeats, mainly raptors or storks) and ‘uni-

dentified other birds’ (Schmaljohann et al., 2008).

Extracting species- or family-level information using radar

data only, however, remains notoriously difficult (Dokter

et al., 2013; Liechti & Bruderer, 2002; Williams & Wil-

liams, 1980). Thus, to achieve better taxonomic discrimi-

nation, the radar information so far is insufficient and

needs to be complemented with data from other sources

such as visual or acoustic observations, an approach used

with increasing frequency also in bird studies, known as

‘data fusion’ (Cocchi, 2019; Mirzaei et al., 2015).

Unlike radar, bioacoustic monitoring does, although

sometimes not without challenge, allow for the identifica-

tion of bird species (H€ochst et al., 2022; Lauha

et al., 2022; Van Doren et al., 2024). The detection height

and volume achieved with most currently used instru-

ments are unknown, however (Darras et al., 2018; P�erez-

Granados & Traba, 2021), and can vary depending on

many factors including atmospheric conditions

(Sanders, 2013). Moreover, bio-acoustic monitoring is

only useful to monitor migrating species that emit flight

calls. And even in species known to emit flight calls, the

frequency of these calls is highly variable during the night,

between seasons and years (H€uppop & Hilgerloh, 2012;

Weisshaupt et al., 2024) and fluctuates in response to

several environmental conditions (Horton, Stepanian,

et al., 2015). For night flight calls specifically, the spectro-

grams from certain species are also often highly similar,

adding another layer of complexity to species identifica-

tion (Evans & Rosenberg, 2000).

Despite the aforementioned limitations of bioacoustic

techniques, they have been used successfully to quantify

nocturnal migration in certain areas (Drake & Bru-

derer, 2017). In North America, acoustic call data were

positively correlated with birding data (Sanders & Men-

nill, 2014) and thermal camera monitoring (Horton, Shri-

ver, & Buler, 2015). Sensor networks combined with

automatic species recognition software have recently also

enabled overcoming some of the technique’s limitations,

such as the limited spatial scale and the need for experts

for taxonomic identification (Van Doren et al., 2023).

Some fundamental challenges persist, however, to use bio-

acoustics to accurately quantify migratory bird flow.

These include addressing the proportion of individuals

emitting flight calls, understanding the specific ways in

which the environment can influence call emission and

precisely determining detection altitude and increasing

the range of altitudinal detection to ideally several hun-

dreds of metres. The latter is crucial, particularly because

many bird species migrate at high altitudes (Able, 1970;

Dokter et al., 2011). Most current acoustic setups also do

not allow determining the flight direction, a crucial

parameter to separate migratory from local flight.

The combined use of radar and acoustic techniques to

monitor bird migration is still relatively new. Horton,

Shriver, and Buler (2015) found nightly averaged data

obtained from acoustics and weather radars to only be

weakly correlated. Similarly, Larkin et al. (2002) and Gag-

non et al. (2010) also observed weak correlations between

acoustic and weather radar estimates of bird traffic, and

wide variability in correlations among nights. All these

studies pertain to weather radars, however, and so far no

comparisons have been made with dedicated bird radars

which contain information on individual birds.

Here, we combined acoustic and vertical-looking radar

data, collected between August and October 2021 and

2022 in Helsinki, Finland, to test whether the taxonomic

detail of echo classification in a dedicated bird radar can

be refined using acoustic information. We focused our

analysis on quantifying thrush (Turdidae) migration, a

highly vocal and primarily nocturnal migrant family. We

hypothesized that our estimates from combining radar

and acoustic data would more accurately describe thrush

migration compared to radar-only-based estimates. More

specifically, we expected that our estimates would corre-

late more strongly with the frequency of calling thrushes

than the ‘passerine-type’ phenology estimated using radar

data only.
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Materials and Methods

Acoustic data

Nocturnal bird calls were recorded from sunset to sunrise,

from August to October in 2021 and 2022 in the city of

Helsinki (Pihlajam€aki District, Finland, 60.2357°N,
25.0057°E) using a Telinga PRO-X Parabolic Microphone

System, coupled with a Røde NTG8 microphone pointing

in a different direction. Species were identified by acoustic

and visual interpretation of the sonograms using Audacity

v. 2.2 software (Audacity Team, 2021). Of the 4679 total

identified calls across both autumn measuring periods

(1996 in 2021 and 2683 in 2022), 2653 were identified as

Redwing (Turdus iliacus; 1212 in 2021 and 1441 in 2022),

1559 as Song thrush (Turdus philomelos; 603 in 2021 and

956 in 2022) and 278 as Eurasian Blackbird (Turdus mer-

ula; 116 in 2021 and 162 in 2022). Calls identified as

Fieldfare (Turdus pilaris) were omitted from the dataset

due to their low abundance (only 59 in 2021 and 72 in

2022). For comparison with the radar data, the calls of

the three thrush species considered were summed on an

hourly basis to obtain the estimated number of migrating

thrushes per hour.

Radar data

A vertical-looking dedicated bird radar was, simulta-

neously to the acoustic measurements, operated continu-

ously throughout the measurement period in 2021 and

2022. The radar was placed on the roof of the Finnish

Meteorological Institute in Helsinki (60.2042°N,
24.9612°E), approximately 4.5 km SW of the location of

the acoustic measurements. The BirdScan MR1 AVLR

(manufactured by Swiss Birdradar Solutions AG, Winter-

thur, Switzerland) is a 25 kW X-band (9.4 GHz, 3.2 cm

wavelength) marine pulse radar (Bridgemaster©)
equipped with a custom-designed vertical-looking horn

antenna, rotating with a 2° nutation on its vertical axis.

The nominal beam width at �3 dB is approximately

17.5°. The detection range depends on the pulse duration

and the size of the bird (Schmid et al., 2019). We oper-

ated the radar in short pulse mode (pulse length 65 ns,

pulse rate frequency 1800 Hz, range resolution about

7.5 m), resulting in an approximate detection range from

50 m up to about 1000 m for thrushes.

An animal (or any object) flying through the radar

beam produces an echo signature, i.e. a change in echo

intensity over time (Bruderer, 1997; Schmid et al., 2019).

From these echo signatures, a set of features (around

200) are derived, such as overall statistical properties of

the signal (e.g. the standard deviation of the signature),

features related to the shape of the return signal (i.e.

changes in echo intensity over time) and features derived

from the frequency spectrum, calculated via the Short

Time Fourier Transform. These features are then used to

predict the wingbeat patterns of each animal (Schmaljo-

hann & Liechti, 2009; Schmid et al., 2019) as well as to

automatically assign the detected object to the appropriate

class. For the latter, a Random Forest classifier has been

trained on a dataset of annotated radar echo samples

(Haest et al., 2021) to automatically classify each object

to one of the following classes: ‘insects’ ‘non-biological

clutter’ (i.e. precipitation and clutter), and several sub-

groups of birds, i.e. passerine-type, wader-type, and

swift-type (Schmid et al., 2019; Zaugg et al., 2008). For

this study, we only retained birds classified as ‘passerines’,

which are characterized by a typical intermittent wingbeat

pattern. These echoes should include thrushes (see

Bruderer et al., 2010), and we filtered the dataset to night

hours using civil twilight time, calculated using the

suntools R package (Bivand et al., 2023) to include only

nocturnal migrants. We then calculated the nightly migra-

tion traffic rates (thereafter passerine-MTR), i.e. the num-

ber of birds crossing an imaginary 1 km long aerial

transect per hour (Bruderer, 1971; Lowery, 1951; Schmid

et al., 2019) using the birdscanR R package (Haest

et al., 2023).

Selection of thrush and non-thrush training
data for the classification of radar objects

To build a Random Forest classifier capable of recogniz-

ing radar echoes belonging to thrush species, we built a

training dataset of radar ‘passerine-type’ echoes classified

as ‘thrush’ and ‘non-thrush’ echoes. To do so, we first

selected nights that showed either high or low calling

thrushes’ frequency in the acoustics dataset. Nights of

high/low thrush activity were defined as the nights for

which the number of calling thrushes was in the upper/

lower 20% of the call frequency distribution. For 2021

and 2022, the 80th percentile corresponded to days with

69 and 68 calling thrushes, respectively. The 20th percen-

tile corresponded to 6 and 5 calling thrushes in 2021 and

2022, respectively (Figs. 1 and 2). We only considered

nights from 10 September onwards for this selection

because Redwings – the earliest migrants among the three

species considered – start migrating around this time

(Weisshaupt, Lehikoinen, et al., 2021). This first selection

resulted in 22 candidate nights for both peak and low

thrush migration activity. To further increase the poten-

tial for separation between thrush and non-thrush echoes

using radar-derived features, we subsequently selected

nights with moderate levels of passerine-MTR from the

candidate nights (i.e. by selecting nights where the passer-

ine MTR exceeded the 25th percentile but remained
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below the 75th percentile). This should have helped

increase the probability that most of the radar-detected

birds during peak nights of calling thrushes were actually

thrushes and that during bottom nights of calling

thrushes, most birds were non-thrushes. This, finally,

resulted in the selection of 5 nights for each class (a total

of 10 nights, 6 nights in 2021 and 4 nights in 2022). All

echoes of a ‘thrush-night’ were labelled as ‘thrush’, result-

ing in a total number of 2439 echoes. All echoes of a

‘non-thrush-night’ were labelled as ‘non-thrush’, resulting

in a total number of 1926 echoes (Figs. 1 and 2).

Quantification and validation of thrush
migration

To classify the ‘passerine-type’ echoes across the whole

measurement period into either ‘thrush’ or ‘non-thrush’,

we trained a Random Forest classifier on the echo-derived

features using the previously identified training samples.

We used 10-fold cross-validation to assess classifier perfor-

mance on the training data. We used the default setting for

the number of variables to consider at each split in the

trees (resulting in one of 13 randomly selected variables

being used at each split), equal weights for both classes,

and set the number of trees to 500. For the subsequent

classification of all passerine-type radar echoes across the

measurement period, we used a classifier that was trained

on the eight features that were identified as the most

important during the classifier training phase. We chose

the first eight as they corresponded to the features with a

relative importance of more than 2% compared to the

first-ranked feature (in other words, the features that were

no less than 50 times less important than the first). The

Random Forest classification was done using the caret and

randomForest R packages (Kuhn, 2008; Liaw & Wie-

ner, 2002). Model performance was assessed using a confu-

sion matrix, with Producer Accuracy calculated as the ratio

of the number of correctly classified instances of a class

(true positives) to the total number of actual instances of

that class; User Accuracy calculated as the ratio of the

number of correctly classified instances of a class (true pos-

itives) to the total number of instances that were classified

as that class; and finally Overall Accuracy (OA) calculated

as the ratio of the total number of correctly classified

instances (both true positives and true negatives) to the

total number of instances in the dataset (Table 3).

Figure 1. Autumn migration phenology for the years 2021 and 2022, measured in the city of Helsinki by radar (in grey, number of birds per

hour and km) and acoustic (in black, number of calling thrushes estimated from the acoustic dataset) monitoring. The plots cover the time span

from 8 August to 30 October. In black is the daily sum of calls identified as thrush, in light grey the nightly mean passerine-MTR. For visualization

convenience, MTR values are divided by ten. Vertical grey lines delimit the months. The dates selected to build the classifier training dataset are

highlighted in red (‘thrush’) and blue (‘non-thrush’).

Figure 2. Workflow for the Random Forest classifier building process. The colour scheme used for ‘thrush/non-thrush’ nights and ‘thrush/

non-thrush’ MTR reflects the one used in Figures 1 and 3.
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After classification, we quantified ‘thrush’ and ‘non-

thrush’ migration intensity across the measuring period

by calculating the migration traffic rates for each class

(Bruderer, 1971; Lowery, 1951), using the birdscanR R

package (Haest et al., 2023). To assess the performance of

the radar-quantified thrush migration across the entire

measuring period, we calculated Pearson’s correlation

coefficient between the acoustic and the radar-derived

MTR time series. We did this for both the original

passerine-MTR and the new ‘thrush/non-thrush’-MTR

time series (excluding the nights used to train the classi-

fier) to verify whether our thrush-MTR more closely

matched the acoustic phenology than the passerine-

MTRs.

All the analyses were done in R (version 4.0.5; R Core

Team, 2021) using RStudio (version 1.4.1103; RStudio

Team, 2020).

Results

Acoustic thrush and radar ‘passerine’
migration phenology

The frequency of calling thrushes varied greatly between

successive nights (Fig. 1). Average calling frequency was

strongest in September and October during the migration

periods of these species (mean calling frequency in

August: 0.8 calling thrushes per night in 2021 and 4.9

calling thrushes per night in 2022; in September: 35 call-

ing thrushes per night in 2021 and 47.5 calling thrushes

per night in 2022; in October: 28.7 calling thrushes per

night in 2021 and 33.8 calling thrushes per night in

2022). In both years, the strongest call activity was

recorded between the end of September and the begin-

ning of October (272 calling thrushes on 27 September

2021 and 265 on 2 October 2022) (Table 1).

The radar-derived passerine-MTR also greatly varied

between successive days (Fig. 1). The mean monthly

passerine-MTR was slightly higher in September and

August than in October (mean MTR in August: 527.9

birds per km and hour in 2021 and 662.6 per km and

hour in 2022; in September: 532.9 birds per km and hour

in 2021 and 614.7 birds per km and hour in 2022, in

October: 282 birds per km and hour in 2021 and 286.3

birds per km and hour in 2022). In both years, maximum

daily MTR were measured in August (2021-08-28 with

1617 birds per km and hour, 2022-08-22 with 2032 birds

per km and hour) (Table 1).

Passerine-MTR and the number of calling thrushes

were significantly and positively correlated with Pearson’s

r 0.40 (P < 0.01) for the whole period (August 8 to Octo-

ber 30), and with r = 0.59 (P < 0.01) for the period

known in literature as the thrush migration season (Sep-

tember 10 to October 30) (Table 2).

‘Thrush’ identification and classification

The separation of the ‘passerine-type’ radar echoes into

‘thrush’ and ‘non-thrush’ classes had an overall accuracy

of 82% (Table 3). Producer accuracy was 83% for the

‘thrush’ class and 80% for the ‘non-thrush’ class. User

accuracies were 84 and 79% for the ‘thrush’ and ‘non-

thrush’ classes, respectively. The ‘thrush’ and ‘non-thrush’

training data classes showed clear differences in their

value distributions for the selected radar features (Fig. 3

and Figure S1). The most important feature was related

to wingbeat frequency (i.e. highest peak of the fast Fou-

rier transform, Table 4), followed by size- and

shape-related features (Fig. 3, Table 4). ‘Thrushes’ showed

a lower wingbeat frequency, with a peak density around

11 Hz (SD = 8.76) compared to 16 Hz (SD = 8.35) for the

‘non-thrushes’. The number of pause and wingbeat phases

of the intermittent flight of passerine birds differed

between the two groups. ‘Thrushes’ had comparatively

fewer pauses and flapping phases. ‘Thrushes’ also had, on

average, higher RCS values.

Although little can ultimately be said about differences

in shape, as only one shape-related feature ended up in

the top eight (Table 4), the importance attributed to the

regression error of the polarization feature suggests a

Table 1. Average frequency of thrush calling (in italics, average num-

ber of calling thrushes per night) and average passerine-type MTR

(number of birds per km and per hour) during the study periods

considered.

August September October

Calling

freq. MTR

Calling

freq. MTR

Calling

freq. MTR

2021 0.8 527.9 35 532.9 28.7 282

2022 4.9 662.6 47.5 614.7 33.8 286.3

Table 2. Pearson’s correlation coefficients between the number of

calling thrushes and the MTR (passerine-MTR and thrush/non-thrush

MTR, the latter estimated by the classifier).

Passerine-

MTR

Passerine-MTR

(Thrush migration

period)

Thrush-

MTR

Non-

thrush-

MTR

2021 0.35 0.49 0.69 0.21

2022 0.44 0.68 0.75 0.31

Both years 0.40 0.59 0.65 0.31

The thrush migration period in column 3 refers to 10 September to

30 October, the period during which thrush migration occurs at the

study site. Values in italics are not significant (P > 0.01).
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difference in shape perceived by the radar between the

two echo groups, since the error with which the target

shape is estimated tends to be higher in ‘thrushes’.

Finally, the feature that describes the skewness of the

band-passed signal (Table 4) tends to show higher values

in ‘thrushes’, indicating a greater tendency of the ‘thrush’

signals towards higher than average values (Figure S1).

Thrush migration phenology and abundance

Across the entire measuring period, 35 925 radar echoes

were ultimately classified as ‘thrush’ (20 862 in 2021 and

15 063 in 2022) and 32767 as ‘non-thrush’ (12 117 in

2021 and 20 650 in 2022). These radar-based estimates of

thrush migration phenology across the autumn migration

measurement period strongly correlated with the acoustic

measurements (r = 0.65, P < 0.01; Table 2 and Fig. 4).

This correlation persisted also when analysing the 2 years

separately (r = 0.69 for 2021 and 0.75 for 2022,

P < 0.01). Although the frequency of calling thrushes was

also positively correlated with passerine MTR (see

Results), this correlation was significantly lower (0.35 for

2021, 0.44 for 2022). The Pearson correlation between the

number of calling thrushes and the non-thrush MTR was

also low and, in the case of 2021, non-significant

(Table 2). In 2021, the highest thrush-MTR was recorded

for 12 October (504 birds per km and hour), during

which 106 calling thrushes were recorded. In 2022, the

highest thrush-MTR was recorded on 21 September

(400 birds km�1 h�1), when 184 calling thrushes were

recorded. In the first half of the time series (before mid-

September), a time span when few thrushes are expected

to migrate, the non-thrush MTR was distinctly higher

than the thrush MTR (Fig. 4).

Discussion

Our results illustrate how acoustic data can refine taxo-

nomic detail in bird radar measurements to quantify

avian migration at the family level. Using acoustic record-

ings alone, quantification is hard (Sanders, 2013). With

radar measurements only, taxonomic detail is limited

(H€uppop et al., 2019). By combining both data sources,

the shortcomings of both techniques can, in certain situa-

tions, be partly overcome.

The phenology of thrush migration, as evidenced by our

radar data classification, aligns closely with existing litera-

ture, thereby corroborating the credibility of our model.

While the classified data expose a substantial presence of

thrushes from the outset of the period under consideration,

Figure 3. Raster plot depicting the probability variation of an echo being classified as ‘thrush’ by the Random Forest classifier, as a function of

the two most important features (the highest peak of the Fast Fourier Transform, i.e. ACMaxPeakFreq, measured in Hertz; and the RCS lowpass

filtered, i.e. RCS2_RCS_nearest_fea14, in square centimetres; see text for details). Cells shaded in dark pink indicate a high probability of being

classified as a ‘thrush’, while those in blue denote a high probability of classification in the ‘non-thrush’ class. In grey, density plots showing the

density distribution of the two features (top: ACMaxPeakFreq, RCS2_RCS_nearest_fea14, at bottom right).
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especially in 2021, a significant surge in activity emerges

from mid-September, culminating in peak abundance

towards late September and early October. This conforms

to the existing literature on the migration of these species

in Finland, since it is well-documented that they typically

commence migration around September (Weisshaupt,

Lehikoinen, M€akinen, & Koistinen, 2021; Weisshaupt, Leh-

tiniemi, & Koistinen, 2021). The thrush movements in the

days leading up to the onset of migration are most likely

pre-migratory movements and wandering behaviour typi-

cal of such species; also in the acoustic dataset, indeed, we

detected nocturnal calls of thrushes during August.

We found the radar echoes of thrushes to be clearly

distinguishable from other passerine-type birds by pre-

dominantly the wingbeat frequency, but also by additional

size and shape-related features (Table S1). The average

wingbeat frequencies (WBF) in the two groups (see

Results) align with those given in literature: Bruderer

et al. (2010) reported 10.9 Hz for T. philomelos and

8.9 Hz for T. merula during migratory flight. The ‘non-

thrush’ echoes exhibited a higher WBF, comparable to

those of small passerines (i.e. ranging from 15 to 20 Hz;

Pennycuick, 2001; Bruderer et al., 2010). As such, the

portion of passerine-MTR classified by our system as ‘-

non-thrush’ most likely primarily consists of small passer-

ines, as these are indeed migrating in the study area

during the study period (Weisshaupt, Lehtiniemi, & Kois-

tinen, 2021). The European Robin Erithacus rubecola, for

instance, is migrating in the area during the relevant

period and is known to have an average WBF of 15.5 Hz

(Bruderer et al., 2010). Willow Warblers Phylloscopus tro-

chilus (with an average frequency of approximately 18 Hz;

Bruderer et al., 2010) and Garden Warblers Sylvia borin

(16 Hz; Bruderer et al., 2010) migrate through the area

during August. On the other hand, thrushes are not the

only passerines in Helsinki with relatively low WBFs.

Although overall relatively few, other species migrating

over Helsinki with similar WBFs include the Common

Starling Sturnus vulgaris (around 9–10 Hz), Red-backed

Shrike Lanius collurio (9–11 Hz), and the Bohemian wax-

wing Bombycilla garrulus (9–10 Hz estimated). It is

equally true that for these species, their migration sched-

ule does not align perfectly with that of the species under

consideration: the migration of the Red-backed Shrike,

for instance, is earlier; and Waxwings are mostly present

from October onwards. Additionally, while starlings

migrate throughout the entire migration period of

thrushes, only a portion of their migratory flights is per-

formed nocturnally (V�ıgants et al., 2023). Therefore, we

can assume that part of the substantial ‘thrush’ MTR

from mid-September onwards can be attributed to these

species. However, it is crucial to note that the population

of Red-backed Shrikes in Helsinki is significantly smaller

compared to the thrush species we considered, making

their contribution likely negligible. Furthermore, it is

plausible to hypothesize that also a proportion of the ech-

oes classified as ‘thrush’ detected in August may be attrib-

uted to the presence of starlings, which bear a striking

resemblance in both size and WBF to the species studied,

and secondarily to the Red-backed Shrike. This may par-

tially explain, for example, the presence of echoes classi-

fied as ‘thrush’ in August, especially in 2021. While it is

less abundant than the ‘non-thrush’ MTR, it still exhibits

a certain consistency. On the other hand, considering the

outlined arguments, it remains equally reasonable to

Table 4. Ranking of the 8 most important features in the Random

Forest classifier training (custom name appended, see Table S1 for a

complete list).

Feature Importance Category

Highest peak of the Fast Fourier

Transform (‘ACMaxPeakFreq’)

100 Wingbeat

frequency

RCS lowpass filtered

(‘RCS2_RCS_nearest_fea14’)

9.37 Size

RCS raw signal

(‘RCS2_RCS_max_rawsignal’)

4.94 Size

Number intermittent pauses

(‘WFPf_numP_pause’)

3.13 Wingbeat

frequency

Number intermittent wingbeat phase

(‘WFPf_numP_phase’)

2.97 Wingbeat

frequency

Uncertainty shape feature

(shapeFeatRegrErr)

2.81 Shape

Skewness broad spectrum (skw_sigBP) 2.47 Others

Estimated wingbeat frequency

(WFF_predicted)

2.09 Wingbeat

frequency

This measure of feature importance is computed through a permuta-

tion procedure. For each tree in the random forest model, it records

how much the prediction error changes when using first only the data

that the tree has not seen during training and then randomly shuf-

fling the data for that variable. The difference between these two

values is calculated for each tree and then averaged across all trees

and normalized with respect to the variability of these differences.

The higher the variability of the differences, the more important the

feature. The measures of importance are scaled to range from 0

to 100.

Table 3. Confusion matrix of the Random Forest classifier used for

the radar dataset.

Predicted values

Non-thrush Thrush

Producer

accuracy

Actual values Non-thrush 1549 377 80%

Thrush 409 2030 83%

User accuracy 79% 84% OA = 82%

Kappa = 64%

The dataset included n = 4365 echoes.
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assume that the proportion of ‘thrush’ MTR detected in

August is indeed attributable, as already stated, to young

or adult thrushes undertaking pre-migratory flights.

Nonetheless, this does underline the importance of

including other radar features, such as those related to

size and shape, into echo classifications.

However, because of the large relative importance of

the WBF-related features in our study for the separation

between thrushes and non-thrushes (Table S1), our

approach might not have worked had we studied a taxo-

nomic group other than thrushes. In other words,

whether a certain taxonomic group will be separable

using our approach, will be strongly location-, and time-

dependent. This supposition arises from the evident fact

that thrushes are larger compared to other passerines (for

instance, T. merula can be up to three times longer with

double the wingspan of P. trochilus, Svensson, 1992) and,

at the same time, most small passerines are characterized

by WBFs that are roughly comparable. This makes the

latter much less distinguishable from each other at the

radar echo level. As for the target species, we previously

mentioned how Bruderer et al. (2010) highlights a slight

difference in WBF between T. philomelos and T. merula,

approximately 11 and 9 Hz, respectively, while according

to existing models (Pennycuick, 1990, 2001) T. iliacus is

expected to have a WBF averaging around 10 Hz. Given

the small differences in Hz, it is, therefore, highly unlikely

that thrush species can be further distinguished using

similar setups, especially in light of the possible intraspe-

cific variability in WBF (Cochran et al., 2008).

Even with our relatively rough approach of selecting all

birds during certain nights as the training data for the

thrush or non-thrush classes, we still obtained Pearson

correlations of 0.69 for 2021 and 0.75 for 2022 (Table 2).

Most likely, these correlations would have been even

higher when improved on any of the shortcomings of our

approach. Undoubtedly, however, certain conditions must

be met to achieve similar results in different settings, e.g.

location, time, or migratory bird community. The taxo-

nomic group or species of interest must exhibit sufficient

abundance to dominate the radar echo volume (sufficient

sample echoes) and indicate an individual-based migra-

tion pattern (no flocks) as typically found in nocturnal

migrants, such as thrushes in our study. Failure to meet

Figure 4. Comparison between thrush migration phenology measured by acoustic monitoring (in black; number of calling thrushes) and the

thrush-MTR (in lilac; number of birds per hour and km) and non-thrush-MTR (in blue; number of birds per hour and km) for the years 2021 (A)

and 2022 (B). The green line illustrates the proportion of the thrush-MTR to the total passerine-MTR. The plots cover the time span from 8

August to 30 October. Vertical grey lines delimit the months; horizontally striped bars cover the nights used to train the classifier.
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these criteria may result in the chosen training dates for

the classifier being too heavily contaminated by echoes

from other species and in failure to identify single echo

signatures. It is furthermore crucial that the chosen spe-

cies or group has distinctive morphological or beha-

vioural traits, such as a particular flight pattern, that is

recognizable at the level of radar echoes. This is essential

to limit the potential confusion with echoes produced by

other species. The target species or taxonomic group

should also be highly vocal during nocturnal migration,

so it is sufficiently registered on the acoustic recordings.

If not, identifying peak migration dates becomes much

more challenging, if not altogether impossible. Aside from

the listed prerequisites, further work may still be neces-

sary to use our classifier as a stand-alone tool in noctur-

nal migration monitoring. For instance, it would be

advisable to test our classifier in a different study area to

test the performance of the classifier in different regions.

As to system and spatial biases, we assume that the dif-

ferent detection volumes of the instruments and the dis-

tance of 4.5 km between them had no significant impact

on our results. Both instruments also have different detec-

tion volumes. On the other hand, it is worth mentioning

that the distance between the two instruments is quite

short for migrating birds, whose migration route spans

hundreds or thousands of kilometres. Moreover, the two

systems are approximately positioned along the NE–SW
migration direction expected for thrushes, maximizing the

probability of capturing the same flux of migrants.

Our study provides the first example of combining

acoustic and radar data to extract taxonomic information,

enabling the quantification of family-level migration from

radar data. This provides an important step towards

understanding migration patterns more comprehensively.

Within the wider scope of our research, the ability to

identify the migratory flow of thrushes could prove valu-

able in ecological and conservation contexts, such as

enhancing the use of radar devices to mitigate the risk of

bird strikes in locations like airports, wind farms or com-

munication towers (Kelly et al., 2007; Metz et al., 2020).

In fact, thrushes constitute a substantial portion of birds

most frequently involved in bird strikes in Europe (Dek-

ker et al., 2005; Metz et al., 2022), and as evident, such

incidents significantly escalate during the migratory

period (EGAST, 2013). Leveraging family-level knowledge

of migration can be extremely helpful in shaping conser-

vation strategies tailored to specific taxonomic groups,

particularly since radar technology allows us to gather

information about migratory patterns essentially in

real time.

In conclusion, the findings of this study provide a valu-

able contribution to the assessment of the potential of

complementary techniques in migration monitoring.

Furthermore, they open up new perspectives for a more

accurate understanding and quantification of migratory

phenomena.
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Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Figure S1. Density plots illustrating the distribution of

features’ values of ‘Thrush’ nights (in pink) and ‘Non-

thrush’ nights (in blue) echoes we used to build the

training dataset. The six features depicted in the figure

are among the eight features ranked as most important

and consequently used to build the classifier. The two

missing features in figure (ACMaxPeakFreq and

RCS2_RCS_nearest_feat14) are shown in Figure 3.

Table S1. Ranking of all features in the Random Forest

classifier training. Only the eight most important ones

were used to build the final classifier.
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