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1.  INTRODUCTION 

1.1. Spatial environmental fate modeling 

Environmental fate models (EFM) or Mackay-type models (Mackay, 2001) are 

important tools to assess the fate of organic chemicals in the environment. They 

perform mass balance calculations for various environmental processes from the 

release of a contaminant into the environment incorporating chemical and 

environmental properties. Therefore, they provide the prediction of contamination 

levels in various environmental compartments such as soil, water, vegetation, and 

air. These models were also used for the risk assessment of chemicals (ECHA, 

2020; RIVM, 2004). Figure 1 shows the “unit of world” as explained by Mackay, 

(1979) and illustrates different environmental media within a box model.  

 

Figure 1 unite of world (Mackay, 1979). 

Challenges and advancements regarding environmental modelling were reviewed 

in a recent paper (Di Guardo et al., 2018). A common assumption in EFMs is spatial 

homogeneity. Even though this assumption is useful in a variety of scenarios where 
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the spatial variation does not play a considerable role in the fate and transport of 

contaminants, in an environment where these variations are significant, this 

assumption will result in under/overestimation of the real world. Therefore, there is 

a need for including higher ecological realism in current modeling structures and 

simulation scenarios. Among all the incorporation of spatial inhomogeneity into 

modeling (Di Guardo et al., 2018; Di Guardo and Hermens, 2013) is of utmost 

importance. 

 Spatial variation can be due to source strength (i.e., the proximity and accessibility 

of locations from an emission source) as well as environmental characteristics (e.g., 

organic carbon, soil texture, vegetation cover, etc.) that causes differences in fate 

processes and results in non-uniform distribution of concentrations in the 

environment (Wania, 1996).  

Different approaches in modeling have been performed so far to target spatial 

variations in multimedia fate models. For example, the integration of an 

atmospheric model into an EFM to account for advection and dispersion processes 

in the atmosphere. The most common example of this type of model is the Gaussian 

model which calculates the concentration of a chemical released from a point source 

emission where the emission rate and meteorological conditions are constant. 



 

3  

 

Figure 2 Scheme of a Gaussian model (Leelossy et al., 2014). 

Atmospheric models can predict a high temporal and spatial resolution of chemical 

concentrations in the air. The results can be incorporated within an EFM system for 

further calculation concerning multimedia processes.  

Another way to address spatial variability within an EFM model is the integration 

of a Geographical Information System (GIS) to allocate different geographic 

features for different locations. Examples of such models are two versions of spatial 

SoilPlus (Falakdin et al., 2022; Ghirardello et al., 2014).  

Finally, a spatial multimedia fate model accounts for spatial variability within the 

EFM framework. For example, IMPACT-2002 (Pennington et al., 2005), A 

multimedia multi-pathway model that estimates the concentration and level of 

contaminants in the air, water, soil, sediments, and vegetation. 

Different modelling approaches implemented so far that account for the spatial 

heterogeneity of environments were studied. A chronological revision was 

performed to explore their major features and characteristics. Additionally, the 

models were evaluated in three different aspects of spatial, temporal, and chemical 

domains. This was the focus of my first paper (i.e., Paper I) titled “Spatially 

resolved environmental fate models: A review” published in Chemosphere journal. 
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1.2. Model development 

During their lifetime in the global environment, chemicals such as persistent 

organic pollutants (POPs) undergo various processes of volatilization, diffusion, 

advection, deposition, and runoff that occur among environmental compartments. 

POPs' behaviour and their fate processes have been subject to various fate models 

in order to predict their movements and assess their environmental concentration 

levels. Advances in this concept achieved such as accounting for temporal and 

spatial variabilities, incorporation of plant-related processes, and integration with 

other environmental models and platforms.  

SoilPlusVeg (SPV) is a dynamic multimedia fugacity-based model that 

characterized vegetation compartments such as roots, stems, and leaves along with 

their corresponding processes within the multimedia fate modelling framework. 

SPV includes air, vegetation, and soil media that each consist of a number of 

compartments. For each compartment, a fugacity capacity is considered and is 

described by Z values (mol/m3 Pa). Additionally, transport and transformation 

processes are described using D values (mol/Pa h) (Ghirardello et al., 2010; 

Terzaghi et al., 2017). SPV model performance and sensitivity analysis were 

previously explained (Terzaghi et al., 2017). 

SPV model was developed in Visual Basic version 6.0 and integrates a GIS tool 

(MapWindow v. 5.6.3, MapWindow.org) to interrogate and retrieve geographical 

information. Figure 3 illustrates the SPV model as well as the different 

compartments and processes that occur among them. 
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Figure 3 Compartments and processes included in the mass-balance calculations of SPV (Terzaghi et al., 2017). 

As mentioned in section 1.1., one of the objectives of environmental modelling 

advancements is the inclusion of spatial differences within the models in order to 

increase the realism of modelling and simulation scenarios. Therefore, the SPV 

model was further developed, in this Ph.D. project, into a spatially and temporally 

resolved multimedia fate model by adding a grid system where each grid cell acts 

as an SPV unit. This new version of the model is called Gridded-SoilPlusVeg 

(GSPV). 
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 In GSPV one of the the spatial featured of the environment is introduced by adding 

directional advective wind and its propagation within the grid to account for the 

effect of source strength and dynamic and multi-directional atmospheric transport. 

Moreover, the GIS system was used to introduce different vegetation cover 

properties for each cell. The GSPV model is dynamic (similar to SPV) in input 

environmental parameters such as meteorological data, vegetation parameters, and 

emission rates. Mass-balance calculations are performed up to a temporal resolution 

of a second and the results are provided on an hourly basis. 

The primary implementation of the GSPV model was for the simulation of a 

contaminated site of national relevance (SIN Pieve Vergonte) in Ossola Valley. The 

levels of DDTs found in fish species in one of the largest lakes in northern Italy, 

Lake Maggiore during a monitoring campaign, were higher than the legal threshold 

of food (up to mg/kg fresh weight) (Ceschi et al., 1996). The reason for this elevated 

level of contamination was related to the discharge of a chemical plant that 

produced DDTs for around 50 years (1948 to 1996). Some of these contaminants 

were directly discharged into the Toce river (one of the tributaries of Lake 

Maggiore). The production of DDTs was stopped in 1996 after the ban on DDTs 

production by Italian regulations. However, the area surrounding the chemical plant 

along with Lake Maggiore were heavily affected and the passive emission of DDTs 

into the atmosphere was not stopped for the following decades. 

Therefore, the area surrounding the chemical plant was considered for the 

simulation using the GSPV model. The objective was to predict the fate and 

transport of DDT for 100 years starting from the year of production (1948) within 
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the local scale region in order to know how the fate of this contaminant has evolved 

during the years of DDT production as well as following years. Plus, to estimate 

the time required for the contamination to clean up through degradation.  

Several sampling campaigns were conducted between 2001 and 2011 and various 

samples of soil, leaves, and litter was collected. Samples were analyzed for DDTs 

concentrations and used for the comparison and validation with model predictions 

for the corresponding years. The results of this work, including model development, 

simulation, and result comparisons were published in Science of the Total 

Environment journal, Paper II, titled “Predicting the regional contamination 

evolution of DDT for 100-years with a new gridded spatial and dynamic multimedia 

fate model”.  

Moreover, the regional environment, an area of 200km Ⅹ 200km, including an area 

of southern Switzerland and Northern Italy was simulated for further validation of 

the model and to predict the fate of a local DDT contamination source on a larger 

scale. The objective of this second simulation was also to calculate the amount of 

DDT deposition fluxes over years into the lakes located in the study area (i.e., Lake 

Maggiore, Lake Lugano, and Lake Como). The deposition value relating to Lake 

Maggiore was then utilized for a dynamic Lake model simulation in order to 

identify the potential lake contamination level caused by atmospheric transport and 

deposition. The results of simulations were compared with the monitoring and 

literature data. This study is in preparation and the manuscript is provided under 

section Paper III, titled “Predicting the contribution of a local emission source in 
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mid-range transport of DDTs and their deposition in terrestrial and aquatic 

ecosystems”.  

1.3. Microplastic measurements and analysis 

Microplastics (MPs) have become a global concern since plastic production has 

been increasing in the last 60 years and reached up to 367 million tons in 2020  

(PlasticsEurope, 2021). Plastic materials smaller than 5 mm have been considered 

as “Microplastics” (Barnes et al., 2009). Different sources of MPs include the 

corrosion of larger plastics as secondary source of microplastics as well as the 

produced microplastics (e.g., cosmetics) as the primary source. Various studies 

have been conducted to investigate reliable methodologies to analyse and quantify 

microplastics in marine environments (López-Rosales et al., 2022a, 2022b, 2021), 

however, a few are accounting for the impact of these pollutants in other 

environmental media such as the atmosphere and terrestrial vegetation. This is 

while MPs are considered an emerging airborne pollutant and exposure through 

inhalation can have a great impact on human health. Amato-Lourenço et al., (2020) 

have reviewed microplastics as airborne inhalant toxicants and pathogens with 

indoor and outdoor sources and their effect on human health. There is still a vast 

need for further investigation of these particles in the atmosphere and their 

behaviour such as deposition, transport, and distribution in the environment.   

Due to the large number of MPs in environmental samples, quantifying the 

characteristics of these particles reliably and in a reasonable amount of time is a 

challenging task. It can take plenty of time to quantify microplastics using 

traditional infrared (IR) spectroscopy and/or microspectroscopy. This method 
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which involves the collection of the full spectrum at specific points is not time 

efficient for the levels of microplastics found in the environmental samples. 

Recently, a device called ‘Laser Direct Infrared Imaging’ (LDIR) was developed 

by Agilent company (USA) that can provide a good resolution for the detection of 

very thin particles in a matter of a second (Hildebrandt et al., 2020). 

Agilent 8700 LDIR instrument, integrated with Agilent Clarity software, 

automatically identifies and measures particles up to 10 μm in diameter. The 

number of the total particles along with information about the length, width, height, 

diameter, aspect ratio, area, perimeter, eccentricity, circularity, and solidity are 

extracted. Different libraries, including the library provided by Agilent itself, can 

be used for the identification of particles. Additionally, the software provides the 

quality of the matching spectra for each detected particle as a percentage.  

 

Figure 4 Agilent 8700 LDIR Chemical Imaging System. 
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A research project is carried out by the University of A Coruña on the measurements 

of atmospheric depositions of microplastics using bulk depositors.  

Several air samples were collected using bulk samplers in a remote area. Samples 

were collected including total suspended particles, dry and wet deposition, and dust 

deposition, and went through pre-treatment and identification processes. 

Additionally, samples of leaves were collected as passive air samplers for 

comparison reasons.  

Since the analysis of airborne microplastics is a relatively new topic and 

identification of these particles on leaves has not been performed previously, this 

work is considered as a preliminary investigation on sample pre-treatments and 

analysis of these polymers in air and leaf media.  

The Paper IV provides information about air and leaves samples from preparations 

to identification and characterization of microplastics conducted during my stay at 

the University of A Coruña as a visiting Ph.D.  
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1.4. Collaborative papers 

In collaboration with other researchers of the Environmental Modeling Group 

(EMG), a study was performed with the objective of investigating rain samples, as 

a proxy of air concentrations, and SPME analysis as a tool to study the spatial and 

temporal variability of atmospheric levels of PAHs in an urban environment. A 

historical data collection for temporally and spatially resolved PAH concentration 

in air and rainfall was performed as an initial dataset for model calibration and 

validation of the results. This study was published in the Science of the Total 

Environment journal, Paper V, titled “Estimating temporal and spatial levels of 

PAHs in the air using rain samples and SPME analysis: Feasibility evaluation in an 

urban scenario”. 

Another collaboration on newly discovered soil contaminants (i.e., sulfonated and 

hydroxy-sulfonated PCBs) by the EMG was performed. Collaboration was done as 

part of the laboratory analysis of soil samples. This paper was published in 

Environmental Pollution journal, titled “Bioaccumulation of PCBs and their 

hydroxy and sulfonated metabolites in earthworms: Comparing lab and field 

results”, Paper VI.  

 

 

 

 

 



 

12  

2. OBJECTIVE OF THE THESIS 

Some of the important challenges in the prediction of risk for ecological systems are 

considered as: 

 a) the use of temporally and spatially resolved data for the chemical emissions 

instead of generic annual (or steady) values. 

b) incorporating different environmental properties depending on the characteristics 

of each geographical location;  

c) the development of environmental fate models capable of predicting time and 

space variable chemical concentrations. The current study focus on the following 

goals: 

1. To perform an overview of the spatially resolved environmental models in order 

to highlight their importance and to survey the methods and advancements 

carried out so far in accounting for spatial variations in environmental models. 

2. The development of a gridded spatial and temporal dynamic fate model for the 

prediction of organic chemicals in the environment where different 

representative environmental characteristics (e.g., vegetation cover) can be 

allocated to each grid. Moreover, to account for the effects of directional 

advective wind on the spread of contamination in the regional environment. 

3. To apply the model developed on different real-world scenarios and predict the 

fate of organic chemicals in time and space. The simulation results must agree 

with the monitoring data of the corresponding time and location.  

4. To utilize the latest available technology for the growing issue of microplastics 
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in the atmosphere. Moreover, to implement an initial sample treatment method 

for terrestrial leaves, as passive air sampler and an index of atmospheric 

contamination. 

 

3. STRUCTURE OF THE THESIS 

This thesis is based on the following papers, referred to in the text by their Roman 

numerals: 

I. Falakdin P., Terzaghi E., Di Guardo A., 2022. Spatially resolved 

environmental fate models: A Review. Chemosphere. 290, 0045-6535. 

https://doi.org/10.1016/j.chemosphere.2021.133394 

II. Falakdin P., Terzaghi E., Raspa G., Di Guardo A., 2022. Predicting the 

regional contamination evolution of DDT for 100-years with a new gridded 

spatial and dynamic multimedia fate model. Sci. Total Environ. 845, 0048-

9697. http://dx.doi.org/10.1016/j.scitotenv.2022.157190 

 
III.  Falakdin P., Terzaghi E., Di Guardo A. Predicting the contribution of a 

local emission source in mid-range transport of DDTs and their deposition 

in terrestrial and aquatic ecosystems. Submitted to Science of the Total 

Environment. 

IV.  Falakdin P., Lopez-Rosales A., Muniategui Lorenzo S.N., Andrade J., Di 

Guardo A., Characterization of microplastics in atmospheric and foliage 

samples. In preparation.  

V. Terzaghi E., Falakdin P., Fattore E., Di Guardo A., 2020. Estimating 

https://doi.org/10.1016/j.chemosphere.2021.133394
http://dx.doi.org/10.1016/j.scitotenv.2022.157190
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temporal and spatial levels of PAHs in air using rain samples and SPME 

analysis: Feasibility evaluation in an urban scenario. Sci. Total Environ. 

762, 0048-9697. https://doi.org/10.1016/j.scitotenv.2020.144184 

VI.  Palladini J., Bagnati R., Passoni A., Davoli E., Lanno A., Terzaghi E, 

Falakdin P., Di Guardo A., 2022. Bioaccumulation of PCBs and their 

hydroxy and sulfonated metabolites in earthworms: Comparing lab and 

field results. Environ. Pollut. 293, 0269-7491. 

https://doi.org/10.1016/j.envpol.2021.118507 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.scitotenv.2020.144184
https://doi.org/10.1016/j.envpol.2021.118507
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4. SUMMARY OF RESULTS 

PAPER I 

Spatially resolved environmental models are important tools to introduce and highlight 

the spatial variability of the real world into modeling. Although various spatial models 

have been developed so far, yet the development and evaluation of these models remain 

a challenging task due to several difficulties related to model setup, computational cost, 

and obtaining high-resolution input data (e.g., monitoring and emission data). For 

example, atmospheric transport models can be used when high resolution predicted 

concentrations in atmospheric compartments are required, while spatial multimedia fate 

models may be preferred for regulatory risk assessment, life cycle impact assessment 

of chemicals, or when the partitioning of chemical substances in a multimedia 

environment is considered. The goal of this paper is to review and compare different 

spatially resolved environmental models, according to their spatial, temporal and 

chemical domains, with a closer insight into spatial multimedia fate models, to achieve 

a better understanding of their strengths and limitations. This review also points out 

several requirements for further improvement of existing models as well as for their 

integration. 
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PAPER II 

In 1996 high dichlorodiphenyltrichloroethane (DDT) concentrations were found in 

Lake Maggiore (Italy) fish and sediments. DDT was produced by a chemical company 

located in a subalpine valley (Ossola valley, Piedmont Region, Italy), and ended up in 

the Toce River, a tributary of Lake Maggiore. In the area surrounding the chemical 

plant, high DDT concentrations in soil and vegetation were found after subsequent 

investigations. The quantification of the release from contaminated soil and the 

following migration toward downwind areas, deposition to the soil, and further 

evaporation plays an important role in understanding future DDT trends in soil and the 

atmosphere. To study this phenomenon, soil, and vegetation from Ossola Valley were 

monitored in 2001 and 2011. The concentration values obtained (soils: 0.05 to 1 μg/g; 

vegetation 2–100 ng/g), allowed to reconstruct the contamination gradient in the valley 

and were used to develop and calibrate a spatially resolved multimedia fugacity model. 

The model accounts for spatial and temporal dynamicity of environmental 

characteristics such as wind speed and direction, variable air compartment height etc., 

and simulates the fate and transport of chemicals on a local scale. The dynamic emission 

of DDT (about 13,000 kg for the 50 y production time) to the air was estimated and 

utilized for a 100-year simulation (from 1948 to 2048). The results obtained allowed to 

understand the temporal and spatial pattern of DDT contamination for a long period at 

a local scale as well as the potential contribution as a source potentially affecting sites 

at larger distances. 
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PAPER III 

A recently developed dynamic multiple box multimedia fate model (Gridded-SoilPlusVeg) was 

developed and implemented to account for the environmental variation and the effect of 

directional advective transport of chemicals towards different compartments and geographical 

locations. A chemical plant located in Pieve Vergonte in Ossola valley produced and emitted 

DDTs for around 50 years. In the previous study the fate and transport of p,p’-DDT emitted 

from the chemical plant were evaluated in nearby areas (up to 12 km). In this paper, the 

Gridded-SoilPlusVeg model was run for p,p’-DDT during and decades after the cease of 

production (a total of 100 years) for a larger study area (200 km x 200 km) in order to evaluate 

the contribution of a local source on a larger scale. Additionally, the deposition fluxes into the 

lakes were calculated and were used as input into a dynamic fugacity-based aquatic model to 

calculate DDT concentration in water and sediments of Lake Maggiore. The results of the 

simulations were compared with the monitoring and literature data. The results obtained from 

the spatial fate model, Gridded-SoilPlusVeg, allowed to estimate the atmospheric deposition 

fluxes and identify a potential cause for the high level of contamination in terrestrial and aquatic 

ecosystems on a regional scale. 
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Paper IV 

The growing trend of plastic production in recent years has raised concerns regarding 

microplastic-related environmental issues. Microplastic particles go through transport 

and deposition processes and end in different environmental media and food chains. In 

this report, atmospheric and leaf samples were collected and analyzed for the presence 

and quantity of identified microplastics. This work represents the methodologies used 

for pre-treatments and identification of microplastic using laser direct infrared 

spectroscopy. The pre-treatment process included washing, extraction, concentration, 

and transfer of the samples into the reflective slides. Microplastics then were identified 

by infrared spectroscopy based on their features such as size (area, width, height, and 

diameter), circularity, solidity, polymer composition, and matching quality. The results 

are illustrated for each sample, and in comparison, with each other indicating a good 

agreement between atmospheric and leaf samples despite the fact that they were 

collected at different times and locations. 
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PAPER V 

There is a growing interest in evaluating the role of concentration changes of 

contaminants in temporal and spatial gradients. This is often relevant for fast moving 

environmental phases such as air and water. In this paper, small volumes of rainwater 

were sampled as a proxy for air concentrations of Polycyclic Aromatic Hydrocarbons 

(PAHs): rain was collected in three sampling sites (high traffic, restricted traffic and a 

low traffic zone) in Como. Solid phase microextraction (SPME) was used for the 

extraction to reduce required sample volumes, allowing the acquisition of more samples 

in time. Rain samples highlighted a spatial and temporal variability along a traffic 

gradient in the Como city, especially for the most abundant PAH, e.g., phenanthrene. 

Air concentrations were then estimated from rain concentrations. The results show that 

this is a cheap and promising method, although requiring rainfall/snowfall conditions, 

that can be used to perform monitoring campaigns of air concentrations at a higher 

temporal and spatial resolution than the adopted standard methods (e.g., high-volume 

air samplers). The results could be employed for evaluation of the exposure, emission 

profiles and calibration of fate models. 
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PAPER VI 

Sulfonated and hydroxy-sulfonated PCBs were recently discovered by our group as new 

PCB soil contaminants, constituting about 1% of their parent compounds in soil. Here 

we investigate for the first time the bio accumulation of these metabolites as well as 

hydroxy-PCBs and native PCBs in earthworms. A sequence of three experiments, at 

increasing complexity and ecological realism, were performed with four different 

earthworm species (Eisenia foetida Savigny, Lumbricus terrestris L, Allolobophora 

chlorotica Savigny and Aporrectodea caliginosa Savigny) exposed to contaminated 

soils. The first experiment confirmed that when exposing earthworms to soil 

contaminated with a single hexa-chlorinated congener (PCB 155), no formation of polar 

metabolites in earthworms could be detected. This allowed to plan the following two 

experiments, using a soil from a PCB contaminated site and rich in relatively high levels 

(10–130 μg kg-1) of hydroxy-, sulfonated-, and hydroxysulfonated-PCBs. 

Bioaccumulation factors (BAFs) and bioconcentration factors (BCFs) were then 

obtained in the second and third experiments, to compare the accumulation behavior of 

these chemicals in laboratory and natural conditions. Regressions between BAF/BCF 

and Log Kow/Log D, produced a variety of results, being generally significant between 

BCF and PCBs and not significant in the other cases. In general, the metabolites 

accumulated in earthworms with detectable concentrations in their tissues (8–115 μg 

kg-1), although sulfonated and hydroxy-sulfonated PCBs showed BAF and BCF values 

lower (up to two orders of magnitude) than those calculated for the parent PCBs, given 

their lower lipophilicity. 
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A B S T R A C T   

Spatially resolved environmental models are important tools to introduce and highlight the spatial variability of 
the real world into modeling. Although various spatial models have been developed so far, yet the development 
and evaluation of these models remain a challenging task due to several difficulties related to model setup, 
computational cost, and obtaining high-resolution input data (e.g., monitoring and emission data). For example, 
atmospheric transport models can be used when high resolution predicted concentrations in atmospheric com-
partments are required, while spatial multimedia fate models may be preferred for regulatory risk assessment, 
life cycle impact assessment of chemicals, or when the partitioning of chemical substances in a multimedia 
environment is considered. The goal of this paper is to review and compare different spatially resolved envi-
ronmental models, according to their spatial, temporal and chemical domains, with a closer insight into spatial 
multimedia fate models, to achieve a better understanding of their strengths and limitations. This review also 
points out several requirements for further improvement of existing models as well as for their integration.   

1. Introduction 

Environmental fate models are important tools to assess the envi-
ronmental cycle of contaminants. They can be used to perform the mass 
balance of a chemical discharged into the environment (Mackay, 2001). 
For this reason, they are also used in the context of risk assessment of 
chemicals (ECHA, 2020; RIVM, 2004) and were the object of a recent 
review (Di Guardo et al., 2018). Throughout the evolution of 

environmental fate models, plenty of challenges were faced and 
addressed that are worth considering for further advancement of the 
existing models and development of new predictive models. In partic-
ular, the need to include more ecological realism in the current scenarios 
and to develop models capable of incorporating and handling such 
complexity. One of the most important challenges is the inclusion of 
spatial variability of the real environment into the models (Di Guardo 
et al., 2018; Di Guardo and Hermens, 2013). An example of such need is 
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the requirement of being able to compare predicted to monitoring 
concentrations in the environment. Such measured concentration (in 
water, soil, air, biota, etc.) often depend not only on physical-chemical 
properties, partitioning, and emission strength but also on the pure 
variability of the natural environment (e.g., texture and organic carbon 
in soil, particulate and dissolved organic carbon (POC and DOC) in 
water, uptake rate for different plant species, bioavailability of chem-
icals in water and soil, etc.). 

In the 1990s, atmospheric transport models (ATMs) were used to 
provide spatially resolved chemical concentrations, however, these 
models were only applicable for air modeling. On the other hand, 
multimedia box models were mostly applied for long-lived substances 
for which relatively small temporal and often spatial changes were ex-
pected, additionally, the measurements used to have a low spatial and 
temporal resolution (Di Guardo et al., 2018). As a result, in the simu-
lations, long-term average and often homogeneous phase conditions 
were used to describe environmental characteristics. This was due to the 
need to reduce complexities, develop models in a tiered strategy, and 
introduce complexity (e.g., new compartments, processes, or details) 
only when required (Mackay et al., 1996a, 1996b; Mackay, 2001). Since 
the 1990s, the mobility of chemicals in a spatially variable environment 
was more appreciated (Scott et al., 1998; Wania and Mackay, 1993). 
Wania (1996) described two main sources of spatial variability in 
environmental systems; 1) different proximity and accessibility of lo-
cations from an emission source which causes variation in source 
strength and incomplete mixing processes. 2) variability in environ-
mental characteristics (e.g., organic carbon, soil texture, etc.) that cau-
ses the different intensity of fate processes which results in non-uniform 
distribution of concentrations in the environment (Wania, 1996). 
Additionally, new contaminants found in monitoring campaigns along 
with spatially different discharges of chemicals in the environment (such 
as pesticides) imposed to address the evolution and variability of con-
centrations at different locations in space (Ippolito and Fait, 2019; 
Mishra et al., 2012; Morselli et al., 2018c; Shen et al., 2005). Throughout 
the time, environmental fate models were challenged with the need to 
introduce higher flexibility for spatial and temporal variations, also 
related to the advances in analytical chemistry which provided a higher 
spatio-temporal resolution of measurements to support 
model-measurement comparisons (Di Guardo et al., 2018). Thus, mod-
elers started to apply different approaches aiming to improve the spatial 
resolution of the models. This is particularly important for models such 
as the compartmental fate models, which assume well-mixing within a 
compartment and therefore a prevailing concentration representing the 
phase studied. Therefore, in such models, spatial differences were not 
present within each compartment so new visions and techniques had to 
be adopted in order to perceive such differences. Spatially resolved 
models are also very useful in bioaccumulation studies (Gobas et al., 
2016; van den Brink et al., 2016), especially when food chain enrich-
ment is involved and depends on many organisms at different levels, 
possibly feeding in very different spots and/or ecosystems (for example, 
where the predator feeds on terrestrial and aquatic species at the same 
time). 

This paper aims to review two common spatial modeling approaches 
that specifically deal with the quantitative impact of distance and spatial 
variability of environmental features on chemical concentrations; 
namely atmospheric transport models and spatial multimedia models 
(SMMs) with a particular focus on the latter. This study will not treat in 
great depth spatial models that do not mathematically calculate a 
distance-concentration relationship. Major model development features 
plus the evaluation of their spatial, temporal, and chemical domains 
were assessed in order to provide a historical and evolutionary 
perspective on the most common approaches available. Several reviews 
have been previously conducted on spatial models (Leelossy et al., 2018; 
Li, 2019; Pistocchi et al., 2010; Pistocchi and Galmarini, 2010), how-
ever, a comprehensive survey on ATMs and SMMs that recapitulates 
their characteristics, applications, advantages, and limitations in 

analogy with each other yet has not been carried out. This review, which 
includes examples of their application to specific cases, allows com-
parison of their structure and features, as well as their potential 
developments. 

2. Spatially resolved models 

2.1. Atmospheric transport models 

ATMs mathematically describe how the atmosphere affects the 
emitted pollutants due to the combination of advection (transport due to 
the wind) over large spatial ranges and dispersion (due to turbulent eddy 
motions and dilution by wind) within short distances. They may also 
consider the plume rise, wind shear, and physical and chemical trans-
formations (Turner, 1979). ATMs require information about meteo-
rology and emission. They are mostly utilized for the impact assessment 
of emissions and accidently released hazardous substances on air qual-
ity, under varying meteorological conditions. Besides, ATMs are also 
used at nuclear and chemical plants for emergency responses (Shankar 
Rao, 2007). 

Atmospheric transport and dispersion of the pollutants can be mainly 
described by two categories of models namely Eulerian and Lagrangian. 
The fundamental equation (1) (Zannetti, 1990) is based on the conser-
vation of mass of a single pollutant concentration c(x,y,z,t), as a function 
of space (along x, y, and z axes) and time (t). Different processes, such as 
horizontal and vertical mixing due to the turbulence, deposition, 
chemical reaction, radioactive decay, and physical transformation, can 
be described by the following equation: 
∂c

∂t
= − V.∇c +  D.∇

2c + S (1)  

where c is the pollutant concentration, V is the velocity, D is the mo-
lecular diffusivity, ∇2 = ∂2

∂x2 +
∂2
∂y2 +

∂2
∂z2 is the Laplacian operator, ∇ is 

the gradient operator, and S represents the sources and sinks. Leelossy 
et al. (2018) describe the sources and sinks as the sum of three terms of 
emissions, chemical reactions, and deposition. 

As described by (Zannetti, 1990), Eulerian modeling considers a 
fixed coordinate frame with respect to the Earth, and each air parcel is 
treated within the same frame. In this modeling approach, the velocity 
compound in equation (1) includes two resolvable (obtained from 
measurements or meteorological models) and unresolvable (including 
turbulent atmospheric diffusion eddies which should be minimized) 
components. Likewise, the concentration and the sources and sinks 
terms are explained by theoretical mean and unresolvable components. 
The Eulerian equation is eventually solved either analytically or 
numerically (Zannetti, 1990). A well-known Eulerian approach that 
solves the aforesaid equation analytically for relatively short distances is 
the Gaussian Plume model. The Gaussian method assumes a continuous 
point source emission together with uniform wind flow and homoge-
neous turbulence to generate a 3-dimensional concentration field. Even 
though these assumptions are against the inhomogeneous nature of the 
wind and turbulence in the Planetary Boundary Layer (PBL), the 
simplicity of this method, its consistency with the random turbulence, 
and the fact that the method has been evaluated with a large number of 
experimental data justifies the use of these models (Demael and Car-
issimo, 2008). 

In Lagrangian modeling, the reference system follows the average 
atmospheric motion, and the dispersion of the chemical is considered as 
the transport of an air parcel (or “puff”) along a trajectory assuming to 
keep its identity during the path. In the Lagrangian equation for atmo-
spheric dispersion, a probability density function defines the movement 
of the air parcel from a certain location and time to another. The sources 
and sinks term is also a function of time and space, and for each variable, 
a fluctuation term due to the uncertainties is considered. Finally, the 
average concentration is calculated as an integration over the entire 
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atmospheric domain (Zannetti, 1990). 
Several types of ATMs (e.g., dispersion models, particle models, 

photochemical models, meteorological models, etc.) can be found, 
depending on the purpose of a model and the type of chemicals simu-
lated. For example, relatively inert pollutants such as CO and SO2 can be 
modeled by dispersion models, while more chemically reactive pollut-
ants such as O3 and NO2, which may react to form secondary pollutants 
can be modeled by photochemical models (Turner, 1979). In the 
following sections, several types of ATMs with a number of examples are 
explained in brief. 

Dispersion models are mathematical equations that describe atmo-
spheric dispersion and physical and chemical processes that occur 
within the plume to calculate the concentration of the pollutant in 
different locations. These models can be generally applied to local sit-
uations (a few km from the source), although some can be applied also at 
regional, and global scales (Holmes and Morawska, 2006). AERMOD 
(Cimorelli et al., 2005) is an example of a dispersion model that in-
corporates air dispersion based on PBL parameters such as mixing 
height, stability, turbulence, etc. AERMOD is a steady-state and follows 
the Gaussian plume formulation. CALPUFF (Scire et al., 2000) is another 
example of the dispersion model that is based on Lagrangian Gaussian 
puff model formulation and dynamically simulates the transport of the 
contaminants by incorporating temporal and spatial variations in the 
meteorological field during the simulation period. The model accounts 
for chemical removal, wet and dry deposition, complex terrain algo-
rithms, building downwash, plum fumigation, etc. The two-dimensional 
meteorological fields (e.g., mixing height, surface characteristics, and 
dispersion properties) were incorporated into the model by a meteoro-
logical model (CALMET) while the processes of dispersion and trans-
formation for a “puff” of emitted material are calculated by CALPUFF. 

Particle models simulate the transport of particles in the atmosphere 
within a Lagrangian system and represent the plume using a certain 
number of “fictitious” particles that move in semi-random trajectories to 
simulate the dynamic of specific parameters such as mass, heat, elec-
trical charge density, etc. (Zannetti, 1992). The advantage of using the 
Lagrangian method for particle dispersion over the Eulerian method is 
its extremely fine resolution which is due to the independence of the 
emitted tracer from the computational grid, while, in the Eulerian 
approach, the emitted tracer immediately is mixed within the grid cells 
(Stohl et al., 2005). An example of these models is FLEXPART (Stohl 
et al., 1998) that calculates the trajectories of a large number of particles 
(each representing a parcel of tracer material) and atmospheric trans-
port processes, turbulent diffusion, dry and wet deposition, decay, and 
linear chemistry that can be applied from local to global scale. 

Photochemical models are air quality models that account for the 
description of the atmospheric chemistry, reactions, and transformation 
of the chemicals towards secondary pollutants after their emission into 
the air. They have been formulated mostly in Lagrangian and Eulerian 
reference frames and are applicable for local, regional, and global spatial 
scales (Russell, 2000; Tesche, 1983). Photochemical dispersion models 
were initially built to simulate the transport, transformation, and 
dispersion of ozone and its photochemical oxidants (Tesche, 1983). For 
example, MOZART is a global three-dimensional model for tropospheric 
ozone and its precursors that accounts for surface emission, formation, 
and the fate of photo-oxidants and provides dynamic distribution of up 
to 56 chemical mixing ratios (e.g., O3, NOx, CO, etc.) (Brasseur et al., 
1998). CMAQ (Byun and Ching, 1999) is a photochemical air quality 
model that simulates the concentration of airborne gases such as ozone, 
particulates, toxic and acid depositions. In this model, the simulation of 
reactivity of organic compounds in the atmosphere using different spe-
cies, grouped based on their carbon bond type (Whitten et al., 1980), 
along with a module for the simulation of aerosol physics was 
implemented. 

Some types of ATMs are supported by meteorological (sub)models, 
used to provide resolved input data on meteorological fields. For 
example, CALMET is a meteorological model that provides a 3- 

dimensional diagnostic gridded wind field required for CALPUFF sim-
ulations (Scire et al., 1999). Another example is AERMET which is the 
meteorological pre-processor for the AERMOD model; AERMET requires 
surface characteristics, cloud cover, upper air temperature, near-surface 
wind speed, wind direction, and temperature to calculate hourly PBL 
heights and other input parameters for AERMOD (Cimorelli et al., 
2005). 

There is a broad range of ATMs to survey (Table 1 reports a brief 
comparison between ATMs and SMMs, and Table 2 shows a list of 
models and some of their major features, as well as their applications to 
different scenarios or chemicals). In the interest of brevity, it is preferred 
to discuss their general characteristics as well as their pros and cons 
rather than detailed model structures. 

Limitations concerning ATMs can be different for each approach 
depending on the modeling assumptions. Several limitations are dis-
cussed concerning particle dispersion models by Holmes and Morawska 
(2006). For instance, Gaussian models work under the steady-state 
assumption, they only account for diffusion and advection processes, 
and they are unconcerned about the inner-plume interactions. In urban 
areas, they neglect the effects of multiple buildings. They are neither 
suitable for the low-wind conditions and distances less than 100 m nor 
for far-field modeling (up to a few kilometers). Additionally, the ho-
mogeneous wind-field assumption is regardless of meteorological vari-
ations over long distances (Holmes and Morawska, 2006). 

As mentioned earlier, Lagrangian models can provide fine spatial 
resolution, however, for simulation of long-range transport of chemicals, 
calculations must be performed for a large number of trajectories which 
can increase computational cost. One solution to this issue is the 
implementation of nested models, for example, to use a Lagrangian 
model close to the source and interpolate the obtained concentration 
field to a Eulerian grid to perform long-range Eulerian simulation 
(Leelossy et al., 2014). A different approach to solve the aforementioned 
problem was implemented by Asman (2001) for the atmospheric 
transport and deposition of ammonia and ammonium using the TREND 
model, a Lagrangian plume-type model. The model is applied for 
Denmark and surrounding sea areas on a 5 km × 5 km grid and can 
implement different types of formulation depending on the spatial scale. 
In local scales, a Gaussian formulation is used because the plume has not 
been spread entirely over the mixing layer, while at longer distances a 
one-layer model that assumes the plume is well-mixed over the mixing 
layer and accounts for the vertical concentration profile due to the dry 
deposition can be used (Asman, 2001). 

On the other hand, among the advantages of ATMs is their ability to 
provide a high spatial and temporal resolution while maintaining a low 
to moderate computational effort. ATMs can have a horizontal spatial 
resolution of up to several meters and a temporal resolution of under an 
hour. However, different factors can affect the transport of chemicals in 
the air where high spatial resolution is desired. For example, the effect of 
the geometry of natural and artificial objects (such as micro- 
meteorological effects of urban geometry). A review has been sur-
veyed by Vardoulakis et al. (2003) on the air quality modeling in the 

Table 1 
General comparison between ATM and SMM modeling approaches.  

Atmospheric transport models (ATMs) Spatial multimedia models (SMMs)  
• ATMs usually calculate only processes 

and concentrations of chemicals 
associated with the atmospheric 
compartments.  

• They typically deal with airborne 
chemicals (NOx, O3, PAHs, …).  

• They provide spatial resolution up to 
several meters.  

• They use resolved meteorological 
data (less than 1 h).  

• Processes and concentrations are 
calculated for different 
environmental media (e.g., air, 
water, soil, sediment, vegetations, …)  

• They can deal with chemicals that 
are present in the different types of 
media (e.g., PCBs, pesticides, PAHs, 
…)  

• They provide a spatial resolution of up 
to hundreds of meters.  

• They use hourly to yearly average 
meteorological data.  
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Table 2 
Spatially resolved multimedia models and atmospheric transport models developed during the last decades and their major characteristics.   

Model name SSa Db Scale Chemicals Compartments Features Authors Model Applications 
Atmospheric 

transport 
models 
(ATMs) 

CTDMPLUS ✔ ✕ Rc SO2 air Gaussian, simulation of 
dispersion for point-source 
emissions and complex 
terrain topography. 

US EPA. ( 
Paumier 
et al., 1992;  
Perry, 1992) 

Venkatram et al. (2001) 

DEHM ✕ ✔ R SO2, S O−2
4 , 

HCH (1), PCB (2) 

congeners.  

air Eulerian, for long-range 
transport of air pollution in 
the Arctic. 

Christensen 
(1997) 

(Christensen et al., 
2004; Hansen et al., 
2015; Skov et al., 2020) 

FLEXPART ✕ ✔ R PDCHs (3), PTCHs 
(4), BC (5) 

air Lagrangian, particle- 
dispersion model used for 
emergency responses in 
Austria with a sub-grid scale 
parametrization for PBL 
height. 

Stohl (1998) (Eckhardt et al., 2017;  
Pisso et al., 2019) 

MOZART ✕ ✔ Gd O3, NOx, HNO3, 
N2O5, CH4, CO⋅N2O 

air Semi-Lagrangian, 3D model 
for studying the global budget 
of tropospheric ozone and its 
precursor. 

Brasseur et al. 
(1998) 

(Emmons et al., 2010;  
Horowitz et al., 2003) 

MATCH ✕ ✔ Le to 
G 

Tracers like CO2 air Eulerian, offline, and 
limited-area atmospheric 
transport model with three 
vertical layers 

Robertson 
et al. (1999) 

Lawrence et al. (2007) 

CMAQ ✕ ✔ R Atrazine, Benzene, 
Diesel particles, 
BAP (6), Dust, Trace 
metals, NH3 

air Eulerian model based on “1- 
atm” approach (multi- 
pollutant chemistry and 
multi-scale dynamics and 
thermodynamics) 

Byun and 
Ching (1999) 

(Appel et al., 2013;  
Aulinger et al., 2011;  
Cooter et al., 2002, 
2012; Cooter and 
Hutzell, 2002; Golden 
et al., 2010; Karl et al., 
2019a; Seigneur et al., 
2003) 

CALPUFF ✕ ✔ L to 
R 

NOx (NO and NO2) air Lagrangian and Gaussian 
(puff model), meteorological 
and air quality modeling 
system. 

Scire et al. 
(2000) 

Oleniacz and Rzeszutek 
(2018) 

GEOS-CHEM ✕ ✔ G Ozone-NOx- 
hydrocarbon, O3, 
CO, H2O 

air Eulerian, global 3D model 
for simulation of tropospheric 
ozone-NOx-hydrocarbons 
based on assimilated 
meteorological observations 
from Goddard Earth 
Observing System. 

Bey et al. 
(2001) 

(Han et al., 2020;  
Nassar et al., 2009;  
Wagner et al., 2019) 

MITgcm ✕ ✔ L to 
G 

Hg, PCBs air, water Global circulation model for 
different scales in ocean and 
atmosphere 

Adcroft et al. 
(2004) 

(Wagner et al., 2019;  
Zhang et al., 2019) 

AERMOD ✔ ✕ R SO2, SF6 (7), PAHs air Gaussian air dispersion 
model to improve the 
formulation of the planetary 
boundary layer. 

(Cimorelli 
et al., 2005;  
Perry et al., 
2005) 

Morselli et al. (2012) 

CAMx ✕ ✔ L to 
Cf 

FTOH (8), PFCA (9), 
O3, PM 

air Eulerian, a photochemical 
dispersion “1-atm” regional 
model for gaseous and 
particulate air pollution. 

ENVIRON 
(2005) 

(Nopmongcol et al., 
2012; Tesche et al., 
2006; Yarwood et al., 
2007) 

ADEPT ✔ ✕ C NOx, SOx, Benzene air A simplified model like 
Gaussian, Atmospheric 
deposition, and transport 
model for risk assessment 

Roemer et al. 
(2005) 

(Hollander et al., 2008;  
Pistocchi and 
Galmarini, 2010) 

WRF/Chem ✕ ✔ R O3, CO, NOx, Hg, 
Fine particles 

air Eulerian, Implementation of 
chemical processes into 
Weather Research and 
Forecasting (WRF). 

Grell et al. 
(2005) 

(Gencarelli et al., 2014;  
Sicard et al., 2021) 

MPI-MCTM ✕ ✔ G HCH, DDT, PCBs air, soil, water, 
vegetation, 
snow, land ice 

Multicompartmental 
chemistry transport model 
coupled with several sub- 
models to account for many 
environmental media. 

Guglielmo 
et al. (2009) 

Lammel and Stemmler 
(2012) 

[Li] ✕ ✔ R PAHs air Advection–diffusion model 
with high resolution coupled 
with the emissions inventory. 

(B. Li et al., 
2018)  

NJUCPL ✕ ✔ G Hg air, water Online coupled model (GEOS- 
Chem, MITgcm) to assess air- 
sea exchange fluxes of Hg. 

Zhang et al. 
(2019)  

EPISODE- 
CityChem 

✕ ✔ R NO2, O3, PM air Eulerian air dispersion 
model for urban air quality 
that can be applied for a 
variety of airborne pollutants. 

(Hamer et al., 
2020; Karl 
et al., 2019b) 

Karl et al. (2019b) 

(continued on next page) 
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Table 2 (continued )  
Model name SSa Db Scale Chemicals Compartments Features Authors Model Applications 

Spatial 
multimedia 
models 
(SMMs) 

Globo-POP ✕ ✔ G PCBs, PBDEs (10), 
DDT (11), α-HCH 

air, water, soil, 
sediments 

A global model that divides 
the environment into nine 
latitudinal zones to obtain 
concentrations as a function 
of time. 

Wania and 
Mackay 
(1993) 

(Scheringer and Wania, 
2003; Wania and 
Dugani, 2003; Wania 
and Mackay, 1995, 
1996) 

SoilFug ✕ ✔ L Pesticides 
(metolachlor, 
terbuthylazine, 
fenitrothion) 

soil and receiving 
surface water 

A multimedia model that was 
used for the prediction of 
runoff at the catchment scale. 

Di Guardo 
et al. (1994a) 

(Barra et al., 2000; Di 
Guardo et al., 1994b) 

ChemCAN ✔ ✕ R CB (12), LAS (13), 
TCE (14), PCB, 
α-HCH, B[a]P, 
HCB, Atrazine 

air, water, soil, 
sediment 

One of the primary 
multimedia models to 
simulate the fate of organic 
chemicals parametrized for 
Canada 

Mackay et al. 
(1996b) 

Webster et al. (2004) 

CliMoChem ✕ ✔ G PCBs, CCl4 (15), 
α-HCH, mirex, 
atrazine 

air, water, soil A global model that considers 
the influence of temperature 
on fate and transport of 
chemicals. The model 
consists of a variable number 
of latitudinal zones. 

Scheringer 
et al. (2000) 

(Fenner et al., 2007;  
Hollander et al., 2008;  
Scheringer et al., 2004;  
Scheringer and Wania, 
2003) 

BETR North 
America 

✔ ✔ C Toxaphene, γ-HCH, 
PBDEs, PAHs, HCB 
(16), DecaBDE (17), 
BC, PCBs, PFOS 
(18), D5 (19) 

air, freshwater, 
freshwater 
sediments, 
coastal water, 
soil, vegetation 

Regionally segmented 
multimedia fate model for 
North America 

MacLeod 
et al. (2001) 

BETR North America, 
Evn-BETR: (Armitage 
et al., 2007; Earnshaw 
et al., 2015; Hauck 
et al., 2008; Hollander 
et al., 2008; Liu et al., 
2015, 2014; 
Konstantinos  
Prevedouros et al., 
2004; K. Prevedouros 
et al., 2004) 

[Coulibaly] ✕ ✔ L TCE air, water, soil, 
sediments, 
vegetation, roots, 
vadose 

GIS-based multimedia model 
for the fate of chemicals in the 
watershed. 

Coulibaly 
et al. (2004)  

POPsME ✕ ✔ C PAHs, PCDD/F (20) air, water, soil, 
sediments 

A multimedia model to 
describe changes in 
concentrations. The model 
considers the relative 
concentration of each 
medium over soil 
concentration. 

Lee et al. 
(2004) 

Lee et al. (2007) 

G-CIEMS ✕ ✔ C Benzene, Dioxins, 
1,3-Butadiene, 
Herbicides 

air, water, forest 
canopy, soil 

Grid catchment model 
developed on GIS to benefit 
from geo-referenced river 
model and spatially resolved 
multimedia fate model in the 
same system. 

Suzuki et al. 
(2004) 

(Hayashi et al., 2016;  
Hollander et al., 2008;  
Imaizumi et al., 2018) 

IMPACT 2002 ✔ ✕ R PeCDF (21), PAHs, 
HCB, BC 

air, water, soil, 
sediments, 
vegetation 

A multimedia multi-pathway 
model to estimate 
concentration and level of 
contaminants in food. 

Pennington 
et al. (2005) 

(Armitage et al., 2007;  
Hauck et al., 2008;  
Manneh et al., 2010) 

BETR Global ✔ ✔ G PCBs air, water, soil, 
vegetation 

A global model that 
integrates global climate data 
from the National Centres. 
The globe is represented with 
288 multimedia regions on a 
15◦ grid. 

MacLeod 
et al. (2005) 

MacLeod et al. (2011) 

BasinBox ✔ ✕ L 3175 hypothetical 
organic chemicals 

air, water, soil, 
sediment 

Generic multimedia fate 
model for river catchments to 
assess the risks of new and 
existing chemicals. 

Hollander 
et al. (2006) 

Hollander et al. (2009) 

CoZMo-POP 2 ✕ ✔ R POPs air, water, soil, 
sediments, forest 

A multimedia model to 
describe the long-term fate of 
chemicals in coastal 
environments or drainage 
basins of large lakes 

Wania et al. 
(2006) 

Choi and Wania (2011) 

GLOBOX ✔ ✕ G Nitrobenzene air, soil, water, 
sediment 

A global model for life-cycle 
assessment toxicity 
characterization factors. 
Multimedia processes are 
based on EUSES. 

Wegener 
Sleeswijk 
(2006) 

Wegener Sleeswijk and 
Heijungs (2010) 

[Luo] ✕ ✔ R B[a]P, HCB air, water, soil, 
sediments, 
vegetation 

Extension of Monte Carlo 
analysis in a multimedia fate 
model. Stochastic simulations 

Luo and Yang 
(2007) 

Luo et al. (2007) 

(continued on next page) 
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Table 2 (continued )  
Model name SSa Db Scale Chemicals Compartments Features Authors Model Applications 

are run to demonstrate 
uncertainties. 

IMPACT 
North 
America 

✔ ✕ C B[a]P, TCDD (22), 
Hg 

air, water, soil, 
sediments, 
vegetation 

A multimedia multi-pathway 
air and exposure model 
extended to include the 
indoor and urban 
environment. 

Humbert 
et al. (2009)  

COHERN ✕ ✔ L PCBs, PAHs, 
PCDD/Fs 

air, water, 
sediments 

A 3D hydrodynamic model 
coupled with a contaminant 
fate and ecological model for 
the distribution of chemicals 
in water bodies. 

Dueri et al. 
(2010)  

SDMFM ✔ ✔ R Toluene air, water, soil, 
organic film, 
vegetation, 
sediments 

Development of a spatial 
model based on a finite- 
difference method that is 
applied to a uniform grid. 

Kim et al. 
(2010)  

LSRMFM ✔ ✕ L benzene, toluene, 
xylene, styrene 

air, water, soil, 
organic film, 
vegetation, 
sediments 

Spatially refined multimedia 
fate model combined with 
GIS, for human carcinogenic 
and non-carcinogenic 
inhalation risk assessments. 
The model has a 0.5 × 0.5-km 
segment resolution. 

Kim et al. 
(2011)  

SO-MUM ✕ ✔ R PCBs, PBDEs air, water, soil, 
sediments, 
vegetation, film 

A spatial model with 5 × 5 
km2 cell resolution to back- 
calculate air emissions from 
measured concentrations. 

Csiszar et al. 
(2013) 

Csiszar et al. (2014) 

Spatial 
SoilPlus 

✕ ✔ R pesticides air, soil, water The model is GIS integrated 
and it includes spatial soil 
layers, dynamic air, and 
catchment runoff. 

Ghirardello 
et al. (2014)  

ECORAME ✕ ✔ L PAHs air, water, 
sediment, 
vegetation 

A model for aquatic 
ecological exposure that 
treats each water segment as 
an independent cell to 
increase the accuracy of 
assessments. 

Jung et al. 
(2014)  

SESAMe ✔ ✕ R & 
C 

B[a]P, ACE (23), 
TCS (24), DF (25) 

air, water, soil, 
sediments, 
vegetation 

A model to investigate the 
influence of environmental 
parameters on chemical 
overall persistence and long- 
range transport potential. 

Zhu et al. 
(2014) 

SESAMe v3.3: (Zhu 
et al., 2016, 2019) 

ChimERA fate ✕ ✔ R PCBs water, 
sediments, 
macrophyte, TSP 
(30), DOM (31) 

The fate of organic chemicals 
in dynamic water-sediment 
systems, layered sediments, 
and water segments is 
investigated. 

Morselli et al. 
(2015) 

Improved ChimERA: (Di 
Guardo et al., 2017) 

[Ligaray] ✕ ✔ R PAHs air, water, soil A multimedia model coupled 
with a hydrological model 
(SWAT) is used to simulate 
the spatial and temporal 
distribution of PAHs in the 
watershed. 

Ligaray et al. 
(2016)  

INCA- 
Contaminants 

✕ ✔ R PCBs, Metaldehyde air, water, soil, 
sediments 

Hydrological, 
biogeochemical, and 
multimedia fate model to 
simulate the fate of 
contaminants at catchment 
scale. 

Nizzetto et al. 
(2016) 

Lu et al. (2017) 

POPsLTEA ✕ ✔ C PAHs air, water, soil, 
sediments 

Effect of climate change on 
fate and transport of PAHs 

(J.H. Song 
et al., 2016)  

BETR-UR ✔ ✕ R PAHs, PFOA/PFO 
(26) 

air, water, soil, 
sediments, 
vegetation 

Land cover information is 
included in the model to 
simulate the fate of PAHs 
between urban and rural area 

(S. Song 
et al., 2016) 

Modified BETR-UR: (Su 
et al., 2018) 

BC-Model ✔ ✕ R Phe (27), Pyr (28), B 
[a]P 

air, water, soil, 
sediments, 
vegetation, 
organic film 

In the multimedia model, 
organic matter was replaced 
by black carbon to simulate 
PAHs distribution. 

Wang et al. 
(2017)  

SoilPCA ✕ ✔ R 150 organic 
chemicals 

air, soil, 
vegetation 

Multimedia model to 
determine surface soil 
pollution potential due to 
accidental release of 
chemicals. 

Kim et al. 
(2018)  

PeCHREM ✕ ✔ C Pesticide air, water, soil The model is applied together 
with G-CIEMS to estimate 

Imaizumi 
et al. (2018) 

Misaki et al. (2019) 

(continued on next page) 
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Table 2 (continued )  
Model name SSa Db Scale Chemicals Compartments Features Authors Model Applications 

spatially and temporally 
variable emissions of 
pesticides for risk assessment. 

DynaPlus ✕ ✔ R Pesticides, 
Insecticides, 
Fungicides 

air, litter, soil, 
water, DOM 

The model is used to improve 
the predictions of pesticide 
fate in cultivated mountain 
basins. 

Morselli et al. 
(2018c) 

Morselli et al. (2018b) 

Pangea 
framework 

✔ ✕ L to 
G 

HPC, LAS, TCS, 
MeP (29), D5 

agricultural and 
natural land, air, 
water, sediments 

Comparison between the 
global impacts versus local 
impacts resulting from point 
source emissions. 

Wannaz et al. 
(2018c) 

(Jolliet et al., 2020;  
Wannaz et al., 2018a, 
2018b) 

RSEMM ✕ ✔ L antibiotics air, water, soil, 
sediments 

Integration of an 
environmental multimedia 
method (EMM) and a water 
quality model for assessing 
the risk of chemicals in a river 
basin 

Dong (2019)  

[Huang] ✔ ✕ L PAHs air, water, soil, 
sediments, 
vegetation, film 

Level III fugacity multimedia 
model to assess the mass flux 
variation of PAHs in Shanghai 

Huang et al. 
(2019)  

NEM ✕ ✔ G PCBs and other 
organic chemicals 

air, water, soil, 
sediments, 
vegetation 

A nested global multimedia 
model to achieve high spatial 
user-defined resolution 

Breivik et al. 
(2021)  

Other spatial 
models 

USEtox ✔ ✕ L to 
G 

Organic chemicals air, water, soil, 
sediments 

Fate and exposure model for 
chemical impact 
characterization for human 
toxicity and freshwater 
ecotoxicity 

Rosenbaum 
et al. (2008) 

(Belyanovskaya et al., 
2019; Fantke et al., 
2016; Kounina et al., 
2014; Sala et al., 2011) 

PiFs ✔ ✕ L Organic chemicals air, water, soil A flexible mass balanced 
based model to quantify 
cumulative transfer fractions 
and exposure pathways of 
products consumed by human 

Fantke et al. 
(2016)  

PROTEX ✕ ✔ R Organic chemicals air, water, soil, 
sediments, 
vegetation, 
indoor 
compartments 

First dynamic nested 
multimedia indoor, urban, 
rural chemical fate model to 
assess the distribution and 
concentrations and pathways 
of contaminants. 

Li et al. 
(2018a) 

(Li et al., 2019; L. Li 
et al., 2018b, 2020)  

a Steady-state. 
b Dynamic. 
c Regional. 
d Global. 
e Local. 
f Continental.g for models without a specific name, the name of the developer is mentioned within the brackets. 
(1) Hexachlorocyclohexane. 
(2) Polychlorinated biphenyl. 
(3) Perfluoro-dimethylcyclohexane. 
(4) Perfuoro-trimethyl cyclohexane. 
(5) Black carbon. 
(6) Benzo[a]pyrene. 
(7) Sulfur hexafluoride. 
(8) Fluorotelomer alcohol. 
(9) Perfluorononanoic acid. 
(10) Polybrominated diphenyl ethers. 
(11) Dichlorodiphenyltrichloroethane. 
(12) Chlorobenzene. 
(13) Linearalkylbenzene sulfonates. 
(14) Tetrachloroethylene. 
(15) Tetrachloromethane. 
(16) Hexachlorobenzene. 
(17) Decabromodiphenyl ether. 
(18) Perfluorooctanesulfonic. 
(19) Decamethylcyclopentasiloxane. 
(20) Polychlorinated Dibenzo-p-Dioxins/Polychlorinated Dibenzofurans. 
(21) Pentachlorodibenzofuran. 
(22) Tetrachlorodibenzodioxin. 
(23) Acenaphthene. 
(24) Triclosan. 
(25) Dibenzofuran. 
(26) Perfluorooctanoic acid. 
(27) Phenanthrene. 
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urban environment where the impacts of the above-mentioned factors 
on the air quality of street canyons were discussed. 

2.2. Spatial multimedia models 

Spatial multimedia models are mass balance partitioning models, 
also called ‘box’ or ‘compartmental models’ or ‘Mackay type’ models 
(Mackay, 1979), which have been widely used to evaluate the complex 
interaction between chemicals and the environment. These types of 
models are usually composed of several connected environmental 
compartments (e.g., air, water, soil, sediments, vegetation, etc.), for 
which different processes such as emission, transport, and degradation 
are being calculated. An important issue about such models is that they 
often provide sufficient information without demanding a huge amount 
of input data and producing outputs that cannot be evaluated (McKone 
and MacLeod, 2003). Therefore, the art of environmental modeling, 
according to Mackay (2001), includes the selection of the “best” or 
“least-worst” set of assumptions in such a way that the model could be 
simple and understandable and yet maintain realism and usefulness 
(Mackay, 2001). A common assumption in multimedia fate modeling, as 
recommended by Mackay (1979), is the homogeneity of the compart-
ments, also called the continuous stirred tank reactor (CSTR) assump-
tion, and as a result the allocation of one concentration value to each 
environmental compartment. This assumption has been adequate and 
convenient for early model applications (Wania and Mackay, 1993) as 
well as scenarios where the compartments are well-mixed and the 
spatial condition is close to uniform (e.g., QWASI model (Mackay and 
Diamond, 1989)). However, as the scale of a study area increases the 
spatial resolution of the model decreases and this is even more trou-
blesome where the environmental heterogeneity is not negligible and is 
not describable with only one concentration value. 

Cohen et al. (1990) discussed the importance of using spatially 
resolved compartments in environmental models and developed a 
spatial multimedia compartmental model as a combination of uniform 
(air, water, biota, suspended solids) and non-uniform compartments 
(soil and sediment) (Cohen et al., 1990). Cohen and Cooter (2002) 
categorized the multimedia models based on the spatial variation of 
their compartments into (a) Integrated spatial multimedia models where 
transport and fate of the chemicals are described by spatial models 
considering intermedia boundary conditions and a set of 
medium-specific transport equations, (b) Linked spatial single-medium 
models where a collection of single-media spatial models interacts with 
each other and the output of one model is used as the input to the others, 
(c) Compartmental “well-mixed” media models (both fugacity-based and 
concentration-based) where the assumption of homogeneity is applied 
and all compartments are considered as well-mixed, and (d) Integrated 
spatial-multimedia-compartmental models where a combination of uni-
form and nonuniform compartments are considered to calculate the 
transport of the pollutant within such system (Cohen and Cooter, 2002). 
The need of including the variation of environmental characteristics in 
multimedia fate models was further discussed in a workshop organized 
by the Society of Environmental Toxicology and Chemistry (SETAC) in 
1994 which was later published as a book (Cowan et al., 1995). In this 
workshop, the use of Uniform Geographical Units (UGUs) was sug-
gested, and they were defined as “areas of geographic surface, fairly 
uniform in their physical and biological characteristics, such that they 
can be represented by a specific set of transport and characterization 
parameters”. Such definition put the bases for sectioning the environ-
mental media of aquatic and terrestrial ecosystems. In this workshop, 
the need of using appropriate scales in space and time was also under-
lined in order to predict chemical differences in a region, for example, 

depending on different sources present. 
A five-stage strategy was then illustrated to compare chemical fate in 

evaluative (EQC model), regional (ChemCAN), near-field (SoilFug and 
QWASI) (Mackay et al., 1996a, 1996b, 1996c, 1996a). The purpose was 
to show the importance of chemical properties in ruling fate in an 
evaluative environment, then the role of regional characteristics (e.g., 
compartment sizes, specific mass-transfer coefficients, air and water 
residence times, etc.) in influencing the fate, and the need of local 
(near-field) models for specific studies. In this comparison, the 
increasing complexity of the simulations started to evaluate the role of 
spatial properties at different scales. 

During the years, modelers have increasingly included the spatial 
variation of the real environment for several or all of the simulated 
compartments in a variety of multimedia fate models (Barra et al., 2000; 
Csiszar et al., 2013; Ghirardello et al., 2010; MacLeod et al., 2001; 
Suzuki et al., 2004). 

To increase the spatial resolution of multimedia fate models, 
different approaches have been implemented. One of these approaches 
is the multiple connected multimedia fate models where the study area 
is divided into several multimedia sub-models and each of them is 
representative of a homogenous (multimedia) environment. Such set-
tings allow environmental characteristics and input parameters to be 
different for each sub-model. Average concentrations are calculated for 
each sub-model for different compartments, based on intermedia par-
titioning, transport, and degradation processes. The horizontal (or ver-
tical) connections among the boxes of each environment can be 
performed with advective flows of air and/or water. Examples are the 
global multimedia fate models (Scheringer, 1996; Scheringer et al., 
2000; Wania and Mackay, 1996). An example of the multiple box model, 
applied dynamically on a local scale (watershed), is the one of Luo et al. 
(2007) where the region of interest can be divided into a number of 
connected boxes. The model uses fugacity-based equations to calculate 
the transport of chemicals in a Eulerian system (Luo et al., 2007). In the 
multi-homogeneous box approach, several issues must be addressed. For 
example, considering a well-mixed environment within each box can be 
suitable for screening-level models, however, the instantaneous mixing 
assumption can cause errors, which should not be neglected especially 
when modeling environmental systems in which only limited mixing 
processes such as diffusion or dispersion are present. Warren et al. 
(2009) discussed this issue and recommended approaches to avoid 
mathematical errors caused by deviations from CSTR. For example, 
when a multi-box CSTR is used, it is important to account for the fraction 
of the chemical that is removed from each box within the time step, 
therefore, the size of the boxes must be set accordingly (Warren et al., 
2009). Additionally, the CSTR assumption for chemicals with high 
partitioning ratios (Kow or Koa) may not be adequate since kinetic de-
lays may occur in achieving thermodynamic equilibrium. For this 
reason, very slow partitioning may occur for these chemicals. The 
complex transport processes of these types of chemicals were addressed 
by Mackay et al. (2019) and several methods are suggested to quantify 
these processes. 

The integration of geographic information system (GIS) into a 
multimedia fate model was first suggested by Wania (1996) where the 
QWASI model was divided into four separate units in a heterogeneous 
environment under steady-state assumptions. This GIS integration 
assisted to incorporate more homogeneous sub-models hence main-
taining the simplicity. Models prior to this were not calculating regions 
differently, for example, the regions of Canada in the ChemCAN model 
were calculated one at a time (Mackay et al., 1996c). 

Such integration provides an important tool to create maps of 
chemical concentrations and process rates, find the correlation between 

(28) Pyrene. 
(29) Methyl paraben. 
(30) Total suspended particles. 
(31) Dissolved organic matter. 
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contamination patterns and GIS data in order to perform risk analysis 
(Wania, 1996). This method is used in a variety of studies to include 
different territorial and cartographic information such as landscape 
characterization and hydrographic networks. In GIS integrated models, 
the spatial division of a study area can be performed depending on the 
geographical characteristics, therefore, multimedia fate and transport 
processes are applied for each division. For example the model devel-
oped by Barra et al. (2000), a multimedia fugacity fate model (SoilFug) 
coupled with GIS, was the first GIS-integrated model that was applied to 
a catchment area in order to predict pesticide pollution in surface water. 
Several uniform geographical units (UGU) were allocated for the field 
area. The model could provide the capability of studying the environ-
ment in three levels of detail; eleven UGU, three major sub-basins of 
sampling stations, and the entire study area (Barra et al., 2000). 

Each grid cell or geographical unit may contain features that differ 
from other units, for example, the stream segments and catchments. In 
an SMM coupled with GIS, the geographical units may be connected by 
water flow from upper to lower river segments in the GIS component as 
well as advective air in the multimedia fate model component. An 
example of this approach is the spatial SoilPlus, model, a dynamic model 
fully integrated with GIS, providing a link between the site-specific 
layered soil model to a GIS. The model was applied for the prediction 
of runoff of pesticides in an agricultural watershed using a field-based 
database of properties (soil texture, OC, rainfall, pesticides, and half- 
life in soil, etc.) (Ghirardello et al., 2014). 

A common approach in spatial modeling is incorporating two models 
in one framework in order to take advantage of their specific features in 
each of the models. For example, a hydrological model integrated with a 
multimedia fate model can provide a more detailed approach for 
simulating a river basin environment. Dong (2019) integrated a nu-
merical water quality model that simulates the interactions and pro-
cesses occurring between water and sediment compartments with an 
environmental multimedia model consisting of air, soil, and water. The 
two models were connected through intermedia fluxes of water (Dong, 
2019). Similarly, MITgcm (Adcroft et al., 2004), a 3D physically based 
model, was used in a number of chemical fate simulations such as those 
of PCB fate in the global oceans (Wagner et al., 2019) where the MITgcm 
was coupled with GEOS-Chem (Bey et al., 2001) to obtain monthly at-
mospheric concentrations and deposition of PCBs. The MITgcm model 
was also coupled to GEOS-Chem to form a new model (NJUCPL) to es-
timate the air-water exchange at a global scale for mercury (Zhang et al., 
2019). 

The combination of an SMM with an ATM is another method used in 
spatially resolved environmental modeling. This method benefits from 
the high spatial and temporal resolution of atmospheric transport 
models as well as the inclusion of more environmental compartments in 
multimedia fate models. Morselli et al. (2012, 2011) first integrated a 
multimedia fate model (AirFug) with a meteorological preprocessor 
(AERMET) to calculate PBL heights and later an air dispersion model 
(AERMOD) (Cimorelli et al., 2005). This modeling approach includes 
the effect of atmospheric dynamics (i.e. variation of PBL height and 
meteorological conditions) on soil concentrations in a local scale model 
(Morselli et al., 2011, 2012). A similar approach was later applied by 
Csiszar et al. (2013) and a multiple box model (MUM) is coupled to an 
atmospheric forecast model (BLFMAPS) to predict intraurban scale 
emission and the fate of chemicals (Csiszar et al., 2013). A recent 
example of a spatial model created as an integration of several models is 
Pangea, which is a framework composed of different sets of models for 
spatial simulation of chemical substances in the environment. This 
framework includes local to global spatial scales and uses a GIS engine, a 
set of environmental models (EMs), and a set of environmental processes 
models (EPMs) which calculate the fate and transport of pollutants 
within and between different media. Different sets of grids with different 
resolution and refinement capabilities are embedded in this framework 
(e.g., background grid, result grid, atmospheric, terrestrial, sediments, 
and sea/ocean grids). Pangea is applied solely or together with other 

modeling systems to estimate the environmental exposure of chemicals 
(Jolliet et al., 2020; Wannaz et al., 2018a, 2018c). 

The inclusion of more regions in a spatially resolved model requires 
more data and involves more computational complications, therefore, 
the selection of the number and size of the segmentation is important 
(see Fig. 1). There is often a trade-off between having a higher fidelity to 
the real system at the cost of complexity and high data requirement or 
obtaining simplicity, mathematical ease, and transparency while 
compromising spatial resolution. For instance, Woodfine et al. (2001) 
provided a framework to link regional segmentations of compartmental 
fate models for water basins in Canada. According to the authors, a 
minimum of 3 × 3 segmentations (9 regions) is required to provide an 
acceptable level of detail. Therefore, for BETR – North America a 5 × 5 
region scenario was considered and the regions linked to each other, 
while regional models up to the time of this study were single models 
applied for the whole region (Woodfine et al., 2001). 

Models that are typically used at a large-scale or for the global 
environment are easier to construct because each grid cell or single box 
represents a large area (i.e., several thousand square kilometers). A 
global SMM has generally a low spatial resolution since the spatial in-
homogeneities within each cell are not considered (Scheringer and 
Wania, 2003). The first global model for chemical fate in a multimedia 
environment was primarily introduced by (Wania and Mackay, 1993, 
1995). The initial version of the model was multi-compartmental and 
unsteady-state where the global environment was characterized by only 
nine sequentially arranged climatic zones connected to each other by 
advective and intermedia transport processes. Soon after, Scheringer 
et al. (2000) presented a new global model (CliMoChem) which was 
developed based on the two previously built global models (Scheringer, 
1996; Wania and Mackay, 1993), increasing the resolution of the model 
to a variable number of latitudinal zones (10–90), 80 identical cells, 10 
climatic zones, and four atmospheric layers. This model was used to 
evaluate the effect of factors such as chemical properties, temperature, 
and deposition on the chemical tendency to transport and accumulate at 
the Poles (cold condensation) (Scheringer et al., 2000). 

Another type of global-scale model is the General Circulation Models 
(GCM), which use mass, energy, and momentum conservation equa-
tions, discretized over connected atmospheric, land, and ocean control 
volumes. These models can provide high spatial and temporal resolu-
tions in calculating fate and transport of POPs, however, they are 
computationally complex and require detailed model inputs. The 
Berkeley-Trent (BETR-Global) model is an intermediate approach be-
tween multimedia mass balance models and GCMs, therefore, it can 
benefit from the detailed modeling features of GCMs and transparency of 
multimedia fate models. It was utilized to assess the effect of climate on 
the fate and transport of chemicals. The model includes both steady- 
state and dynamic modes. The entire globe is covered by 15◦ × 15◦

regional segmentations (288 multimedia regions) (MacLeod et al., 
2005). 

Most recently, the nested exposure model (NEM) (Breivik et al., 
2021) by adopting two multimedia fate models of CoZMo-POP2 and 
BETR-Global provided a nested model with a user-defined spatial reso-
lution, incorporating regional, continental, and global scales within one 
framework. Different grid sizes of 15◦ × 15◦, 5◦ × 5◦, and 1◦ × 1◦ are 
used to provide an insight into how varying spatial resolution can affect 
the atmospheric deposition. Another advantage of a global model with 
an adaptable spatial resolution is that model resolution can be assigned 
depending on the availability of an emission inventory, since using a 
high-resolution transport model in a large-scale environment, where the 
emission inventory data are not as resolved, can cause 
over-parameterization of the model. 

Higher spatial resolution is implemented in models with local or 
regional scales for risk assessment purposes. Each segment or grid cell 
covers a smaller area, consequently, more detailed input parameters are 
required. An example of such models is that of Wang et al. (2017), who 
developed a regional model for evaluating the spatial distribution of 
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PAH in Nanjing, China. In this model 36 individual cells with 4 × 4 km 
resolution cover the entire region (Wang et al., 2017). Spatial segmen-
tation may be realized based on the similarity of the physical properties, 
or general criteria in which an area could be delimited, for example, 
surface water direction and fluxes in a watershed. This type of seg-
mentation is implemented by Coulibaly et al. (2004) where the Passaic 
River watershed in New Jersey is divided into 11 sub-watersheds. The 
model is also integrated with GIS. Assigning similar areas as a 
sub-watershed facilitates the incorporation of GIS resources into the 
model because each watershed can be represented as one polygon in the 
GIS. The connection between these sub-watersheds was set through 
horizontal water flows (Coulibaly et al., 2004). 

A division of geographical catchments was done in G-CIEMS (Suzuki 
et al., 2004), where a set of hydrologically isolated basins were confined 
in the geographical boundary and consisting of multiple unit catch-
ments, was connected to a river network segmentation in which each 
catchment is connected to its corresponding river. The connections be-
tween upper to lower river segments were formulated into the database 
through a node-path structure. 

River segmentation was also implemented in the DynaPlus model 
(Morselli et al., 2018b, 2018c, 2018b) where a dynamic small-scale 
watershed fugacity model is connected to a river network in order to 
evaluate the runoff of pesticides in mountain watersheds, where high 
slopes determine fast chemical movements due to surface runoff, and 
consequently, sudden chemical loading to surface water. 

The spatially oriented MUM (SO-MUM) (Csiszar et al., 2013) model 
is instead an example of gridded divisions on a regional scale. The model 
is the extension of a one-box model (MUM) into a multiple box model 
with a spatial resolution of 5 km × 5 km. The model is loosely coupled 
with the air pollution transport model BLFMAPS for the simulation of 
upper air compartment and intercell air transport. The cells were linked 
by tributaries, the output of an upstream cell was set as the input of a 
downstream cell (Csiszar et al., 2013). The size of the grids may be equal 
in all cells like the atmospheric grids of G-CIEMS or can be more refined 
across the area of interest like the grid system in the Pangea framework 
(Wannaz et al., 2018a). 

Some recent multimedia fate models present spatial features, such as 
local and regional environments. However, these models cannot be 
classified as spatially resolved models as specified in the introduction 
and will not be evaluated in depth in this review since the main focus of 
this study is on models that calculate a distance-concentration rela-
tionship. However, these models are important to allow to calculate the 
role of different spatial scales on the intake fractions for different pop-
ulation groups and exposure pathways from products to humans 
through direct exposure, as well as exposures, after indoors and out-
doors exchange processes. They are listed in Table 2 as “Other spatial 
models”. 

The parametrization of spatial scales in such models is different than 
spatial models with geographical resolutions. Chemical emission and 
fate are assessed for indoor, urban, and rural environments where each 

spatial scale and its role are compared. For example, EUSES (Vermeire 
et al., 1997) comprises nested local, regional, and continental spatial 
scales in a steady-state model and is used to perform risk assessment in 
Europe. Recently, a new model PROTEX (L. Li et al., 2018a, 2018b; Li 
et al., 2019) was developed as a nested but dynamic, multi-scale, and 
multi-route fate and exposure model and was applied to study the fate of 
PCBs and PBDEs at different scales of indoor, urban, and rural envi-
ronments. The indoor environment consists of compartments such as 
organic film, air, carpet, and vinyl floor, and it is nested within an urban 
environment consisting of organic film, air, vegetation, soil, water, and 
sediment. Additionally, the urban environment is nested within a rural 
environment. The interaction of these environments and the fate of 
chemicals are calculated based on Mackay’s fugacity formulations and 
resulted in time-varying indoor and urban emission values. In this 
model, however, each compartment of each scale has one value (e.g. one 
value is assigned to the air compartment of urban scale for each 
time-step. This is the main difference between these models with the 
spatially resolved ATMs or SMMs where there are spatial divisions (e.g., 
grids, segmentation, etc.) within the model scale and different concen-
tration values are calculated for each division depending on their dis-
tance from the emission source. Similarly, some life cycle assessment 
models (LCA) such as USEtox (please refer to https://usetox.org/s 
upport/publications for a complete list of applications) and later 
MAPPE (Pistocchi et al., 2011; Rosenbaum et al., 2008) introduced 
spatial features in the evaluation of organic contaminant fate. Addi-
tionally (Fantke et al., 2016), developed a framework that calculates 
exposure pathway-specific product intake fractions (PiFs) using chemi-
cal mass transfer between adjacent compartments. It includes near-field 
exposures, consisting of compartments that are in direct contact with 
humans, and far-field exposures, with compartments such as water, 
ambient air, and soil (Fantke et al., 2016). 

3. Comparison between atmospheric transport models and 
spatial multimedia models 

Scheringer and Wania (2003) report that SMMs are easier to un-
derstand, more transparent, and their results are simpler to interpret in 
comparison with the ATMs. A less computational effort is required for 
these models and they are more flexible to be used for different sce-
narios. On the other hand, SMMs use average values for model param-
eters and they typically provide lower spatial and temporal resolutions 
compared with ATMs (Scheringer and Wania, 2003). ATMs can provide 
long-range transport simulation of chemicals in the air (leaving out the 
Gaussian models that, as mentioned before, are specified for short dis-
tances) with high temporal resolutions and realistic spatial patterns. 
They can be used to track the pathways of pollutants in the air and detect 
a specific emission source (Stohl, 1998). ATMs mainly calculate only the 
processes occurring in the atmosphere, even though, they may account 
for emission and depositions from and towards other media such as soil 
and water, but as a result, they provide the concentration of pollutants in 

Fig. 1. Different types of spatial segmentations. (a) catchment division (b) river segmentation (c) gridding.  
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the atmospheric compartments (Christensen, 1997; Cooter and Hutzell, 
2002; Stohl et al., 1998). The addition of other environmental media 
into an atmospheric model requires more input parameters and pro-
cesses in order to acquire spatial resolution in all of the simulated media. 
This generally can make the model computationally expensive and 
difficult to calibrate. The two types of spatial models (e.g., ATMs and 
SMMs) are compared in the following sections selecting three aspects: 
their spatial, temporal, and chemical domains. Table 1 points out several 
aspects where the two modeling approaches differ from each other. 

3.1. Spatial domain 

Dungan (2015) describes that the word “scale” refers to different 
concepts, and due to the potential confusion among various definitions, 
it is suggested that authors avoid the term “scale” and instead use the 
specific term (e.g., cartographic ratio, grain, extent, resolution, support, 
range, variance, and footprint). To refer to the size of a study domain, 
the word “extent” is recommended to be used, which is defined as the 
total length, area, or volume that exists or is observed or analyzed 
(Dungan, 2015). In addition, the classification of geographical and 
meteorological scales is very subjective; however, a common way of 
categorizing spatial scales is a range from micro (local) to mega (global) 
scale (see Fig. 2). A more detailed discussion about the above-mentioned 
terms and their differentiation is provided by Herod (2009). 

Often increasing the spatial domain of a model (from local to global) 
results in a decrease in spatial resolution. Also, by increasing the spatial 
resolution of a model, the complexity increases. Therefore, it is impor-
tant to know the level of detail required in predicting the concentration 
values to achieve the objective of a model. In the ATMs, the majority of 
efforts in modeling are put on the characterization of air compartments 
including vertical and horizontal resolutions (Byun and Ching, 1999; 
Grell et al., 2005; Oleniacz and Rzeszutek, 2018). Since ATMs generally 
deal with only one medium (i.e., air), they can considerably increase 
their spatial resolution. For example, EPISODE-CityChem was developed 
by Hamer et al. (2020) to be implemented for large populated urban 
areas where the emission sources are very complex. Therefore, a high 
spatially resolved approach is considered. The model is based on the 
Eulerian approach with a horizontal grid resolution of 1 km × 1 km and 

sub-grid-scale modules like Gaussian dispersion and photochemistry to 
account for the point and line sources that increase the spatial resolution 
to around 100 m. The good performance of this model to show the 
hourly NO2 concentrations was related to the effectiveness of sub-grid 
models (Hamer et al., 2020). 

A modeling aspect that is highly emphasized in ATMs is the vertical 
resolution that according to different studies plays an important role. 
For example, the MOZART model was developed in the framework of the 
NCAR Community Climate Model (CCM), the number of vertical levels 
in CCM was set to 18, however in MOZART, these levels were increased 
to 25 starting from 70 m above ground level i.e., boundary layer, up to 
the height of 35700 m in the stratosphere. Increasing vertical levels in 
MOZART compared to CCM resulted in a better prediction of the vertical 
profile of ozone in the upper troposphere in comparison with the ob-
servations. In the AERMOD model, the objective was mainly focused on 
modeling vertical atmospheric inhomogeneity that includes PBL varia-
tions and vertical meteorological profiles. The model implementation 
was evaluated for moderate to complex terrain topography and provided 
reliable results. It was concluded that this was due to the improvement 
in the characterization of vertical profiles and PBL. Another Example is 
GEOS-Chem (Bey et al., 2001) that includes 20 to 70 vertical levels from 
the surface, in different versions of the model, and the meteorological 
fields are provided for these levels. The importance of vertical resolution 
of air in SMMs is often neglected or simplified. In some models, these 
variations are considered by including more compartments for air or 
integrating an ATM into the multimedia fate model to handle the ver-
tical inhomogeneities. For example (Ghirardello et al., 2010; Morselli 
et al., 2011), integrated two variable height air compartments (upper air 
and lower air), varying according to hourly PBL variations, and this 
allowed to reconstruct, to a better extent hourly concentration varia-
tions of chemicals in air. Later on, AERMET and AERMOD sub-models 
were integrated into the multimedia fate model, AirFug, by Morselli 
et al. (2012) to account for hourly mixing height and PBL parameters as 
well as the presence of a point-source (simulated by AERMOD) in the 
model domain. Diel variation of air concentrations is observed due to 
PBL variations, wind speed, and wind direction showing that if the effect 
of a nearby emission source is neglected, daytime concentrations 
decrease due to the increase of PBL height, and nighttime concentrations 
increase due to the decrease of atmospheric dilution. Similar behavior is 
obtained when seasonal variations are accounted for, e.g., in winter, 
when the PBL height is lower in comparison to summer (Morselli et al., 
2012). Also Ghirardello et al. (2010), as mentioned above, incorporated 
two dynamic air layers, hourly changing with height according to PBL 
variation, into the SoilPlus model, a layered soil multimedia model 
(Ghirardello et al., 2010) increasing also the vertical spatial domain in 
soil. In the study of J. H. Song et al. (2016) the effect of climate change is 
included in an SMM (POPsLTEA) by considering 4 layers of air with 
different distances from the surface in order to account for height 
dependent fate and transport of PAHs (vertical resolution). The model 
also accounts for horizontal resolution (i.e., 5000 cells of 50 km × 50 km 
and 1008 cells of 12.5 km × 12.5 km) as well as several environmental 
compartments (air, surface water, seawater, soil, and sediment). How-
ever, in comparison with an ATM, these spatial resolutions are still lower 
(J. H. Song et al., 2016). Therefore, the ATMs are considered quite 
free-handed in increasing the spatial resolution, however, the SMMs 
may have some limitations in increasing the number of segmentation 
since it also depends on the model capabilities to perform complex 
calculations. As the size of spatial units decreases, more units are needed 
to cover the area, therefore, a higher computational effort is required. 
Since SMMs also perform the flux calculations among different media 
and different compartments of each media, it is important to design the 
units (i.e., the number of units covering an area as well as their shape) in 
a way as to account for the relevant information while maintaining a 
certain level of simplicity. 

Sometimes models focus on a smaller scale to be able to increase 
their spatial resolutions. For example, the ECORAME model (Jung et al., Fig. 2. Different levels of spatial scales (modified from (Shugart et al., 2020)).  
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2014) is a multimedia model at local scale (10–102 km2) for the simu-
lation of chemicals in watersheds. The model considered each water 
segment as an independent cell rather than treating the whole watershed 
within one cell to be able to capture the variations in each stream. As the 
results of this study show, the concentration gradient within one stream 
can vary up to a factor of 10. Another model as such is the SoilPCA 
model (Kim et al., 2018), a multimedia fate model to evaluate the 
accidental chemical release, such as spills, on agricultural soil at a local 
scale. The model deals with the fate of chemicals with a spatial scale of a 
few kilometers. It is made of 3100 cells: 100 cells along the longitudinal 
direction and 31 cells along the transverse direction. The emission was 
considered to one of the atmospheric cells as an accidental release of 
contaminants. As a result, the model calculates the wind governed 
temporal variation of atmospheric concentrations by considering uni-
directional wind speed. 

In the comparison between ATMs and SMMs it is often observed that 
within a similar domain an ATM provides higher spatial resolution in 
comparison with a SMM. To give an example, at the global scale, an 
SMM like BETR-Global (MacLeod et al., 2011), covers the global envi-
ronment by 15◦ × 15◦ grids, while a global ATM like GEOS-Chem (Bey 
et al., 2001) considers 1◦ × 1◦ grid resolution. The importance of spatial 
variation of environmental characteristics is inevitable. However, under 
certain conditions, other parameters such as physicochemical properties 
of the substances may seem to be more influential on the distribution of 
concentrations in the environment. Hollander et al. (2009) utilized an 
SMMs level III nested model, BasinBox, to evaluate the effect of sub-
stance properties and environmental characteristics (such as mixing 
height, precipitation intensities, temperature, and wind velocity for air 
compartment and other soil and water-related parameters) on the 
variation of concentrations. The concentration range (CR) value, the 
ratio between the 95th and 5th concentration percentiles, for chemical 
properties was at least three orders of magnitude greater than the CR of 
the environmental characteristics showing the higher influence of 
chemical properties (Hollander et al., 2009). However, their simulated 
environment was represented by a region of selected average environ-
mental properties and dynamics. The evaluation of the sensitivity of the 
individual environmental parameters as well as physical-chemical 
properties was done by changing one parameter at a time. Therefore, 
their average regional characteristics could not reflect the variability 
and different association of environmental properties typically found on 
a spatial scale: for example, a part of the soil environment could have 
organic carbon and textural properties totally different from another 
part and the sensitivity analysis performed did not evaluate this vari-
ability. A similar conclusion was made by Zhu et al. (2014), who utilized 
the multimedia SESAMe model over China to account for overall 
persistence and long-range transport potential accounting for different 
environmental characteristics (i.e., precipitation, wind speed, tempera-
ture, and soil organic carbon) (Zhu et al., 2014). However, among 
environmental parameters considered for the air compartment, the ef-
fect of wind direction is neglected, which is an important factor espe-
cially when the emission is not diffuse but comes from a specific 
direction (Morselli et al., 2012). The effect of spatially resolved emission 
in the air was also emphasized in the study of Csiszar et al. (2013) by 
coupling a forecast and air pollution transport model (BLFMAPS) with a 
dynamic SMM, SO-MUM. The model was used to back-calculate the 
emission of POPs to air indicating the importance of such information in 
predicting the spatially variable concentrations of chemicals (Csiszar 
et al., 2013). 

3.2. Temporal domain 

The use of a dynamic model can improve the realism of the results 
especially in presence of episodic changes in emission or environmental 
conditions. Due to the unstable nature of the atmosphere, ATMs typi-
cally provide a high temporal resolution especially for input meteoro-
logical data (Christensen, 1997; ENVIRON, 2005; Robertson et al., 1999; 

Stohl, 1998). Sometimes a meteorological model is embedded within an 
ATM, as reported before, which provides temporally resolved meteo-
rological data in two ways of offline or online. CMAQ is a “1-atm” model 
meaning that it couples air quality and meteorology modeling within 
one framework. The model is offline, so the meteorological data are fed 
into the model in hourly or several-hour time intervals. CMAQ is used by 
(Aulinger et al., 2011) to prove the importance of temporally resolved 
emission and meteorological data in chemical transport and deposition 
modeling of benzo(a)pyrene. The results of three modeling scenarios 
were compared: in the first one emission rate is constant during the year, 
in the second one, the emission rates vary seasonally, and hourly varying 
emission rates are compared with the measured data. In the third sce-
nario where hourly emission rates are used, the indexes of agreement 
(IOA), a representation of the agreement between predicted and 
measured data, increased for most of the sites, representing better re-
sults. However, in the scenario where the emission is constant during the 
year, the result concentrations still follow the seasonal variation, simi-
larly to the measurements, which indicate that the predicted concen-
tration values are also dependent on the variation of meteorological 
conditions (e.g., PBL height) (Aulinger et al., 2011). The inclusion of 
meteorological models in an ATM has also been used in WRF/Chem 
(Grell et al., 2005) model, however, through an online approach so the 
meteorological data can be used in the model within the time scales of 
much less than 1 h. The study shows that the model provides a good 
forecasting skill for O3 and its precursors (CO and NOx) which was 
related to the model capability to include high-resolution physical 
meteorology within an air quality model. ATMs may implement a 
steady-state approach when the effect of temporal variations is not 
significant in order to maintain simplicity. For example, the AERMOD 
plume dispersion model requires a large number of parameters to 
represent these complexities; therefore, a steady-state Gaussian 
approach is implemented (Cimorelli et al., 2005; Perry et al., 2005). This 
approach makes the model suitable for small spatial domains. Similar 
logic is applied for SMMs; for example, IMPACT North America (Hum-
bert et al., 2009) is capable of covering three different spatial scales 
including urban indoors and regional scales, several hundred zones of a 
continental scale located in a global box, hence the model is under the 
steady-state assumption to preserve simplicity. Therefore, depending on 
the objective of a model, the temporal resolution can be selected. For 
example, the response times of emission change of deca-
methylcyclopentasiloxane (D5) and PCB-180 in water and sediment 
under both steady-state and dynamic assumptions were investigated by 
Kim et al. (2017) using the Quantitative Water Air Sediment Interactive 
model (QWASI). Under both assumptions, the model provided a reliable 
estimation of the emission rates, an important factor to predict accurate 
concentration values. From the comparison between the simulations it 
was concluded that even though a dynamic model would provide a 
realistic insight into the environmental conditions, however, when the 
variations are known, also a steady-state model could provide reliable 
results while maintaining simplicity and transparency (Kim et al., 2017). 
Apart from simplicity, the steady-state assumption results in one con-
centration value which can simply be compared to predicted no-effect 
concentration (PNEC) and toxicity/exposure ratio (TER) for environ-
mental risk assessment (ERA) purposes, while, for unsteady-state models 
where more than one concentration value is obtained, there is a need for 
further interpretation of the results (European Community, 2003). Ex-
amples of steady-state spatially resolved models are some fugacity 
models such as ChemCAN (Mackay et al., 1996b), where many regions 
of Canada were described and could be individually used as spatial 
scenarios for the simulation, the BETR North America (MacLeod et al., 
2001), also capable of unsteady-state calculations, which includes 24 
linked regional environment, and more recently a model developed to 
simulate the fate of PAHs in Shanghai (Huang et al., 2019). 

However, recent studies (Di Guardo and Hermens, 2013; Morselli 
et al., 2015) called for more realistic peak exposure prediction which 
requires the evaluation of unsteady-state approaches in compartments 
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such as water (or air) and their significance in terms of risk assessment. 
The necessity to use high temporal resolution in SMMs in presence of 
sudden changes in environmental conditions is confirmed by several 
models which have adopted dynamic approaches. For example, the 
dynamic CoZMo_POP2 was developed for predicting the long-range fate 
of POPs in the coastal environment or drainage basin of large lakes. The 
model can utilize user-defined and time-variant emissions and envi-
ronmental parameters (Wania et al., 2006). As another example, in the 
study of Morselli et al. (2018c) it is shown that the application of plant 
protection products (PPPs) imposes episodic peaks in watersheds with 
steep slopes: in such conditions the use of a dynamic model is a necessity 
(Morselli et al., 2018c). Pesticide applications are just a typical example 
of peak emission. The importance of assessing the relevance of unsteady 
(peak) emission on human exposure was recently underlined (D. Li et al., 
2020) who compared their impact on human health by using a 
steady-state vs. an unsteady-state model. Likewise, the dynamicity of 
meteorological conditions in SMMs that are dealing with the most un-
stable compartment (i.e., air) must be considered. The influence of 
environmental dynamics such as PBL variation and vegetation on the 
prediction of exposure of some PCBs for terrestrial systems is investi-
gated by Morselli et al. (2018a) using a multimedia dynamic model; 
(SoilPlusVeg). Results of the SoilPlusVeg simulation indicated the 
maximum PCB diel concentration variation due to PBL cycle, 
temperature-driven volatilization, and wind speed. The dynamic vege-
tation compartments also showed the daily variation of concentrations 
due to the uptake and release behavior of leaves (Morselli et al., 2018a). 
These short-term variations are not detectable with standard (e.g., pe-
riodic) monitoring campaigns or steady-state assumptions. 

3.3. Chemical domain 

Atmospheric transport models were initially used for ozone and its 
precursors. They mostly dealt with atmospheric chemicals such as O3, 
SOx, NOx, dust, metals, and later PAHs (Appel et al., 2013; Nassar et al., 
2009; Oleniacz and Rzeszutek, 2018; Robertson et al., 1999; Seigneur 
et al., 2003). Even though these models typically neglect the processes 
that occur in other environmental media, they simulate detailed pro-
cesses for one or several chemicals in the air. These processes can be 
physical (e.g., dispersion characteristics in complex urban geometry 
(Vardoulakis et al., 2003)) or chemical (e.g., detailed chemical re-
actions). These processes are not usually accounted for in a multimedia 
fate model. For example, the CTDMPLUS model (Paumier et al., 1992; 
Perry, 1992) considers the dispersion due to a terrain when a chemical is 
released from a point source and passing over and around a 
three-dimensional complex terrain. The result of the SO2 simulation 
with CTDMPLUS for near distances away from an emission source (2–3 
km) showed top 25 hourly predictions of SO2 concentrations, paired by 
rank with observations, is within a factor of 2. Another example is the 
extension of CityChem to EPISODE v10.0 model (Karl et al., 2019b) that 
accounts for complex atmospheric chemistry on an urban scale where 
there are complex anthropogenic traffic-related emissions. A larger 
number of chemicals such as NOx, O3, VOCs, SO2, and secondary pol-
lutants can be considered. Atmospheric models may provide mecha-
nisms for a higher number of chemicals, for example, the GEOS-Chem 
model (Bey et al., 2001) includes 80 atmospheric chemicals, over 300 
reactions for the troposphere, while adopting simpler reaction chemistry 
for the stratosphere. 

Spatial multimedia fate models, especially those not coupled with 
atmospheric models, consider atmospheric processes in a much simpler 
way (often they only deal with advection and reaction of chemicals in 
the air). For example, in the G-CIEMS model (Suzuki et al., 2004), air 
compartments (lower air and upper air) are considered in a multiple box 
gridded model. The contribution of advective wind is incorporated using 
the directional average of inflow and outflow wind for each grid cell. 
Additionally, for large spatial extents like global models, the assumption 
of mixing the spatial units (i.e., geographical zones) faster than chemical 

movements may be considered; however, this may ignore small-scale 
atmospheric processes within each zone (Scheringer et al., 2000). 

An example of how chemicals are differently processed in the two 
approaches is that of PAHs. They are modeled with both atmospheric 
transport and spatial multimedia fate models because many of them are 
of concern to human health due to their carcinogenic properties (IARC, 
2010) and they are compounds discharged into the atmosphere from 
anthropogenic and natural sources. They are present in the air as vapor 
or associated with particle phase and can move to the soil by absorption, 
dry and wet depositions, and forest filter effect (McLachlan and Horst-
mann, 1998). Each model type considers different processes depending 
on the medium or media that are described, for example, for an atmo-
spheric model, deposition processes are calculated only as removal 
processes, however, a multimedia fate model provides information 
about where chemicals end up after being removed from the atmo-
sphere, therefore, investigating their further multimedia path (e.g., to-
wards soils and sediment) (Ligaray et al., 2016; Wang et al., 2017). In a 
dynamic ATM, PAHs were modeled by Li et al. (2018) with a high spatial 
resolution of 1 km2 for an industrialized and populated city. Processes 
accounted for PAHs in the air include advection, diffusion, the reaction 
of gaseous PAHs with OH radicals, and dry and wet depositions, coupled 
with emission inventory (B. Li et al., 2018). On the other hand, the 
spatially resolved Berkeley-Trent-Urban-Rural Fate Model (BETR-UR), 
also implemented for simulation of PAHs (S. Song et al., 2016), uses 
similar processes but being a box model neglects concentration differ-
ences within the box. This model implements intercompartmental 
transfer, degradation, and advection in the air in the urban and rural 
areas at a much larger scale (regional), but includes processes taking 
place in other media as well as fluxes from the air towards vegetation, 
soil, and freshwater. 

Different studies were performed to improve the knowledge of 
chemical emission sources, pathways, and processes and their impact on 
the partitioning, distribution, and spatio-temporal variability. For 
example, Dueri et al. (2010) developed a 3D coupled hydrodynamic fate 
model for the fate of polychlorinated dibenzo-p-dioxins and di-
benzofurans (PCDD/Fs) in a lagoon in order to identify the possible 
sources, seasonality of loads, and the role of atmospheric deposition 
(Dueri et al., 2010). Another example is the method of Imaizumi et al. 
(2018) for estimation of spatiotemporal variable emissions of herbicides 
from paddy fields (PeCHREM). The PeCHREM method is based on the 
published information on pesticide formulations. PeCHREM was used 
along with G-CIEMS, and a Japanese GIS dataset to calculate daily 
concentration changes of 25 herbicides in the whole Japan (Imaizumi 
et al., 2018). 

This is particularly important for persistent and hydrophobic 
chemicals like POPs, especially evaluating their mobility on a global 
scale (Scheringer et al., 2000; Wania and Mackay, 1993). Among the 
driving parameters in regulating partitioning, we can list Kaw and Koa. 
Chemicals with Log Kaw within the range of −5 to −1 and Log Koa in the 
range of 6–13 tend to partition towards water and octanol (where 
octanol is representative of organic carbon in biota and solid phases), 
respectively, rather than air (Scheringer and Wania, 2003). This ten-
dency has encouraged modelers to include additional elements that are 
effective in retaining organic chemicals such as terrestrial plants, mac-
rophytes, and phytoplankton, as well as DOC, into multimedia fate 
models (Ghirardello et al., 2010; McLachlan and Horstmann, 1998; 
Morselli et al., 2015, 2018b; Terzaghi et al., 2017). 

PCBs and some pesticides are among chemicals with relatively high 
Kow. As shown in Table 2, these chemicals are mostly modeled by 
multimedia fate models due to their presence in compartments that are 
rich in organic carbon such as soil, sediments, and suspended solids 
(Csiszar et al., 2013; Di Guardo et al., 1994a; Fenner et al., 2007; 
Morselli et al., 2015; Nizzetto et al., 2016). Models may provide the 
long-term simulation of PCBs (up to decades) (MacLeod et al., 2005); 
their persistence, especially in a media like soil, followed by evapora-
tion, and further deposition makes soil act as a long-term emission 
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source of PCBs to air. ATMs may also be implemented to simulate 
compounds like PCBs. For this purpose, it is required to include other 
environmental media and their corresponding processes. For example, 
the effect of climate change on the transport of POPs (HCH and PCBs) to 
Arctics is considered using an ATM model, DEHM (Hansen et al., 2015). 
The model includes air, water, soil, vegetation, and snow compartments. 
Processes such as two-way air-surface gas exchange as well as 
intra-compartmental processes were incorporated into the model 
(Hansen et al., 2004). Another example is the implementation of a 
multicompartmental chemistry transport model (MPI-MCTM) 
(Guglielmo et al., 2009) for the global distribution of different persistent 
chemicals (e.g., HCH, DDT, and PCBs). The model is made of different 
sub-models such as a three-dimensional atmosphere-ocean circulation 
model, an atmospheric aerosol model, marine biogeochemistry, and a 
two-dimensional top-soil and vegetation surfaces model. Embedding 
different sub-models enables the model to account for the fate of 
chemicals in other environmental compartments (e.g., air, soil, water, 
vegetation, snow, and land ice) (Guglielmo et al., 2009; Lammel and 
Stemmler, 2012). 

While the models outlined above deal with mostly non-polar chem-
icals, not many models are capable to predict the fate of polar and 
ionizable chemicals, particularly on a spatial scale. The need of devel-
oping models for these chemicals was recently outlined (Di Guardo 
et al., 2018; Di Guardo and Hermens, 2013). While some predictive 
partitioning schemes are available for these chemicals (Franco and 
Trapp, 2010; Trapp et al., 2010), only some models were developed to 
account for spatial variability. One of such models is SESAMe v3.3 (Zhu 
et al., 2016) which adds the capability of predicting chemical fate at 
variable environmental pHs. However, considering that many sub-
stances (e.g., perfluoroalkyl substances such as PFOS and PFOA), given 
their high solubility and limited volatility, may undergo long-range 
aqueous transport, (instead of atmospheric transport), new models 
and approaches should be probably implemented, while a few are 
available (Kong et al., 2018; Li et al., 2017; Liu et al., 2015). 

4. Conclusions 

This study reviewed two types of spatially explicit environmental 
models namely ATMs and SMMs. Depending on the chemical properties, 
environmental characteristics, the type, and the number of media 
intended for simulation, the required spatial and temporal resolution, 
and the objective of the study, a model or a combination of different 
spatial models may be used. ATMs have been proven to be important 
tools for high-resolution simulation of contaminants in the atmosphere. 
Some of these models however include other environmental media as 
well as some of their processes (e.g., deposition and accumulation of 
contaminants from the atmosphere into the soil (Cheng, 2020)) but the 
spatial resolution of these additional media are mainly lower than the 
atmospheric compartments. SMMs consider different processes in mul-
tiple environmental media (e.g., air, water, soil, etc.). They can provide 
a closer insight into the interaction and fate of substances within and 
between these media, however, they may attain a lower spatial and 
sometimes temporal resolution in comparison to ATMs since obtaining 
an infinitesimal high spatial resolution for several environmental media 
(each consists of several compartments) requires high computational 
efforts and a large amount of input and monitoring data. Therefore, the 
choice of a suitable spatial scale and segmentation method is recom-
mended to improve the accuracy of such models. After all, every 
modeling approach that is focusing in detail on one aspect may require 
to compromise in other aspects which might not be within the indis-
pensable scopes. Both ATMs and SMMs play an important role in the risk 
assessment of chemicals and the prediction of exposure concentrations. 
Hence, they provide a basis for developing and testing different hy-
potheses such as risk evaluation of new chemicals and their large-scale 
transport mechanisms. The development of hybrid ATM-SMMs to ac-
count for a closer insight (or integration) into the modeling of horizontal 

and vertical atmospheric resolutions is therefore recommended to cap-
ture the complexity of environmental simulations. 
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Predicting the regional contamination evolution of DDT for 100-years with a

new gridded spatial and dynamic multimedia fate model

Parisa Falakdin a, Elisa Terzaghi a, Giuseppe Raspa b, Antonio Di Guardo a,⁎

a Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, CO, Italy
b Department of Chemical Engineering, Materials, and Environment, Rome “La Sapienza” University, Via Eudossiana 18, 00184 Rome, RM, Italy

H I G H L I G H T S

• A spatiotemporal gridded fugacity-based

model was developed.

• A dynamic local scale scenario was ap-

plied to evaluate the model accuracy.

• The emission of DDT was estimated using

the world production trend.

• Themodel predicted the fate and degrada-

tion of DDT over 100 years.

• Wind direction can significantly affect the

distribution of chemicals.
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In 1996 high dichlorodiphenyltrichloroethane (DDT) concentrations were found in LakeMaggiore (Italy)fish and sed-

iments. DDT was produced by a chemical company located in a subalpine valley (Ossola valley, Piedmont Region,

Italy), and ended up in the Toce River, a tributary of Lake Maggiore. In the area surrounding the chemical plant,

high DDT concentrations in soil and vegetation were found after subsequent investigations. The quantification of

the release from contaminated soil and the following migration toward downwind areas, deposition to the soil, and

further evaporation plays an important role in understanding future DDT trends in soil and the atmosphere. To

study this phenomenon, soil, and vegetation fromOssola Valley weremonitored in 2001 and 2011. The concentration

values obtained (soils: 0.05 to 1 μg/g; vegetation 2–100 ng/g), allowed to reconstruct the contamination gradient in

the valley andwere used to develop and calibrate a spatially resolved multimedia fugacity model. The model accounts

for spatial and temporal dynamicity of environmental characteristics such as wind speed and direction, variable air

compartment height etc., and simulates the fate and transport of chemicals on a local scale. The dynamic emission

of DDT (about 13,000 kg for the 50 y production time) to the air was estimated and utilized for a 100-year simulation

(from 1948 to 2048). The results obtained allowed to understand the temporal and spatial pattern of DDT contamina-

tion for a long period at a local scale as well as the potential contribution as a source potentially affecting sites at larger

distances.

1. Introduction

DDT is an insecticide widely used in the past to control the mosquito

vector of malaria and to eradicate this disease (Tomlin, 1997). In the

seventies, environmental concerns led to the ban of this chemical in some

developed countries (WHO, 1979) and later by the Stockholm Convention

on Persistent Organic Pollutants (POPs), although some limited use in de-

veloping countries is still permitted to control malaria (UNEP, 2001). In

the summer of 1996, after routine monitoring of contamination in fish

from one of the largest lakes in northern Italy, Lake Maggiore, DDTs were

found at levels exceeding the legal threshold for food, with concentration

in fish reaching up mg/kg fresh weight (f.w.) levels (Ceschi et al., 1996).

The increase in DDTs concentrations in Lake Maggiore was due to the
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spill of this compound into a river (River Toce), flowing in Ossola Valley

(Fig. 1), where a chemical plant, located in Pieve Vergonte (VB) manufac-

tured DDT from 1948 up to 1997 (Barca, 2012).

While most of the efforts were initially devoted to the study of the

evolution of the lake contamination, limited investigations were done

to evaluate the contamination in the valley, in the area surrounding

the chemical plant. Therefore, several monitoring campaigns were

started to assess the possible effects of this DDTs rise on different

environmental compartments. A project evaluated the gradient of air

contamination, analyzing the bioaccumulated DDTs levels in conifer

needles (Di Guardo et al., 2003). The measured concentrations of total

DDTs, ranging from 1.35 to 47.7 ng/g dry weight (d.w.), indicated the

existence of a pollution gradient in the air at increasing distance

from the source. Additionally, the accumulation and release kinetics of

DDTs were assessed in three plant species (oak, azalea, and cherry

laurel) placed in a garden adjacent to the chemical factory producing

DDTs (Di Guardo et al., 2008). Dynamic multimedia environmental

models were also developed by this and other groups (Ghirardello

et al., 2010a, 2010b; Morselli et al., 2012, 2011; Terzaghi et al., 2017;

Wegmann et al., 2004) allowing for the evaluation of the fate of

chemicals in a scenario including air, soil, vegetation, etc. However,

these models did not allow following the fate of chemicals released

into the air at a small, valley-wide, scale, with the potential of spreading

to adjacent areas and regions and be deposited and accumulated in time.

For this reason, although spatial and temporal models are available

(Falakdin et al., 2022), a model capable of simulating the dynamic

and spatial behaviour of DDT deriving from a local source was needed.

The aim of this study is therefore twofold: to investigate the spatial

variability of air and soil concentrations at further distances from

the industrial plant, and to develop a spatial fate model to predict the

temporal and spatial dynamics of p,p′-DDT contamination in the valley

(during the emission years as well as the years after the production ban),

its future trends, and its potential for atmospheric transport outside the

valley.

2. Materials and methods

2.1. Sampling

2.1.1. Site characterization

Ossola Valley is located at the south of the Italian Alps chain andwest of

Lake Maggiore, in the Province of Verbano-Cusio-Ossola in Northern Italy

(Fig. 1). The flat bottom of the valley, located at 200 m above sea level,

has a maximum width of 2 km and is oriented from the North-West to the

South-East direction. The valley, which has a glacial origin, is surrounded

by slopes that reach a height of 900 m on the Westside and 1300 m on

the Eastside. River Toce flows across the valley's length, from North-West

to South-East into Lake Maggiore.

The chemical plant from which the DDTs emission originated (formerly

Enichem S.p.A.) is located in a small town (Pieve Vergonte), in the middle

of Ossola valley which now hosts a contaminated site of national relevance

(SIN Pieve Vergonte) (MITE, 2022). The plant started the production of

technical DDT around 1948. This mixture contained p,p′- and o,p′-isomers

of DDT, DDE and DDD, and p,p′-DDT was about 70 % (Di Guardo et al.,

2003). It continued until the end of 1996 when the ItalianMinistry of Envi-

ronment issued the ban on DDTs production, after the discovery of Lake

Maggiore contamination.

During the present study, about a hundred samples were obtained from

various matrices (soil, leaves, and litter) from 61 sampling points, to evalu-

ate the concentration gradient with distance from the industrial site.

2.1.2. Soil sampling

For the present study, 44 composite soil samples were collected in

Ossola valley between July 2000 and May 2001 (later identified as “2001

Fomarco

Ornavasso

Soil samples 2011

Leaf & litter samples

River

Chemical plant

1 km

Soil samples 2001

LEGEND

Lake Maggiore

Fig. 1. Geographical position of Ossola valley in Northern Italy and the location of soil, litter, and leaf samples. Numbers represent the location ID of the samples (Appendix

A.1). Fomarco and Ornavasso points are the locations of the closest meteorological stations.Mapwas realized using a digital elevationmodel obtained fromPiedmont Region

and elaborated in QGIS.
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samples”) (Table A.1). The position of each sampling point was determined

using a Garmin GPS II Plus, in UTM WGS84 projection system, and later

inserted in a digital map of Ossola valley (Fig. 1), created with ArcView

3.0 (Esri, Redlands CA, USA). For each soil sample, 5 surface subsamples

(taken at a 0–5 cm depth) were obtained (at the four corners and the center

of a square of approximately 1 m2) with an acetone-rinsed stainless-steel

corer and then mixed in order to obtain a single pooled sample. Grass turf

was removed before sampling if present. All samples were stored at −30

°C (see 3.2 for more details).

In November 2011, 14 soil samples (from now on called “2011 soil sam-

ples”) were collected and stored as above and analyzed by a GLP certified

laboratory (ChemService s.r.l., Novate Milanese, MI, Italy).

2.1.3. Leaf and litter sampling

A total of 35 leaf samples (conifer needles of different ages) were col-

lected from 10 locations along the valley between January 1999 and June

2000 (see Fig. 1). Some of leaf concentration data were previously pub-

lished just for total DDT to examine their capability as passive air samplers

(Di Guardo et al., 2003). Conifer needles were taken along Ossola Valley

with increasing distance from the source during 1999. In each sampling lo-

cation, spruce needles (P. abies) and pine (P. nigra) (Tables A.2, A.3) of dif-

ferent age classes (0 to 2 years) were collected paying attention to their

relative position on the branch (Arndt et al., 1987). In nine sites, the litter

samples were also collected between January to June 1999 (Table A.4).

To avoid cross-contamination, clean rubber gloves were used for leaf sam-

pling. Around 50 g of each needle age class was randomly collected at 1.5

m above ground, stored in hexane-rinsed glass jars with aluminum foil-

lined lids, and kept at −30 °C until analysis (see 3.2 for more details).

2.2. Chemical analyses

Leaf, litter, and soil samples were first freeze-dried. Leaves and litter

were then treated as outlined in (Di Guardo et al., 2008, 2003). Briefly, 2

g, d.w. of freeze-dried leaves or litter were extracted with hexane/acetone

(9:1) (Baker, Deventer, The Netherlands) using a modified all-glass Soxtec

apparatus (SER 148, Velp Scientifica, Usmate, Italy) for 6 h, then the extract

was first concentrated and cleaned up using gel permeation chromatogra-

phy in a 50 cm, 2.5 cm I.D. glass column with dichloromethane for residue

analysis. The soil was sieved at 2 mm with a certified steel sieve and ex-

tracted in hexane/acetone (9:1) with an all-glass Soxtec apparatus for 6 h.

The extracts were then digested in H2SO4 (on Extralut columns, Merck,

Darmstadt, Germany) for 4 h in order to remove the organic fraction.

Leaf, litter, and soil samples were afterward eluted and cleaned up on silica

gel chromatography. The elution solvent was a mixture of hexane and tolu-

ene (65:35) (Baker, Deventer, The Netherlands). The eluted fraction was

first concentrated in a rotary evaporator and thenwith a gentleflux of nitro-

gen. Internal standards (13C12 p,p′-DDT and 13C12 p,p′-DDE, CIL, Boston,

MA, USA) were added at extraction time. Standards of o,p′-DDT, p,p′-

DDT, o,p′-DDD, p,p′-DDD, o,p′-DDE, p,p′-DDE (Riedel de Haën, 96 % pu-

rity) were used to create calibration curves. The analyses were performed

with a gas chromatograph-mass spectrometer - (HP 6890-5972a) and elec-

tron impact in selected ion monitoring mode. The column used was an SGE

BP10, 50 m (0.22 nm i.d., 25 μm phase thickness). More details can be

found in Di Guardo et al. (2008, 2003).

2.2.1. Organic carbon measurement

Organic carbon in soil was measured using the Walkley-Black method

(Gaudette et al., 1974;Walkley andBlack, 1934) using 1 g of freeze-dried soil.

2.3. Quality assurance/quality control

The recovery for all the chemicals ranged from 65 to 90% in 2001 sam-

ples. The limit of quantitation (LOQ) for each isomer was 0.1 μg/kg d.w.

Procedural blanks (same solvents, glassware, and chemicals used but with

no sample), were included with every five samples. The compounds were

never detected in blanks above LOQ. No significant degradation of DDTs

to DDDs was observed since 13C-labelled standards were used as internal

standards. Method reproducibility was checked by routinely analyzing a

certified fish sample obtained during a previous laboratory inter-

calibration. Results were within 15 % of the certified values. More details

on the analytical method employed can be found in (Di Guardo et al.,

2008).

For the 2011 samples, analyzed by the commercial laboratory

ChemService s.r.l., the limit of quantitation (LOQ) for each isomer was 10

μg/kg.

2.4. Gridded SoilPlusVeg model development

2.4.1. SoilPlusVeg model

The Gridded SoilPlusVeg (GSPV) model was built based on the

SoilPlusVegmodel (Terzaghi et al., 2017) whichwas used as a single build-

ing unit. SoilPlusVeg (SPV) is a dynamicmultimediamodel based on the fu-

gacity approach (Mackay, 2001), developed to simulate the dynamic fate of

chemicals in an area characterized by vegetation compartments (roots,

stem, and leaves) along with different soil and atmospheric compartments:

lower air, corresponding to the planetary boundary layer, and upper air.

The capacity of each compartment is described in terms of Z values

(mol/m3 Pa), while transport and transformation processes are described

using D values (mol/Pa h) (Ghirardello et al., 2010a; Terzaghi et al.,

2017). SPV model performance was evaluated in a previous work

(Terzaghi et al., 2017); moreover, an extensive sensitivity analysis was pre-

viously conducted in order to investigate themost influential parameters on

concentrations in air, leaves and litter (Terzaghi et al., 2017). SPV model

was developed in Visual Basic version 6.0 and integrates a GIS tool

(MapWindow v. 5.6.3, MapWindow.org) to interrogate and retrieve geo-

graphical information. QuantumGIS version 3.20 (QGIS Development

Team, 2018) was used for data storage, visualization, and analysis of the

geospatial data.

2.5. Simulation scenario for the model evaluation

An evaluation of GSPVmodel performancewas carried out for p,p′-DDT

(Table A.5, Table A.6). The model was parameterized as shown in the fol-

lowing sections. GSPV was run for 49-years (1948 to 1997), period of

DDTs production at the Pieve Vergonte chemical plant and for the following

51 years after the halt of production (a total of 100 years, up to the year

2048), to evaluate dissipation of DDT in time and space. The results of

the simulation relating to the years 2001 and 2011 were compared to the

measurements in soil, leaves, and air to evaluate the results.

2.5.1. Meteorological data

Due to the lack of hourly wind data at the Fomarco station, these data

were obtained by the closest available meteorological station, for which

wind direction and speed, located in Ornavasso (VB) (215 m a.s.l), about

11 km East of Pieve Vergonte (Fig. 1). Data were provided by Meteo Live

Verbano Cusio Ossola and were obtained with a Davis Vantage Pro2

Weather station, installed at a height of 2 m from the ground, in an open

area. Hourly data, average obtained from every half an hour, were gathered

for year 2013, and used in the model as such. The wind rose from this sta-

tion are shown in Fig. A.2.Wind speed in upper air ranged between 0.4m/s

to 12 m/s while that of lower air was between 0.3 m/s to 9 m/s.

Meteorological parameters such as temperature, precipitation, and solar

radiation were provided by the closest regional station (Regional Agency

for Environmental Protection) of year 2005 (ARPA, 2005) of the Piedmont

Region for the Fomarco station (Fig. 1) on an hourly basis. Annual precipi-

tation was 1293 mm (Fig. A.3), and the average temperature was 11 °C.

Due to the lack of locally estimated PBL heights, the planetary boundary

layer (PBL) dataset of Milan (Terzaghi et al., 2017) was used, with the

upper air compartment height ranging between 10 m to 2267 m and the

lower air height ranging between 100m to 3000m, depending on the season

and the diurnal temperature variations. The meteorological scenario
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described above, related to one representative year, was implemented for the

entire simulation time, in the lack of measured data for the simulated years.

2.5.2. Compartment parameters

The grid over the study area is composed of 100 square cells (i.e., 10

rows and 10 columns) of horizontal (x-y coordinates) sides of 1200 ×

1200 m (1.44 km2). Two types of vegetation cover were considered repre-

sentative of the study area: a deciduous forest (parameterized as Corylus

avellana (hazelnut)) (Terzaghi et al., 2013) for themountain slopes adjacent

to the two sides of the valley and a grass species (parameterized as Festuca

arundinacea, tall fescue) along the valley (Fig. A.4), mostly characterized by

agricultural and pasture use. For grass, constant biomass was considered,

however, two cutting events were set: one for mid-April and one for mid-

August. From the cutting events, the grass was considered to grow for one

month until it reached itsmaximumbiomass. In terms of chemicalmass bal-

ance, the DDT content in grass is transferred to the soil after each cutting

event.

The soil composition was set to loamy sand including 10 % clay, 10 %

silt, and 80 % sand content, based on the soil textural data available

(Lupato, 2001). Particulate/dissolved organic carbon (POC/DOC) in soil

was set to 15 and 10 (mg/l), respectively (Terzaghi et al., 2020). The soil

horizon was divided into 5 layers of 20 mm thickness. The mean organic

carbon (OC) mass fraction was set to 0.0234 in soil, obtained by averaging

the OC fractions measured at soil sampling sites.

2.5.3. Emission scenario

In order to run the simulation, p,p′-DDT emission in air was required.

Due to the lack of information about the amount of DDT emitted from the

chemical plant, an estimation was performed. The amount of hourly emit-

ted chemicals into the air was back calculated based on the measured leaf

concentrations at a certain distance from the source. Expressly, it was esti-

mated the amount emitted into the air in one hour which could produce an

air concentration equal to the available measured concentration in the

same hour and at a specific distance from the source. An emission profile

was then constructed for yearly emissions of the chemical plant to account

for emission rise during the high productivity years, basing on the United

States DDT production (WHO, 1979), which varied abruptly during the

years from 1948 to 1997 (Figs. A.6 and A.7).

The yearly values were eventually broken down into hourly emission

rates and fed into the model. PM10 was set to 50 (μg/m3), representing av-

erage values for 1995–1998 for Northern Italy among those present in the

AirBase & e-Reporting merged EU database (EEA, 2022).

Air background concentration at further distances from the source

was estimated from leaves and litter values (Eq. (1)). Leaf concentrations

(ng/g d.w.) were converted into air concentration (ng/m3) values using

plant-air partitioning coefficients according to the Nizzetto et al. (2008)

(Eq. (1)).

log KPA ¼ y0 þ a log KOA (1)

where Kpa (m
3/g) and Koa are the plant-air and octanol-air equilibrium

partitioning coefficients, respectively, and y0 and a are the regression pa-

rameters of the equation (Nizzetto et al., 2008). These values for spruce spe-

cies were −1.75 and 0.33, respectively.

The leaf species used for this conversion were Norway spruce (Picea

abies), black pine (Pinus nigra), white pine (Pinus strobus), Scots pine

(Pinus sylvestris), and the European larch (Larix decidua).

For the points located 10 to 15 km away from the source, air concen-

tration values vary between 0.04 and 0.06 ng/m3. Therefore, the value

of 0.05 ng/m3 was selected for the model scenario, possibly reflecting

background air concentrations outside of this scenario. Similar average

concentrations in air (50–80 pg/m3) were measured in 2008 for p,p′-

DDT in air from Tuscany for urban and rural transects (Estellano et al.,

2012).

2.6. Data representation

The 100-year simulation data were spatially plotted in Fig. 5 using one

value for cell (center of the cell for each cell and at 10-year intervals) using

the kriging interpolation method with an exponential covariance (Chilès

and Delfiner, 2012). For the comparison of predicted vs. measured soil con-

centrations (Section 3.6), measured values were averaged within the loca-

tion of a grid cell and were compared to the model results of the

corresponding cell. The error bars relating to the measured data show the

variation of concentration values for the nearby sample points. For the

2011 measured data, half of the limit of detection (LOQ) was considered

for the samples with concentrations below LOQ (= 0.01 μg/g d.w.). For

the predicted vs. measured leaf concentration comparison two years old

needles were selected for comparison because these samples consistently

provided valid concentration values of p,p′-DDT chemicals (among all the

measured DDT components). The predicted air concentrations of

Section 3.6 were calculated using KPA. Given its high dependence on tem-

perature, it was calculated for the minimum, maximum, median, first,

and the third quartile of the hourly temperature of the year of the simula-

tion scenario in order to have a range of KPA values and incorporate the ef-

fect of temperature on uptake and release of chemicals between leaves and

air (see also section A.4 in the Appendix).

2.7. Sensitivity and uncertainty analysis

A comprehensive sensitivity analysis for SPV was conducted in the cor-

responding paper (Terzaghi et al., 2017). For a griddedmodel, some param-

eters may have additional impact on the spatial distribution of chemicals.

These parameters are the lower air height, windspeed and wind direction.

Therefore, a sensitivity analysis was specifically conducted for these param-

eters to show their relevance in driving concentration in lower air, leaves,

and soil for the entire grid system. These parameters were changed by 1

% one at a time and the results were assessed by calculating the absolute

variations of the output to these changes using the following equation

(MacLeod et al., 2002):

Sj j ¼
∆O=O

∆I=I

�

�

�

�

�

�

�

�

(2)

where ΔO and ΔI are the relative changes in the output and the input pa-

rameter, respectively.

A dynamic scenario in a predictive model along with limited available

data can lead to the selection of a set of representative input and result in

the deviation from the real scenario. Therefore, an uncertainty analysis

was required to account for the uncertainty of the scenario hypotheses.

The most sensitive parameters were used to perform this analysis to high-

light the uncertainty of the implemented scenario on the chemical fate

and transport within the grid system. Therefore, the average concentration

of the entire grid was used for the comparison rather than a single cell

value. An uncertainty of 30 % for PBL height and lower air windspeed

was considered, accordingly, the variation of the results was assessed.

3. Results and discussion

3.1. Gridded SoilPlusVeg model

The SPV model was expanded to a 3D gridded model with a user-

defined number of square-based grid cells in which each cell is one SPV

unit. The originally integrated GIS tool in SPV can be now used to import

site-specific information for each cell, later used in model calculations.

The advective air fluxes in and out of each cell distribute the chemicals

among different cells depending on the current hour wind speed and

wind directions. The wind x, y velocity components for each layer (upper

and lower air) were calculated depending on the wind speed, wind direc-

tion, and the angle at which wind is entering the system to account for

the hourly distribution of moles between the cells (Fig. 2).
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3.1.1. Approaches used in segmenting model scenario

This is the first approach in multimedia fate modeling, to our knowl-

edge, that deals with the dynamic directional advective wind within a

fine grid system (1.2 km×1.2 km) for a small-scale scenario. Spatiotempo-

ral multimedia fate models on small scale were mostly developed for the

aquatic networks and the contribution of dynamic directional wind in the

transport of chemical were either ignored and limited to the use of

steady-state or dynamic hence unidirectional wind (Coulibaly et al.,

2004). Additionally, the use of a fine grid for the air compartment is

avoided in suchmodels. The main reason for these choices is the numerical

instability arising from the high-velocity wind and its propagation through

a grid system when the transport distance of the wind within the time step

is larger than the grid side length in that direction. For example, the

ECORAMmodel (Jung et al., 2014), which is a multimedia model for expo-

sure assessment in aquatic ecosystems at the local scale, incorporated an air

grid system of 12 km× 12 km for the advective transport in order to keep

the grid size larger than thewind travel distancewhile the spatial resolution

of the watersheds was set up to 1 km2.

Courant Fridrich Lewy (CFL) condition (de Moura and Kubrusly, 2013)

indicates that the Courant number c (=vxΔt/Δx) (where vx is the wind ve-

locity, t is time and x is distance) must be equal to or less than one in each

time-step, implying that transport distance at each time-step should be

smaller than the cell length.

In addition to incorporating large grid cells, another solution to keep the

c number equal to or less than one is to use small time steps. This method in

small-scale atmospheric models is employed by solving the advection-

diffusion equation utilizing a Lagrangian approach. For example, the

MATCH model is a high spatial resolution (5 km × 5 km) atmospheric

model that used a limited area Eulerian approach (Robertson et al.,

1999). Although a discrete approach was implemented to solve the gradi-

ent of advective flux between the two cell walls, to calculate the flux at

the location of the cell walls a Lagrangian polynomial approximation was

used. Nevertheless, it is not always feasible for a dynamic fatemodel includ-

ing various environmental media to take advantage of a Lagrangian opera-

tor since it can lead to computational complexity especiallywhen themodel

is aimed to simulate several decades.

3.1.2. Approach used in GSPV model

In this paper, a model composed of 100 cells is applied to a local scale

(144 km2) which includes 14 environmental compartments in each cell.

In order to run the model for 100 years, a time step of 1 h is considered

for the grid calculations, however, the SPV solver can calculate compart-

mental mass balance up to the temporal resolution of a second. Since in

this simulation, the grid cells have high spatial resolution and the temporal

resolution of less than 1 h can cause computational redundancy, the model

requires a numerical solution to overcome the issue of advection between

the small cells.

The GSPVmodel follows the upwind propagationmethod (UPM)mean-

ing that the advective information in the grid system is only incorporated

from the upstream adjacent grid (Chapra, 1997). To handle the chemical

advective transport within a grid systemwhen the wind speed is high, a so-

lution was designed based on the sequential advection transport scheme

presented by (Wu et al., 2019) in the formulation of the ICAT model. In

this approach, the c number was always kept equal to or <1, however, a

group of small queue-cells (i.e., cells with connected inflow and outflow

faces) were considered within the adjacent cell and the transport and distri-

bution of scalar (i.e., chemical) between the queue-cells were calculated.

Calculation of the advection within the small queue-cells was used in

GSPV to calculate the chemical distribution among the downstream cells.

In the ICAT method, the number of queue-cells within the adjacent cell, e,

was determined as Ne (Eq. (3)) and the volume of the small queue-cells

was calculated as Ve
1(Eq. (4)). Eventually, the fraction of the scalar

transporting to the first queue-cell, αe, was obtained as the ratio between

the volume of the small cells to the volume of the entering fluid in that

time step (Eq. (5)).

Ne ¼
V e

qe∆t

� �

(3)

V1

e ¼ V e � Ne � 1ð Þqe∆t (4)

αe ¼ V e � Ne � 1ð Þqe∆t½ �= qe∆tð Þ (5)

where Ve is the volume of the cell, qe is the flowrate, ∆t is the time step. [] is

the rounding up operator. The scalar was distributed among the queue-cells

by a discrete piecewise-constant function as

αe:∅i þ 1 � αeð Þ∅i � 1 (6)

where ϕ is the scalar, the first term represents the fraction of the scalar en-

tering the cell, αe, from the adjacent upstream queue-cell i, and the second

term is the fraction of scalar exiting the cell, (1− αe), to the adjacent down-

stream queue-cell i − 1. In the GSPV model, the c number is calculated at

each hour for the horizontal wind directions (i.e., along x and y). The

roundup of the c number (i.e., p) can provide information about the number

of cells that are getting affected by the advective wind of that hour in that

direction. If the p number is equal one (i.e., only one adjacent cell is im-

pacted by the wind), chemicals that exit the current cell through advection

are considered as the input chemical of one neighboring cell. Otherwise, it

means that the air enters and exits each cell faster than the defined time-

step. For example, if the p number is equal to three it means that three

Plane view

Wind

Side view

Upper air

Lower air

Soil

Vegetation

Fig. 2. Side view of the model including different environmental compartments. Plane view showing advective transport between adjacent air grid cells.
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following cells along that direction are getting the advective wind, there-

fore, the amount of chemicals that are exiting the current cell will be distrib-

uted among the three following cells in the same time step using the above-

mentioned sequential advection transport method (Appendix B.1).

It is also assumed that at the current simulation scale, the compartmen-

tal processes occur after the advection process in that time step since the

mass transfer coefficients (MTC) have an extremely lower rate compared

to the advection rate. TheMTC calculated for different processes varied be-

tween 10−6 to 6.5 m/hwhile the hourly wind speeds of the simulation sce-

nario differ from 1080 to 43,200 m/h. Therefore, the wind speed is

significantly faster than the compartmental processes (Appendix B.1.1).

Therefore, at the end of each hour, the amount of chemicals entering

each cell through advection is used for the multimedia mass balance calcu-

lations. Grid cells go through the compartmental mass-balance calculations

(i.e., the SPV solver) one by one. Further details about themass-balance cal-

culation are described in Terzaghi et al. (2017).

Themodel accounts for the temporal hourly variation of meteorological

data such as PBL height, wind speed, wind direction, temperature, precipi-

tation, and solar radiation as well as site-specific vegetation type (with a

user-defined cell-size resolution).

Based on available geographical information, the model will load data

(i.e., average properties of the cell) from the attribute table corresponding

to the shapefile of each cell. The vegetation type and parameters such as

density and volume of roots and stem, stable specific leaf area (SLA), and

parameters of plant-air partitioning coefficient (KPA) for each cell were

specified within the GIS database (Table A.7), while time-varying parame-

ters such as dynamic SLA, leaf area index (LAI), leaf density, and wind

speed at the height of the plant were fed into the model using external

datasets.

3.2. Comparison between GSPV and SPV

The results of the GSPV model, calculated for one cell, were compared

with the original single-cell SPV to validate the accuracy of the newly devel-

opedmodel. The scope of this comparisonwas to guarantee that each cell in

the grid can produce identical results as a single cell SoilPlusVeg model

when receiving similar input (i.e., chemical properties, meteorological,

and environmental parameters). All concentration values for different com-

partments were identical. More details can be found in Appendix B.2.

3.3. Model sensitivity and uncertainty

The result of the sensitivity analysis showed that the lower air and fo-

liage concentrations were more sensitive to the change of the tested param-

eters in comparison with soil (S ~ 0). Lower air concentration was mostly

affected by the wind speed (S ~ 1.5). The effect of the wind direction (S

~ 1.2) and the height of the lower air (S ~ 0.9) were also considerable.

Leaf concentrations however were mostly affected by the wind direction

(S ~ 1.4). The influence of height of the lower air (S ~ 0.9) and windspeed

(S ~ 0.8) on leaf concentrations were within the same range (Table B.2).

The result of the uncertainty analysis shows that with an uncertainty of

30 % for PBL height, the concentration of the lower air and leaves will

change approximately 40 %. Additionally, a 30 % uncertainty for the

lower air windspeed resulted in 40 % change in the foliage concentration

and 80 % change in the lower air concentration (Table B.3). Concerning

wind direction variability, a comparison of the data used for the 100 y sim-

ulation vs. the 10 y average for the Ornavasso station shows a relatively sta-

ble situation with the main changes in the WNW wind with a frequency

which varies between of a factor of 2–3, WSW with a change of a factor

of 4, and the NE of about 25 %. Additionally, in SPV model wind speed is

reduced within the canopy as a function of the canopy height and cover

(i.e., Leaf Area Index).

For all the above-mentioned scenarios, soil did not show a significant

change of concentration. Therefore, this media can provide a more robust

platform for comparison and prediction.

Additionally, for the analytical variability of the measurements, an un-

certainty of 10 to 15 % was considered.

3.4. Spatial trend of DDT along the valley

Concentrations of DDTs (p, p’-DDT and isomers and metabolites) in soil

(2001 and 2011), litter, and leaf (relating to the years 1997 to 2000) sam-

ples are reported in Appendix A.1 (Tables A.1, A.2, A.3, and A.4). Although

these isomers and metabolites were measured, the simulation and compar-

ison with measured data was performed for p,p′-DDT only, since the p,p′-

DDT was the most abundant chemical in the technical DDT mixture pro-

duced by the chemical plant. Additionally, basing the comparison only on

the parent compound would allow reducing the potential accounting of

older metabolites (such as p,p′-DDE and p,p′-DDD) which could derive

from local use of DDT in the past.

DDT concentrations inmeasured leaf and soil samples decrease with in-

creasing distance from the chemical plant (Fig. A.1) as previously shown in

Di Guardo et al. (2003). In spruce needles and back-calculated air samples,

as well as soil, the p, p’-DDT concentrations reduce by about two orders of

magnitude (needles: from 94 ng/g d.w. and 1.64 ng/g d.w., air from 3.95 to

0.068 ng/m3) with distance. Soil concentrations of samples located in close

vicinity of each other were averaged showing the maximum value of 0.7

μg/g d.w. in the vicinity of the chemical plant and minimum value of

0.003 μg/g d.w. 2 km northwest of the source. The soil concentration gra-

dient varies up to 5 orders of magnitude; however, samples affected by ex-

ternal factors such as direct spill orwashout by the riverflowwere excluded

in the comparison predicted vs. measured values (Table A.1, PV-Red Soil 1,

PV-Red Soil 2, Rio Marmazza 1, and Rio Marmazza 2 samples were ex-

cluded due to direct spill of sewage to soil. Villadossola 2 was excluded

due to its vicinity to the river and flood soil washout

3.5. Importance of fluxes in driving the environmental behaviour of DDT

Basing on the assumption on chemical emission trend and calculated

emission of Fig. A.6 and Fig. A.7 we calculated that the total emission in

air (in the 50 years of production) was about 13,000 kg of DDT, equivalent

to an average of 260 kg/y for each year of DDT production. Basing on this

data andmodel simulations it can be estimated that the air advection out of

the system is responsible of>95%of thefluxes, in other terms<5%of DDT

is stored in soil and vegetation. This means that although an important

amount of DDT is deposited to vegetation and soil (and there accumulated),

nearly all DDT is exported to other areas through air movement.

Degradation is one of the most important loss fluxes in soil (up to 90%)

especially in those periods characterized by no leaching and runoff events.

Degradation rates showed a seasonal variability (up to a factor of about 30)

according to temperature and rainfall trend (i.e., degradation rates are up-

dated considering Walker equation (Walker, 1974). Average degradation

rate slightly varied with depth (i.e., a factor of about 1.2) while its spatial

variability could not be appreciated since the samemeteorological scenario

was adopted for all the considered cells. The presence of vegetation gener-

ally increase the deposition fluxes to soil of about 40% (compared to a bare

soil), showing the importance of plants in capturing DDT from air and trans-

ferring it to soil (Wegmann et al., 2004). When looking at average soil loss

fluxes, degradation is responsible for about 70 % of losses, infiltration, dif-

fusion downwards and volatilization for about 10% eachwhile runoff is re-

sponsible for <1 %.

3.6. Comparison between GSPV simulation and measurements

GSPV model was run for the selected scenario and for 100 years, calcu-

lating concentration values of p,p′-DDT in air, leaves, and soil with respect

to distance from the emission source. Simulated and measured concentra-

tions were first compared for the years in which measurements were avail-

able (years 2001 and 2011). To evaluate the simulated/measured

concentrations comparison, it should be remembered that air is a very dy-

namic media, and its hourly concentration highly depends on the
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meteorological condition of that hour (e.g., PBL changes, affecting the air

volume and concentrations, or wind speed, that can increase or reduce

the chemical residence time in air). Soil instead, as a relatively immobile

medium, receives chemicals deposition from air and can be used to repre-

sent the accumulation history of the chemicals in the study area.

Fig. 3 a and b shows the simulated versus measured logarithmic soil

concentration values along the valley with distance from the chemical

plant for the years 2001 and 2011, respectively.

The result of the comparison for soil samples shows a good agreement

between the modeled and measured concentrations, with variation com-

prised up to one order of magnitude, but generally within a factor of five

(Fig. 3). The deviation between the simulated and measured values is

higher in areas further away from the chemical plant, possibly related to

the uncertainty of precise meteorological conditions for the period simu-

lated. However, considering the numerous assumptions we regard these re-

sults as a very good indication that the model could represent the historical

contamination in the valley with sufficient accuracy.

Fig. 4 shows the simulated versus measured logarithmic leaf concentra-

tion values with distance from the chemical plant for years 2001 and 2011

(also available in Tables A.2, A.3; sample ID 51, 52, 53, 54, 55, 61). The re-

sult of predicted versus measured leaf concentrations indicated a satisfying

agreement with the maximum measured values, within a factor of 2

(Fig. 4a). The comparison with maximum values depends on the fact that

monitoring leaf samples are from evergreen species, accumulating DDT

for a longer period, while simulated leaves are from deciduous species,

for which accumulation takes place only for about 6 months a year.

Fig. 4b shows the measured versus the range of predicted logarithmic

lower air concentration values with distance from the chemical plant.

While the median predicted values show a better agreement with the mea-

sured data, the difference between the minimum and maximum simulated

values is close to two orders of magnitude indicating the unstable nature of

the lower air compartment (see also section B.4 in the appendix). Factors af-

fecting these variations include the changes in planetary boundary layer

height, which affects the air volume even within 24 h and results in differ-

ent concentrations from one hour to another, wind speed, and wind direc-

tion which spread the chemicals in different areas at different times,

resulting in very different hourly concentrations.

To fully evaluate the range of concentrations measured and predicted in

this study it could be useful to show some measured values form the litera-

ture in periods for which DDT usewas banned. For example, Calamari et al.

(1991) studied the level of DDTmetabolites in plant samples obtained from

26 sites around the world as a way tomeasure air contamination and global

circulation of POPs. They showed that levels varied between 0.15 (ng/g d.

w.) in Africa up to 77.8 (ng/g d. w.) in India (Calamari et al., 1991). More

recently, soil DDT concentrations in the end of the 1990s in different mea-

sured by (Covaci et al., 2002) were 6.8, 26.2, 24.1, and 96 (ng/g d.w.) for
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Fig. 3. Simulated andmeasured soil concentrations versus distance from the chemical plant. a) 2001; b) 2011. Error bars represent the standard deviation of the values of the

measured samples within the cells at the different distances.
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Belgium, Italy, Greece, and Romania, respectively. In surface agricultural

soil samples from Tianjin area in China, the mean concentration of the

total DDTs was 56 (ng/g d.w.) (Gong et al., 2004) and the DDT concentra-

tions was reported by the authors as derived by the intense use of DDT be-

tween the 1960s to 1980s. Soil concentrations obtained in this study, were

at least three orders of magnitude higher than those of the literature (μg/g

vs. ng/g level) due to the influence of the emission source. However, at dis-

tance from the emission source concentrations in soils are closer to litera-

ture data, probably reflecting past agricultural DDT use and/or deposition

from background air.

As mentioned before, soil concentrations can be used to evaluate DDT

accumulation in time due to deposition from air, and specifically to focus

on the effect of wind direction . For example, the concentration in soil at

a location downwind of the source along the prevalent wind direction can

be up to a factor of 20 higher than of a location scarcely reached by wind

coming from the emission source. Fig. 5 shows the gradient of concentra-

tions of DDT in soil from the emission point represented for 100 years at

a 10 year interval, starting from the presumed production start (1948).

In each map isoconcentration lines differentiate areas characterized by

soil DDT values within a factor of ten. Concentrations in soil generally

vary between two to three orders of magnitude within the simulated grid,

showing the intensity of deposition around the source and the dilution

with distance, emission in time (with maximum emission in the ‘60), and

the slow decrease in concentration after the production stop (1996). The

maps for years 2001 and 2011 also include the corresponding measured

sample points, represented with the same color range as the map predicted

concentration gradients. The comparison of simulated and measured con-

centrations for these two sequential periods of time reveals the goodness

of the simulation and be used for model benchmarking: most of the points,

especially those close to the chemical plant, are in the same range (a factor

of 10) of simulated concentrations. Some of the most distant points present

either slightly higher or lower concentrations, probably depending on the

uncertainties about the meteorological scenario in such a long simulation.

However, given the uncertainties in the assumptions we regard these re-

sults as reasonably accurate to give a representation of the past and future

contamination of the valley.

Overall, the results of the 100-year simulation showed that DDT accu-

mulation in soil has involved a vast area in time. If we consider soil inven-

tory, we calculated that the peak would be in 1971 with about 2415 kg

sequestered in soil, reducing to 253 in 2021, 159 in 2031 and 99 in 2041.

This last amount corresponds to<1% of the amount emitted in the produc-

tion period.

If we consider the current Italian threshold for DDT (including p,p′- and

o, p’-isomers) contamination in soil for agricultural areas (0.01 μg/g d.w.)

(Italian Ministry of Environment, 2019) it can be calculated that the soil

surface at concentrations higher than the threshold corresponded to

about 1560 ha in 1951, a maximum of 7433 ha in 1981 and currently

(2021) of 3994 ha. The next 20-year simulations showed that this area

will progressively reduce to 2872 ha in 2031 and 2045 ha in 2041, reveal-

ing that the long temporal burden of DDTwill be still present on a large por-

tion of the territory. It has to be underlined that agriculture has an

important role inOssola valley, with husbandry and other practices still tak-

ing place. Additionally, just adjacent to the north side of the valley lies the

Val Grande National Park, and therefore, given the predicted concentra-

tions, it might be advisable to evaluate the current and future ecosystem ex-

posure and the potential effects in this and other areas.

While this exercise depicts DDT contamination, one should remember that

DDE, the major degradation product in the soil of DDT, being more persistent
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Fig. 4. a) Simulated and measured leaf concentrations versus distance from the chemical plant. b) Simulated and measured air concentrations versus distance from the

chemical plant.
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(Mackay, 2001) will be probably present in the soil for additional time and

contribute to the total ecotoxicity of DDTs in time. Basing on 2001 samples,

DDE is about 50 % of DDT therefore, to a first approximation and as a worst

case we can assume that total DDTs at each time interval will be comprised

of these amounts to be added to the DDT levels depicted in Fig. 5.

3.7. Limitations

Themodel scenario in the simulated area was simplified to reduce com-

plexity. However, wind direction and speed can be different along a valley

shaped topography due to the canyon effect (Chen et al., 2020). In this sit-

uation, for example, the wind direction is more likely to have a coherence

pattern during the years. This matter could not be hence investigated due

to the lack of different meteorological stations along the valley. Higher

soil concentration along the valley can be due to this fact in addition to

the presence of the river, chemical can move through the suspended solids

and deposit in downstream areas. The absence of a river in the simulation

scenario was due to complications arising from the discretization of river

segments, which was not incorporated in the current model version. How-

ever, an estimation of DDT loads reaching Lake Maggiore water and sedi-

ments was obtained previously (Di Guardo et al., 2006).

A remediation project was started in 2014 by Eni Rewind (Eni rewind,

2020). One of the activities was the removal of the contaminated soil

from the internal and external areas of the industrial site. This might have

reduced the chemical emissions due to evaporation from soil starting

from that year. However, these activities were limited to the areas adjacent

to the chemical plant, while as the results show, these chemicals seem to be

accumulated in the soil of large portions of the valley.

27542
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2 km

Fig. 5.Maps of the simulated soil concentrations in time. Round markers represent soil samples measured in 2001 and 2011, and their color represent the same interval of

concentrations as the legend. The striped points in the 2011 map have a value lower than the limit of quantitation (LOQ) of 0.01 μg/g d.w.
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4. Conclusions

A spatially resolved gridded model with multimedia fate model units

was developed and benchmarked against >100 measured data for the

Ossola valley. This allowed estimating the emission of DDT released from

a local chemical plant and determining the role of the spatial meteorologi-

cal and environmental parameters on the fate and transport of DDT in the

valley. The simulation performed allowed to calculate DDT concentrations

in different media, generally within an order of magnitude from measured

data. Long term simulation results showed the spatial and temporal extent

for an area contaminated by a persistent and hydrophobic chemical to clean

up. Further future monitoring activities would be useful to verify the trend

of contamination and model validation. In addition, further investigation

should be performed to evaluate the contribution of this local DDT emission

source toward the regional/continental scale.
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MONITORING DATA AND SIMULATION SCENARIO 

A.1) Soil, leaf, and litter samples 

 
Table A.1. Soil DDT concentrations 2001 and 2011 (µg/g d.w.) 

 

ID Name 
o,p'- 

DDE 

o,p'- 

DDD 

p,p'- 

DDD 

o,p'- 

DDT 

p,p'- 

DDE 

p,p'- 

DDT 
DDTS_TOT X_COORD Y_COORD 

Year 2001 

1 PV - Forest 0.00108 0.00033 0.00195 0.00675 0.03798 0.07663 0.12472 1444074 5094435 

2 PV - L 1 0.00021 0.00071 0.00248 0.01851 0.00484 0.04928 0.07603 1443933 5096864 

3 PV - L 2 0.01371 0.00051 0.03782 0.15242 0.73445 1.172 2.1109 1443608 5095150 

4 PV - L 3 <0.0001 <0.0001 <0.0001 <0.0001 0.0002 0.00067 0.00087 1444391 5096674 

5 PV - L 4 <0.0001 <0.0001 <0.0001 0.00023 0.00077 0.00115 0.00215 1444586 5096646 

6 
PV - Red Soil 1 

* 
0.37848 0.02644 0.03231 0.22947 1.36073 1.58163 3.60906 1444358 5094924 

7 
PV - Red Soil 2 

* 
0.14481 0.20409 0.50555 3.27714 0.63147 18.012 22.77506 1444358 5094924 

 
8 

PV - RM 5cm 0.00111 0.00076 0.01284 0.02371 0.04507 0.72208 0.80557 1444646 5094467 

PV - RM 10cm 0.00083 0.0005 0.00319 0.01546 0.05119 0.18587 0.25704 1444646 5094467 

 

 
9 

PV1 - L 5cm 0.01471 0.01406 0.03499 0.10375 0.39148 0.57114 1.13013 1444123 5094638 

PV1 - L 10cm 0.00739 0.00357 0.02586 0.03306 0.46288 0.81943 1.35219 1444123 5094638 

PV1 - L 15cm 0.03281 0.00246 0.01593 0.02402 0.42383 0.46127 0.96032 1444123 5094638 

 

 
10 

PV2 - L 5cm 0.01268 0.00672 0.02459 0.08585 0.56916 0.65314 1.35214 1444128 5094638 

PV2 - L 10cm 0.01012 0.00501 0.02563 0.0511 0.57032 0.38909 1.05127 1444128 5094638 

PV2 - L 15cm 0.01973 0.00545 0.02957 0.09426 1.08457 0.57058 1.80416 1444128 5094638 

 

 
11 

PV3 - L 5cm 0.01019 0.00812 0.03994 0.0571 0.49459 0.59065 1.20059 1444128 5094633 

PV3 - L 10cm 0.00454 0.0026 0.01629 0.16698 0.35743 0.19547 0.74331 1444128 5094633 

PV3 - L 15cm 0.0137 0.00556 0.02521 0.07551 0.65716 0.42472 1.20186 1444128 5094633 

 

 
12 

PV4 - L 5cm <0.0001 0.009 0.05 0.102 0.895 1.191 2.247 1444122 5094633 

PV4 - L 10cm 0.01 0.005 0.026 0.037 0.632 0.342 1.052 1444122 5094633 

PV4 - L 15cm 0.028 0.02 0.044 0.09 1.554 0.646 2.382 1444122 5094633 

13 Fomarco 1 0.00091 0.0003 0.00107 0.00678 0.02958 0.02927 0.06791 1442961 5096104 

14 Fomarco 2 0.00137 0.0007 0.00283 0.01128 0.05569 0.07093 0.1428 1443088 5096003 

15 M. Mezzo 1 0.00553 0.00271 0.00744 0.0709 0.11175 0.38755 0.58588 1446063 5093548 

16 M. Mezzo 2 0.00304 0.00232 0.00629 0.01361 0.0764 0.08661 0.18827 1446567 5093289 

17 M. Mezzo 3 0.00094 0.00071 0.00431 0.01113 0.04286 0.1708 0.23075 1446984 5093291 

18 M. Mezzo 4 0.00063 0.00027 0.00245 0.00488 0.04764 0.22486 0.28073 1448624 5093110 

19 
Anzola - M. 

Mezzo 
0.00044 0.00032 0.00165 0.01005 0.03868 0.07329 0.12443 1447959 5093107 

20 Anzola 0.00022 0.00016 0.00043 0.00147 0.01221 0.01293 0.02742 1449917 5092977 

21 Premosello 1 0.00068 0.00086 0.0028 0.00714 0.00577 0.13462 0.15187 1451253 5093206 

22 Premosello 2 0.00012 0.00005 0.00017 0.00047 0.0024 0.00328 0.00649 1447284 5093730 

23 Vogogna 1 0.00023 <0.0001 0.00053 0.00045 0.00178 0.0026 0.00559 1445208 5094845 

24 Vogogna 2 0.00012 0.00007 0.00135 0.00042 0.01075 0.02168 0.03439 1445204 5094680 
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25 Vogogna 3 0.00012 <0.0001 0.00016 0.00043 0.00094 0.0023 0.00395 1444619 5095828 

 
26 

Villadossola 1 0.0002 0.00014 0.00046 0.0007 0.00112 0.01046 0.01308 1444100 5100945 

Villadossola 2 * <0.0001 <0.0001 <0.0001 <0.0001 0.0004 0.00048 0.00088 1444100 5100945 

 

27 

Rio Marmazza 1 
* 

0.27145 0.07579 0.39708 1.07591 3.49756 29.39685 34.71464 1444520 5094865 

Rio Marmazza 2 
* 

0.00861 0.00385 0.02112 0.16918 0.20361 1.27714 1.68351 1444520 5094865 

28 Piedimulera 0.00012 0.00009 0.00017 0.0004 0.00185 0.0027 0.00533 1443942 5097712 

29 Moiachina 0.00012 0.00008 0.00036 0.00076 0.00316 0.00343 0.00791 1442734 5097469 

30 Loro 0.00116 0.00018 0.00067 0.0033 0.04229 0.02095 0.06855 1444337 5094279 

31 Gabbio <0.0001 <0.0001 0.00011 0.00042 0.00185 0.00182 0.0042 1451855 5092358 

32 Nibbio 0.00024 0.0003 0.00156 0.00169 0.00321 0.05039 0.05739 1452761 5093431 

33 Rumianca 0.00127 0.00024 0.00124 0.00636 0.04619 0.03181 0.08711 1445397 5093444 

Year 2011 

34 Rumianca 1 <0.01 <0.01 <0.01 <0.01 0.01 0.02 0.03 1445060 5093953 

35 Rumianca 2 <0.01 <0.01 <0.01 <0.01 0.01 0.02 0.03 1445549 5093972 

36 Cuzzago <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1452159 5093399 

37 Toce 1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1444287 5096008 

38 Toce 2 <0.01 <0.01 <0.01 0.01 <0.01 0.01 0.02 1444374 5096029 

39 Toce 3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1444349 5095671 

40 PV - L 1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1444584 5096625 

41 PV - L 2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1444140 5100951 

42 PV - L 3 <0.01 <0.01 0.02 0.02 0.08 0.06 0.18 1444081 5094581 

43 M. Mezzo <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.02 1446796 5093220 

44 Gabbio <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1451735 5092381 

45 PV - RM <0.01 <0.01 0.03 0.03 0.05 0.28 0.39 1444576 5094733 

46 P - Chio <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1448727 5094146 

47 Piedimulera <0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.01 1443655 5097452 

48 Loro <0.01 <0.01 0.01 <0.01 0.1 0.07 0.18 1443836 5094443 

Note: ID = Location ID, DDT-TOT= Sum of the total DDTs, PV= Pieve Vergonte, L = grass soil, RM = Rio Marmazza, M. 
Mezzo = Megolo Mezzo, P – Chio = Premosello Chiovenda. * These samples were excluded for comparison between simulated 

and measured in Figure 3. 
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Table A.2 Needle concentrations (ng/g d.w.) in spruce with ages 
 

 
ID 

 
Site (x,y) 

 
Date 

Distance* 

(km) 

Needle 

Age 

Tot. 

Lipids 

(%) 

 
o,p'-DDE 

p,p'- 

DDE 

o,p'- 

DDD 

p,p'- 

DDD 

 
o,p'-DDT 

p,p'- 

DDT 

 

49 
Altoggio 

(1449367.9; 
5112711.6) 

 

Jan-99 

 

-18 

< 1 y - <0.1 n.a n.a n.a n.a n.a 

1 y 3.03 <0.1 1.97 <0.1 <0.1 <0.1 <0.1 

2 y 3.197 0.7 2.05 <0.1 <0.1 <0.1 <0.1 

 

50 
Campo Albino 
(1444730.5; 
5097373.4) 

 

Jul-99 

 

-2.5 

< 1 y 4.87 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 

1 y 7.14 <0.1 1.83 <0.1 <0.1 <0.1 <0.1 

2 y 8.36 <0.1 2.48 <0.1 <0.1 <0.1 <0.1 

 

51 
Cimamulera 
(1441872.6; 

5096771.1) 

 

May-99 

 

-2.5 

< 1 y 4.71 <0.1 2.05 <0.1 <0.1 0.77 0.97 

1 y 4.52 <0.1 1.95 <0.1 0.08 3.79 4.42 

2 y 4.26 <0.1 2.16 0.16 0.17 1.22 2.39 

 

52 

Fomarco 
Chiesa 

(1442463.8; 
5095698.7) 

 

May-99 

 

-1.5 

< 1 y 3.68 <0.1 3.71 <0.1 <0.1 1.64 4.36 

1 y 3.88 1.65 2.25 <0.1 0.04 2.67 4.22 

2 y 5.19 3.7 6.33 <0.1 0.08 1.78 5.56 

 
 

53 

Pieve 
Vergonte 

(1444062.9; 
5094509.8) 

 
 

Jul-99 

 
 

0 

< 1 y 5.1 2.62 7.24 0.91 0.72 6.43 9.46 

1 y 5.81 <0.1 11.08 0.6 1.78 2.45 6.77 

2 y 6.9 <0.1 13.78 1.38 1.08 <0.1 4.19 

 

54 
Rumianca 

(1444835.6; 
5093714.4) 

 

Jun-99 

 

1.5 

< 1 y 4.66 1.01 1.65 <0.1 <0.1 1.55 2.06 

1 y 6.52 2.6 3.92 <0.1 <0.1 4.03 10.1 

2 y 7.58 1.98 5.71 <0.1 0.21 1.11 6.08 

 

55 
Mergozzo 

(1454249.9; 
5093109.7) 

 

Jan-99 

 

10 

< 1 y n.a n.a n.a n.a n.a n.a n.a 

1 y 1.803 0.74 1.97 <0.1 0.14 <0.1 1.25 

2 y 4.4 1.4 2.98 <0.1 0.19 0.49 1.64 

 

56 
Alpe Ompio 
(1458484.5; 

5092523) 

 

Jan-99 

 

15 

< 1 y n.a n.a n.a n.a n.a n.a n.a 

1 y 2.71 0.75 0.6 <0.1 <0.1 <0.1 <0.1 

2 y 4.02 0.95 1.34 <0.1 <0.1 <0.1 <0.1 

 

 
57 

Mottarone 
Base 

(1458802.0; 
5082130.0) 

 

 
Jan-00 

 

 
20 

 

 
1 y 

 

 
n.a. 

 

 
2.52 

 

 
2.63 

 

 
4.74 

 

 
4.8 

 

 
4.1 

 

 
4.97 

 

58 
Mottarone Top 

(1457716.0; 
5081243.0) 

 

Jan-00 

 

19.5 

 

1 y 

 

n.a. 

 

<0.1 

 

0.99 

 

<0.1 

 

<0.1 

 

1.51 

 

1.27 

 

Note: ID = Location ID, *= distance from Pieve Vergonte; n.a = not available; 
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Table A.3 Needle concentrations (ng/g d.w.) in pine species. 
 

 

ID 

 

Site (x,y) 

 

Species 

 

Date 
Distance* 

(km) 

Needle 

Age 

Tot. 

Lipids 
(%) 

o,p'- 

DDE 

p,p'- 

DDE 

o,p'- 

DDD 

p,p'- 

DDD 

o,p'- 

DDT 

p,p'- 

DDT 

 

 

50 

 

Campo Albino 
(1444730.5; 

5097373.4) 

 

 
Pinus 

strobus 

 

 

Jul-99 

 

 

-2.5 

 

 

1 y 

 

 

11.99 

 

 

<0.1 

 

 

4.22 

 

 

<0.1 

 

 

<0.1 

 

 

<0.1 

 

 

<0.1 

 

 

59 

 
Fomarco Alto 

(1442482; 
5096123.7) 

 

 

Pinus nigra 

 

 

Jul-99 

 

 

-2 

 

 

1 y 

 

 

13.03 

 

 

0.52 

 

 

1.17 

 

 

<0.1 

 

 

<0.1 

 

 

<0.1 

 

 

<0.1 

 

 

 

 
53 

 

 

 
Pieve Vergonte 

(1444062.9; 
5094509.8) 

Pinus nigra Jan-99 0 1 y 6.39 2.42 10.22 0.23 0.27 6.24 11.62 

 

Pinus nigra 

 

Jun-99 
0 1 y 10.37 1.57 4.51 0.87 2.52 34.52 96.69 

0 2 y n.a. 12.158 30.006 1.116 2.942 46.523 94.061 

 

Pinus nigra 

 

Oct-99 
 

0 
 

1 y 
 

8.12 
 

4.02 
 

13.19 
 

2.27 
 

2.04 
 

35.77 
 

91.82 

Pinus 

strobus 
Jul-99 0 1 y 9.87 <0.1 6.69 <0.1 0.84 2.13 7.5 

 
60 

Rumianca 
(1444835.6; 

5093714.4) 

 

Pinus 

strobus 

 
Jun-99 

 
1.5 

 
1 y 

 
12.01 

 
2.09 

 
4.47 

 
1.17 

 
0.57 

 
8.25 

 
12.01 

 

 

 

 
61 

 

 

 
Colloro 

(1448168.1; 
5095267.8) 

 
 

Pinus 

strobus 

 

 
Jun-99 

 

 
3 

 
 

1 y 

 
 

11.01 

 
 

<0.1 

 
 

0.73 

 
 

<0.1 

 
 

<0.1 

 
 

<0.1 

 
 

<0.1 

2 y n.a. <0.1 5.032 <0.1 <0.1 0.539 1.647 
 

Pinus 

sylvestris 

 
Jun-99 

 
3 

 
1 y 

 
11.3 

 
<0.1 

 
<0.1 

 
<0.1 

 
<0.1 

 
<0.1 

 
<0.1 

 
Note: ID = Location ID, *= distance from Pieve Vergonte; 
 

Table A.4. Litter concentration (µg/g d.w.) 
 

ID SAMPLE 
2,4'- 

DDE 

2,4'- 

DDD 
4,4'-DDD 

2,4'- 

DDT 

4,4'- 

DDE 
4,4'-DDT 

DDTS_TO T X_COOR D Y_COOR D 

49 Altoggio 
0.0010 

5 
<0.000 

1 0.00767 0.00344 0.00688 0.02637 0.04541 1449367 5112711 

51 Cimamulera 
0.0007 

6 
0.0006 

8 0.00767 0.00589 0.00831 0.04118 0.06449 1441873 5096771 

59 Fomarco Alto 
0.0035 

4 
0.0035 

7 0.01386 0.01688 0.00866 0.04762 0.09413 1442482 5096124 

50 
Campo 
Albino 

0.0004 
8 

<0.000 
1 0.01175 0.00893 0.00724 0.04102 0.06942 1444731 5097373 

53 Enichem 
0.0157 

2 
<0.000 

1 0.01868 0.03739 0.0381 0.16015 0.27004 1444063 5094510 

60 Rumianca 
0.0052 

1 
0.0007 

4 0.00889 0.02137 0.03763 0.1096 0.18344 1444836 5093714 

55 Mergozzo 
0.0005 

3 
0.0001 

2 0.00151 0.00121 0.00519 0.00754 0.0161 1454250 5093110 

56 Alpe Ompio 
0.0004 

4 
0.0001 

9 0.00066 0.00166 0.00347 0.00627 0.01269 1458484 5092523 

61 Colloro 
0.0015 

5 
<0.000 

1 <0.0001 0.00469 0.00369 <0.0001 0.00993 1448168 5095268 

Note: ID = Location ID. 
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Figure A.1 p,p'-DDT concentration measured in leaves, air, and soil (2001 data) with distance from the chemical 
plant. Soil error bars represent the standard deviation of the corresponding points, located within 1.44 km2. 

 
Figure A.1 shows measured logarithmic concentration values of air, spruce needles of two years, and soil 

with distance from the chemical plant. The green line represents the leaf concentrations of p,p’-DDT for the 

points along the valley with distance from the emission source. The location of the chemical plant is set to 

zero distance, points located upstream/ downstream of the valley have negative/positive distances. The blue 

line corresponds to the estimated air concentrations. The highest concentration was observed in the vicinity 

of the chemical plant with a noticeable reduction at an increasing distance from the industrial plant. 

Additionally, in the same chart soil concentrations (2001 samples) of p,p’-DDT with distance from the 

chemical plant are shown. Since several samples were collected in a location corresponding to the same cell 

in the model scenario, the mean and standard deviation of the points within each hypothetical cell (1.44 

km2) were calculated. This information is also useful to evaluate the concentration variations
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in soil with respect to distance from the location of the source, influenced by local (e.g., deposition, soil 

characteristics, agricultural operations, etc.) and meteorological conditions. At several points, different 

depths of soil were sampled (5 cm, 10 cm, and 15 cm) to evaluate the concentration gradient with depth 

(Table A.1; PV-RM, PV1-L, PV2-L, PV3-L, PV4-L). The concentration of p,p’-DDT with depth decreases 

up to 4 orders of magnitude for point PV-RM indicating the strong dependence of soil concentration 

contribution from the atmospheric compartments. However, only the superficial points (0- 5 cm layer) were 

used for comparison. 

 
A.2) Meteorological data 

 

The wind data for Pieve Vergonte was estimated based on Ornavasso local meteorological station which is 

among the nearest stations to Pieve Vergonte (Figure A.2). 

 
Figure A.2 - Yearly averaged wind rose at Ornavasso station 

 
Daily precipitation values obtained from the ARPA station of Fomarco relating to the year 2005 show a 

number of high rain events. The two highest precipitation incidents have occurred in July and September 

with 153.8 and 148.6, respectively. Figure A.3. 
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Figure A.3- Daily precipitation values for the Fomarco station used for the simulation scenario. 

 
A.3) Model parametrization 

 

Parameters required by the GSPV model, apart from those that are common with SPV (Terzaghi et al., 

2017), are depicted in Table A.5. 

Table A.5. Input parameters required by Grid SPV. 

Parameter required by GSPV Unit 

Wind direction  

Wind angle degree 

Air emission mol/h 

Organic matter fraction  

Shapefile of the grid  

 
Physical-chemical properties implemented in the model simulation are expressed in Table A.6. 
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Table A.6. Physical-chemical properties of p,p'-DDT. 
Property Unit p, p'-DDT 

Molecular weight g/mol 354.5 

Reference temperature °C 25 

Melting point °C 108.5 

Vapor pressure Pa 0.00002 

Water solubility g/m 0.0055 

log KOW  6.19 

Half-life in air d 7.083 
Half-life in soil d 10950 

Note: all physical-chemical parameters and half-life in air are from (Mackay, 2006) while half-life in soil is 
from (Dimond and Owen, 1996). 

 
 
Figure A.4.b shows the location of the grid over the study area as well as the allocation of cells as grass or 

forest. 

 
 

Figure A.4. a) General vegetation characteristics of Pieve Vergonte. b) Cells that are labelled with F, are the forest  
 

Constant parameters relating to the two vegetation scenarios, that were introduced into the model through 

the GIS database, are illustrated in Table A.7. Moreover, hourly dynamic parameters for one year were set 

as an external dataset. 
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Table A.7. Constant vegetation parameters for Grass and Forest. * are the regression parameters of the Nizzetto et 
al., (2008) equation. 

 
Vegetation 

Type 

Root 

Density 

(g/m3) 

Stem 

Density 

(g/m3) 

 
SLA 

(m2/g) 

Minimum 

Canopy 

Height (m) 

Maximum 

Canopy 

Height 
(m) 

Root 

Volume 

(m3) 

Stem 

Volume 

(m3) 

 
y*

0 

 
a* 

Grass 180000 300000 0.01 0.1 1 15408 1008 -2.6 0.43 

Forest 180000 300000 0.028 1 4 33552 44352 -3.08 0.49 
 
 
 
 

A.4) Calculation of temperature-dependent KPA 

 

The plant-air partitioning coefficient was calculated for 25 ºC using the (Nizzetto et al., 2008) formula as 

mentioned earlier. In order to calculate the KPA for an intended temperature, the Van’t Hoff-type equation 

proposed by (Kömp and McLachlan, 1997) (Eq. A.1) was implemented. This equation requires the enthalpy 

of phase-change that was calculated based on the enthalpy of evaporation for PCBs (Puri et 

al., 2001).  
 𝐾𝑃𝐴(𝑇) =   𝐾𝑝𝑎(𝑇𝑅)exp [(1𝑇 − 1𝑇𝑅) ∆𝐻𝑃𝐴𝑅 ]                              Eq.  (A.1) 

 

Logarithmic KPA values were calculated for the minimum, median, maximum, first and the third quartile of 

the hourly temperature dataset of the simulation scenario. The KPA varies close to 5 orders of magnitude 

between the minimum and maximum temperatures. The difference between the KPA of the first and third 

quartile of the temperature dataset is also more than one order of magnitude (Figure A.5).
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Figure A.5. Logarithmic KPA values calculated for the range of hourly temperature dataset. 
 
 
 
 

A.5) Simulation scenario 

 

Emission data were estimated based on the United States DDT production trend (World Health Organization, 

1979) (Figure A.6) and back-calculated based on the measured air concentrations (Figure A.7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.6. United States production rate of DDT (WHO, 1979). 
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Figure A.7. Local p,p’-DDT emission estimate based on the United States production rate. 
 
 

 
A RESULTS AND DISCUSSION 

 

A.1) Model development 

 

Wind propagation in the gridded system is explained in brief in this section. The same equations were 

applied for both lower air and upper air compartments, however, the equations relating to the lower air are 

shown here as an example. 

Courant number is calculated along x and y directions and is used to calculate the number of cells that 

are getting affected by the advective wind (Eq. B.1). The calculation of chemical distribution depends on 

the Courant number (i.e., c) and wind component along that direction. 
 𝑐 = 

𝑉𝐿𝐴(t)Δ𝑡 𝑙 

 

 
Eq. (B.1) 

 

The numerator of the equation indicates the transport distance of wind within the one-hour time step and 
 
l is the cell length. In order to know how many cells are getting affected by wind, the round-up value of 
 

c is considered (Eq. B.2).  
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𝑝 = 𝑅o𝑢𝑛𝑑𝑢𝑝(𝑐)
 
Eq. (B.2)
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First, the condition of the 1D computational domain (e.g., along x-direction) is explained. Figure B.1.a 

shows a situation where the p number is equal to one. In this case, all chemicals exiting the current cell will 

go to the adjacent cell. This is the ideal CFL condition where the calculation of chemical distribution among 

several cells is not required. When the p number is more than one, a discrete sequential advection transport 

scheme introduced by (Wu et al., 2019) was implemented to estimate the distribution of chemicals among 

several cells. Figure B.1.b. illustrates an example of when the p number is more than one (e.g., 3). In this 

situation, the chemical is divided among three cells A p number of 3 indicates that 3 cells will get affected 

by the advective wind at the same time step (1h), additionally, the solution is implemented in 3 steps. Step 

3 shows the final cell values at the end of the current hour. 

 
 
Figure B.1.a) Chemical distribution when the p-number is equal to one along the x-direction. b) chemical 
distribution when the p-number is equal to three along the x-direction. 
 
In Figure B.1, a represents chemicals exiting one cell and entering the following cells during the current 

hour, a' and b' are temporary cell values of step 2, though, a'' and b'' are final cell values at the end of the 
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time step.  The ε  index incorporates the percentage of chemicals exiting cells at each step of the 

distribution, based on the p-number (Eq. B.3). This value is equal to αe in the queue-cells calculations 

(Wu et al., 2019).  𝜀 = (1𝑝)                        Eq. (B.3) 

 
The second case is the 2D computational domain when the wind vector enters the study area with a non-

perpendicular angle (e.g., NW, 30º). In this situation, the p numbers along the x and y directions are 

calculated (px and py). The 2D distribution of chemicals is performed based on the same logic as the 1D 

domain. However, in this case, the order of calculations along the two directions must be specified. If 

the p number is equal for both directions (i.e., when the wind enters the area with a 45-degree angle) the 

wind propagates equally in both directions, otherwise, the wind moves faster along the direction with the 

higher p number. In both situations, first, the minimum value between the px and py is considered as the 

number of steps that the wind moves in both directions. Then, the wind moves along the direction with the 

greater p-number by additional steps. The number of these additional steps is equal to the absolute value of 

the difference between the two p numbers (i.e., |𝑝𝑥 − 𝑝𝑦|). The entire process of wind propagation and 

chemical distribution is performed within the current time step. The vertical diffusion and transport of 

chemicals between the atmospheric compartments are performed during the SPV calculations. 
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B.1.1) Mass transfer coefficients (MTC) 

 
Table B.1. shows the transport and degradation processes for air compartment and air/soil transfer as well as their 

mass transfer coefficients (MTC) for the simulation scenario. 
 

Note: FA = free atmosphere, UA = upper air; LA = lower air; F= leaves; AS = land surface area (m2); LAI = Leaf Area Index 
(m2/m2); Vx = volume (m3); Zx = Z-values (mol/m3Pa); kDrx = degradation rate constants (h-1); UUAFA = transfer rate from UA 
to FA (m/h); UUALA = transfer rate from UA to LA (m/h); ULAUA = transfer rate from LA to UA (m/h); UR = rain rate (m3 rain/m2 
area h); UQ = dry deposition velocity (m/h); UAF-P = dry deposition particle velocity to the vegetation canopy (m/h), Gx = air 
advective inflow (m3/h); fNotInt, fDrip, fEvap = fraction of precipitation that is not intercepted by the leaves, drips and evaporates from 
leaves; IfD = dry particle interception factor; Q = scavenging ratio (-), Details about the formulation used for D values for the air 
and litter/soil compartment can be found in (Ghirardello et al., 2010; Morselli et al., 2011) 
 
B.1.2. Sensitivity and uncertainty analysis 

 
Table B.2 results of the sensitivity analysis for three parameters (concentration in lower air, LA, leaves, F, and 

soil). 

 Sensitivity 

Parameter LA F Soil 

Windspeed LA 1.512480 0.770253 0.000017 
PBL height 0.933518 0.898971 0.000022 

Wind direction 1.161633 1.403834 0.000008 
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Table B.3 results of the 30% uncertainty on the concentration of the lower air and leaves. 
 

30 % Change ∆ % 

PBL Height 
        LA 39.89866607 

F 38.33287116 

Windspeed 
        LA 77.95018414 

F 37.59266105 
 

 
A.2) Model evaluation: comparison between Grid SPV and Single-Cell SPV 

 

Four simulations were performed with both single-cell and grid versions of SPV. The results of the 

simulations as concentration values in the atmosphere, soil, and leaves were compared between the two 

models where the vegetation type of the models is selected as grass or forest. Other parameters and input 

data required for the simulations were selected to be identical. The same emission was added to the first 

layer of soil in the single-cell and one of the cells within the grid system. 

 

 
A.3) Lower air variations 

 

In order to show the frequency of variation of concentration in air, lower air concentrations relating to the 

first year (255 consecutive hours) of the simulation were shown for the cells along the valley (Figure B.4). 
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Figure B.4. Hourly lower air concentrations for the first 255 hours 
 
Zero distance represents the location of the chemical plant. In the same direction, the 

concentration values of lower air vary from one hour to another. The reason is the 

unstable nature of air due to different factors such as the intensity of wind speed, the 

height of the planetary boundary, and temperature-driven evaporation and deposition. 
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Paper III 



Predicting the contribution of a local emission source in mid-
range transport of DDTs and their deposition in terrestrial and 

aquatic ecosystems 

(Submitted to Science of the Total Environment) 

 

Parisa Falakdin, Elisa Terzaghi, Di Guardo Antonio* 

Department of Science and High Technology, University of Insubria, Via Valleggio 11, 

22100, Como, CO, Italy 

1. Abstract 

A recently developed dynamic multiple box multimedia fate model (Gridded-SoilPlusVeg) was 

developed and implemented to account for the environmental variation and the effect of 

directional advective transport of chemicals towards different compartments and geographical 

locations. A chemical plant located in Pieve Vergonte in Ossola Valley produced and emitted 

DDTs for around 50 years. In the previous study the fate and transport of p,p’-DDT emitted 

from the chemical plant were evaluated in nearby areas (up to 12 km). In this paper, the 

Gridded-SoilPlusVeg model was run for p,p’-DDT during its production and decades after the 

production stop in 1996  (a total of 100 years) for a larger study area (200 km x 200 km) in 

order to evaluate the contribution of a local source on a larger scale. Additionally, the 

deposition fluxes into the lakes were calculated and were used as input into a dynamic fugacity-

based aquatic model to calculate DDT concentration in water and sediments of three prealpine 

lakes: Lake Maggiore, Lake Como and Lake Lugano. The results of the simulations were 

compared with the monitoring and literature data. The results obtained from the spatial fate 

model, Gridded-SoilPlusVeg, allowed to estimate the atmospheric deposition fluxes and 

identify a potential cause for the high level of contamination in terrestrial and aquatic 

ecosystems on a regional scale. 

Keywords: sediment; water; dynamic spatial model; fugacity model; DDT 



2. Introduction 

Air is an environmental medium which is highly affected by the advective forces of wind. 

Therefore, atmospheric compounds can be transported and deposit in areas away from the 

source and contaminate different environmental media such as soil, vegetation, and water. 

Particularly, persistent organic pollutants (POPs) with a long half-life in stable media such as 

soil, can be accumulated in time; additionally, as a result of further volatilization, soil can act 

as a secondary source of emission and contribute to the fate and transport of chemicals even 

years after the cease of an active emission source such as an industrial plant (Cabrerizo et al., 

2011; Dalla Villa et al., 2006).  

A Northern Italy chemical plant located in the town of Pieve Vergonte (VB) in the vicinity of 

Lake Maggiore produced Dichlorodiphenyltrichloroethane (DDT) for around 50 years until the 

production was ban after the discovery of Lake Maggiore pollution by DDTs in 1996 (Di 

Guardo et al., 2008, 2006, 2003). The pollution was attributed to the industrial plant DDT 

discharges in River Toce, a tributary of Lake Maggiore. In a recent work, the contribution of 

the emission from this local producer of DDTs to the pollution of the surrounding area (144 

Ha) and the spatial and temporal extent of contamination in soil, leaves, and the air within the 

adjacent valley was shown (Falakdin et al., 2022). However, different levels of DDTs were 

found in areas further away from the source. In rain samples collected between 1985 to 1988 

from different locations in North Italy such as Longone (in the vicinity of Lake Como), 

Brugherio (located in the North East of Milan), Monticolo (near the town of Bolzano), DDTs 

were found at concentrations of ng/l levels (Galassi et al., 1993).  Tremolada et al., (2011) 

collected and analyzed several soil samples obtained in the years 2007-2008 from different 

altitudes in the Splugen pass of the Italian Central Alps. Due to the contribution of various 

factors such as organic matter content, depth of the soil layer, solar radiation, and seasonality, 



measured concentrations of p,p’-DDT, varied up to one order of magnitude, and reached the 

level of 10 ng/g d.w. (Tremolada et al., 2011).  

In the recent paper mentioned above, a spatial multimedia fate model (Gridded-SoilPlusVeg 

(GSPV) (Falakdin et al., 2022; Ghirardello et al., 2010; Terzaghi et al., 2017)) was developed 

and implemented to simulate the fate and transport of p,p’-DDT for 100 years starting from the 

year of the DDT production (1948) emitted from the chemical plant of Pieve Vergonte and 

contaminating the surrounding area. The results of the simulation showed a good agreement 

between the predicted concentrations versus monitoring data for soil and leaves confirming the 

temporal and spatial impact of a local emission source on the surrounding environment. 

Furthermore, it proved a potential for a larger influence on the regional environment. 

Multimedia fate models, coupled to a physical description of air movement (Falakdin et al., 

2022; Ghirardello et al., 2010; Terzaghi et al., 2017) can be used to simulate the long term fate 

of contaminants by including relevant processes such as deposition and revolatilization, 

degradation, etc.. For this reason, they can be employed to reconstruct the chemical mass 

balance at different spatial and temporal extents. The objective of this work is to evaluate this 

contribution utilizing two fugacity-based multimedia fate models (GSPV and DynaModel, an 

unsteady-state lake model (Di Guardo et al., 2006; Infantino et al., 2008) to investigate whether 

this local but continuous emission can be responsible for the DDT concentration levels found 

in the farther terrestrial and aquatic environment. 

3. Materials and methods 

3.1. Study Area 

A square-shaped area of 200 km × 200 km, partially covering parts of Italy and Switzerland, 

was considered (7º0 E–9º6 E, 45º1 N–46º9 N). The area includes three Italian/Swiss lakes 

namely Lake Maggiore, Lake Lugano, and Lake Como. It consists of different types of land 

use including croplands, forests, and residential areas. The chemical plant where the DDTs 



production and emissions started is placed in the city of Pieve Vergonte, in the center of the 

study area and in the middle of Ossola valley: The site was recognized as a contaminated site 

of national relevance (SIN Pieve Vergonte) by the Italian authorities (MITE, 2022). Figure 1 

shows the study area and the location of the industrial plant. The production of DDTs started 

in 1948 and continued till 1996 when due to the discovery of a high level of contamination in 

Lake Maggiore, the Italian Ministry of Environment issued a ban on DDTs production.  

3.2. Monitoring data 

Many different samples of various matrices such as soil, leaf, and litter were previously 

collected along Ossola valley. In the former study, samples of soil, leaf, and litter represented 

the concentration gradient with distance from the production source (Falakdin et al., 2022). In 

this paper, 15 additional soil samples, obtained in a monitoring campaign in Lombardy Region 

(Beone et al., 2015) and located within the study area, were used to show the relevance of DDT 

gradient in the regional environment (Table A.1). 

3.3.Literature data 

Data gathered from the literature were utilized to evaluate the level of environmental 

concentrations in different locations and matrices to provide insight into the contribution of 

DDT production and use during and after the ban of DDT in Italy as well as validation of lake 

simulations. Table A.2 shows the historical concentration values obtained from the literature 

for sediments, water, fish, and soil. Sediment data for DDTs relating to Lake Maggiore for the 

years from 1971 to 1996 shows the maximum value for 1996 indicating the deposition and 

accumulation through the years of DDTs production and the contribution from River Toce. 

Infact, these data are corresponding to samples collected from the inlet of Toce River which 

tend to have higher value than sediments of the other parts of the lake due to the received 

discharge. Concentration values for sediments of Lake Como (Northern Italy)  vary for the 

years from 1978 to 1991 showing a small increase during the 1980s (Galassi et al., 1995; 



Guzzella et al., 1998). (Bettinetti et al., 2016); measurements for sediment concentrations of 

Lake Como show levels between 30 to 95 ng/g d.w. for the years from 1970 to 2009. Water 

concentrations for different Italian rivers (Arno, Po, Ticino, and Toce) as well as Lake 

Maggiore are shown in the table for different years from 1970 to 2003. Total DDT trend 

generally indicate a higher value (by up to four orders of magnitude) for the years of production 

and use in the environment, in comparison with the subsequent years (CIPAIS, 2004, 2003, 

1999). Additionally, levels of p,p’-DDT (up to ng/g lipid) were observed in the fish samples of 

Lake Lugano for the year 1996 indicating the bioaccumulation of these substances in the fat 

tissues, although fish samples from Lake Maggiore reached concentrations up to 25 ng/g lipid 

(Ceschi et al., 1996; Infantino et al., 2013). 

For the decade after the end of production, values of p,p’ DDT stated for the Italian town of 

Delebio, located in the vicinity of Lake Como, was 1.2 ng/g d.w. and for Splugen Pass, 

mountain located in the border of Italy and Switzerland and around 30 km North of Lake Como, 

varied between 0.05 to 10 ng/g d.w. depending on the location and the depth of soil samples 

(Tremolada et al., 2011, 2008). Additionally, values reported in the previous paper concerning 

the soil concentration of Ossola valley indicated levels up to 1 μg/g d.w. for 2001 (Falakdin et 

al., 2022). The complete dataset of data collected is shown in Table A2 in the supporting 

information. 

3.4. Spatial multimedia fate model 

The Gridded-SoilPlusVeg model was implemented for further validation and prediction of the 

long-term fate and transport of chemicals on a regional scale. The GSPV is a spatiodynamic 

multimedia fate model based on the fugacity approach (Mackay, 2001) including air, 

vegetation, and soil compartments. The grid is composed of a user-defined number of cells and 

each cell is a multimedia fate model unit. The cells are connected through the advective flows 

of air. Additionally, each cell can incorporate different land use and vegetation characteristics. 



The model calculates the chemical fate processes among different environmental 

compartments such as deposition, volatilization, diffusion, degradation, and runoff and 

provides concentration values for each grid cell and each compartment on an hourly basis. 

Further explanation of processes, model performance, and sensitivity analysis were described 

in detail in the previous works (Falakdin et al., 2022; Ghirardello et al., 2010; Terzaghi et al., 

2017). The model was developed in Visual Basic version 6.0 and integrates a GIS tool 

(MapWindow v. 5.6.3, MapWindow.org) for the incorporation of geographical information. 

For visualization and analysis of geographical data QuantumGIS version 3.20 (QGIS 

Development Team, 2018) was utilized.  

3.5. Lake model 

A dynamic fugacity-based water-sediment lake model (Dyna Model) (Di Guardo et al., 2006; 

Infantino et al., 2008), based on the QWASI Lake model (Mackay et al., 1983) was used for 

the simulation of Lakes Maggiore, Como, and Lugano. The model includes processes of 

volatilization, air deposition, inflow/outflow, sediment resuspension, sediment burial, sediment 

transformation, sediment-water diffusion, and water transformation. The results are provided 

as concentration or fugacity values. Further information concerning the model formulation, 

calibration, and model performance can be found in (Di Guardo et al., 2006; Infantino et al., 

2013, 2008).  

3.6. Simulation scenario 

The first simulation was performed with GSPV to calculate the fate and transport in the terrestrial 

environment. The simulation area was covered by 49 square-shaped cells (i.e., 7 × 7) of each 28.5 × 28.5 km2 (Figure 1). The results were obtained as concentration values of soil in addition to 

deposition fluxes of air and vegetation to the soil. The mass-balance calculation of GSPV model is 

performed on temporal resolution of a second, however, the gridded model can save the results up 

to the resolution of an hour. The presence of lakes was not considered in GSPV, nevertheless, the 



deposition fluxes relating to the location of the lakes were saved for the dynamic lake model 

simulations. In the lake simulations, the dynamic deposition flux corresponding to each lake was 

used as emission input to calculate the concentration values in water and sediment compartments. 

Parameters and properties used for the lake simulations can be found in Table A.4. 

 

Figure 1 map of study area including the chemical plant and three lakes. Each cell corresponds to 812 km2. 

 

3.6.1. Chemical and environmental properties 

The chemical selected for the simulations is p,p'-DDT. The physico-chemical parameters used in 

the simulations are shown in Table A.3. The use of p,p’-DDT as selected compound was due to 

the need of avoiding to evaluate further contribution of degradation and production of metabolites 

within each phase to the mass balance. This is the case of the DDE and DDD metabolites of DDT, 
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which may add up in a phase (e.g., soil, water, sediment) due to the degradation of the parent 

compound DDT. 

Information relating to the land use and vegetation cover of the study area was extracted from the 

CORINE Land Cover (CLC 2018, land.copernicus.eu) database. For each cell, the dominant 

vegetation cover was considered and classified into three categories: crop, forest, and bare land where 

crop (including herbaceous vegetation), forest, and bare land (including the build-up areas) were set 

as tall fescue (Festuca arundinacea) grass, hazelnut forest, and no vegetation, respectively. The 

allocation of land use to the simulation cells is illustrated in Figure A.1.  

Organic carbon (OC) and soil characteristics were set uniformly for the entire simulation area and 

equal to the data used for the simulation of Ossola valley. OC fraction value was set to 0.0234 as the 

average of measured values for the area surrounding Lake Maggiore. Additionally, the soil 

composition of loamy sand with 5 layers of each 20 mm thickness was assigned. Particulate and 

dissolved organic carbon in soil (POC and DOC) were set to 15 and 10 mg/l, respectively (Terzaghi 

et al., 2020).  

The meteorological scenario was implemented as the previous simulation of Pieve Vergonte (Falakdin 

et al., 2022) in order to reconstruct the spread of the outgoing chemicals to the regional environment 

for the same period of time. Therefore, the wind data of Ornavasso (VB) local meteorological station 

(215 m a.s.l, about 11 km East of Pieve Vergonte) was set in addition to other meteorological 

parameters such as temperature, precipitation, and solar radiation imported from the Regional Agency 

for Environmental Protection (ARPA, 2005) of the Piedmont Region relating to the Fomarco station 

in the vicinity of the chemical plant. 

3.6.2. Emission scenario 

Hourly emission rate to the regional environment was reconstructed based on the previous study 

(Falakdin et al., 2022); chemicals exiting the simulation area of the former scenario through the 



advective wind are now considered as the atmospheric emission on a larger scale. Then, the emission 

rate is calculated by multiplying the hourly advective air flowrate by the average atmospheric 

concentration of the corresponding hour. Since the entire study area of the previous work is located 

within one cell of the new grid system in this work (row: 4, column: 4), the hourly emission rate is 

allocated to that cell, and it is referred to as the “emission cell”. Figure A.3 shows the yearly emission 

rates implemented for the simulation scenario.  

3.6.4 Integration between GPSV and Dyna model simulations 

The GSPV simulation was run for p,p’-DDT over a period of 100 years. The concentration values 

of the p,p’ DDT isomer were obtained for soil on a monthly basis. Additionally, the deposition 

fluxes to soil were saved for the corresponding months. Dyna Model simulations were run for 100 

years for Lake Maggiore, Lake Como, and Lake Lugano using the dynamic atmospheric deposition 

obtained from GSPV results. The results of these simulations were shown as yearly values of water 

and sediment concentrations. For Lake Como, an average incoming advective p,p’-DDT 

concentration (0.0015 ng/L) was also used in the simulation basing on the measurement of (Villa 

et al., 2011) who measured DDTs in water in the upper part of Lake Como, near to the Adda inlet, 

in July 2007. In this work p,p’-DDT was below LOQ (3 pg/L) and therefore the concentration value 

assumed was ½ of LOQ.   

 

4. Results and discussion 

4.1. Simulation uncertainty 

Uncertainty and sensitivity analysis of the meteorological scenario were conducted in the previous 

paper (Falakdin et al., 2022).  

The deposition flux of a forest cell compared to a grass cell varies up to a factor of 3, while this 

value for the cells without vegetation cover is significantly different since in the absence of 

vegetation, soil can be affected to a great extent by the environmental factors such as temperature, 



therefore, soil of a bare cell for this simulation acted as a source especially during the hot seasons. 

However, since the area surrounding the lakes are predominantly covered by vegetation, the 

allocation of vegetation cover to the cells including the lakes can be more convenient. Soil 

concentration for a cell with forest vegetation cover compared to a bare soil with the same distance 

from the source for all the simulation years varies up to a factor of 1.5.  However, soil concentration 

of a cell with grass vegetation cover in comparison with a cell without vegetation covers varies up 

to a factor of 2.5. The soil concentrations between a forest and a grass cell at the same distance from 

the source vary up to a factor of 1.5. Additionally, the estimation of atmospheric emission was 

based on the leaf concentrations and back-calculated using the plant-air partition coefficient (Kpa) 

(Nizzetto et al., 2006) which is affected by temperature, therefore, the uncertainty of meteorological 

data can also affect the estimated emission rates.  

4.2.The spatial and temporal trend of DDT in soil 

Soil concentrations in the simulation area vary depending on the location and the year of the 

simulation. Simulated and measured concentrations were compared for 2011 when measurements 

were available (Figure 2) indicated a good agreement (within the same order of magnitude) for 

most of the points. Since each cell covers an area of about 812 km2 and one concentration value 

is calculated for each cell, an interval of concentrations was considered for comparison (i.e., ± 

15% of the predicted values; similar uncertainty was considered as measurement uncertainty for 

the measured values). However, since each sample represents a point and the predicted values are 

assigned to the entire area of the cells, variations between the two values are inevitable. For 2011, 

minimum and maximum calculated concentrations were 0.28 and 3.80 ng/g d.w., respectively. 

These values for the measured concentration relating to the same year were between 0.08 and 4.87 

ng/g d.w. Both measured and predicted values were adjusted for their corresponding organic 

matter fraction prior to comparison.  



 

Figure 2 soil predicted concentration for with distance from the chemical plant.  

 

The concentration of the emission cell (where the entire study area of the previous paper is located) 

was within the same order of magnitude for all the years in comparison with the average 

concentration of the entire grid of the previous work (Falakdin et al., 2022).  

Figure 3 shows the predicted soil concentrations of the entire grid represented at 10 year intervals 

(1951-2051). Concentrations in soil vary of around one order of magnitude within the simulated 

grid depending on the vicinity to the source and the environmental and meteorological parameters 

such as vegetation cover and wind direction. The mild variation of concentration within the entire 

grid indicates the effect of long-term release and dispersion within a regional environment as well 

as the effect of background concentration. The highest soil concentration is related to the maximum 

production year (the 1960s) and the reduction occurs in the years after the production halt (1996). 

The deviation between the years of production in comparison to the following years reaches up to 

an order of magnitude for the corresponding locations. Each grid is representative of the month of 

Jun. The grid shows a higher deposition in the area covered by vegetation in comparison with the 

bare soil, as predicted by the Forest Filter effect (McLachlan and Horstmann, 1998).  
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However, apart from the effect of source strength (higher concentrations in the cells closer to the 

source), the organic carbon (OC) content of soil can also impact the concentrations. The map of 

organic carbon for the Lombardy region, obtained from (The Regional Agency for Environmental 

Protection, 2006) (Figure A.2), indicates that the soil OC content varies between 0.3% to 3% 

generally with a higher percentage in the Northern areas.  

 

Figure 3 simulated soil concentrations with time within the entire grid. 

Overall, the results agree with monitoring and literature data for the corresponding year and 

location. Moreover, the results of the simulation on a regional scale of about 40000 km2 highlight 

the extent of chemical transport, deposition, and its evolution over 100 years. However, these 

results were only regarding the impact of DDT emitted from one local source and the effects of 

DDTs used for agricultural purposes or emitted from other producers were not considered. 
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However, model results show that the air deposition from an important source, such as a chemical 

plant can justify the concentration ranges measured throughout the investigated area. 

  

4.3.Lake model results 

DDT deposition through 100 years to the investigated lakes can be obtained from GSPV 

simulation. Although the simulation area does not include existing lakes, the deposition fluxes in 

the same area can be used to evaluate the importance of such contribution to the level of DDT in 

water and sediments of the regional lakes. As calculated in the previous work, more than 95% of 

the total emission to air during the 50 years of production (an average value of 260 kg/y) exited 

the local study area (here the emission cell). In this work, the calculation of grid flux showed that 

14% of the exited chemicals ended up in the cells located in the East of the emission cell due to 

the prevalent wind direction (an area of about 1625 km2). Approximately, the average yearly 

fluxes of 55.8 kg/y, 52.1 kg/y, and 17.4 kg/y were calculated for Lake Maggiore, Lake Lugano, 

and Lake Como, respectively. Figure 4 illustrates the variation of daily flux, on a monthly basis, 

for the lakes during the years of production demonstrating the same temporal trend of emission.  

 

Figure 4 atmospheric deposition fluxes for Lakes Maggiore, Lugano, and Como. 

The results of water and sediment concentrations obtained from the simulations were compared 

with concentration data from the literature (Figure 5). For all lakes, concentrations of p,p’-DDT 

in water and sediments indicates higher values during the 1950s to 1980s following the increase 

of atmospheric deposition relating to these years, due to increased production and release. 

Predicted values obtained for water in Lake Maggiore reach to the maximum of 0.7 ng/l which 
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corresponds to the year 1965. For the following years, this value drops below 0.08 ng/l. Measured 

water concentrations of Lake Maggiore corresponding to 2003 and 2004, represent a value lower 

than the detection limit for p,p’-DDT. This value however for total DDTs is up to 0.2 ng/l. Since 

total DDTs include the degradation products of DDT, high levels of p,p’-DDT atmospheric 

deposition during the production year can be a contributing source to the lake concentration. 

Although the dominant emission source of DDT in Lake Maggiore is the direct discharge from 

the Toce River (Di Guardo et al., 2006), calculations show the importance of an additional 

contributing contamination source that might be underestimated. This contribution is more evident 

in the other simulated lakes (Como and Lugano) where the direct discharge of DDT into them is 

less significant in comparison with Lake Maggiore. The measured p,p’-DDT concentration of 

sediments of Lake Maggiore from 1984 to 1996 varies between 5 to 121 ng/g (Guzzella et al., 

1998). However, the predicted concentrations for the same time interval reach the maximum of 6 

ng/g. The highest concentrations measured though are referred to areas close to River Toce estuary 

and indicate the contribution of direct discharge of DDT to river water and accumulation in 

sediments over time. Therefore, the prediction agrees well with the expected role of atmospheric 

deposition as general background contamination.  

Predicted concentration values for water and sediments of Lake Como for the production years 

reach up to 0.08 ng/l and 26 ng/g, respectively. Literature data for sediments of Lake Como shows 

values within the same order of magnitude as predicted (Bettinetti et al., 2016; Galassi et al., 1995) 

(Table A.2). The contribution of glaciers on the concentration of Lake Como sediments was 

emphasized in (Bettinetti et al., 2016) which supposed that the gradually melting glaciers (storing 

historical DDT loading and rapidly releasing to freshwater) can act as the primary source of high 

levels of DDTs in sediments. DDTs deposition and accumulation on glaciers over years are due 

to the atmospheric transport of these contaminants, however glacier surface is considerably 

smaller even of the lake surface and therefore such contribution should be considered smaller than 



the direct deposition to lake water surface. Additionally, model simulations and mass balance 

show that the constant advective inflow concentration used in the simulation, considering p,p’-

DDT measured by (Villa et al., 2011) does not affect significantly model results, showing that for 

Lake Como direct transport and deposition of DDTs into the lake is the dominant source of the 

relatively high levels of DDTs in this lake. 

The prediction of water and sediment concentrations for Lake Lugano also indicates that apart 

from other contributing sources, even atmospheric deposition over years solely can be capable of 

increasing the levels of concentrations up to 0.07 ng/l and 7 ng/g for water and sediments of this 

lake, respectively (Figure 5). 

 

Figure 5 water and sediment predicted concentrations for Lakes Maggiore, Lugano, and Como. 

 

5. Conclusions 

In this work, different simulations were performed to estimate the impact of DDT released 

from a local chemical plant and determine the role of the spatial, meteorological, and 

environmental parameters on the fate and transport of p,p’-DDT in the regional environment. 

The simulations performed allowed to predict levels of DDT concentrations in different 

environmental media. The comparison between predictions and literature data in soil, 

sediments, and water showed a good agreement (within the same order of magnitude). Spatial 

and temporal predicted results for soil were also illustrated for 100 years indicating the extent 

of contamination of a persistent and hydrophobic chemical and the time required to clean up. 
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Additionally, levels of predicted concentration in sediments and water of Lake Maggiore, 

Como, and Lugano were calculated by a dynamic lake model emphasizing the potential 

influence of atmospheric transport and air deposition in the further area from a local 

contamination source. Additional monitoring of the regional environment is required to obtain 

levels of DDTs in different media in the following years and to further validate the predictions 

of spatial and lake simulations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



References 

Beone, G., Cenci, R., Guidotti, L., Sena, F., Umlauf, G. (EDs), 2015. Progetto di monitoraggio 
ambientale su tutto il territorio della regione Lombardia (Progetto Soil): indagine conoscitiva 
della qualità e dello stato di salute dei suoli lombardi. (No. EUR 27161 IT). European 
Commission. Joint Research Centre. Institute for Environment and Sustainability. 
Publications Office, LU. 

Bettinetti, R., Quadroni, S., Boggio, E., Galassi, S., 2016. Recent DDT and PCB contamination in the 
sediment and biota of the Como Bay (Lake Como, Italy). Sci. Total Environ. 542, 404–410. 
https://doi.org/10.1016/j.scitotenv.2015.10.099 

Cabrerizo, A., Dachs, J., Jones, K.C., Barceló, D., 2011. Soil-Air exchange controls on background 
atmospheric concentrations of organochlorine pesticides. Atmospheric Chem. Phys. 11, 
12799–12811. https://doi.org/10.5194/acp-11-12799-2011 

Ceschi, M., De Rossa, M., Jaggli, M., 1996. Contaminanti organici, inorganici e radionuclidi 
nell’ittiofauna dei laghi Ceresio e Verbano (bacini svizzeri). Trav Chim Aliment Hyg 87, 
189–211. 

CIPAIS, 2004. Commissione Internazionale per la protezione delle acque italo-svizzere. Consiglio 
Nazionale delle Ricerche Istituto per lo Studio degli Ecosistemi. 

CIPAIS, 2003. Commissione Internazionale per la protezione delle acque italo-svizzere. Consiglio 
Nazionale delle Ricerche Istituto per lo Studio degli Ecosistemi. 

CIPAIS, 1999. Commissione Internazionale per la protezione delle acque italo-svizzere. Consiglio 
Nazionale delle Ricerche Istituto per lo Studio degli Ecosistemi. 

Dalla Villa, R., de Carvalho Dores, E.F.G., Carbo, L., Cunha, M.L.F., 2006. Dissipation of DDT in a 
heavily contaminated soil in Mato Grosso, Brazil. Chemosphere 64, 549–554. 
https://doi.org/10.1016/j.chemosphere.2005.11.019 

Di Guardo, A., Ferrari, C., Infantino, A., 2006. Development of a Dynamic Aquatic Model (DynA 
Model): Estimating Temporal Emissions of DDT to Lake Maggiore (N. Italy). Environ. Sci. 
Pollut. Res. 9. 

Di Guardo, A., Nizzetto, L., Infantino, A., Colombo, I., Saporiti, E., Jones, K.C., 2008. Field derived 
accumulation and release kinetics of DDTs in plants. Chemosphere 72, 1497–1503. 
https://doi.org/10.1016/j.chemosphere.2008.04.072 

Di Guardo, A., Zaccara, S., Cerabolini, B., Acciarri, M., Terzaghi, G., Calamari, D., 2003. Conifer 
needles as passive biomonitors of the spatial and temporal distribution of DDT from a point 
source. Chemosphere 52, 789–797. https://doi.org/10.1016/S0045-6535(03)00256-X 

Falakdin, P., Terzaghi, E., Raspa, G., Di Guardo, A., 2022. Predicting the regional contamination 
evolution of DDT for 100-years with a new gridded spatial and dynamic multimedia fate 
model. Sci. Total Environ. 845, 157190. https://doi.org/10.1016/j.scitotenv.2022.157190 

Galassi, S., Gosso, E., Tartari, G., 1993. PCBs and chlorinated pesticides in rains of Northern Italy. 
Chemosphere 27, 2287–2293. https://doi.org/10.1016/0045-6535(93)90139-V 

Galassi, S., Provini, A., Guzzella, L., De Paolis, A., 1995. I pesticidi clorurati costituiscono ancora un 
problema in Italia?’, Atti VI Congresso Nazionale della Società Italiana di Ecologiaw 16, 
341–343. 

Ghirardello, D., Morselli, M., Semplice, M., Di Guardo, A., 2010. A Dynamic Model of the Fate of 
Organic Chemicals in a Multilayered Air/Soil System: Development and Illustrative 
Application. Environ. Sci. Technol. 44, 9010–9017. https://doi.org/10.1021/es1023866 

Guzzella, L., Patrolecco, L., Pagnotta, R., Langone, L., Guilizzoni, P., 1998. DDT and another 
organochlorine compounds in the Lake Maggiore sediments: a recent point source of 
contamination. Fresenius Environmental Bullettin 79–89. 

Infantino, A., Morselli, M., Di Guardo, A., 2013. Integration of a dynamic organism model into the 
DynA Model: Development and application to the case of DDT in Lake Maggiore, Italy. Sci. 
Total Environ. 454–455, 358–365. https://doi.org/10.1016/j.scitotenv.2013.03.026 



Infantino, A., Pereira, T., Ferrari, C., Cerejeira, M.J., Di Guardo, A., 2008. Calibration and validation 
of a dynamic water model in agricultural scenarios. Chemosphere 70, 1298–1308. 
https://doi.org/10.1016/j.chemosphere.2007.07.047 

Mackay, D., 2001. Multimedia Environmental Models: The Fugacity Approach, Second Edition, 0 ed. 
CRC Press. https://doi.org/10.1201/9781420032543 

Mackay, D., Joy, M., Paterson, S., 1983. A quantitative water, air, sediment interaction (QWASI) 
fugacity model for describing the fate of chemicals in lakes. Chemosphere 12, 981–997. 
https://doi.org/10.1016/0045-6535(83)90251-5 

McLachlan, M.S., Horstmann, M., 1998. Forests as filters of airborne organic pollutants: a model. 
Environ. Sci. Technol. 32, 413–420. 

MITE, 2022. Ministero della Transizione Ecologica - SIN di Pieve Vergonte [WWW Document]. 
[WWW Document]. URL https://bonifichesiticontaminati.mite.gov.it/sin-15/ (accessed 
5.27.22) 

Nizzetto, L., Jones, K.C., Gramatica, P., Papa, E., Cerabolini, B., Di Guardo, A., 2006. Accumulation 
of Persistent Organic Pollutants in Canopies of Different Forest Types: Role of Species 
Composition and Altitudinal-Temperature Gradient. Environ. Sci. Technol. 40, 6580–6586. 
https://doi.org/10.1021/es0605523 

QGIS Development Team, 2018. QGIS Geographic Information System. Open Source Geospatial 
Foundation Project. [WWW Document]. URL http://qgis.osgeo.org 

Terzaghi, E., Morselli, M., Semplice, M., Cerabolini, B.E.L., Jones, K.C., Freppaz, M., Di Guardo, 
A., 2017. SoilPlusVeg: An integrated air-plant-litter-soil model to predict organic chemical 
fate and recycling in forests. Sci. Total Environ. 595, 169–177. 
https://doi.org/10.1016/j.scitotenv.2017.03.252 

Terzaghi, E., Vitale, C.M., Salina, G., Di Guardo, A., 2020. Plants radically change the mobility of 
PCBs in soil: Role of different species and soil conditions. J. Hazard. Mater. 388, 121786. 
https://doi.org/10.1016/j.jhazmat.2019.121786 

The Regional Agency for Environmental Protection, n.d. Arpa Agenzia Regionale Per La Protezione 
Ambientale [WWW Document]. URL http://www.arpa.piemonte.it/ 

Tremolada, P., Comolli, R., Parolini, M., Moia, F., Binelli, A., 2011. One-Year Cycle of DDT 
Concentrations in High-Altitude Soils. Water Air Soil Pollut 13. 

Tremolada, P., Villa, S., Bazzarin, P., Bizzotto, E., Comolli, R., Vighi, M., 2008. POPs in Mountain 
Soils from the Alps and Andes: Suggestions for a ‘Precipitation Effect’ on Altitudinal 
Gradients. Water. Air. Soil Pollut. 188, 93–109. https://doi.org/10.1007/s11270-007-9527-5 

Villa, S., Bizzotto, E.C., Vighi, M., 2011. Persistent organic pollutant in a fish community of a sub-
alpine lake. Environ. Pollut. 159, 932–939. https://doi.org/10.1016/j.envpol.2010.12.013 

 

 

 



Predicting the contribution of a local emission source in mid-range 
transport of DDTs and their deposition in terrestrial and aquatic 
ecosystems – Supplementary data 

 
Parisa Falakdin, Elisa Terzaghi, Di Guardo Antonio* 

Department of Science and High Technology, University of Insubria, Via Valleggio 11, 
22100, Como, CO, Italy 

 
 

Table of Contents 

A - MONITORING DATA AND SIMULATION SCENARIO ............................................................ 2 

A.1) Monitoring and literature data ................................................................................................... 2 

A.2) Model parametrization ............................................................................................................... 5 

A.3) Simulation scenario .................................................................................................................... 7 

REFERENCES  ...................................................................................................................................... 8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A MONITORING DATA AND SIMULATION SCENARIO 

A.1) Monitoring and literature data 

Samples of soil, leaves, and litter values within the source area (Pieve Vergonte in Ossola 

Valley) were presented in the previous paper (Falakdin et al., 2022, SI). Table A.1 shows the 

measured concentrations of soil samples in the current study area. Table A.2 provides literature 

data of DDTs concentrations in different matrices within the study area. 

Table A.1 Monitoring data for soil concentrations. 

Soil concentration ng/g dry weight 

References Year Location DDTs 2,4-DDT 4,4 DDT 2,4-DDD 4,4-DDD 2,4-DDE 4,4-DDE 

(Tremolada et al., 
2008) 

2003 Delebio, Italy 2.2 0.29 1.2 0.02 0.18 <0.01 0.53 

(Offenthaler et al., 
2008) 

2004 
Bagni di Masino, 

Italy 
1.402 0.255 0.428 0.0027 0.0049 0.0088 0.8306 

(Tremolada et al., 
2011) 

2007/2008 Spluga Pass, Swiss 1.2-58 n.a. 0.05-10 n.a. 0.14-9.4 n.a. 0.56-48 

(Beone et al., 2015) 2011 Pavia, Italy 0.749 0.15 0.253 0.005 0.012 0.013 0.316 

(Beone et al., 2015) 2011 Pavia, Italy  0.389 0.056 0.149 0.006 0.008 0.008 0.162 

(Beone et al., 2015) 2011 Pavia, Italy  0.615 0.03 0.13 0.028 0.043 0.01 0.374 

(Beone et al., 2015) 2011 Bergamo, Italy  0.4 0.036 0.12 0.005 0.018 0.005 0.217 

(Beone et al., 2015) 2011 Milan, Italy  3.53 0.065 0.371 0.019 0.079 0.249 2.75 

(Beone et al., 2015) 2011 Pavia, Italy 0.222 0.021 0.076 0.007 0.017 0.003 0.098 

(Beone et al., 2015) 2011 Pavia, Italy  0.484 0.085 0.165 0.01 0.033 0.007 0.184 

(Beone et al., 2015) 2011 Pavia, Italy  0.468 0.025 0.087 0.011 0.021 0.02 0.304 

(Beone et al., 2015) 2011 Pavia, Italy  0.553 0.046 0.188 0.011 0.037 0.006 0.265 

(Beone et al., 2015) 2011 Milan, Italy  2.68 0.112 0.754 0.011 0.052 0.01 1.74 

(Beone et al., 2015) 2011 Lecco, Italy 0.547 0.036 0.18 0.008 0.025 0.005 0.292 

(Beone et al., 2015) 2011 Como, Italy  0.634 0.068 0.302 0.005 0.027 0.004 0.227 

(Beone et al., 2015) 2011 Como, Italy  9.12 0.626 2.89 0.228 0.636 0.04 4.71 

(Beone et al., 2015) 2011 Varese, Italy  14.76 0.848 4.87 0.043 0.256 0.052 8.68 

(Beone et al., 2015) 2011 Varese, Italy  0.32 0.043 0.095 0.01 0.041 0.003 0.129 

 

 

Table A.2 Literature data concentrations of DDTs in matrices other than soil. 

Sediment concentration ng/g dry weight 

Reference year  Location DDTs DDT DDD DDE 
2,4-

DDT 

4,4-

DDT 

2,4-

DDD 

4,4-

DDD 

2,4-

DDE 

4,4-

DDE 

(Galassi et 
al., 1993) 

1986 
Lake 

Comabbio 
23.60 n.a. n.a. 11.80 n.a. n.a. n.a. n.a. n.a. 11.80 

(Galassi et 
al., 1993) 

1986 
Lake 

Monate 
1.20 n.a. n.a. 0.60 n.a. n.a. n.a. n.a. n.a. 0.60 

(Galassi et 
al., 1993) 

1986 
Lake 

Varese 
7.40 n.a. n.a. 3.70 n.a. n.a. n.a. n.a. n.a. 3.70 

IRSA,1995 1984 
Lake 

Maggiore 
280.00 6.00 125.00 149.00 1.00 5.00 47.00 78.00 24.00 125.00 



IRSA,1995 1987 
Lake 

Maggiore 
103.00 3.00 40.00 60.00 1.00 2.00 15.00 25.00 12.00 48.00 

IRSA,1995 1990 
Lake 

Maggiore 
72.00 4.00 18.00 50.00 0.00 4.00 8.00 10.00 8.00 42.00 

(Guzzella et 
al., 1998) 

1996 
Lake 

Maggiore 
32.00 7.00 11.00 14.00 1.00 6.00 4.00 7.00 3.00 11.00 

(Guzzella et 
al., 1998) 

1996 
Lake 

Maggiore 
106.00 32.00 54.00 20.00 3.00 29.00 15.00 39.00 6.00 14.00 

(Guzzella et 
al., 1998) 

1996 
Lake 

Maggiore 
146.00 104.00 29.00 13.00 1.00 103.00 10.00 19.00 2.00 11.00 

(Guzzella et 
al., 1998) 

1996 
Lake 

Maggiore 
58.00 41.00 12.00 5.00 1.00 40.00 3.00 9.00 1.00 4.00 

(Guzzella et 
al., 1998) 

1996 
Lake 

Maggiore 
136.00 12.00 54.00 70.00 1.00 11.00 20.00 34.00 15.00 55.00 

(Guzzella et 
al., 1998) 

1996 
Lake 

Maggiore 
48.00 35.00 7.00 6.00 1.00 34.00 3.00 4.00 1.00 5.00 

(Guzzella et 
al., 1998) 

1996 
Lake 

Maggiore 
213.00 49.00 119.00 45.00 3.00 46.00 43.00 76.00 12.00 33.00 

(Guzzella et 
al., 1998) 

1996 
Lake 

Maggiore 
33.00 7.00 17.00 9.00 2.00 5.00 6.00 11.00 3.00 6.00 

(Guzzella et 
al., 1998) 

1996 
Lake 

Maggiore 
222.00 124.00 69.00 29.00 3.00 121.00 23.00 46.00 5.00 24.00 

(Guzzella et 
al., 1998) 

1996 
Lake 

Maggiore 
113.00 33.00 46.00 34.00 6.00 27.00 17.00 29.00 9.00 25.00 

(Guzzella et 
al., 1998) 

1996 
Lake 

Maggiore 
1865.00 1719.00 86.00 60.00 19.00 1700.00 8.00 78.00 4.00 56.00 

(Guzzella et 
al., 1998) 

1996 
Lake 

Maggiore 
204.00 86.00 70.00 48.00 4.00 82.00 20.00 50.00 12.00 36.00 

(Galassi et 
al., 1995) 

1958 
Lake 

Maggiore 
180.00 <10 n.a. <200 n.a. <10 n.a. n.a. n.a. <200 

(Galassi et 
al., 1995) 

1962 
Lake 

Maggiore 
430.00 <10 n.a. 430 n.a. <10 n.a. n.a. n.a. 430 

(Galassi et 
al., 1995) 

1964 
Lake 

Maggiore 
1480.00 30 n.a. 1450 n.a. 30 n.a. n.a. n.a. 1450 

(Galassi et 
al., 1995) 

1966 
Lake 

Maggiore 
820.00 20 n.a. 800 n.a. 20 n.a. n.a. n.a. 800 

(Galassi et 
al., 1995) 

1968 
Lake 

Maggiore 
595.00 15 n.a. 580 n.a. 15 n.a. n.a. n.a. 580 

(Galassi et 
al., 1995) 

1969 
Lake 

Maggiore 
15.00 15 n.a. <200 n.a. 15 n.a. n.a. n.a. <200 

(Galassi et 
al., 1995) 

1971 
Lake 

Maggiore 
180.00 <10 n.a. <200 n.a. <10 n.a. n.a. n.a. <200 

(Galassi et 
al., 1995) 

1978 Lake Como 18 <10 n.a. 18 n.a. <10 n.a. n.a. n.a. 18 

(Galassi et 
al., 1995) 

1979 Lake Como 10 <10 n.a. 10 n.a. <10 n.a. n.a. n.a. 10 

(Galassi et 
al., 1995) 

1980 Lake Como 4 <10 n.a. 4 n.a. <10 n.a. n.a. n.a. 4 

(Galassi et 
al., 1995) 

1981 Lake Como 6 <10 n.a. 6 n.a. <10 n.a. n.a. n.a. 6 

(Galassi et 
al., 1995) 

1982 Lake Como 17 <10 n.a. 17 n.a. <10 n.a. n.a. n.a. 17 

(Galassi et 
al., 1995) 

1983 Lake Como 21 <10 n.a. 21 n.a. <10 n.a. n.a. n.a. 21 

(Galassi et 
al., 1995) 

1984 Lake Como 16 <10 n.a. 16 n.a. <10 n.a. n.a. n.a. 16 

(Galassi et 
al., 1995) 

1985 Lake Como 17 <10 n.a. 17 n.a. <10 n.a. n.a. n.a. 17 

(Galassi et 
al., 1995) 

1986 Lake Como 18 140 n.a. 18 n.a. n.a. n.a. n.a. n.a. 18 

(Galassi et 
al., 1995) 

1987 Lake Como 19 18 n.a. 1 n.a. 18 n.a. n.a. n.a. 1 

(Galassi et 
al., 1995) 

1988 Lake Como 14 <10 n.a. 14 n.a. <10 n.a. n.a. n.a. 14 

(Galassi et 
al., 1995) 

1989 Lake Como 10 <10 n.a. 10 n.a. <10 n.a. n.a. n.a. 10 



(Galassi et 
al., 1995) 

1990 Lake Como 10 <10 n.a. 10 n.a. <10 n.a. n.a. n.a. 10 

(Galassi et 
al., 1995) 

1991 Lake Como 12 <10 n.a. 12 n.a. <10 n.a. n.a. n.a. 12 

(CIPAIS, 
2002) 

2001 
Lake 

Maggiore  
27 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

(CIPAIS, 
2003) 

2002 
Lake 

Maggiore 
10 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

(CIPAIS, 
2004) 

2003 
Lake 

Maggiore 
10 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

(Bettinetti 
et al., 2016) 

2009 Lake Como n.a. n.a. n.a. n.a. n.a. 30-95 n.a. 30-90 n.a. 25-75 

Water concentration ng/l 

Reference year  Location DDTs DDT DDD DDE 2,4DDT 4,4DDT 2,4DDD 4,4DDD 2,4DDE 4,4DDE 

Grasso 
1998 

1996 River Arno 345.000 317 n.a. 28 n.a. n.a. n.a. n.a. n.a. n.a. 

Grasso 
1998 

1996 River Arno 31.6400 9.64 n.a. 22 n.a. n.a. n.a. n.a. n.a. n.a. 

Grasso 
1998 

1996 River Arno 130.9600 102.6 n.a. 28.36 n.a. n.a. n.a. n.a. n.a. n.a. 

Grasso 
1998 

1996 River Arno 80.4000 67.7 n.a. 12.7 n.a. n.a. n.a. n.a. n.a. n.a. 

Grasso 
1998 

1996 River Arno 80.4000 67.7 n.a. 12.7 n.a. n.a. n.a. n.a. n.a. n.a. 

Galassi et 
al.1983 

1969 River Po 22.12 19.75 n.a. 2.37 n.a. 19.75 n.a. n.a. n.a. 2.37 

Galassi et 
al.1983 

1971 River Po 102.3 98.3 n.a. 4 n.a. 98.3 n.a. n.a. n.a. 4 

Galassi et 
al.1983 

1972 River Po 90 80 n.a. 10 n.a. 80 n.a. n.a. n.a. 10 

Galassi et 
al.1983 

1977 River Po 1.2 1.2 n.a. n.d. n.a. 1.2 n.a. n.a. n.a. n.d. 

Galassi et 
al.1983 

1979 River Po 5.6 2 n.a. 3.6 n.a. 2 n.a. n.a. n.a. 3.6 

Galassi et 
al.1983 

1969 
River 
Ticino 

32.17 27.72 n.a. 4.45 n.a. 27.72 n.a. n.a. n.a. 4.45 

Galassi et 
al.1983 

1970 
River 
Ticino 

75 43 n.a. 32 n.a. 43 n.a. n.a. n.a. 32 

Galassi et 
al.1983 

1983 
River 
Ticino 

n.d. n.d. n.a. n.d. n.a. n.d. n.a. n.a. n.a. n.d. 

(CIPAIS, 
1999) 

1998 Toce river n.a. n.a. n.a. n.a. 0-0.08 0-1.3 n.a. 0-0.02 n.a. 0-0.6 

(CIPAIS, 
2003) 

2002 
Lake 

Maggiore 
0.04 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

(CIPAIS, 
2004) 

2003 
Lake 

Maggiore 
0.2 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Fish concentration ng/g lipid 

Reference year Location DDTs DDT DDD DDE 2,4DDT 4,4DDT 2,4DDD 4,4DDD 2,4DDE 4,4DDE 

(Ceschi et 
al., 1996) 

1993 
Lake 

Lugano 
23.40 1.60 2.70 19.10 0.50 1.10 0.40 2.30 0.00 19.10 

(Ceschi et 
al., 1996) 

1993 
Lake 

Maggiore 
630.80 21.40 30.70 578.70 14.80 6.60 15.50 15.20 6.20 572.50 

(Ceschi et 
al., 1996) 

1995 
Lake 

Maggiore 
2042.20 597.40 771.50 673.30 149.50 447.90 184.20 587.30 62.20 611.10 

(Infantino et 
al., 2013) 

1997-
1998 

Lake 
Maggiore 

n.a. n.a. n.a. n.a. n.a. 
590-
1700 

n.a. 
1100-
2400 

n.a. 
1700-
9000 

Note: n.a. refers to “not available”. 

 

 

 



A.2) Model parametrization 

Physical-chemical properties implemented in the model simulation are expressed in Table A.3. 
 

Table A.3 Physical-chemical properties of p.p'DDT employed in the simulation scenario. 

Property Unit Value 

Molecular weight 
g mol-

1 
354.5 

Reference temperature °C 25 

Melting point °C 108.5 

Vapor pressure Pa 0.00002 

Water solubility g m-3 0.0055 

log KOW - 6.19 

Half-life in air d 7.083 

Half-life in soil d 708.33 

Half-life in water d 229 

Half-life in sediment d 2292 

 
Note: all physical-chemical parameters and half-life in air, water, and sediments are from 
(Mackay, 2006) while half-life in soil is from (Dimond and Owen, 1996). 
 

Vegetation cover scenario adopted for the simulation area is shown in Figure A.1. Each grid 

cell represents the average predominant cover. 

 
Figure A.1 Each cell is represented by its general vegetation characteristic. 

 
 
Parameters relating to the vegetation types that were introduced into the model through the GIS 

database can be found in (Falakdin et al., 2022, SI).  

Grass

Forest

Bare land



Percentage of organic carbon content was imported for Lombardy region (Figure A.2) ranging 

from 0.28% (yellow) to 11% (green). Blue dots show the location of soil samples and their 

concentration (ng/g d.w.). 

 
Figure A.2 map of OC content of Lombardy on the simulation area. 

 

Table A.4 shows the parameters used for the three lake simulations. 
 

Table A.4 Lake properties corresponding to Lakes Maggiore, Como, and Lugano (Villa et al., 2011). 

Properties 
Lake Maggiore Lake Como Lake Lugano 

Value Unit Value Unit Value Unit 

Water Surface 212.5 km2 146 km2 48.7 km2 

Water Inflow Rate 380 m3/s 158 m3/s 23.6 m3/s 

Water Outflow Rate 292 m3/s 158 m3/s 23.6 m3/s 

Average Depth 176.5 m 154 m 134 m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A.3) Simulation scenario 

 
Figure A.3 shows the hourly emission rate value imported to the GPSV model for each year. 

 
Figure A.3 Hourly emission rate by year (1948-2048) (Falakdin et al., 2022).  
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ABSTRACT 

The growing trend of plastic production in recent years and the inadequate disposal of related 

waste has raised concerns regarding microplastic-related environmental issues. Microplastic 

particles disperse by means of transport and deposition processes to different ecosystems and 

enter food chains. In this paper airborne and foliage samples were collected and analysed for the 

quantity and identity of microplastics (MPs). This work presents preliminary methodology to 

treat the samples and subsequently identify MPs using a quantum cascade laser IR spectrometer. 

Airborne sample treatment involved filtration, extraction, concentration, and transfer onto 

reflective slides. Foliage treatment involved washing, extraction, concentration, and 

transference of putative MPs onto reflective slides. Fibres and fragments were differentiated 

automatically according to their physical features (size, width, height, etc.) and some derived 

characteristics, as circularity and solidity. The results suggested good agreement between the 

amounts of atmospheric-deposited and foliage-retained MPs. 
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1. INTRODUCTION 

Plastic waste increased as a result of population growth and excessive use of polymers and 

inadequate waste management. Plastics are among the most convenient commodity materials, 

and they are utilized hugely for the production of disposable products. When spilled in the 

environment, these residues degrade due to erosion, solar radiation, weathering, and 

microorganisms and break into smaller particles. Additionally, microplastic particles (MPs) 

might be released directly into the environment from primary sources, such as personal care 

products, synthetic textiles, and tyres (Boucher and Friot, 2017).  

Increasing concerns about MPs rocketed over the last decade and they dragged attention to their 

identification and quantitation in different environmental compartments. MPs can be defined as 

solid plastic particles insoluble in water with dimensions between 1 µm and 1 000 µm (=1 mm) 

(ISO, 2020) whose composition is dominated by carbon, hydrogen, and heteroatoms like 

oxygen, nitrogen, sulfur, and chlorine. 

The presence of MPs in marine environments, some organisms and soils and sediments has been 

broadly studied (Hernandez-Gonzalez et al., 2018; Novillo et al., 2020; Thompson et al., 2004). 

However, fewer studies focused on atmospheric microplastics (AMPs) despite it is already 

known that they can be transported over long distances in the form of suspended atmospheric 

particles (Allen et al., 2019). Therefore, they may contribute to terrestrial and vegetation 

contamination and, ultimately, reach the breathing organs of animals. Hence, there is a growing 

demand for validated analytical procedures devoted to the identification of AMPs and for 

studying their presence in terrestrial vegetation. The issue of microplastics in marine vegetables 

(algae) and plankton has already been considered (López-Rosales et al., 2021, 2022b).  



Before characterization, sample treatment protocols are needed and their implementation 

constitutes an important challenge as they ideally should be reliable (validated), fast, and yield 

maximum analyte recovery (López-Rosales et al., 2022a). Since the investigation of 

atmospheric and foliage MPs constitutes a relatively new field there is room for research on this 

topic. Luo et al., (2022) provided a recent review on the availability of procedures for the 

different working stages: sampling, sample treatment, particle identification, and modeling of 

AMPs. Another general review was conducted by Shao et al., (2022) on the possible sources of 

AMPs and their spatial and temporal distribution. It turned out that population density and 

industrialization are important factors to explain the distribution of AMPs. Thus, a higher level 

of AMPs was seen in urban environments when compared to rural areas. Also, more plastic 

fibers and particles were found indoors than outdoors (Shao et al., 2022). A recent study focused 

on finding atmospheric sources of MPs (Munyaneza et al., 2022) evaluated different pathways 

such as households, industry, traffic, and landfill as responsible for a potential threat to humans 

due to inhalation of MPs. The study demands urgent methodological developments and 

standardization of sampling and analysis (Munyaneza et al., 2022).  

On the other hand, the leaves of terrestrial vegetation can act as passive air samplers. Indeed, a 

variety of studies demonstrated the capability of leaves to accumulate organic chemicals 

depending on the plant/air partitioning coefficient (Giráldez et al., 2022; Kömp and McLachlan, 

1997; Nizzetto et al., 2008). Terzaghi et al., (2013) evaluated the processes involved in 

atmospheric particulate matter deposition, along with the semi-volatile organic compounds 

(SVOCs) captured by vegetation.  

To the best of the author’s knowledge, there is no investigation so far regarding the interaction 

between airborne and foliage MPs. Hence, this paper presents a preliminary study to develop 



protocols for sampling, sample treatment, and identification of airborne-based MPs deposited 

on leaves. Some guidelines are also given to determine AMPs using a quantum cascade laser-

based infrared spectrometer. Some previous results obtained for atmospheric samples using 

passive samplers and two species of leaves revealed the same general patterns.  

 

2. Materials and methods 

2.1. Apparatus 

The relatively novel instrumental technique based on the use of quantum cascade laser in the IR 

spectral region (8700 LDIR from Agilent Technologies, USA) working in 1800-600 cm-1 mid-

IR region along with reflective slides (MiRR, Kevley Technologies, Chesterland, USA) offered 

a suitable means to characterize MPs, although some instrumental parameters require some ad-

hoc optimization. A number of physical parameters derived from measurement over the 

particles, such as aspect ratio, circularity, and solidity were used to automatically categorize the 

MPs as fibers or particles.  

A Syncore-Plus® automated evaporation system, equipped with a V-800/805 vacuum controller 

and an R-12 vacuum line, and 12 dedicated glass containers (residual volume 1.0 mL), from 

Büchi, Switzerland were employed. A Rotabit P incubation system (Selecta, Spain), with 

adjustable temperature and trembling controls, and a Pobel vacuum filtration system equipped 

with a Millipore vacuum pump (Millipore, Ballerica, MA model WP6122050) were used as 

well. 

 

 

 



2.2. Reagents and materials 

The reagents for the treatment were KOH (100 % purity, Emsure®), and Triton X-100 (Sigma-

Aldrich) and NaClO 6-14% active chloride from Emplura®. 96 % ethanol was from Ensure®. 

Ultrapure MilliQ-type water (18 MΩ•cm-1 resistivity) was from a Direct-Q 3-V Millipore 

(Molsheim, France) device, collected and used daily. The 20 µm mesh size (open bore, square 

weave mesh type) metallic filters were from Bopp & Co. A.G: (Switzerland) and the 1000 µL 

pipette tips were from Eppendorf (Hamburg, Germany). 

A 8700 IR quantum cascade laser-based Agilent system (LDIR, Laser Direct Infrared) working 

in the 1800-600 cm-1 mid-IR region and using flat reflective slides (MiRR, Kevley 

Technologies, Chesterland, USA), was used. The same parameters were set for all samples, 

including the blanks. A measuring manual size range was set from 20 μm to 5000 μm, sensitivity 

was set to 3 (Agilent Clarity 1.0. version). These parameters were fixed after preliminary tests 

carried out to optimise their use. 

An automatic evaporation system composed of a V-800/805 vacuum controller, Vacuum line 

and R-12 analyst Syncore Plus® Line plus dedicated glass containers (residual volume 1.0 mL) 

(Büchi, Switzerland); a Rotabit P incubation system (Selecta, Spain), with temperature and 

agitation controls; a Pobel vacuum filtration system combined with a Millipore vacuum pump 

(Millipore, Ballerica, MA, model WP6122050); a 3000867 Selecta ultrasonic bath (Barcelona, 

Spain). Further, a Leitz Wetzlar stereomicroscope (10x ocular and manual adjustment of the 

objective zoom up to 5x, total magnification 50x) was employed to spike samples. 

 

2.3. Atmospheric microplastic sampling 

Several samples were collected in January 2022 in an air monitoring station located close to the 

city of A Coruña (Instituto Universitario de Medio Ambiente). The location and geographical 



coordinates of the sampling site are shown in Figure 1. This corresponds to a semi-urban 

location. 

Two equal passive samplers were placed at a height of 2.5 m on top of the air monitoring station, 

and they were retrieved after a month in order to determine the total atmospheric deposition of 

January 2022. The passive samplers are constituted by 22 mm diameter (0.038 m2) stainless 

steel funnels and 10 L ISO standardized glass collecting bottles, surrounded by a Teflon shield 

(they are commercialized by LAbService Analytica as “Depobulk” samplers). Figure 2 

illustrates the atmospheric samplers used for this experiment. 

 

 

Figure 1: Location of the atmospheric sampling site, in a semi-urban location, close to the city of A Coruña, 

NW Spain. 

 



Figure 2: Atmospheric passive samplers employed in this work –see text for details. 

 

2.4. Leaf sampling 

Adult and undamaged leaf samples of two species, Hedra Helix and Photinia glabra were 

collected in the vicinity of the Faculty of Sciences. This location corresponds to a semiurban 

site with some hourly peaks of traffic vehicles although low traffic density during the day. On 

the weekends the amount of traffic is negligible. A relevant point is that the collection site is at 

the top of a little hill SW of the city and wind blows frequently from the city to that point. 

For each species, five to six leaves were sampled from different parts of the plants and at 

different locations. Figure 3 depicts the leaves collected to determine MPs on them.  

 

 
Figure 3: Photographs of the two species of vegetables sampled for leaves in this work. 
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2.5. Sample treatment methods 

2.5.1. Atmospheric samples 

Atmospheric bulk samplers containing one-month deposition of organic matter and atmospheric 

particles were washed with MilliQ water toroughly and the solution was filtered through 20 µm 

stainless steel filters. The resulting filters were washed directly into dedicated Büchi glass tubes 

using 40 mL of 98 % ethanol. Particles were released from the surface of the filters using an 

ultrasonic bath (30 min, with different frequencies: 37 and 80 kHz, 15 min each; temperature < 

35 °C). 

The suspensions thus obtained were located into an automatic evaporation Syncore system and 

evaporated until ca. 2 mL. Since MPs can degrade with high temperatures, the evaporation 

process must be done gently and so evaporation extended overnight. The 2 mL remains were 

transferred onto reflective slides required for the LDIR system. The Büchi evaporation glass 

tubes were washed twice with ethanol, concentrated in the Syncore and the remaining volume 

was transferred onto the slide. The slides were kept in a closed fume hood at room temperature 

until completely dried prior to their measurement (Figure 4). 

 

 

 
Figure 4: Scheme of the main steps to treat airborne-deposited samples. 

 



2.5.2. Foliage samples 

The procedure for the foliage samples implied washing the leaves over a beaker using 500 mL 

of surfactant (Tritón X-100 0,1%) and 500 mL of MilliQ water. The resulting suspension (1 L) 

was vacuum-filtered through a 20 μm stainless steel filter. To release the particles from the 

metallic filters, they were washed thoroughly using 50 mL of 98 % ethanol over a Büchi glass 

tube. The filter is afterwards submerged in the suspension and ultrasonicated for 30 min at 

different frequencies (37 and 80 kHz, 15 min each) and at < 35 °C. Then, the filter is removed 

and washed again with 25 mL of ethanol. Subsequent steps to reduce the volume of the 

suspension using a Syncore system and its final withdrawal were as for the airborne samples. 

Finally, the contents of the Büchi tubes were evaporated to ca. 1 mL, and the final remains were 

transferred to the reflective slides for their measurement. 

 

2.5.3. Quality control 

All glassware was washed with alkaline soap (Extran ® MA01) for 48 h and rinsed with abundant 

tap and MiliQ water. All reflectance slides were pre-cleaned with ethanol. Glassware and other 

materials used during the analysis were covered with aluminium foil during storage and use. 

The entire experiment was performed inside a fume hood. During operation, cotton clothing was 

used to prevent contamination by microplastic fibers. Two procedural blanks were considered 

along with each sample batch, according to procedures proposed elsewhere (Hermsen et al., 

2018). 

3. Results and Discussion 

3.1. Setting the criterion for polymer identification 

The QCL-based LDIR system scans the surface of the horizontal, flat, highly reflective slides 

and gets a spectrum from each and every detected particle. Detection is carried out automatically 



by the built-in software after imaging the surface of the slide and identifying pixels different 

from the background. Therefore, the measurement time per slide varies depending on the 

number of particles deposited over it. For 1000 particles the system needs about 5 h. For each 

particle on the slide, a transflectance spectrum is registered and compared to the spectral libraries 

to match it to the most probable known material.  

In our experience, a match (or correlation) index higher than 90 % must be set to consider that 

he identification of the unknown particle is reliable. Figure 6 shows an example of a particle 

whose match index = 95.4 % and, so, it was identified as polymethyl methacrylate (PMMA). 

Some other authors relaxed this value to 65 or 70 % but this led to too many false positives. 

However, the complex spectra of the tyres made us to consider a positive identification of a 

particle as of tyres only when the match index was around 95 % or higher. Figure 7 shows the 

identification of an unknown particle as a tyre, with a match index of 95.3 %. After identification, 

the plastic particles considered as MPs were categorized as particles or fibers according to their 

size and type, as addressed in the next section. 

 

 
Figure 1: Example of a PMMA spectral identification with a match index of 95.4 %. 

 



 
Figure 2: Example of a tyre identification with a match index of 95.3 %. 

 

3.2. Microplastics in air and foliage 

Microplastic particles and fibers were counted after the raw values were blank-corrected (i.e., 

the number of each kind of MP in the procedural blanks subtracted from the raw countings). 

AMPs were counted per sample and referred to daily deposition rate (MPs/m2/day) by dividing 

the number of MPs by the circular area of the funnel and the number of the days of the sampling 

period (here, 31 days for January). Calculation of MPs “concentration” on leaves referred to 

their total surface area (MPs/m2).  

Figure 8 shows the distribution of the polymer forms (fiber or particle) by size, both for AMPs 

and leaves. Tyres were excluded from the figure as their values are clearly much higher (up to 

60) (see Table 1) than those for the other polymers and they would obscure the general picture. 

 



  
Figure 3: Distribution of fibers (a and b) and particles (c and d) by size and collection system: G: bulk sampler 

(average value of G1 and G2 with error bars indicating the standard deviations), HH: leaf sample of Hedra 

helix, PG: leaf sample of Photinia glabra. 

 

In both atmospheric and leaf samples, the concentration of particles is higher than that 

of fibers, by up to two orders of magnitude. Particle and fiber distributions on leaf 

surface reflect those in air: the number of fibers is greater in the medium size range (100 

to 500 μm) (Figures 3a and 3b), while small particles (20 to 50 µm) are the most 

abundant (Figures 3c and 3d). Small particles (20 – 100 μm) are more abundant in air 

since they tend to remain suspended in the air while the coarser and heavier ones tend 

to settle down (Munyaneza et al., 2022). Similarly, big particles deposited on leaves 

could be more susceptible to wind resuspension and rain wash off. Comparing the air 

deposition rates (MP/m2day) and leaf concentrations (MP/m2) and assuming a similar 

spatial and temporal MP distribution in the air of the two sampling sites, particle 

accumulation on leaf surface seems to be slower (up to 30 days) than fiber uptake 
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(maximum 10 days), suggesting a higher affinity and retention capacity of plant leaves 

for fiber than for particles. Considering the MP distribution on leaf surfaces a species-

specific behaviour does not appear. 

With regard to the total number of particles identified as MPs (Figure 4), they were very 

similar and ranged between 53 and 111, for air samples, and 86 and 117, for leaves. 

Although the samples analyzed in this study were intended mostly to test the analytical 

methodologies and not to find specific trends, those results can provide a preliminary 

insight into what can be expected of leaves when it comes to microplastics.  

 

 
Figure 4: Number of total polymers found in each sample. 

 

Table 1 indicates that, aside from tyre, the predominant polymers in all samples (except 

for HH) are PET, PP, and PE. PVC and PP were the most abundant polymers in the HH 

sample. All these polymers are of common use and they constitute the basis of the 

primary production of many commodities (Khalid et al., 2021) that can erode and/or 

degrade while in use or after their spillage.  

The number of particles identified as tyres in PG, and HH samples was high (Table 1). 

This might be explained by the closeness of the leaves to nearby roads (ca. 5-10 m 
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distance) and their accumulation capability thanks to the hydrophobic nature of their 

surfaces (Di Guardo et al., 2003) although other effects like airborne transportation 

cannot be rejected. Curiously, this effect was not observed for the samplers, but that 

might be caused by the different locations of the samplers and leaves. 

 

 

Table 1 Types (*), physical appearance (fiber vs particle) and and number of identified 

polymers found in atmospheric and leaf samples. 

 

* PET (polyethylene tetra phthalate), PP (polypropylene, LDPE/ HDPE (low/high-density polyethylene 

together considered as PE), PS (polystyrene), PVC (polyvinyl chloride), PMMA (polymethyl 

methacrylate), EVA (ethylene vinyl acetate), PU (polyurethane), PA (polylactic acid).  

 

Fibres Polymer Count Polymer Count

PET 12 Fibres PET 4

PP 1 PP 2

PE 2 PE 1

PS 1 PVC 1

Particles Polymer Count PU 1

PET 7 Tyre 1

PP 24 Polymer Count

PE 28 Particles PP 14

PVC 6 PE 8

PMMA 2 PA 5

PS 8 PU 1

EVA 3 PET 3

PA 2 PS 2

Alkyd Varnish 2 Alkyd Varnish 1

Tyre 4 PVC 13

Tyre 60

Polymer Count

Fibres PET 6 Fibres Polymer Count

PE 2 PP 1

PVC 1 PVC 1

Particles Polymer Count PU 1

PS 3 PET 2

PA 3 Tyre 1

PE 4 Particles Polymer Count

PMMA 2 PP 9

PVC 6 PET 3

PET 3 PE 3

PP 12 PA 4

Tyre 5 PVC 13

PS 2

PU 1

Alkyd Varnish 1

Tyre 57

G2

HH

G1 PG



Airborne MP measurement has just recently been addressed and very few research 

works are available about MP leaf uptake (Campanale et al., 2022; Li et al., 2020; 

Mateos-Cárdenas et al., 2021), therefore an in-depth literature comparison is not 

feasible. However, it has recently been pointed out that airborne MP share many 

common features with air particulate matter (PM) (e.g., shape, size, aerodynamic 

properties, etc.) and therefore the knowledge about PM uptake/release by plant 

leaves can be used to assess MP-leaves interactions (Bi et al., 2020). For example, 

it is well known that leaf characteristics (e.g., roughness, hairiness, petiole length, 

etc.), cuticle chemical composition (e.g., quantity and quality of waxes) and cuticle 

structure (e.g., thickness, morphologies.) influence the removal efficiency of PM 

from air by different plant species (Chen et al., 2017; Dzierżanowski et al., 2011; Liu 

et al., 2018; Sæbø et al., 2012). Concerning PM distribution on leaf surface, PM10 

(< 10 µm) is generally the most abundant (Teper, 2009; Terzaghi et al., 2013, 2013; 

Wang et al., 2006); bigger particles (>10 µm) are easily washed off during rain 

events and resuspended by wind, while and PM2.5 (<2.5 µm) represents the fraction 

that can be encapsulated in the leaf cuticle and therefore hardly removed by rain 

and wind (Dzierżanowski et al., 2011; Terzaghi et al., 2013). PM were also shown to 

mediate the transfer of organic contaminants to the leaf cuticle (Terzaghi et al., 

2013); similarly MP found in the aquatic ecosystems can adsorb several 

environmental contaminants acting as “Trojan horse” carrier of these compounds 

to aquatic organisms (Akdogan and Guven, 2019; Katsumiti et al., 2021). Finally 

comparing PM size distribution in air and on leaf, plant leaf surfaces seem to act 



also as aggregation surface for smaller particles (< 1 µm) that represent the most 

abundant fraction in air. This might also happen for air nanoplastics (NP) that as 

MP  have recently attracted increasing attention representing a pathway of 

contaminant transfer to crop (Sun et al., 2021). 

Although MP and PM could share similar behaviors, their different physical 

characteristic (e.g., more lipophilic surface), composition (e.g., organic substances) 

and shape (e.g., fibers) can differently affect their fate. Therefore, further studies 

are necessary to identify the driving factors in influencing leaf uptake and release 

of MP and therefore their environmental fate, including their transfer from air to 

soil through the forest filter effect, their degradation and accumulation in terrestrial 

food web. 

 

4. CONCLUSIONS     

This study provides an initial preliminary approach to treat leaf samples in order to 

determine the number and type of microplastics present on their surface. This may 

constitute an indicator for the presence of this type of pollutants in the atmosphere. In 

fact, we found a similar total number of particles identified as microplastics in leaves 

and in the atmospheric deposition (a passive Depobulk sampler, deployed for a month). 

However, the number of fibers was higher in the 100-500 µm size range whereas 

particles were more abundant in the 20-50 µm sizes. In our view, the procedure 

proposed for leaf washing provides a good way to face the issue of determining 

microplastics in leaves. However, there are still challenges to address. For example, 

how to perform reasonable evaluations of the analytical recoveries, as there is no 



reference material, or how to match the periods of atmospheric collection and the 

accumulation time of the leaves. 
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Estimating temporal and spatial levels of PAHs in air using rain samples
and SPME analysis: Feasibility evaluation in an urban scenario
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H I G H L I G H T S

• Rainfall was collected at 30min interval
to estimate PAHair concentrations.

• Three sites at different traffic intensity
were investigated in Como, Italy.

• SPMEextraction allowed to collect small
amounts of samples.

• The results outlined spatial and tempo-
ral variability of selected PAHs in air.
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There is a growing interest in evaluating the role of concentration changes of contaminants in temporal and spatial
gradients. This is often relevant for fastmoving environmental phases such as air andwater. In this paper, small vol-
umes of rainwater were sampled as proxy for air concentrations of Polycyclic Aromatic Hydrocarbons (PAHs): rain
was collected in three sampling sites (high traffic, restricted traffic and a low traffic zone) in Como. Solid phase
micro extraction (SPME) was used for the extraction to reduce required sample volumes, allowing the acquisition
of more samples in time. Rain samples highlighted a spatial and temporal variability along a traffic gradient in the
Como city, especially for the most abundant PAH, e.g. phenanthrene. Air concentrations were then estimated from
rain concentrations. The results show that this is a cheap and promisingmethod, although requiring rainfall/snow-
fall conditions, that can beused to performmonitoring campaignof air concentrations at a higher temporal and spa-
tial resolution than the adopted standard methods (e.g. high-volume air samplers). The results could be employed
for evaluation of the exposure, emission profiles and calibration of fate models.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

There is a growing interest in assessing the spatial and temporal
variability of contaminant concentrations (Di Guardo et al., 2018; Di
Guardo and Hermens, 2013), especially in mobile phases such as air
(Gasic et al., 2009; Lammel et al., 2010a; Morselli et al., 2011, 2012)

and water (De Laender et al., 2015; Morselli et al., 2014, 2015, 2018),
as well as soil (Ghirardello et al., 2010; Terzaghi et al., 2019); such
knowledge would be of particular relevance to assess the realistic
exposure of humans and ecosystems to atmospheric pollutants
(e.g., occurrence, magnitude and duration of exposure peaks).

Recentworks have underlined the relevance of the air compartment
change in affecting the diel variation of concentrations of contaminants
(Morselli et al., 2011, 2012, 2018). For example, the changes of the
planetary boundary layer (PBL) height could affect air concentration

Science of the Total Environment 762 (2021) 144184

⁎ Corresponding author.
E-mail address: antonio.diguardo@uninsubria.it (A. Di Guardo).

https://doi.org/10.1016/j.scitotenv.2020.144184
0048-9697/© 2020 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv



variations (Oke, 2009; Stull, 1988) on an hourly basis since it would
affect the mixing layer height, the level of the lower part of the tropo-
sphere in which pollutant are diluted. This implies that air concentra-
tion of constantly ground level emitted contaminants can vary
significantly during the day/night cycle. Given such amplitude it
would be desirable to provide a tool or technique to efficiently monitor
(temporally and spatially) those hourly variations in order to be capable
to evaluate the extent of environmental and human health risk during
peaks of concentrations to possibly reduce or mitigate emissions (Di
Guardo and Hermens, 2013). However, due to sampling cost limitations
and available techniques, the investigation of air concentrations is usu-
ally limited to daily averages for specific contaminants or particulate
matter in air.

PAHs are ubiquitous contaminants, typically deriving from incom-
plete combustion of anthropogenic sources (fossil fuels, industrial
sources, wood combustion in domestic heating, etc.) although they
could also derive from natural sources such as forest fires and volcanic
eruptions (Baek et al., 1991). PAH are important for their toxicological
(Kim et al., 2013) and ecotoxicological (Jensen and Sverdrup, 2003;
Sverdrup et al., 2002) properties and their semivolatility which allows
them to be mobile in air, being transported to longer distances and con-
sidered long range transport pollutants (Halsall et al., 2001). Traffic is
an important contribution to PAH pollution (Nielsen et al., 1996;
Prevedouros et al., 2004) with the contribution of diesel and gasoline
fuelled cars (especially at low speed after a cold start), although the use
of catalytic converters has reduced the emissions (Ravindra et al., 2008).

Moreover, urban areas with congested traffic conditions and vehi-
cles traveling short journeys could enhance the emission of PAHs
(Ravindra et al., 2008). In many European cities low or restricted traffic
areas are present, and it was shown that these areas, including also
parks, presented lower PAH concentration in respect to heavy traffic
roads (Nielsen et al., 1996). Some authors have measured variability
of PAH concentrations during the day and in different sites (e.g. urban
vs. rural) (Gaga et al., 2012; Lammel et al., 2010a; Morville et al.,
2011). Nevertheless, the need of high-volume samplers employed in
these studies limits the availability of replicates and simultaneous mea-
surements to process data in a statistically robust way. Even when high
volume samplers are employed, the presence of sample artifacts cannot
be avoided, such as the adsorption of gaseous PAHs on the filter and or
on the particle phase sampled (Li et al., 2016).

Solid phase micro extraction (SPME) is an extraction technique
which necessitates small volume of sample (e.g. 30–40 mL of water)
and was used to measure PAH in surface water (Doong et al., 2000)
and rainwater (Guidotti et al., 2000). For this reason, it can be employed
o analyze rainwater also deriving from short duration rain events and/
or to study the variability of concentrations during each event.

The aim of this work was therefore to investigate the use of small
amounts of rain samples (<50–100 mL) and SPME analysis as a tool to
explore the spatial and short term variability of atmospheric levels of
PAHs in a city using rain as proxy of air concentrations. The water con-
centration data can be converted to air concentrations using air/water
partition coefficients and used to compare the levels in the different
areas, showing the potential use of relatively rapid and simple method
for simultaneously obtaining and comparing PAH concentrations in
air. For example, this can be used to explore the emission profiles of
chemicals with time and space, with the limitations imposed by the
need of rainfall/snowfall conditions to obtain a water sample. The re-
sults could be later employed for evaluation of the human and ecosys-
tem exposure, source apportionment, and calibration of fate models.

2. Materials and methods

2.1. Rain sampling

Three sampling sites (Fig. 1) were chosen to evaluate the spatial var-
iability at a local scale in an urban environment and to estimate the

short-term variability (i.e. half-hour) of concentrations. The rain sam-
pling campaign was performed in Como (Lombardy Region, Northern
Italy), a town of about 85,000 inhabitants, on Dec 20, 2013. The city
lies at an elevation of 201 m a.s.l. and is located at the end of the
south-west branch of the Lake, about 40 km north of Milan. The first
site (A) was located on the side of a high-traffic road, next to a traffic
light (about 2400 car/h). The second site (B) was located in the Como
historical city centre, a restricted traffic zonewhere only authorized ve-
hicles can circulate (less than 10 car/h), while the third site (C) was lo-
cated in the middle of a park, a semi-urban area (less than 10 car/h but
about 300m away from amedium traffic road, about 1000 car/h)where
previousmeasurements of PAH in air, particulatematter, leaves and im-
pervious surfaces were taken (Terzaghi et al., 2013, 2015a, 2015b). Rain
samples were simultaneously collected in triplicates at each site (S1, S2,
S3 for site A; S4, S5, S6 for site B; S7, S8, S9 for site C) (for a total of 27
individual rain samples) by means of 9 large stainless-steel containers
(salad bowls) with a diameter of 0.5 m positioned on the ground, at
the vertexes of a triangle (at 10 m distance). The samplers were thor-
oughly washed with soap and water and, when dry, were rinsed three
times with pesticide grade hexane, acetone, and MilliQ water. They
were carried to the sampling areas (and back) individually wrapped in
new polyethylene bags. Rain samples (50–100 mL) were collected for
30min, and thenwere transferred into solvent rinsed aluminumbottles
by means of solvent washed steel funnels. Then the samplers were ex-
posed again, after being rinsedwithMilliQwater. Three rainfall samples
were therefore collected for each container, simultaneously in all sites,
from 9:00 to 9:30 am, from 9:30 to 10:00 am and from 10:00 to
10:30 am. Total sampling time was 1:30 h. Rainwater samples were
stored at−30 °C until analysis.

2.2. Meteorological and population statistics data

Precipitations and temperature data for the rainfall sampling
(Fig. A7) were obtained by Regional Protection Agency (ARPA
Lombardia, 2018). Planet boundary layer height was estimated from a
previous dataset (Morselli et al., 2012).

2.3. Chemicals

Acenaphthene (ACE), acenaphthylene (ACY)fluorene (FLUO), phen-
anthrene (PHE), anthracene (ANTH), fluoranthene (FLUOT), pyrene
(PYR), benz[a]anthracene (B[a]ANTH), chrysene (CHR), benzo[b]fluo-
ranthene (B[b]FLUOT), benzo[a]pyrene (B[a]PYR), benzo[g,h,i]perylene
(B[ghi]PER), indeno[c,d]pyrene (I[cd]PYR), were purchased from
Supelco (QTM PAH mix, 2000 ng/μL in methylene chloride). Perylene
(PER)was purchased from Sigma-Aldrich (purity 99.7%). Deuterated in-
ternal standards (Acenaphthene-d10, Phenanthrene-d10, Chrysene-
d12, Perylene-d12)were purchased fromSupelco (Semivolatile Internal
Standard mix, 2000 ng/ μL in methylene chloride). Solvents used were
acetone, hexane (pesticide-grade, Fluka analytical) and toluene for
analysis of dioxins, furans and PCB, (purity ≥ 99.7%, Riedel-de Haën).

2.4. Extraction

Manual SPMEholder equippedwith a 100-μmpolydimethylsiloxane
(PDMS) non-polar fiber was used (Supelco, Sigma Aldrich). Before use
and at the beginning of every working day, fibers were conditioned at
250 °C for 30 min in the GC injection port. Water samples were trans-
ferred in 40 mL amber glass vials, minimizing headspace, and capped
and sealed using Teflon-lined septa. Vials were previously cleaned in a
muffle furnace at 450 °C for 8 h and furtherwashed before usewith hex-
ane and acetone to minimize sample cross contamination. The direct
immersion mode was chosen to improve the sensitivity of the method.
Extractions were performed at a temperature of 60 °C for 40min under
constant stirring (1000 rpm). These conditionswere optimized running
extraction test at different temperatures and sampling times, basing on

E. Terzaghi, P. Falakdin, E. Fattore et al. Science of the Total Environment 762 (2021) 144184

2



literature results (Doong et al., 2000; Rianawati and Balasubramanian,
2009; Yan et al., 2012). More information can be found in the Appendix
section. The thermal desorption of the analytes took place in the GC in-
jector port, at a temperature of 280 °C, for 2 min. The fiber was then left
in the injector port for 1 min to ensure complete desorption and avoid
carryover.

Internal calibration approach using spiked water was used to quan-
tify the samples. Calibration standard solutions in deionizedwater were
prepared in the range of 1 ng/L to 100ng/L adding non labelled and deu-
terated standards at 20 ng/L. The same amount of deuterated standard
(i.e., 0.8 ng) was added to each sample prior to extraction.

2.5. Instrumental analysis

Analyses were performed using an HP 6890 Series gas chromato-
graph coupled to a 5972A mass detector (Agilent Technologies), and
equipped with a J&WDB-35MS capillary column (60-m, internal diam-
eter 0.25mm, phase thickness 0.25 μm). Heliumwas used as carrier gas.
The injection was performed in splitless mode and the injector port
temperature was set to 280 °C. Oven temperature programwas started
at 110 °C, raised to 155 °C at a rate of 5.00 °C/min, then to 335 °C at a rate
of 6.25 °C/min, andfinally held at 335 °C for 23min. Carrier gasflowwas
kept constant (0.8mL/min). Themass spectrometerwas operated in Se-
lected IonMonitoring (SIM)mode. Retention times, ions and groups se-
lected for MS analysis for each investigated chemical, as well the
correspondence betweenmeasured compounds and their internal stan-
dards are reported in Table A1.

2.6. QA/QC

All analytical procedures were monitored using strict quality assur-
ance and control measures. Analytical blanks consisted in field blanks
and laboratory blanks. They were extracted by washing them with
deionized (MilliQ) water. Field and laboratory blank samples were
taken by washing three rain samplers with deionized water; they
were subjected to the same storage, extraction and analytical proce-
dures as those used for environmental samples. An additional blank
was obtained with deionized water. Concentrations reported were

blank corrected. Method detection limits (MDLs) were calculated as
blank concentration plus three times the standard deviation of the
blank (Muir and Sverko, 2006). Table A.2 shows MDL values for rain
samples. In addition, peaks were integrated only when the signal-to-
noise ratio was ≥3. Reproducibility and other details of method valida-
tion are also available in the appendix section.

2.7. PAH air concentration estimation

Air concentrations were calculated for each chemical by assuming
that rainfall samples were in equilibrium with the atmosphere and
therefore Henry's Law could be used to define the equilibrium
partitioning (Shahpoury et al., 2015). Since the partitioning depends
on temperature (Mackay, 2001; Shahpoury et al., 2015) a dimensionless
air/water partition coefficient (Kaw) was calculated at each sampling
temperature for each chemical, starting from vapour pressure and
water solubility (Mackay et al., 2006) and using the heat of vaporization
and solubilization reported in (Ghirardello et al., 2010).

Ca gð Þ ¼ Kaw ∗ Cw dð Þ ∗ 1000 ð1Þ

where: Ca(g) =gaseous concentration in air (ng/m3), Cw(d)=dissolved
concentration in rainfall (ng/L), 1000 is a conversion factor (fromng/m3

to ng/L).

2.8. Statistical analyses

Analysis of Variance (ANOVA), regression and PCA analyses were
performed with the XLSTAT software (Addinsoft SARL, Version
2020.3.1, Boston, USA). The data subjected to ANOVA (α=0.05) passed
the normality and equal variance tests. Tukey test was applied for
pairwise comparisons. Fisher test was used to assess the significance
of the linear regression (α = 0.05). For principal component analysis
(PCA), individual concentration data were normalized to the total con-
centration in the sample. Concentration values < MDL were assumed
to be zero.

Fig. 1. Location of the three sampling sites in the city of Como. A = high traffic zone, B = restricted traffic zone, C = low traffic zone. The green line delimits the restricted traffic zone in
Como. Satellite image from Google Maps, 2019. The green dot in the small map in the left bottom corner shows the location of the town of Como within Lombardy Region and Italy.
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Table 1

Concentration of selected PAHs in air and rainfall from the literature.

Date Location and
Reference

Type Season ACE FLUO PHE ANTH FLUOT PYR B[a]ANTH CHR B[b]FLUOT B[a]PYR B[ghi]PER I[cd]PYR TOTAL
PAH

AIR
(ng/m3)

1990 Rorvik, Swedish West
Coast
(Brorström-Lundén
et al., 1994)

R* Winter - Spring [3.2] [0.07] [1.6] [1.5] [0.34] [0.94] [0.84] [0.3] [0.4] [0.6] [9.2]

1991–92
London, UK (Halsall
et al., 1994)

U* Yearly [3.4]a [22] [79] [5.8] [10] [9.5] [1.3] [2.3] [1.4] [0.8] [4.9] [140]

1991–92
Manchester, UK
(Halsall et al., 1994)

U* Yearly [2.5] [21] [46] [3.7] [8.9] [1.7] [2.2] [1.3] [1.5] [2.1] [91]

1991–94
Rorvik, Nidinqen
(Brorström-Lundén,
1996)

U Yearly [1.5] [0.08] [0.78] [0.34] [0.06] [0.15] [0.18] [0.07] [0.09] [0.11] [3.36]

2000–01
Petrana, Greece
(Terzi and Samara,
2004)

R b Yearly 2.03/0.17a 0.1/0.03 0.6/0.09 0.2/0.08 0.04/0.03 0.03/0.05 0.008/0.08 0.003/0.05 0.006/0.07 0.008/0.09 3/0.74

2000–01
Vegoritis, Greece
(Terzi and Samara,
2004)

CS Yearly 9.7/0.2 0.9/0.16 2.4/0.17 1.8/0.16 0.13/0.25 0.13/0.2 0.03/0.4 0.01/0.2 0.01/0.4 0.01/0.4 15/2.6

2000–01
Kozani, Greece
(Terzi and Samara,
2004)

U Yearly 13/0.2 1.3/0.13 3.5/0.14 4.8/0.12 0.4/0.05 0.3/0.1 0.03/0.3 0.009/0.1 0.006/0.05 0.01/0.3 23/1.5

2003–04
Zaragoza, Spain (Callén
et al., 2011)

U Yearly [2.3] [0.5] [1.1] [1.1] [0.3] [0.4] [0.5] [0.3] [1.0] [7.5]

2007
Como, Italy
(Terzaghi et al.,
2015a, 2015b)

SU* 22 Mar - 12 Apr 0.22/<0.002 1.7/0.013 9.8/0.21 0.33/0.017 1.8/0.3 1.5/0.32 0.05/0.12 0.093/0.23 0.015/0.42 <0.002/0.14 <0.004/<0.004 <0.006/0.36 15/2.3

2007
Como, Italy
(Terzaghi et al.,
2015a, 2015b)

SU* 12 Apr - 7 Jun 0.19/<0.002 0.63/0.011 5.7/0.12 0.2/0.0086 1/0.12 0.71/0.13 0.053/0.03 0.1/0.064 0.06/0.11 0.05/0.018 0.037/<0.004 0.043/<0.006 8.8/0.8

2009–10
Paris, France
(Ringuet et al.,
2012)

U Summer −/0.04 −/0.68 - /0.1 −/1.32 −/2.14 - /0.52 - /0.33 - /0.25 - /0.16 - /0.25 - /0.13 - /5.9

2009–10
Paris Area, France
(Ringuet et al.,
2012)

SU Summer - /0.06 - /0.15 −/0.07 - /0.02 - /0.03 - /0.05 - /0.02 - /0.04 - /0.04 - /0.48

2010
Birmingham, UK
(Alam et al., 2014)

U Winter 0.82/0.28 0.09/0.07 0.23/0.12 0.1/0.065 0.04/0.04 0.02/0.05 0.1/0.068 0.003/0.024 0.001/0.014 0.0025/0.018 1.4/0.75

2010 Birmingham, UK U Summer 0.64/0.18 0.068/0.062 0.18/0.088 0.08/0.046 0.015/0.03 0.012/0.03 0.058/0.053 - /0.021 - /0.007 - /0.0011 1/0.5
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(Alam et al., 2014)

2011–14

Prague, Czech
Republic
(Shahpoury et al.,
2015)

U Yearly 0.3/0.011 2.7/0.11 4.7/0.8 0.13/0.063 1.3/1.3 0.6/1.1 0.014/0.5 0.06/0.7 0.013/0.7 0.0087/0.4 0.0072/0.5 9.8/6.1

RAIN
(ng/L)

1994–96 Tihany (Lake
Balaton), Hungary
(Kiss et al., 1997)

U &
R

Winter [37] [230] [3.9] [190] [190] [<1] [29] [19] [4.6] [24] [727]

1996–97
Imathia, Northern
Greece (Manoli
et al., 2000)

R* Yearly [56] [10] [4.1] [7.7] [1.3] [4.4] [1.9] [1.1] [2.1] [1.1] [89]

2001
Le Havre, Paris
(Motelay-Massei
et al., 2002)

U Yearly [2.1] [3.2] [20] [0.61] [24] [21] [5.0] [14] [13] [5.8] [12] [5.9] [127]

2001
Evreux, France
(Motelay-Massei
et al., 2002)

R Yearly [0.68] [2.3] [17] [0.62] [16] [11] [2.0] [4.5] [5.0] [2.3] [4.3] [2.5] [68]

2001
Rouren, France
(Motelay-Massei
et al., 2002)

U Yearly [1.0] [2.4] [8.0] [0.3] [9.1] [6.8] [1.8] [3.8] [3.3] [1.7] [2.7] [1.1] [42]

2001

Notre-Dame
deGravenchon,
France
(Motelay-Massei
et al., 2002)

U Yearly [0.56] [1.9] [7.1] [0.2] [6.0] [5.2] [0.98] [3.1] [2.6] [1.1] [2.0] [1.4] [32]

2003–04
Lake Maggiore, Italy
(Olivella, 2006)

U Summer-Autumn 1.65/0.75 3.4/1.5 3.8/6 0.27/0.75 0.69/13 6.2/19 0.69/11 0.55/4.7 0.14/4.7 0.14/3.8 0.0027/3.8 17/66

2006
France, Paris
(Bourdat-Deschamps
et al., 2007)

SU* Yearly 4.5/ - 17/ - 16/ - 15/ - 4/ - 2.1/ - 3/ - 62/ -

2006–08
Brno-Bohunice, Czeck
(Škrdlíková et al.,
2011)

SU Spring 0.58/0.15 1.4/0.42 10/4.7 2/1 13/10 10/6.5 1.5/2.1 1.5/3.5 2.2/7.5 0.52/2.8 0.17/1.9 0.12/2.5 43/38

2011–14
Prague, Czech
Republic (Shahpoury
et al., 2015)

U Yearly [1.0] [6.0] [23.5] [1.1] [61.4] [17.7] [3.1] [9.1] [6.5] [2.3] [3.6] [135]

2017
Moskow, Russia
(Polyakova et al.,
2018)

U Spring [20] [11] [84] [5.0] [87] [55] [12] [85] [82] [18] [36] [50] [540]

Data processing: When an asterisk (*) is present in the Type field, it indicates that we averaged values of the series present in the manuscript. When calculating those average values, for values smaller than the detection limits, half of the detection
limit values were considered. Abbreviations: U (Urban), SU (Suburban), R (Rural), CS (Coastal Site), ACE (acenaphthene), FLUO (fluorene), PHE (phenanthrene), ANTH (anthracene), FLUOT (fluoranthene), PYR (pyrene), B[a]ANTH (benz[a]anthra-
cene), CHR (chrysene), B[b]FLUOT (benzo[b]fluoranthene), B[a]PYR (benzo[a]pyrene), B[ghi]PER (benzo[ghi]perylene), I[cd]PYR (indeno[1,2,3-cd]pyrene), TOT PAH (Total PAH).

a Values in square brackets represent the total (or bulk) PAH concentrations, values on the left side of the slash represent the gaseous (or dissolved) concentrations and values on the right side show the particle associated concentrations.
b The continental background sampling site Petrana is located close to two power plants.
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3. Results and discussion

3.1. Rainfall data

Total PAH concentrations in Como rain ranged from 81 ng/L to
132 ng/L depending on the site and the sampling time. These results
are comparable to literature data for other European countries, espe-
cially for the most recent data (Table 1), although it is important to
note that the Como rain data were measured at a single event while
generally integrated sample results (e.g. weekly or more) are often re-
ported in the literature; however, while the samples in Como are col-
lected and preserved right after the rain event (within half an hour),
when longer time sampling are employed the relevance of chemical
loss phenomena (such as volatilization, degradation, etc.) might have

been larger, potentially altering the true rain concentration. In order to
investigate the spatial variability of PAH in Como rain, the concentra-
tions measured in the three replicates of each site were averaged ac-
cording to the sampling time interval (Fig. 2). Intra-site variability was
about 20% on average. The three sites significantly differed for PHE
levelswhich showed a decreasing trend from the site A to the site C dur-
ing all the three sampling events. Other three chemicals showed lower
concentrations in the high traffic site with respect to the low traffic
site but just during one sampling event (i.e, FLUOT in the third sampling
event while B[ghi]PER and I[cd]PYR in the third sampling event). Ace-
naphthylene and dibenz(a,h)anthracene were never found above
MDL. The other PAHs showed the same levels in all sites. For this reason,
a real spatial distinction among sites could be appreciated only with re-
spect to PHE concentrations.
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Fig. 2. Spatial variability of PAH concentration during the three sampling time intervals (9:00 to 9:30, top chart; 9:30–10:00, middle chart; 10:00–10:30, lower chart). Capital letters
indicate sample zone (A: High traffic; B: Medium traffic; C: Low traffic). All values are in ng/L. Whiskers represent standard deviation of the 3 individually sampled replicates. Small
letters over the bars indicate results of the ANOVA analysis. Samples with the same small letter are not statistically different (α = 0.05).
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When looking at the temporally different results (comparing the
same site at different times, Fig. 3), PHE showed also a statistically
significant increase form the 1st to the 3rd sampling event in all
the three sites. In site A it raised up to 17% during the 1.5 h of sam-
pling, while it was 16% and 18% for site B and C. The same trend
can be also appreciated for FLUOT (+ 79% in site A, + 50% in site B
and + 45% in site C), CHR in site A (+ 41%), B[ghi]PER and similarly,
I[cd]PYR in site B and PYR in site C. This short-term temporal variabil-
ity could be ascribed to short term variations in emission or source
type (Lee et al., 1998), revolatilization from soils or surfaces given
the increase in temperature during the day (Fig. A.7) (Lammel
et al., 2010b).

Additionally, the increase can also be due to the change in precipita-
tion regime (rain rate changed from 0.6 to 0.8mm/h) or to the observed
decrease in wind speed (Fig. A.7), which might have lowered the

ventilation coefficient (product of wind speed and height of the PBL)
(Gaga et al., 2012). Such reduction has the effect of increasing the con-
centrations in the mixing layer since it reduces the effect of the incom-
ing and diluting cleaner air.

The results presented here, using the internal calibration approach
(Poerschmann et al., 1997), are referred to total (bulk) concentration
of PAHs in rainwater, including dissolved, particulate phase adsorbed,
and dissolved organic matter (DOM) adsorbed chemicals.

However, the analysis of water samples with SPME using an ex-
ternal calibration has the advantages of measuring the truly dis-
solved fraction of the chemical in the water phase (Cui et al.,
2013; Urrestarazu Ramos et al., 1998; Vitale et al., 2019; Vitale
and Di Guardo, 2019); therefore using SPME with external calibra-
tion to extract PAHs from the precipitation samples is equivalent
to measuring the water dissolved fraction captured by rain droplets
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equilibrating with air during their travel to the ground (sometimes
called gaseous wet deposition or gaseous washout) (Mackay, 2001).
This has the effect of separating the gaseous fractions of PAHs from
the particle associated fraction, considering that the latter is usually
predominant for large molecular weight PAHs and at lower temper-
atures. Additionally, this reduces the artifacts involved in separat-
ing the gaseous and particle associated fractions in other methods
(Škrdlíková et al., 2011). On the other hands, it has the disadvan-
tages of neglecting the information of the particle associated PAH.
Care must therefore be given when comparing values obtained in
different studies. For this reason, dissolved and bulk fractions (dis-
solved plus particle associated) are given for comparison, when
available, in Table 1.

3.2. Air concentration estimates

Gaseous concentrations of PAHs were obtained assuming equilib-
rium between rain and air at the environmental temperatures. This
was assumed to provide a first estimation of PAH concentration in air
for comparative reasons and to show the potential of using rainwater
to estimate air concentrations at short time intervals. While this
would reflect the general uncertainty of such estimates, usually
employed in many fate models (Mackay, 2001), it may lead to errors
when dealing with the PAH fraction associated with air particles. In
order to improve such estimate, SPME with external calibration can be
used to measure the truly dissolved concentrations in water
(Poerschmann et al., 1997). This would allow a better estimation of
the gaseous concentrations since it would also exclude the competing
effects of very tiny particles (such as black carbon) in the gaseous con-
centration determination (Li et al., 2016).

Although it is outside the aims of this paper, SPME can theoretically
be also employed to derive the air particulate phase concentrations, if
the internal standard calibration method (Poerschmann et al., 1997) is
used for measuring the total (bulk) rainfall concentration (Cw(b), ng/L)
and the external calibration for the dissolved fraction.

From Cw(b), the particle associated fraction in rain (Cw(p)) can be ob-
tained subtracting the dissolved fraction (Cw(d)) measured with the ex-
ternal calibration method:

Cw pð Þ ¼ Cw bð Þ−Cw dð Þ ð2Þ

A scavenging ratio (Wt, unitless) can then be used to derive the par-
ticulate phase air concentrations, using for example the ratiosmeasured
by Shahpoury et al. (2015), in different atmospheric conditions. The
scavenging ratio can be expressed as follows (Shahpoury et al., 2015):

Wt ¼
Cw bð Þ x 103

Ca gð Þ þ Ca pð Þ
ð3Þ

where Ca (g) and Ca(p) are the air concentrations of the gaseous and the
particulate fraction (ng/m3) of a chemical at a given temperature and
103 accounts for conversion from ng/L to ng/m3. Rearranging Eq. (3)
and using the gaseous concentration obtained above one could calculate
the concentration in the particulate phase:

Ca pð Þ ¼
Cw bð Þ � 103

Wt
−Ca gð Þ ð4Þ

However, these additional measurements were not performed in
this work and therefore the quality, including precision and accuracy
of this estimate cannot be evaluated here and will necessitate
further work.

The concentration values predicted in this study generallywell agree
with the range of high-volume PAH air concentrations previously mea-
sured in Como by our group (Terzaghi et al., 2015a, 2015b), although a
full comparison cannot be performed since these concentrations were
not simultaneously measured to the rainfall (Table 1 and Table A.4).
However, when the high-volume data and the air concentration data
derived from the rain sampling are analyzed using PCA in order to per-
form a comparison of their fingerprint, (Fig. 4 and Fig. A.8) it can be

Fig. 4.PCAof PAHair concentrationsmeasured inComo. Reddots (markedwith “R”) represent concentrations estimated from rain (thiswork), greendots (markedwith “G”) andblue dots
(marked with “P”) represent respectively gaseous and particle associated air concentrations measured in (Terzaghi et al., 2015a, 2015b).
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observed that gaseous and particle Hi-Vol measured concentrations do
separate on the first component (responsible for about 51% of the vari-
ability). Air data estimated from rain are closer to the gaseousmeasured
data and separate only on the second component of the PCA, (responsi-
ble for only 16% of the variability). The data for the air estimated from
rain samples and gaseous PAH concentration do lie very close and
seem to possess a similar variability on the 2nd component, showing a
very close relationship in fingerprint, confirming the same pattern in
terms of emission source.

The air concentration data estimated from rain do lie also with the
most recent data for the PAHs in urban areas in winter. From Table 1
it can be observed a general historical decrease of PAH concentrations
in air with time, which reflects a change of fossil fuels employed in com-
bustions (coal to oil derived fuels, such heating oil for domestic and in-
dustrial processes and diesel and gasoline for transportation) and the
improvement in process reduction of emission (such as the implemen-
tation of catalytic converters) (European Environment Agency, 2019;
ISPRA, 2016).

When looking at the predicted air concentration data averaging the
temporal variations and looking at the different sites, (Fig. 5), it appears
that FLUO and PHE represent about the 90% of total PAHsmeasured. In a
previous study (Khalili et al., 1995) the fingerprint of the major sources
of PAHs in a metropolitan area was evaluated and it was showed that
phenanthrenewas among themost abundant PAH in traffic samples, in-
cluding diesel and gasoline engines. According to a recent paper, this
could represent a marker of PAH traffic emission. In fact, a study (de
Souza and Corrêa, 2016) reported that FLUO and PHE (together with
naphthalene, not measured in the current study) were the most abun-
dant gas phase PAH measured in diesel exhaust. It was also reported
(Ravindra et al., 2008), that most of the available studies showed that
the emissions from vehicle exhaust (diesel, leaded and unleaded gaso-
line) were the largest contributors of PAHs in urban areas. The private
transport fleet (cars) of the entire province of Como in 2013 was more
than 350,000 vehicles (ACI, 2019), mainly with gasoline (about 66%)
rather than diesel (about 31%) engines. The cars in the town of Comoac-
count for about the 15% of the overall amount (more than 50,000 cars (2
cars every 3 people) indicating the importance of traffic contribution to
PAH air emission.

Although official data for domestic heating in Como cannot be found,
data for Lombardy Region (available for the year 2011) (ISTAT, 2019)
show that the domestic heating sources of energy are: 87% methane,
7.2% biomasses, 3.3% heating oil, 1.5% liquefied petroleum gas and 1%
electricity.

Further, the data of Fig. 5 also show a significant difference for
PHE and FLUO (and for some of the higher molecular weight com-
pounds) between the high traffic zone (A) and the restricted traffic
zones (B and C), up to 35% for PHE and37% for FLUO. This gives statistical

evidence (since sampling was done simultaneously and therefore the
emission in the different areas can be compared) that when
implementing reduced traffic areas and/or when in presence of a park
at even a relative distance from the emission points the exposure can be
reasonably limited and in other terms puts the attention on traffic sources
as emitters of PAHs.

It must be remembered though that the data estimated from rainfall
were measured on the 20th of December (during the heating season)
while the hi-vol data (Terzaghi et al., 2015a, 2015b) were obtained dur-
ing spring (from the end of March to June), when the heating season is
over (heatingmust be generally off in Como by April 15). The similarity
of the fingerprints between the rain derived air concentrations and the
hi vol measured seems to suggest a stable pattern, not probably
depending on domestic heating and other types of non-transport re-
lated emissions. The difference in concentrationsmay therefore depend
on change of PBL between the seasons (diluting PAHs in air) and possi-
bly a traffic intensity change. However, further investigations and lon-
ger series of monitoring data are needed to verify such assumptions,
possibly with a comparison covering the higher molecular weight
compounds.

4. Conclusions

The analysis of small volume precipitation samples allowed to eval-
uate the levels of PAHs in the different sites at different times. Rain sam-
ples highlighted a temporal and a spatial variability along a traffic
gradient in the town of Como, especially for the most abundant PAH,
e.g. PHE. These trends were reflected in air concentrations derived
from rainmeasurements, highlighting the importance of reduced traffic
zones and parks in lowering the exposure for these chemicals.

The preliminary data obtained in this study, although possibly re-
quiring further confirmations for different sampling times and loca-
tions, suggest that the estimation of PAH air concentrations from
concentrations measured in rainwater is a cheap and promising tool
to assess short time variations and possibly spatial variability among
sites. Sampling can be performed at the same time in several places (de-
pendingon the availability of personnel and/or dedicated samplers) and
given the small rainfall volumes required can produce information on
hourly variations or longer time averages simply measuring water col-
lected for, e.g., a few hours. Such frequent and easy sampling could be
relevant to evaluate, for example, emission profiles with time and
space. For example, this approach could allow the evaluation of tempo-
ral changes of air concentrations due to emission changes (e.g. a new
source, such the change of traffic composition with heavy vs. light
duty engines), environmental changes (the change of PBL height at dif-
ferent times of the day or night) or different air masses coming because
of wind direction changes. This is not usually possible with the high-
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volume air samplers due to their cost, theneed of power supply and sur-
veillance: for these reasons spatial and temporally resolved air samples
are not generally available. The information on emissions, their impor-
tance and their variations obtained with this new approach can be rele-
vant to evaluate patterns and calibrate multimedia fate models.

However, additional studies are needed to confirm these findings,
better calibrate the results in different environmental conditions (espe-
cially for particle associated PAHs in different seasons) and fully evalu-
ate the comparability of the data measured with conventional
methods. This should be done coupling and comparing simultaneous
short term rain measurements (an hour long or less) and, for example,
high volume sampling for several rain episodes and possibly, in different
environmental scenarios, characterized by different levels of gaseous
and particle associated PAHs.
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A B S T R A C T   

Sulfonated and hydroxy-sulfonated PCBs were recently discovered by our group as new PCB soil contaminants, 
constituting about 1% of their parent compounds in soil. Here we investigate for the first time the bio-
accumulation of these metabolites as well as hydroxy-PCBs and native PCBs in earthworms. A sequence of three 
experiments, at increasing complexity and ecological realism, were performed with four different earthworm 
species (Eisenia foetida Savigny, Lumbricus terrestris L, Allolobophora chlorotica Savigny and Aporrectodea caliginosa 
Savigny) exposed to contaminated soils. The first experiment confirmed that when exposing earthworms to soil 
contaminated with a single hexa-chlorinated congener (PCB 155), no formation of polar metabolites in earth-
worms could be detected. This allowed to plan the following two experiments, using a soil from a PCB 
contaminated site and rich in relatively high levels (10–130 μg kg−1) of hydroxy-, sulfonated-, and hydroxy- 
sulfonated-PCBs. Bioaccumulation factors (BAFs) and bioconcentration factors (BCFs) were then obtained in 
the second and third experiments, to compare the accumulation behavior of these chemicals in laboratory and 
natural conditions. Regressions between BAF/BCF and Log Kow/Log D, produced a variety of results, being 
generally significant between BCF and PCBs and not significant in the other cases. In general, the metabolites 
accumulated in earthworms with detectable concentrations in their tissues (8–115 μg kg−1), although sulfonated 
and hydroxy-sulfonated PCBs showed BAF and BCF values lower (up to two orders of magnitude) than those 
calculated for the parent PCBs, given their lower lipophilicity.   

1. Introduction 

Polychlorinated biphenyls (PCBs) are persistent organic pollutants 
produced and extensively used in the past in many industrial applica-
tions (Breivik et al., 2002). Their production was banned in the 1980s in 
many countries, but they still persist in the environment due to their low 
degradation rates (Paasivirta and Sinkkonen, 2009). Due to their hy-
drophobic nature, (i.e., Log Kow > 4) PCBs bioaccumulate in aquatic 
and terrestrial food webs (Campbell et al., 2003; McLachlan, 1995; 
Vermeulen et al., 2010), moreover, their semi-volatility enables them to 
move through long distances (Ockenden et al., 2003). Many studies 
demonstrated that human and ecosystem exposure to PCBs is correlated 
to a wide range of toxic effects (IARC, 2015). Although today PCBs are 
well studied chemicals, information about their metabolites is still 
lacking. For example, while Log Kow measured values for PCBs are 

available in several compilations, even for single congener (Mackay 
et al., 2006; Paasivirta and Sinkkonen, 2009), no measured data are 
available for PCB metabolites and therefore they must be estimated. In 
the last few decades, the study of the environmental fate of PCB me-
tabolites had received increasing attention focusing not only on me-
tabolites produced by microorganism degradation but also on those 
derived from plants, humans, and wildlife metabolism (including 
earthworms) and other environmental reactions. For example, several 
classes of metabolites were mainly identified in human serum and 
wildlife, and were shown to contain hydroxy group (-OH) (hydroxylated 
PCB) also found in plants such as poplar, and in earthworms, methoxy 
group (-OCH3) (methoxy PCB), sulfur such as –SCH3 (methylthio PCB), 
–SO2CH3 (methylsulfonyl PCB) and –OSO3 (sulfate PCB) (Grimm et al., 
2015; Haraguchi, 2004; He et al., 2018; Karasek et al., 1985; Marek 
et al., 2013; Rezek et al., 2007; Sun et al., 2016; Tehrani and Van Aken, 
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2014; Ueno et al., 2007; Zhai et al., 2013). Additionally, two new PCB 
metabolite classes i.e., sulfonated-PCBs (-SO3H) and 
hydroxy-sulfonated- PCBs (−OH, –SO3H) were recently discovered in a 
heavily PCB contaminated site located in Northern Italy, as well as in 
background contaminated areas (Bagnati et al., 2019), at concentrations 
of approximately 1% of native PCBs. For these metabolites no infor-
mation on their toxicity or ecotoxicity is available since the lack of 
congener level identification hinders their accurate measurements in 
environmental media but also the measurement of their 
physico-chemical properties. While some information exist on the 
presence of sulfonated PCBs in biota (Liu et al., 2018) and feces of PCB 
administered mice (Li et al., 2021), no or scarce data are available for 
the environmental degradation half-lives, as well as bioaccumulation in 
earthworms of hydroxy, sulfonated and hydroxy-sulfonated PCBs. 

Earthworms are invertebrates which are commonly found in natural 
and agricultural soils, and they are known for their potential of inves-
tigating soil depth and interacting with contaminants. Earthworms need 
to ingest large amounts of soil due to their low assimilation efficiency of 
nutrients (EC, 2010). It is estimated that temperate geophagous species 
have typically soil consumption rates of 1.0–2.5 g dry mass g−1 fresh 
mass d−1 (Curry and Schmidt, 2007), therefore they have the capability 
of efficiently recycle large amounts of soil. When the ingested soil passes 
through the gastrointestinal tract, it undergoes physical and chemical 
changes (Rodriguez-Campos et al., 2014) and is expelled as casts. 
Earthworms are able to bioaccumulate hydrophobic organic chemicals, 
including PCBs, absorbing them from the soil pore water by passive 
diffusion through the body wall, or from the ingested soil by the passive 
diffusion through the gut wall (Belfroid et al., 1995; Hallgren et al., 
2006; He et al., 2018; Jager et al., 2005; Krauss et al., 2000; Matscheko 
et al., 2002; Shang et al., 2013; van der Wal et al., 2004). However, 
studies about bioaccumulation of PCB metabolites in earthworms are 
not available yet. For these reasons, in the current work, the bio-
accumulation of three classes of PCB metabolites (hydroxy-, sulfonated 
and hydroxy-sulfonated-PCBs) in earthworms was investigated for the 
first time, as well as their parent compound PCBs. More specifically, 
three experiments were performed: a) a preliminary experiment to 
investigate the timeframe and variability of PCB uptake and the po-
tential production of hydroxy, sulfonated and hydroxy-sulfonated PCB 
metabolites in earthworm tissues; b) a lab experiment to investigate 
PCBs and PCB metabolites bioaccumulation by “clean” earthworms in a 
soil with detectable concentrations of a larger array of PCBs and me-
tabolites; c) a field experiment to evaluate field bioaccumulation of PCBs 
and PCB metabolites in earthworms living in a contaminated soil. 

2. Materials and methods 

2.1. Experimental design and setup 

Preliminary experiment. Grassland topsoil (0–20 cm) and adult 
earthworms (Eisenia foetida Savigny.) (Fig. A1) were obtained from a 
background site located in Como, Italy. Earthworms were kept in the 
background soil for 3 weeks to acclimatize before exposure without 
being additionally fed. Soil was sieved at 2 mm and spiked with PCB 155 
at 1000 ng g−1 fresh weight (fw) following the suggestions reported in 
(Northcott and Jones, 2000; Reid et al., 1998) for spiking hydrophobic 
organic compounds into soil. See Appendix A1 for more details on the 
soil spiking procedure. Earthworms (Eisenia foetida) were removed from 
the incubation background soil, rinsed with deionized water, and 
purged on a wet filter paper in clean Petri dishes for 3 h before exposure. 
Individual glass jars (250 mL) were filled with 260 g fw of PCB 155 
spiked soil and 10 earthworms (about 3 g fw), after the addition of 15 
mL deionized water. Control jars were also set up (spiked soil without 
earthworms). All jars were weighed and stored in a 
temperature-controlled chamber at 18 ◦C ± 2, kept in the dark, main-
taining a water content of 30%. The experiment lasted for 30 days: three 
sampling times were set up: 0 (T0), 15 (T1) and 30 days (T2). The 

experiment was performed in triplicate. Earthworms were not addi-
tionally fed neither in the incubation period nor during the whole 
exposure time. At each sampling time soil samples were collected from 
each jar with the JSC procedure and kept at −20 ◦C until analysis. 
Earthworms were rinsed with deionized water and allowed to purge 
their gut content on a moist filter paper for 48 h. After purging, the 
earthworms were weighed and stored at −20 ◦C until use. Unspiked soil 
and not exposed earthworms were also collected and analyzed to assess 
the respective PCB background levels. 

Lab bioaccumulation experiment. Soil was collected from a heavily 
PCB contaminated site located in Northern Italy, the SIN Brescia-Caffaro 
(SIN, stands for “Sito di Interesse Nazionale” or National Priority Site) 
(Di Guardo et al., 2020, 2017) (Fig. A2). The soil was sampled in per-
manent grassland fields up to a depth of about 40 cm and extensively 
homogenized to reduce the heterogeneity of naturally weathered soil. 
Several mixing steps were followed, in field through mechanical mixing 
of a large volume of soil and in laboratory according to the 
one-dimensional Japanese Slab-Cake (JSC) technique (ITRC, 2012). 
Before JSC, soil was dried and sieved at 2 mm. The soil investigated was 
a loamy soil according to the US Department of Agriculture classification 
(Maidment, 1993), with 1.8% of organic carbon (Terzaghi et al., 2019). 
The same “clean” earthworm species of experiment 1 were used. Six 
earthworms (Eisenia foetida) (2 g fw) were exposed for 27 days to 250 g 
fw of contaminated soil in a 250 mL beaker, in similar exposure con-
ditions of experiment 1.50 mL of deionized water were added to the 
beaker to reach a water content of around 30%. At the end of the 
experiment, earthworms and soil were collected as reported for exper-
iment 1. 

Field bioaccumulation experiment. Grassland topsoil (0–30 cm) and 
earthworms were sampled in two highly contaminated area (field A and 
B, Figure A2) of the same SIN Brescia-Caffaro, characterized by a similar 
PCB fingerprint. Adult earthworms of three different species were 
collected: Aporrectodea caliginosa Savigny (from field A), and Lumbricus 
terrestris L. and Allolobophora chlorotica Savigny (both from field B). Soil 
samples were kept at −20 ◦C until analysis. Being based on the field 
collection of soil and earthworms, the only operation relevant for this 
section was gut purging. Earthworms were first rinsed with deionized 
water and then later allowed to purge their gut content on a moist filter 
paper for 48 h. After purging, the earthworms were weighed and stored 
at −20 ◦C until analysis. 

2.2. Chemicals and reagents 

PCB analysis. Cyclohexane was purchased from Merck (Darmstadt, 
Germany) while ethylacetate from Fluka Analytical (Sigma-Aldrich, St. 
Louis, MO, U.S.A). All solvents were pesticide residue grade. Anhydrous 
sodium sulfate was purchased from Sigma-Aldrich (St. Louis, MO, U.S.A) 
and Florisil (0.150–0.250 mm) from Merck (Darmstadt, Germany). PCB 
standards were purchased from Wellington Laboratories (Guelph, ON, 
Canada): an 82 native PCB solution (PCB-PAR-H in nonane, purity 
>98%) was used for PCB congener identification and quantitation, while 
a mass labelled (13C) 10 PCB solution (MBP-GC in nonane/toluene, 
purity >98% and isotopic purity ≥99%) was used as internal standard. 
Mass labelled PCB 37, PCB 162 and PCB 208 (MBP-37, MBP-162, MBP- 
208 in nonane/toluene purity >98% and isotopic purity ≥99%) were 
also used as recovery standards. PCB 155 and 136 were purchased from 
AccuStandard (New Haven, CT, U.S.A.) whereas PCB 101 from Chem-
Service (West Chester, U.S.A.). PCB 136 and PCB 101 were used as in-
ternal and recovery standard respectively in experiment 1. 

PCB metabolite analysis. Dichloromethane (ACS reagent. ≥ 99.8%) 
was obtained from Sigma-Aldrich. HPLC solvents and reagents were of 
pesticide or LC-MS grade: water (in house Milli-Q apparatus), acetoni-
trile, acetone, formic acid and ammonium acetate (Carlo Erba Re-
agents). Standards of OH-PCBs (4-hydroxy-2,3,3′,4′,5- 
Pentachlorobiphenyl, OH-PCB-107; 4-hydroxy-2,2′,3,4′,5,5′,6-hepta-
chlorobiphenyl, OH-PCB-187; 3-hydroxy-2,2′,3′,4,4’,5- 
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Hexachlorobiphenyl, OH-PCB-138 and 13C12-4-hydroxy-2,2′,3,4′,5,5′,6- 
heptachlorobiphenyl, 13C12-OH-PCB-187) were purchased from 
Wellington Laboratories (Guelph, ON, Canada). 

2.3. Extraction and analysis of PCBs 

Soil and earthworm samples were extracted with a sonicator with a 
100 mL of a mixture cyclohexane:ethylacetate 1:1 for 1 h and analyzed 
with a single quadrupole GC-MS (Agilent 7890–5977). Several PCB 
congeners, covering all chlorination classes (PCB 3, 15, 28/31, 52, 90/ 
101, 138/158, 153/168, 155, 180/193, 194, 206, 209) were deter-
mined. For more details on the analytical method please see Appendix 
A1. 

2.4. Extraction and analysis of PCB metabolites 

The extraction of soil and earthworm samples was performed with a 
sonicator for 30 min using 4 mL of acetone:water (95:5%. V/v) con-
taining 1% formic acid and repeated with dichloromethane (4 mL). 
Acetonitrile (600 μL) was used to reconstitute the samples. Analysis of 
the extracts was performed by HPLC-HRMS, using a LC system coupled 
to an Orbitrap Q Exactive mass spectrometer. More details on the 
extraction and analytical procedures are given in Appendix A1. 

2.5. Quality assurance/quality control (QA/QC) 

The quality of the whole analytical procedure for PCB analysis was 
assessed using recovery standards, instrumental, and method blanks and 
a certified reference material. See Appendix A1 for more details such as 
LOQs, certified reference material, recovery and blanks. Analytical 
variability for PCB analyses was 10%. For the analysis of PCB metabo-
lites, no reference materials were available yet and the quality of the 
analytical procedures relied on the use of instrumental and method 
blanks and on the availability of some reference and synthesized stan-
dards. The results for the PCB metabolites are presented as sum of 
congener chlorination classes. Since the percent relative standard de-
viation in the response of the three OH-PCBs used as reference standards 
(OH-PCB-107, OH-PCB-138 and OH-PCB-187) was about ±60%, we 
assumed a similar variability for the measurement of all congener classes 
of PCB metabolites. For the sulfonated metabolites the variability may 
be probably higher. 

2.6. Bioaccumulation factor calculation 

The earthworm/soil bioaccumulation factor (BAF) was determined 
for PCBs and metabolites according to the following equation (1) 
(Belfroid et al., 1993; Hallgren et al., 2006): 

BAF =
Cew

Cs
1  

Where BAF is the bioaccumulation factor (dimensionless), Cew is the 
congener concentration in earthworm (μg kg−1 fw) and Cs is the 
congener concentration in soil (μg kg−1 dry weight, dw). 

The biota to soil accumulation factor (BSAF), normalized for lipid 
fraction of the earthworm and organic carbon in soil is reported in Ap-
pendix A1, together with the relative analytical methods. 

2.7. Bioconcentration factor calculation 

The bioconcentration factor (BCF) was determined for PCBs and 
metabolites according to the following equation (2): 

BCF =
Cew

Cw(free)

2  

where BCF is the bioconcentration factor in L kg−1 fresh weight (fw), 

Cew is the congener concentration in earthworm (μg kg−1 fw) and 
Cw(free) is the congener freely dissolved concentration in soil pore water 
(μg L−1). Soil pore water concentration was estimated as reported in 
Appendix A1. Standard deviation was calculated propagating the vari-
ability of the concentrations using Monte Carlo simulations. 

2.8. Log KOW determination for PCB metabolites 

The Log KOW values for PCB metabolites were estimated with the 
fragment constant method of Hansch and Leo (Lyman et al., 1990). For 
simplicity and in lack of additional information it was assumed that in 
hydroxy-sulfonated-PCBs the –OH and –SO3H groups were not present 
on the same benzene ring in the biphenyl. Log KOW values for PCBs were 
obtained from (Paasivirta and Sinkkonen, 2009) and the metabolites 
corresponding values were estimated subtracting 0.48 for the –OH group 
and 3.16 for the –SO3H group (Lyman et al., 1990). 

2.9. pKa and log D determination for PCB metabolites 

pKa values for PCB metabolites were estimated using the SPARC 
platform (http://archemcalc.com/sparc-web/calc/#/pka; accessed on 
July 27, 2021) selecting the single pKa type. Log D (at pH = 7) was 
calculated with the same platform. Log D is the apparent Log KOW value 
at the experimental pH, calculated as the ratio of the sum of the con-
centrations of all forms of the compound (ionized and un-ionized) in 
each of the two phases. As such, Log D is pH dependent. 

2.10. Statistical analyses 

Statistical analyses were performed with the XLSTAT software by 
Addinsoft SARL (Version, 2021.2.1, 205 Boston, USA). Linear regression 
was used to model the relationship between Log BAF or Log BCF and Log 
KOW for each species, employing the concentrations of single PCB con-
geners in earthworms, and soil or soil pore water. Log KOW values for 
each PCB congener were taken from the literature (Paasivirta and 
Sinkkonen, 2009) while those of metabolites were estimated as 
explained in 2.9. The Analysis of Covariance, ANCOVA (α = 0.05) and 
Tukey test (α = 0.05) were used to verify 

Whether the regression lines were different from each other in either 
slope or intercept. 

3. Results and discussion 

3.1. Estimation of selected physico-chemical properties for PCB 
metabolites 

Log KOW of metabolites were estimated starting from a selected 
properties compilation (Paasivirta and Sinkkonen, 2009) and using the 
fragment constant method, resulting from slightly different values from 
those listed in our previous publication on these metabolites (Bagnati 
et al., 2019). Due to this new starting dataset, the Log KOW of metabolites 
were generally much lower than reported in (Bagnati et al., 2019). These 
data, together with estimated pKa and Log D are listed in Table 1. 
Although not all metabolite classes were found in earthworms/soil, we 
calculated the entire dataset that highlighted how the addition of the 
sulfonated group considerably decrease the Log KOW and pKa. While 
Hydroxy-PCBs are only slightly affected by hydroxy group presence in 
reducing Log KOW and pKa, the coexistence of hydroxy and sulfonated 
groups additionally lowers both Log KOW and pKa. Moreover, the effect 
of lowering pKa is more pronounced for the sulfonated metabolites 
when the number of chlorine atoms on the biphenyl is higher than 5. As 
evident from the pKa values, the metabolites present in the soil solution 
at a pH around 7, as in the experimental soils, are generally fully 
dissociated, except for hydroxy-PCBs (apart from nona and in part octa 
and hepta). Given the range of pKa of the metabolites, which are 
generally dissociated at environmental pH (pH~7), it is important to 
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calculate the octanol-water distribution coefficient accounting for 
dissociated and undissociated species (Log D) for these compounds 
(Table 1). The Log D values should coincide with Log KOW when the 
chemical is not dissociated. However, since Log D values were calculated 
with an estimation platform (SPARC) their values for undissociated 
compounds do not necessarily match the Log KOW values obtained 
above. However, the obtained Log D can be used to compare the parti-
tioning among the different classes and chemicals with different pKa. 
Hydroxy-PCBs, given their pKa, are not significantly dissociated, except 
for the nona-chlorinated congener. For this reason, Log D are very close 
to Log KOW, generally rising with chlorination, except for the 
nona-chlorinated-hydroxy PCBs, with a value smaller than the 
octa-ones. This depends on the pKa of the nona-hydroxy PCBs (4.97), 
showing that this chemical, at pH 7, is dissociated >99%. The situation 
is slightly different for the sulfonated- and the hydroxy-sulfonated PCBs: 
given their low pKa (always <1), they are always dissociated at envi-
ronmental pHs, being strong acids. Log Ds for sulfonated-and hydrox-
y-sulfonated PCBs are significantly smaller than the corresponding Log 
KOW, especially for lower chlorinated congeners. Given the lack of pre-
cise congener identity and analytical standards for such metabolites, it 
was not possible to reliably quantify the uncertainty associated to these 
estimations. However, the authors of the fragment constant method 
(Hansch and Leo, 1995) estimate that the typical deviation of log Kow is 
±0.5 for 8000 reliably measured Log Kow values. Also considering the 
fact that the structure of the precise chemical is unknown, the un-
certainties might be higher. 

3.2. Preliminary experiment 

This experiment was conducted to evaluate the pattern of PCB up-
take and the potential level of production of metabolites during the 
experiment, using background remote soil spiked with PCB 155 (a hexa- 
chlorinated congener) and “clean” earthworms (Table A1) not coming 
from the contaminated site. The soil was spiked with PCB 155 at a level 
which was about two orders of magnitude above the background total 
PCB concentration in the soil. The resulting initial concentration of PCB 
155 was 861 ± 61 ng g−1 dw, comparable to the levels of other hexa- 
chlorinated PCBs present in SIN Brescia-Caffaro soil. Organic carbon 
content is reported in Table A2. PCB 155 was selected because is a hexa- 
chlorinated congener, representing the most abundant chlorination class 
present in SIN Brescia-Caffaro soil. Although PCB 155 was not present 
either in Brescia-Caffaro soil or in the background soil used for this 
experiment it is similar in terms of metabolization class to PCB 153, one 
of the most abundant congener (Boon et al., 1997). classified the affinity 
for enzymatic metabolism (an index of metabolic capability for PCB 
degradation) in seals and other organisms, obtaining several metabolic 
groups, according to the resistance to degradation. PCB 155 and PCB 
153 can be classified as being part of group I (the most resistant to 
biotransformation). 

The results of the experiment showed that PCB 155 bioaccumulated 
with time (Fig. 1), apparently reaching the steady state within the period 
of the experiment (30 d), similarly to other PCB uptake experiments 
(Belfroid et al., 1995). During the period of the experiment, no pro-
duction of detectable metabolites in earthworms could be shown, con-
firming that at this parent compound concentration the presence of 
polar metabolites in earthworm tissues could be due to only bio-
accumulation of metabolites present in soil. 

Similar accumulation in earthworms (E. foetida Savigny) were 
observed by He and coworkers (He et al., 2018) in a comparable 
experiment using PCB 95 and PCB 149, a penta- and an hexa-chlorinated 
congener. Although the authors found the formation of OH-PCBs at 
increasing concentrations in earthworms, these metabolites were only 
about 0.1% of the soil PCB concentration and limited to the penta 
congener. PCB 149 is a Boon group V metabolite (more easily metabo-
lized than group I), so it could have been expected that some metabolite 
formation would have taken place. However, He and collaborators 
showed that only some penta-chlorinated metabolites could be pro-
duced by earthworms and therefore caution should be exercised when 
evaluating whether concentration of PCB metabolites in earthworm 
tissues depend on bioaccumulation or metabolic production from parent 
PCBs, especially for lower chlorinated congeners. An indication of 
probable bioaccumulation of metabolites (instead of in-situ formation) 
could be a significant correlation between the ratio of earthworm and 
soil concentrations (BAF) vs. a hydrophobicity parameter such as Log 
KOW. 

Table 1 
Log KOW, pKa and Log D (at pH = 7) values for PCBs and PCB metabolites.  

Families PCBs Hydroxy-PCBs Sulfonated-PCBs Hydroxy-sulfonated-PCBs 
Log KOW Log KOW pKa Log D Log KOW pKa Log D Log KOW pKa Log D 

Mono 4.67 (a) 4.19 9.81 4.54 1.51 0.56 −2.11 1.03 0.56 −2.74 
Di 5.02 (b) 4.54 9.75 5.17 1.86 0.56 −1.36 1.38 0.56 −1.90 
Tri 5.50 (c) 5.02 9.70 5.80 2.34 0.56 −0.60 1.86 0.56 −1.05 
Tetra 6.03 (d) 5.55 9.64 6.46 2.87 0.56 0.18 2.39 0.56 −0.44 
Penta 6.40 (e) 5.92 9.54 7.25 3.24 0.56 1.03 2.76 0.52 0.57 
Hexa 6.99 (f) 6.51 8.00 7.63 3.83 0.52 1.97 3.35 0.55 1.55 
Hepta 7.36 (g) 6.88 7.37 8.08 4.20 0.54 2.86 3.72 0.53 2.50 
Octa 7.92 (h) 7.44 6.51 8.22 4.76 0.53 3.82 4.28 0.48 3.44 
Nona 8.07 (i) 7.59 4.97 7.71 4.91 0.48 4.80 – – – 

Deca 8.22 – – – – – – – – – 

Note: Log Kow values for PCBs were from (Paasivirta and Sinkkonen, 2009). (a) Referred to PCB 3; (b) Referred to PCB 15; (c) Referred to PCB 28; (d) Referred to PCB 52; 
(e) Referred to PCB 101; (f) Referred to PCB 138 and 153; (g) Referred to PCB 180; (h) Referred to PCB 194; (i) Referred to PCB 206. 

Fig. 1. Uptake of PCB 155 with time in Eisenia foetida. Bars show the standard 
deviation. The point at time 0 of the experiment corresponds to PCB 155 con-
centration < LOQ. 
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3.3. Lab bioaccumulation experiment 

In this experiment “clean” earthworms were exposed to contami-
nated soil coming from the SIN Brescia-Caffaro. This soil shows relevant 

levels of PCBs and metabolites as can be seen from Fig. 2 and was chosen 
as a suitable test soil given the lack of sulfonated and hydroxy-sulfonated 
PCB standards for soil spiking and measurement. Fig. 2 shows the fin-
gerprints for PCB and metabolite concentrations in both Eisenia foetida 

Fig. 2. PCB and PCB metabolite concentrations in earthworm (μg/kg fw) and soil (μg/kg dw) referred to each family of congeners measured in the experiment 2. 
Asterisks (*) refer to values below LOQs. Bars show the analytical variability. 

J. Palladini et al.                                                                                                                                                                                                                                



Environmental Pollution 293 (2022) 118507

6

(fw) and soil (dw), with the reported analytical variability. The most 
important PCB congener class present in soil was the deca-chlorinated 
(PCB 209), while the most accumulated class in earthworms was the 
hexa-chlorinated. Caffaro factory in Brescia (Italy) was the largest pro-
ducer of PCBs and other chlorinated compounds in Italy. PCB were 
produced for more than 50 years as mixtures known as Apirolio and 
Fenclor. PCB 209 was a peculiar product, not part of other mixtures, also 
known as Fenclor DK (Di Guardo et al., 2017). When looking at the 
hydroxy-PCBs, the nona-chlorinated was the most abundant in both soil 
and earthworms, followed by hexa- and hepta-. No hydroxylated me-
tabolites appeared for penta- and lower number of chlorine classes in 
earthworms. For sulfonated PCBs there is a shift in most abundant 
chlorinated class between soil and earthworms: the largest amount 
could be found for hexa-in soil and penta-in earthworms. No shift 
appeared instead for hydroxy-sulfonated metabolites, being the 
penta-chlorinated the most abundant class. 

Concentration data were first plotted as BAF (bioaccumulation fac-
tor, a common metric for evaluating the capability of earthworms to 
accumulate chemicals), against Log KOW (Figure A3, also expressed on a 
dw to dw basis, and Table A4). Generally, with increasing Log KOW the 
bioaccumulation factor seemed to decrease for both PCBs and PCB 
metabolites, with the exclusion of tri to hepta-PCBs, although the re-
gressions for PCBs were not significant. Only for sulfonated and 
hydroxy-sulfonated-PCBs was the linear regression statistically signifi-
cant (p < 0.05) (Table A4). The decreasing bioaccumulation values for 
the most hydrophobic PCBs was also reported by (Hallgren et al., 2006) 
who exposed earthworms (Eisenia foetida) to a soil artificially contami-
nated with PCBs for 10 days. In both experiments, the earthworm uptake 
decreased for the most hydrophobic chemicals, probably due to their 
strong affinity for the soil organic fraction and the slow desorption ki-
netics, that occur especially in aging soils and determine their 
bioavailability (Pignatello and Xing, 1996). For PCB metabolites, the 
BAF in earthworms decreased with Log KOW. As reported above (section 
3.2) the present correlation of BAF with Log KOW could be an indication 
of bioaccumulation rather than in-situ formation of PCB metabolites or 
the scarce relevance of metabolic products compared to the bio-
accumulated ones. Fig. A4 in the appendix, reports the biota to soil 
accumulation factor (BSAF), normalized for lipid fraction of the earth-
worm and organic carbon in soil for comparison (Table A3). However, 
BSAFs do not introduce additional information than BAFs. 

Accumulation data were also plotted as BCF (L/kg), obtained as 
concentrations in earthworms and soil pore water concentration ratios. 
Log BCF is first shown against Log KOW, to be compared to the literature, 
and later to Log D (only for metabolites), to account for the dissociation 
of the different metabolite classes. The use of Log BCF vs. Log KOW is a 
common metric used to evaluate the potential for uptake of non-polar 
chemicals considering their bioavailability in soil water (Di Guardo 
and Hermens, 2013). For this reason, the soil porewater concentration 
was estimated using an equation (Vitale et al., 2019) obtained 
measuring bioavailable concentrations of PCBs using a SPME technique. 
While BCF plots for single classes are shown in the appendix (Fig. A5), 
together with the predictive equations, including the statistical param-
eters (Table A5), an overall comparison of BCFs for all classes is shown in 
Fig. 3. 

For PCBs and OH-PCBs (Fig. 3 and A5) the bioconcentration factor 
increases with the Log Kow, but only for PCBs this trend is statistically 
significant (p < 0.05) (Table A5). The best significant correlation was 
obtained among PCB classes from tri-to hepta-chlorinated. This is 
comparable to the equation obtained by (Belfroid et al., 1993) who 
exposed a similar species (Eisenia andrei Bouché) to a mixture of chlo-
robenzenes with Log KOW ranging between 4.2 and 5.7 in an aqueous 
static test system. Also Van Der Wal and coworkers (van der Wal et al., 
2004) used an experimental setup similar to our work utilizing the 
species Eisenia andrei and Aporrectodea caliginosa and three different 
contaminated soil in a lab experiment. They also measured bioavailable 
concentrations in soil water using SPME and later developed a linear 

bioconcentration relationship with Log KOW up to their most hydro-
phobic PCB (PCB 180). These two experiments from the literature were, 
however, conceived for a relatively narrow range of hydrophobicity. 
Looking at the most hydrophobic classes measured in the experiment of 
the present work (octa-, nona-, and deca-PCBs) (Fig. A5, red points in the 
top graph) the BCF, even using bioavailable concentrations in pore 
water, dropped dramatically. This behavior can be probably explained 
by a non-equilibrium state (not enough time to reach equilibrium for 
these chemicals) and/or a third phase effect or slow kinetic in parti-
tioning (Mackay et al., 2019). On the other hand, sulfonated and 
hydroxy-sulfonated-PCBs seemed to be independent of Log KOW. The 
Log BCF oscillated around 2 for the sulfonated-PCBs while it appeared 
slightly smaller for hydroxy-sulfonated-PCBs (around 1.6), although a 
precise comparison is difficult due to the uncertainty in the measure-
ments and the lack of precise congener identity and standards. As seen 
previously for BAFs, these highly polar metabolites were very poorly 
bioaccumulated compared to the parent compounds. Although not many 
studies are available on polar chemical uptake in earthworms (Gobas 
et al., 2016), a similar range of BCF (Log BCF = 1.33) was obtained by 
(Carter et al., 2014). They described the properties of diclofenac, a polar 
pharmaceutical (Log KOW = 4.02, pKa = 4.12) with the similar hydro-
phobicity of hexa-chlorinated sulfonated-PCBs (Table 1) and a pKa 
which shows a practically complete dissociation at pH around 7. 
(Fig. A5) 

BCF was also plotted against Log D for the metabolites (Table 1) and 
the results are shown in Fig. A6. Log BCFs values were generally smaller 
(except for hydroxy-PCBs) since the calculation of the concentration of 
metabolites in pore water (Cw(free)) would be much higher when the 
chemical is dissociated, depending on chemical pKa and environmental 
pH. The values for Log D for hydroxylated-PCBs are also in a similar 
range to the Log KOW values with an important exception: the nona- 
chlorinated hydroxy-PCBs, given their pKa have a Log D value at pH 7 
which is smaller than octa- and hepta-. This fact, together with the 
higher concentration in pore water due to the large dissociation also 
resulted in the lowest BCF for these classes. The BCF - Log D plot (see 
Table A6 for significance of regression) for sulfonated and hydroxy- 
sulfonated PCBs shows much lower BCFs compared to those in Fig. 3 
and A5 and also Log D values which are much smaller than the corre-
sponding Log KOW values, evidencing again the importance of the larger 
dissociated fraction in water. 

3.4. Field bioaccumulation experiment 

The third experiment was designed to verify whether field based and 
lifetime uptake of PCBs and metabolites in earthworms was comparable 
to the lab experiment, conducted with a soil with similar levels and 
fingerprint of PCBs and metabolites. While in laboratory the experi-
mental conditions can be standardized to reduce variability, no addi-
tional information on field bioaccumulation behaviour of wild species 
can be obtained. For example, in field, species with preferable niches, 
such as depth living range can be found. This preferential behavior will 
be reflected in a potential large difference in exposure conditions: for 
example, the contaminated soils of the SIN Brescia-Caffaro showed a 
strong gradient of PCB concentrations with depth. In a recent paper, Di 
Guardo et al. (Di Guardo et al., 2020) showed that PCB concentrations of 
mono to deca chlorinated congener families can vary up to 2 orders of 
magnitude in the first 1 m; while concentrations are, as expected, rather 
homogeneous in the plow layer, they substantially drop in the following 
70 cm. Therefore, epigeic (living and feeding in the litter layer) and 
endogeic earthworm species (living in the top soil) (EC, 2010) are 
probably exposed to the largest concentrations. Among epigeic species 
we can find Eisenia spp. and among endogeic we can find Aporrectodea 
caliginosa, Allolobophora chlorotica (Thakuria et al., 2010). On the other 
hand, anecic species, such as Lumbricus terrestris, may spend a consid-
erable amount of their time in deep mineral soil layers by digging ver-
tical borrows up to 1–2 m and, generally reaching the soil surface at 
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Fig. 3. Log BCF of PCB and polar metabolite (L/kg) vs Log KOW for the lab (first on top) and field experiments. Whiskers represent standard deviation.  
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night to feed (Brown et al., 2000; Curry and Schmidt, 2007). For these 
reasons, anecic species may escape from contaminated surface layer 
(Blouin et al., 2013; EC, 2010), accumulating PCBs when they feed in the 
top soil layers, and depurating while they move to bottom layers. 

More polar chemicals (such as lighter PCBs, e. g. mono to tri-PCBs) 

do move to higher depths, while more hydrophobic congeners are 
generally restricted to more superficial layers due to their soil-water 
partition coefficient (Di Guardo et al., 2020). PCB metabolites, such as 
those investigated in the present work, have a more polar nature than 
the corresponding parental chlorinated family, potentially reaching 

Fig. 4. PCB and PCB metabolite concentrations (μg/kg) referred to each family of congeners measured in the experiment 3. Asterisks (*) refer to values below LOQs. 
Bars represent the analytical variability. 
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higher depths. The polarity and their moving ability increase from hy-
droxy to sulfonated and to hydroxy-sulfonated-PCBs given their prop-
erties (Table 1). 

The concentrations in earthworms and soil (Fig. 4), although 
different between field A and B seem to generally match more in terms of 
abundance and fingerprint between earthworms and soil especially for 
Aporrectodea caliginosa and Allolobophora chlorotica. BAFs of PCBs and 
metabolites for this experiment are shown in Fig. A7and A8 (expressed 
on a dw to dw basis), while the corresponding regression are in 
Table A7. The data suggest similar consideration of the experiment 2 for 
A. caliginosa and A. chlorotica although a different behavior could be 
observed for the anecic species (Lumbricus terrestris), where for example 
only one BAF for nona-hydroxy-PCBs can be found. Regressions of Log 
BAF vs. Log KOW were significant only for A. caliginosa (PCBs, 
sulfonated-PCBs and hydroxy-sulfonated-PCBs), A. chlorotica (sulfo-
nated-PCBs). Fig. A9 reports BSAFs for this experiment, which do not 
introduce additional information than BAF as for the lab experiment. 

The BCFs calculated for the field experiment are shown in Fig. 3 (for 
a comparative picture) and Fig. A10 and Table A8 (for single chemical 
class and species), plotted as before against Log KOW, and later against 
Log D (Figure A11). In the Log BCF-Log KOW plot, when comparing PCBs, 
we observe that for field accumulating earthworms (with the exclusion 
of Lumbricus terrestris) the accumulation is linear also for the most 
chlorinated classes with R2 

> 0.90 and a p-value < 0.005. This probably 
depends on the longer time available for the accumulation of these very 
highly hydrophobic classes which shows the importance of kinetics in 
accumulation and the need of field-based experiment to verify lab 
experiment assumptions. The anecic species (L. terrestris) shows instead 
a different accumulation from A. chlorotica (ANCOVA, p = 0.01), but not 
from A. caliginosa (ANCOVA, p = 0.923). L. terrestris also shows a lack of 
lighter congener accumulation which probably depends on the fact that 
it transiently feeds or gets in contact with the most contaminated top 
layers. In a recent paper (Di Guardo et al., 2020) it was shown that in the 
same field where the samples of this experiment were taken, the con-
centration with depth dropped between two to three orders of magni-
tude from top layers (0–30 cm) to deeper layers (70–100 cm). The lack of 
correlation between PCB BCF and Log KOW for this species probably 
depends on the traveling activity depicted above. Going to the metab-
olites, it appears instead that the accumulation behavior is similar to 
those seen in experiment 2 for the sulfonated and hydroxy-PCBs. The 
regression for sulfonated-PCBs was steeper for A. chlorotica than the one 
for E. foetida (lab experiment) (ANCOVA, p < 0.0001). Although a full 
explanation of this behavior cannot be given with the present knowledge 
it can be hypothesized that the longer contact time allows for this 
different accumulation. 

BCF was also plotted against Log D for A. caliginosa as an example 
(see Table A9 for the significance of the regressions). The results 
(Fig. A11) are very similar to those shown for the lab experiment 
(Fig. A6) with the only difference that, given the highest concentrations 
in the soil and the long exposure time some more chlorination classes 
were present. 

4. Conclusions 

This is the first paper, to our knowledge, reporting the accumulation 
of highly hydrophobic PCBs (from hepta-to deca-chlorinated), hydroxy- 
PCBs, and of the recently discovered sulfonated and hydroxy-sulfonated 
PCBs in earthworms. By comparing chemicals with such a large span of 
chemical domain (Log KOW and/or Log D) and polarity (as shown by the 
pKa) this study allows to evaluate the accumulation of poorly investi-
gated chemicals (Di Guardo and Hermens, 2013; Gobas et al., 2016). The 
results obtained showed a reduced accumulation of highly hydrophobic 
PCBs in earthworms (Log KOW > 7). The accumulation of hydroxy PCBs 
increased with Log KOW, while the accumulation of sulfonated and 
hydroxy-sulfonated was markedly reduced with the increase of polarity 
of the metabolite, given to the low pKas. The exploitation of BCFs vs. Log 

D correlation allowed to evaluate the potential bioaccumulation in 
earthworms of chemical classes possessing both a hydrophobic nature 
(related to the increasing number of chlorine substituent) and a very 
polar fraction depending on the acidic dissociation at environmental 
pHs. Further studies are needed to evaluate, for example, the extent of 
degradability of PCBs in earthworms and their potential metabolic 
conversion rate to sulfonated compounds and/or their derivation from 
hydroxylated-PCBs, metabolites also found in earthworms (He et al., 
2018). In order to perform these experiments, laboratory standards of 
sulfonated metabolites of PCBs will be needed to more accurately 
quantify the bioaccumulation and the potential additional conversion, 
as well as the experimental determination of soil-water partition 
coefficients. 
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