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a b s t r a c t 

Neglecting extremes and designing buildings for the past or most likely weather conditions is not the 

best approach for the future. Robust design techniques can, however, be a viable option for tackling fu- 

ture challenges. The concept of robust design was first introduced by Taguchi in the 1940s. The result 

of the design process is a product that is insensitive to the effect of given sources of variability, even 

though the sources themselves are not eliminated. A robust design optimization (RDO) method is for the 

first time proposed in this paper, for supporting architects and engineers in the design of buildings with 

robust energy performance under climate change and extreme conditions. The simplicity and the low 

computational demand of the process underlies the feasibility and applicability of this method, which 

can be used at any stage of the design process. The results show that the performance of the optimum 

solution not only has a 81.5% lower variation (less sensitivity to climate uncertainty) but at the same time 

has a 14.4% lower mean energy use value compared with a solution that is compliant with a recent con- 

struction standard (ASHRAE 90.1-2016). Less sensitivity to climate uncertainty means greater robustness 

to climate change whilst maintaining high performance. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The focus of building designers, architects and engineers in

he design of buildings has, in recent years, been orientated

owards minimizing the energy use of buildings or achieving a

et zero energy balance (ZEB) at the building or neighborhood

cale. Building performance simulation (BPS) has been a powerful

ool helping to reach solutions for better energy efficiency. Studies

ave, however, shown that more optimal solutions can be achieved

sing automated optimization techniques [1] . Nguyen et al. [2] re-

iewed simulation-based optimization methods and concluded

hat a further reduction of 20- 30% can be achieved in building

nergy consumption using automated optimization. Advancements

n computational science and the desire to achieve higher levels of

nergy optimality mean the use of simulation-based optimization
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echniques is on the rise in the building sector [3] . These tech-

iques allow designers to systematically explore a wider design

pace and to so find better solutions. This is made possible by

oupling an automated mathematical optimization tool with a BPS

rogram. During the building simulation process, many different

esign options are evaluated to obtain the optimum for a set of

bjectives (e.g. zero energy balance) [4] . These promising technolo-

ies therefore help to achieve high performance design solutions.

uildings constructed based on these design solutions are, how-

ver, usually very sensitive to changes in operational conditions.

he performance gap between expected performance and actual

evel of performance has been discussed and demonstrated in the

iterature [5–7] . There are a number of factors that influence the

iscrepancy between the designed and constructed performance of

uildings. The sources of this discrepancy can be categorized into

hree types: epistemic uncertainties, aleatory uncertainties and

rrors. Epistemic uncertainty is defined as “a potential deficiency

hat is due to a lack of knowledge .” [8] . Examples of epistemic

ncertainties are the simplifications and numerical approximations

f physical processes considered in numerical models of BPS tools

9] . An error is defined as “the discrepancy between a computed,
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Nomenclature and acronyms 

AR Augmented Reality 

BIM Building Information Modelling 

BPS Building Performance Simulation 

CDD Cooling Degree Days 

ECY Extreme Cold Year 

EWY Extreme Warm Year 

GCM General Circulation Model 

HDD Heating Degree Days 

MOGA-II Multi-Objective Genetic Algorithm 

MSD Mean Squared Deviation 

NSGA-II Fast Non-dominated Sorting Genetic Algorithm 

PE Primary Energy 

RCM Regional Climate Model 

RDO Robust Design Optimization 

TMY Typical Meteorological Year 

ZEB Zero Energy Balance 

observed or measured value or condition and the true, specified or

theoretically correct value or condition ” [10] . Examples of source

of errors are discrepancies between constructed and simulated

buildings due to human errors during construction and the use of

poorer quality construction materials than designed [11] . The third

type is aleatory uncertainty which is the “uncertainty that is said to

arise due to the inherently random or variable nature of a quantity,

or the (usually unknown) system underlying it. ” [9] . Examples of

discrepancies due to aleatory uncertainties are the influence of

occupants’ behavior and/or climate conditions on the performance

of buildings. The first two sources of discrepancy, epistemic uncer-

tainty and errors, are reducible. Aleatory uncertainty is, however,

irreducible and cannot be eliminated due to its inherent random-

ness and natural variability [12] . Epistemic uncertainties in building

modeling can be reduced by improving numerical models, cali-

brating using additional experimental observations, and providing

better information [13] . E rrors can be minimized by the use of

technological advancements such as Building Information Mod-

elling (BIM) [14] and Augmented Reality (AR) [15] , and offsite or

prefabricated construction technologies [16] . Aleatory uncertainties

cannot be eliminated and the common approach to dealing with

this type of uncertainty in BPS is to consider the most likely sce-

nario. For example, occupants are normally simulated using a fixed

schedule [17] as the most probable occupancy scenario. Typical

meteorological year (TMY) weather files is another example of ac-

counting for the most likely conditions [18] . This approach causes

the final solution to be sensitive to variations beyond the most

likely conditions, which may result in malfunctioning during ad-

verse real life conditions. Kalkman [19] showed that there can be a

difference between energy use in identically constructed buildings

of up to17 times bigger due to the influence of occupants. Rastogi

[9] thoroughly studied the sensitivity of building performance

to climate. The best way to deal with these uncertainties is to

evaluate and design buildings under presence of them. Designing

under the presence of aleatory uncertainties is not a new concept

and has been discussed in other fields in the industry for a long

time. It has, however, not yet been applied to building design. The

idea of this concept is that this source is presented as noise during

the design phase instead of being eliminated. The goal therefore

is to achieve a design solution with a performance that is least

sensitive to the presence of noise. This process is called “robust

design” and was introduced by Taguchi in the 1940s [20] . 

The aim of this work is to use the power of simulation-based

optimization technology to discover new areas of design space, and

to couple this to the experience of robust design from other in-
ustrial fields, to so achieve building designs with a robust energy

erformance under climate uncertainties. A robust design problem

an also be formulated as an optimization problem. The concept

f adding robust design to conventional optimization is called ro-

ust design optimization (RDO). The idea is to achieve minimum

erformance variability under the presence of uncertainty. These

oncepts have been widely practiced and developed in design ar-

as ranging from car manufacturing [21] and electronics [22] to

edicine [23] and chemical productions [24] . An RDO technique

or the design of buildings with robust energy performance under

ypical and extreme conditions is proposed in this study for the

rst time. The main focus is to introduce a process that is rela-

ively simple and can be used by architects and engineers from

he early stage of design. The outcome of this process is a design

ith an energy performance that is least sensitive to climate vari-

tions and an energy use that is also minimum, i.e. energy-robust

nd energy-efficient under climate change. 

Climate change means that it is no longer possible to de-

ign buildings based only on TMYs [25] . Climate conditions have

hanged and are going to continue to change, giving in the near

uture more frequent and intense extreme conditions [26] . A sys-

em that has been designed to meet a required performance under

ypical or most likely conditions can be challenged up to its fail-

ng point under atypical or extreme conditions [27] . Examples are

lack outs or regional grid failures during heat waves. One of the

ain reasons for this is the high sensitivity of buildings to the per-

urbation of external conditions, this causing performance to vary

ignificantly if the conditions fall outside the typical range. For ex-

mple, electricity demand that soars during heat waves is due to

uildings that are not designed for such conditions. Energy system

ailure may leave thousands of houses with no means of cooling

nd puts the lives of vulnerable people at risk in overheated build-

ngs, as happened during the 1995 Chicago heat wave [28] , the

003 Europe heat wave [29] and 2006 heat wave in New York City

30] . Heat waves are good examples of how underestimation dur-

ng design can easily become very costly. Buildings of today need

o be designed to not only perform optimally under typical condi-

ions, but also show minimum variation under atypical conditions.

ne of the main challenges to achieving this target is consider-

ng climate uncertainty in the optimization process. Climate un-

ertainty and challenges in considering this in a simulation-based

ptimization process are discussed in Section 2.2 . The concept of

obust design and its implication in the built environment is de-

cribed briefly in the following section. In Section 3 , the proposed

DO methodology for robust energy performance under climate

hange is described in detail. An approach to test the effectiveness

f the method is presented in Section 4 , where the solutions pro-

ided by the RDO method are tested under 74 climate scenarios.

he results and conclusions are provided in Section 5 and 6 . 

. Background and concepts 

.1. Concept of robust design optimization and its implication in built 

nvironment 

Robust design has, since being introduced, been adopted in a

ide range of industries. Taguchi defined robustness as “the state

here the technology, product, or process performance is mini-

ally sensitive to factors causing variability (either in the manu-

acturing or user’s environment) and aging at the lowest unit man-

facturing cost” [31] . In other words, “a product or process is said

o be robust when it is insensitive to the effect of source of vari-

bility, even though the sources themselves have not been elim-

nated” [32] . Further definitions of robustness from system engi-

eering and product design are: insensitivity to anticipated risks

33] , a measure of variation in performance [34] , insensitivity to
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Fig. 1. Block diagram of a product: P diagram. 
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Fig. 2. Robust design applied to buildings performance where the smaller mean 

and variation of response f is desired. 
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nforeseeable changes in the operating environment [35] , insensi-

ivity to both expected and unexpected variations [36] , the ability

f a system to continue to operate correctly across a wide range

f operational conditions [37] , the ability of a system to absorb

hange [38] , the potential for system success under varying future

ircumstances or scenarios [39] , and the ability of a system – as

uilt/designed – to do its basic job in uncertain or changing envi-

onments [40] . 

Robust design of a product involves the factors defined below

41] : 

• Control factors (or Design variables) are variables that have to be

specified by the designer 

• Noise factors are uncertain parameters that the designer cannot

control (only the statistical characteristics of noise factors that

are expected in production or in the actual use of the product

can be known or specified) 

• Target value (Signal factor) is set by regulations or the user of

the product to express the desired value of the response of the

product 

• Response is the output of the product in the presence of noise 

One application of robust design is in car manufacturing and

pecifically in car packaging design. The target is to achieve high

ar spatial and ergonomic efficiency. For example, in a study [21] of

n ergonomic robust design of car packaging, the seat cushion an-

le, steering-wheel-to-BOF (ball of foot) distance, etc. were used as

ontrol factors, the anthropometric variability was used as a noise

actor and the response was occupant comfort loss . The aim of a

obust design was to set optimal control factors in which the vari-

tion of the response from the target value is minimum under

he presence of noise factors. A block diagram representation of

 product [41] is shown in Fig. 1 , to explain the robust design pro-

edure. 

A robust design problem is a multi-objective optimization prob-

em. The objectives are to reduce the variation of the response as

he mean is shifted to a target value ( Fig. 2 ). 

Taguchi, based on this process, developed the signal-to-noise

atio (S/N). This is a key metric that is used to perform the first

tep of the optimization process. S/N is maximized in this step,

hich is equivalent to minimizing the sensitivity of the response

o noise factors [32] . 

/N = 10 lo g 10 

[ 
μ2 

/ σ 2 

] 
(1) 

/N is proportional to the base 10 logarithm of the ratio between

he square of the signal factors ( μ) and the square of the noise

actors ( σ ). Adding a logarithm to the metric was proposed by

aguchi and converts the S/N ratio into decibels ( dB ) [32] . Taguchi

tated that a metric for robust design should have four properties

32] : 

1. The metric should reflect the variability in the response . 
2. The metric should be independent of adjustment of the mean . 

3. The metric should measure relative quality . 

4. The metric should not induce unnecessary complications, such as

control factors interactions . 

A good S/N metric has all of the above properties. These prop-

rties are further discussed for the S/N metric developed for this

tudy in Section 3.4 . 

Robust design is a general concept that is applicable to all de-

ign procedures that take uncertainty into account. The aim is to

inimize the sensitivity of a product’s performance to the pres-

nce of uncertainties in real world conditions. This concept can be

ransferred from industrial products to buildings simply by consid-

ring the target value to be any desired performance indicator (e.g.,

he indoor thermal comfort condition, the indoor daylight perfor-

ance or the maximum delivered energy) and the noise factor

o be any variable that causes deviations in the performance of a

uilding during operation. The concept of robustness has been dis-

ussed in the building engineering literature in terms of a variety

f uncertainty sources. For example [42,43] consider the energy ro-

ustness of an office building to energy related occupant behavior.

hey conceptualized robustness as a minimum variation in energy

se irrespective of varying occupant behavior. Leyten and Kurvers

44] studied the indoor climate robustness of an office building 

nd state that robustness is “the measure by which the indoor en-

ironment of a building lives up to its design purpose when it is

sed by occupants in a real life situation ”. Palme et al. [45,46] pro-

osed a concept for robustness of energy performance in build-

ngs and related it to the ability of a building to mitigate the un-

redictable variations induced by occupants or by external factors.

hinazzo et al. [47] assessed the robustness of energy performance

o the uncertainties in weather files, and Hoes et al. [48] consid-

red the sensitivity of several performance indicators to the effect

f user behavior. They investigated several design cases to find the

ost robust (the least sensitive) case to user behavior. [49] inves-

igated the robustness of energy use for lighting in the presence

f occupant behavior uncertainty. Kotireddy et al. [50] developed a

ethodology based on scenario analysis to assess the performance

obustness of low-energy buildings. These studies demonstrate that

he concept of robustness in buildings has different interpretations

nd has not converged to a concise approach in this field of re-

earch. 

Table 1 gives a non-exhaustive list of the built environment’s

erms classified according to the factors represented in the P dia-

ram. 
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Table 1 

Built environment’s examples classified according to the factors of the P diagram. 

Product Noise factors Control factors (Design variables) Responses 

Building scale: 

• components 

• systems 

• units/apartments 

Urban scale: 

• Building /Facility 

• Neighborhood 

• City 

• Region 

Climate conditions: 

• Changes in long-term and short-term 

patterns of climate 

Occupant behavior: 

• Operation of appliances 

• Manipulation of building control settings 

• Windows operation 

• Door operation 

• Vent operation 

• Use of domestic hot water 

Envelope Thermal properties: 

• Insulation thickness 

• U-value of glazing 

• G-value of glazing 

Building Geometry: 

• Air volume 

• Window-to-wall ratio 

• Net floor area 

Control settings: 

• Maximum solar irradiance to draw down 

solar shading devices 

• Set point temperature to open windows 

for enabling natural ventilation 

• Heating set point temperature 

• Cooling set point temperature 

• Energy use 

• Thermal discomfort 

• CO 2 concentration 

• Visual discomfort (glare) 

• Noise level 
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Robust design process was, due to the high costs of experimen-

tal tests and the limited computational power for running simula-

tions, originally formulated in a way that allowed the process to be

performed at minimum cost and resource usage. Taguchi used an

orthogonal array approach . This is a method for setting experiments

with only a fraction of the full combinations [32] . The availability

of better numerical models and high computational power means

that this concept was later introduced into a simulation-based op-

timization process, and is referred to as robust design optimization

(RDO) [51] . RDO, in other words, adds the concept of robust design

to conventional optimization [52,53] . The deterministic approach

used in conventional optimization does not consider the impact

of unavoidable uncertainties (noise factors) associated with input

design variables in a real engineering environment. This results in

optimum solutions that have a sensitive performance measure and

can vary significantly with the distribution of noise factors. The de-

sign problems of building engineering can also be formulated as

RDO problems, the objective being to achieve a performance mea-

sure (e.g. energy) with minimum sensitivity to a noise factor (e.g.

climate). 

A number of design variables of an office building are optimized

in this study to achieve a minimum variation of their energy per-

formance under the disturbance of mutable climate variables. In

this case, the noise factor is climate change and the objectives of

the RDO scheme are to minimize mean energy performance and at

the same time minimize energy performance variability under cli-

mate change. Inspired by the work of Taguchi, two metrics (two

objective functions) were developed for an optimization process

that results in solutions with minimum variation in energy perfor-

mance of a building under the presence of climate uncertainty. The

first objective is an S/N ratio metric customized for the purpose of

this study and that fulfills the four properties described earlier. The

second objective focuses on minimizing energy use. These metrics

are introduced in Section 3.4 . 

The first challenge in the intended RDO process is introducing

climate change as a noise factor into the optimization problem.

The following section is dedicated to climate uncertainty and chal-

lenges considering this in simulation-based optimization. 

2.2. Climate uncertainty and simulation-based optimization 

Detailed weather data with a daily or hourly resolution is re-

quired to properly describe (through simulation) the dynamic en-
rgy behavior of a building [54] . Weather data defines the external

oundary conditions for BPS. Current practice in BPS is to use typ-

cal meteorological year (TMY) weather files. These represent the

ost likely climate conditions based on historical recorded data

18] . TMYs are one-year weather files of typical conditions for a

0-year period of measured data for a given location. One of the

ain disadvantages of this method is its averaging nature: the gen-

ration of a typical weather year neglects extreme weather condi-

ions. Today’s technology, climate model data such as General Cir-

ulation Models (GCMs) and Regional Climate Models (RCMs) can

rovide information on possible future climate conditions. These

odels are able to generate years of future climate data based on

ifferent climate scenarios [55] for most locations on earth. Fu-

ure climate data must, however, be converted into a suitable for-

at for use in BPS. Moazami et al. [56] investigated the techniques

vailable to convert this data into suitable resolutions for BPS and

esign purposes. It is theoretically possible today, to take into ac-

ount climate uncertainty, to run a design under 100 of years of

onsistent climate data of past recorded data and future possible

limate scenarios. The availability of this data makes it possible

o study the sensitivity of a design or to look for design alterna-

ives that demonstrate minimum sensitivity to climate conditions.

his however means that hundreds of simulation runs must be

erformed at each optimization step to calculate the RDO objec-

ives. The optimization scheme may therefore become infeasible

ue to high computational cost. The following example helps us

ain a feeling of the time and the computation resources required

o consider all possible scenarios and minimize mean and variation

f energy performance under these scenarios. Let us, for example,

onsider 30 years of future climate data with an ensemble of 4

enerated scenarios (two GCM-RCMs and two emission scenario).

0 years of historical data are also available. These provide 150

ears of climate data. Each optimization process step will there-

ore contain 150 annual simulations. In other words, 150,0 0 0 sim-

lation runs are required for an optimization process of 10 0 0 eval-

ations. Each simulation takes 1 min and four parallel simulations

an be run. The optimization process will therefore take around 26

ays. The required time-scale is therefore not feasible in building

esign practice. 

Work by Nik [57] proposed a method to synthesize a set of rep-

esentative weather data sets, this including one typical year and

wo extreme cold and warm years. These are the Typical Down-

caled Year (TDY), Extreme Cold Year (ECY) and Extreme Warm
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ear (EWY). This can solve the problem of high numbers of sim-

lations and of the exclusion of extreme conditions. The method

as the advantage of substantially decreasing the number of sim-

lations, while taking extreme conditions and future climate un-

ertainties into account. The method for generating TDY, ECY and

WY is explained in detail in [57] . In short, the method is based on

inkelstein–Schafer (FS) statistics [18] - picking the months with

 cumulative distribution temperature most like the whole data

ets for typical months and constructing TDY based on these. ECY

nd EWY pick the months with the largest differences for the ex-

reme cold and warm cases. The method and its usefulness have

een verified in different applications [56–58] . The method for

ynthesizing representative weather data sets was developed fur-

her to track all possible extremes at each time step for any de-

ired climate variable. This required the typical and extreme val-

es of a climate variable to be picked according to the hourly (in-

tead of monthly) distribution at each time step (hour) for all years

nd climate scenarios. This resulted in three time-series (length of

760 h), each containing the most typical, the lowest and the high-

st values at each time step. These data sets are only generated

or calculation purposes and cannot be considered to be weather

ata, as they do not reflect the natural variations of the climate

ystem (unlike TDY, ECY and EWY which are arranged based on

onthly distributions and reflect natural variations). Nevertheless,

ach hourly value is a possible future condition that may challenge

he designs. 

The above approach allows climate change to be applied in sim-

lations as a noise factor using only three weather files (three

ears of climate data). This means that the number of simulation

uns for this example is reduced to 30 0 0 (10 0 0 evaluation × 3

imulation runs using TDY, ECY and EWY weather files), the op-

imization process therefore requiring 12.5 h. 

This study used weather files generated for the city of Geneva.

eneva was chosen due to the wealth of available data and the

ossibility of representing both cold winters and warm summers.

he set of the representative weather files was synthesized in a

revious study [56] . 

. Simulation-based optimization method for design of 

nergy-efficient buildings with robust energy performance 

We, in this paper, specifically refer to a multi-objective RDO

hat identifies a set of optimal building design solutions for achiev-

ng robust energy performance and high efficiency. The set of

esign solutions give buildings high energy-efficiency and low

erformance-variability when a noise factor is present. It further-

ore implies low energy use and a minimum sensitivity to dis-

urbances. This specific robust design optimization problem can be

ormulated as: 

in 

x ∈ R n 
{ f 1 ( x , u i ) , f 2 ( x , u i ) } (2) 

 i ( x , u i ) ≤ 0 ∀ u i ∈ U i , i = 1 , . . . , r (3)

 L ≤ x ≤ x U (4) 

here x is the vector of design variables, f 1 ( x , u i ) and f 2 ( x , u i ) are

he objective functions, and g i ( x , u i ) are inequality constraints that

re subject to the uncertainty parameters that can take any arbi-

rary value in the uncertainty domain U i ⊆ R 

m . Using this formal-

sm, the goal of this robust design optimization problem is to find

 set X( U i ) (i.e. the set of the minimum-cost building variants)

rom all the available building variants which is feasible where all

oises factors u i ∈ U i are taken into consideration. 

 ( U i ) = { x | g i ( x , u i ) ≤ 0 ∀ u i ∈ U i , i = 1 , . . . , r } . (5) 
The design effect of these two objectives is, as shown in Fig. 2 ,

 narrow distribution of primary energy with a mean value close

o the target value (ideally zero). Optimizing f 1 ( x , u i ) will mini-

ize the sensitivity of performance to noise and is a measure of

obustness. Optimizing f 2 ( x , u i ) will minimize primary energy use

nd is a measure of energy-efficiency. These effects are visualized

n Fig. 3 . 

.1. Formulating the objective functions 

The focus of this study is, as mentioned previously, to achieve

obustness to climate uncertainty. The distribution of energy per-

ormance (e.g. Fig. 3 ) is therefore only a result of variations in

limate. The method suggested by Nik [57] was adopted to use

limate as a source of performance variability and uses one typ-

cal and two extreme weather files (to be called the triple method

ereafter). It is described in Section 2.2 . The range of climate sce-

arios is, in this method, summarized into three weather files:

DY, EWY and ECY. The TDY file represents the most likely climate

volution and EWY and ECY are the extreme warm and cold cli-

ate evolutions. PE TDY, i , PE ECY, i and PE EWY, i are the primary energy

se (PE) calculated for the time-step i using the TDY, EWY and ECY

eather files. 

The four properties described in Section 2.1 were considered

n the development of a custom S/N ratio for this study. The first

roperty is that a metric is defined that reflects the variability in

he response . The mean squared deviation (MSD) is therefore cal-

ulated, which is the average squared differences for the PE ECY, i 

nd PE EWY, i values with PE TDY, i as reference values. Using PE TDY, i as

eference values allows this function to be used to measure how

ar the values of PE ECY, i and PE EWY, i are from the reference val-

es. This can then be used as a measure of variability. The sec-

nd property requires the metric to be independent of adjustment

f the mean . A second objective function was therefore introduced.

he calculated value of PE TDY, i is, in this objective, separately min-

mized, which makes the first objective independent of adjustment

f PE TDY, i . The third property is that the metric should measure rel-

tive quality. The S/N is calculated as relative change of PE TDY, i 

quared to MSD. The final step, proposed by Taguchi, was adding

 logarithm to the metric, so converting the S/N ratio into deci-

els (dB). This transforms the multiplicative changes in the metrics

o additive changes, which helps reduce the effect of interactions

etween the design variables [32] . It furthermore means that the

nfluence of each design variable is independent of the effects of

he other design variables, so meeting the condition of the fourth

roperty. This metric is formulated as objective function no.1 and

s descried below. Minimizing the first objective also minimizes the

ifference between energy performance under extreme and typical

onditions, which also minimizes the sensitivity of the response

o changing climate. The second objective at the same time mini-

izes the annual primary energy PE TDY, i , which is the annual total

rimary energy required by the building under average conditions

TDY). These objectives are formulated as below: 

Objective function n.1 : the purpose of f 1 ( x , u i ) is to squeeze

he energy performance calculated using EWY and ECY towards the

erformance calculated using TDY. MSD is therefore here defined

s: 

SD = 

1 

2 p 

p ∑ 

i =1 

[(
P E EC Y ( u 1 ) , i 

− P E T D Y ( u 1 ) , i 

)2 

+ 

(
P E EW Y ( u 1 ) , i 

− P E T D Y ( u 1 ) , i 

)2 
]

(6) 

Following Eq. (1) for the S/N ratio and to maintain the usual

onvention of optimization being a minimization process, S/N is

egated when used as an objective function. Therefore, f ( x , u ) is:
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Fig. 3. visualization of the designed effects of the two objective functions. 
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f 1 ( x , u i ) = −10 lo g 10 

[ (∑ p 

i =1 
P E T DY ( u 1 ) , i 

)2 

MSD 

] 

(7)

p being the temporal resolution of data. For example, p has to be

set to 12 where calculating annual energy performance by accu-

mulating 12 monthly values. Furthermore, p has to be set to 8760

where calculating the annual energy performance over hourly val-

ues and to 24 where calculating daily energy performance over the

24 h in a day. Minimizing f 1 ( x , u i ) results in minimizing the sen-

sitivity of the response (energy use) to the variability of noise (cli-

mate conditions). 

Objective function n.2 : The purpose of f 2 ( x , u i ) is to optimize

a building’s energy use under the most likely climate conditions.

The objective functions can be formulated as: 

f 2 ( x , u i ) = 

p ∑ 

i =1 

P E T DY ( u 1 ) , i (8)

It is now possible, with the two objectives described above, to

conceptualize an RDO process in which climate uncertainty is in-

troduced in simulations as a noise factor using only three weather

files. Objective function n.1 minimizes, in this process, the devi-

ation between responses under extreme and average conditions.

Objective function n.2 brings the primary energy mean value close

to the target value (ideally zero). The above concept is visualized

in Fig. 4 for two time steps during a heating period and cooling

period. 

The above formulation allows robust design optimization to be

performed at different temporal resolutions. This feature is re-

quired because the effect of a noise factor on the performance vari-

ability of a building system varies according to its typical response

time. For example, the seasonal effect of climate variation would

need to be considered when optimizing building envelope prop-
rties. A monthly resolution might therefore be appropriate. The

emporal resolution of climate variation may have to be finer, e.g.

ay or hour, when optimizing building devices such as automated

hadings. Two sets of design variables were therefore considered

n the development of the optimization process. They are building

nvelope properties and control settings. Two configurations based

n these two groups were designed for the optimization process

see Section 3.4 ). The energy models and design variables that are

onsidered for this study are described below in Section 3.2 and

.3 before moving to the formulation of optimization process. 

.2. Building models 

The commercial reference building models were developed by

acific Northwest National Laboratory (PNNL), under contract with

he U.S. Department of Energy (DOE) [59] . The package includes

6 building type models. These models are provided in three cat-

gories: “new construction ”, “post-1980 ′′ and “pre-1980 ′′ (existing

uildings constructed in or after 1980 and before 1980). The new

onstruction models are modified according to recent editions of

he ASHRAE 90.1 Standard [60] . Detailed descriptions of refer-

nce model development and modeling strategies can be found in

NNL’s reports [61,62] . The small office building model was used

n this study. Two base-cases were considered; one from the new

onstruction category complying with the ASHRAE 90.1-2016 stan-

ard and one from the post-1980 category. These cases are called

2016-compliant base-case”, which represents a recent new-build

uilding quality and the “1980-compliant base-case” which repre-

ents an existing building quality. This allows the energy robust-

ess of models representing newly built and existing older build-

ngs to be assessed under climate uncertainty. This case study also

hows the potential improvement that can be achieved by “robusti-

ying” the energy performance of buildings. The reference building

odels are also categorized based on ASHRAE climate zones [63] ,
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Fig. 4. The concept of robust design optimization using three weather files: TDY, ECY and EWY. 

Fig. 5. Reference building model geometry and zone planning. 

Table 2 

Description of the thermal zones. 

Zone Area 

(m 

2 ) 

Conditioned 

(Y/N) 

Volume 

(m 

3 ) 

Gross wall area 

(m 

2 ) 

Window Glass 

Area 

Lighting 

(W/m 

2 ) 

People 

(m 

2 /person) 

Number of 

people 

Appliance 

(W/m 

2 ) 

CORE_ZN 149.7 Yes 456.5 0.0 0.0 10.8 16.6 9 6.8 

PERIMETER_ZN_1 113.5 Yes 346.1 84.5 20.6 10.8 16.6 7 6.8 

PERIMETER_ZN_2 67.3 Yes 205.3 56.3 11.2 10.8 16.6 4 6.8 

PERIMETER_ZN_3 113.5 Yes 346.1 84.5 16.7 10.8 16.6 7 6.8 

PERIMETER_ZN_4 67.3 Yes 205.3 56.3 11.2 10.8 16.6 4 6.8 

Attic 568.0 No 720.3 0.0 0.0 0.0 – 0 0.0 

Total 511.3 2 279.6 281.6 59.7 31 
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v  
hich are classified according to the calculated heating degree-day

ase 18 °C (HDD 18 ) and cooling degree-day base 10 °C (CDD 10 ). The

-year average (2013–2017) of degree-day values were calculated

or the Geneve-Cointrin weather station, to find the model that is

est suited to Geneva. The calculated values were 2831 for HDD 18 

nd 1460 for CDD 10 , which corresponds to the Cold-Humid (5A)

SHRAE climate zone. The base-case models were therefore cho-

en from the 5A climate zone. A summary of geometry descrip-

ion, thermal zones, envelope properties, and control settings of

he building models are given in Fig. 5 , Tables 2 and 3 . 

The dynamic energy simulations of the building models were

erformed using the EnergyPlus [64] software version 8.5.0. Each

ersion of EnergyPlus released undergoes two major types of

alidation tests [65] : analytical tests according to ASHRAE Re-

earch Projects 865 and 1052, and comparative tests according to

he ANSI/ASHRAE 140 [13] and IEA SHC Task34/Annex43 BESTEST

ethod. Heat conduction through the opaque envelope was cal-
ulated via the conduction transfer functions (CTF) using a 15-

inute time step. The natural convection heat exchange near in-

ernal and external surfaces was calculated using the thermal anal-

sis research program (TARP) algorithm [66] . The initialization pe-

iod of simulation was set to the maximum option, which is 25

ays [67] . The primary energy use was calculated by converting

he simulation outputs for delivered energy, the conversion factors

pecified in Swiss norm SIA 380/1:2009 [68] being used to con-

ert delivered energy to primary energy. The factor for convert-

ng electricity to primary energy is therefore 2.97 kWhPE/kWhel

nd for converting natural gas to primary energy it is 1.15

WhPE/kWhgas. 

.3. Design variables for optimization 

The input variables considered for the target building were di-

ided into two groups: building envelope properties and control
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Table 3 

Design variables and their ranges for optimization and the values of base-cases. 

Category Description of variables Variable names Unit of measure Type of variable 2016-compliant 

base-case value 

1980-compliant 

base-case value 

Sampling ranges 

Properties of the building envelope 

Window properties U -value X01 W/(m 

2 K) Continuous 0.41 3.35 [0.20, 5] 

SHGC X02 – Continuous 0.38 0.39 [0.10, 0.90] 

Visible transmittance X03 – Continuous 0.49 0.80 [0.10, 0.90] 

Roof properties Solar absorptance X04 – Continuous 0.70 0.92 [0.10, 0.90] 

Thermal resistance X05 (m 

2 K)/W Continuous 8.10 2.98 [0.20, 33.20] 

Wall Solar absorptance X06 – Continuous 0.70 0.92 [0.10, 0.90] 

Thermal resistance X07 (m 

2 K)/W Continuous 3.07 1.34 [0.20, 33.20] 

Floor Thermal resistance X08 (m 

2 K)/W Continuous 0.22 0.22 [0.20, 33.20] 

Infiltration Flow per Exterior Surface Area X09 1/h Continuous 0.37 1.72 [0.04, 1] 

Daily control settings 

Cooling setpoint Setpoint temperature X10 °C Discrete 24 (whole year) 24 24, 24.50, 25…,27 

Heating setpoint Setpoint temperature X11 °C Discrete 21 (whole year) 21 19, 19.50, 20, 20.5, 21 

Shading setpoint Solar incidence on south 

window 

X12 W/m 

2 Discrete No shading No shading 200, 250, 300…, 1000 

Solar incidence on north 

window 

X13 W/m 

2 Discrete No shading No shading 200, 250, 300…, 1000 

Solar incidence on east 

window 

X14 W/m 

2 Discrete No shading No shading 200, 250, 300…, 1000 

Solar incidence on west 

window 

X15 W/m 

2 Discrete No shading No shading 200, 250, 300…, 1000 
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ettings. Building envelope properties can be divided into five cat-

gories: window properties, roof properties, wall properties, floor

roperties, and infiltration. Control settings include cooling, heat-

ng and shading setpoints. A total of 15 variables were finally se-

ected. The design variables used for the thermal properties of the

uilding envelope were all assumed to be continuously uniform.

he control settings were assumed to be discrete variables with

nteger values that represent the different assigned information in-

icated in Table 3 . 

.4. Formulation of optimization process 

systems are characterized by different response times. A two-

tep optimization process was therefore designed to identify

eliable values for the input variables for the appropriate time

ffect of the noise factor. A monthly resolution was firstly used

or the seasonal effect of climate variation. Annual primary energy

as used to optimize building envelope properties. An hourly

esolution was, secondly, used for short-term weather evolution,

nd daily primary energy was used to optimize the building’s

ontrol settings. For example, maximum irradiance incident on

 window was used for lowering automated solar shadings. This

wo-step optimization process also provides, when designing an

nergy robust building, an insight into whether it is sufficient

o apply only optimal control settings or only apply improving

he building envelope, or whether both strategies are important.

here may also be an option priority for the two. Deploying

ptimum control settings of course requires less intervention and

ost in the context of building refurbishment, renovation of the

uilding envelope maybe requiring a large capital investment. Two

ifferent optimization configurations were therefore developed.

he dynamic energy simulation engine EnergyPlus [64] was inte-

rated into the modular environment for process automation and

ptimization in the engineering design process modeFRONTIER

69] . This embeds a multi-objective optimization engine that

ntegrates a number of optimization algorithms and sampling

trategies. Genetic Algorithm (GA) was used in this work for the

ulti-objective optimization. GA is the most common optimization

trategy used in building performance analysis [2] . modeFRONTIER

rovides both a Fast Non-dominated Sorting Genetic Algorithm

NSGA-II) algorithm [70] and a Multi-Objective Genetic Algo-

ithm (MOGA-II) [71] . MOGA-II is an improved version of MOGA

72] . Both the algorithms were used in the first optimization

rocess with a similar initial population to determine which

ptimization algorithm is best suited to the process. MOGA-II pro-

ided better results and was chosen for the second optimization

rocess. 

The multi-objective optimization process results in a two-

imensional solution space with a Pareto frontier. Fig. 6 demon-

trates the strategy used in this study for post-processing and se-

ecting the Pareto optimal. The Pareto frontier is, in this method,

ormalized to zero-one interval (0 ≤ f t 
i 
(x ) ≤ 1) using the follow-

ng transformation [73] : 

f t i ( x ) = 

f i ( x ) − f min 
i 

f max 
i 

− f min 
i 

(9) 

f max 
i 

and f min 
i 

are the maximum and minimum of f i ( x ) , x ∈ R 

s . The

losest point to the utopia point ( f 1 = 0 and f 2 = 0 ) was then cho-

en as the optimal solution. This method was used because the

ignificance of both objective functions was considered to be equal

nd because the values of the two objective functions were ex-

ressed at different orders of magnitude. 

Configuration no.1: optimization of the building envelope 

Only the input variables related to thermal properties of the

uilding envelope are, in this task, optimized for robustness. The
eather file used for running the simulation was the noise factor

hat was applied. Two different weather files were used to rep-

esent the extreme climate conditions, EWY and ECY. The opti-

ization process was performed for both NSGA-II and MOGA-II.

he parameter settings of the algorithms are important to their

erformance. Hamdy et al. [74] recommended that the minimum

umber of evaluations required for optimization of building energy

odels is 140 0–180 0. The population size for population-based op-

imizations is recommended to be 2–4 times the number of design

ariables [75] . Following these recommendations, 1620 evaluations

ere considered for each algorithm using a population size of 27

3 × 9 design variables), the number of generations being 60. The

nitial population was generated based on a random sequence. The

efault values for the other settings were kept unchanged. These

ettings are reported in Table 4 . Three energy simulations were run

n each evaluation (using the EWY, ECY and TDY files) to calculate

he two objective functions in Eq. (7) and Eq. (8) . 

The workflow in Fig. 7 was set up in modeFRONTIER to per-

orm the above optimizations. The flowchart illustrates the flow of

nformation. 

The second process aims to optimize the daily control setting

sing TDY, ECY and EWY. The process is based on typical hourly

nd extreme values (see Section 2.2 ). This configuration, unlike the

rst configuration, excludes the input variables related to thermal

roperties of the building envelope. Only the control settings are

herefore considered in the optimization run. The same noise

sed in configuration no.1 is used in no. 2. The optimization was

erformed for each day of the year using the MOGA_II algorithm.

he number of evaluations in this run is 48, the probability of

irectional cross-over and the probability of mutation being kept

he same as the previous configuration. The initial population of

 designs is generated using a random sequence. The number

f generations is set to 8. These values were set using trial and

rror to find a process with an acceptable convergence level and

easible time. Fig. 8 presents an optimization evolution for one

ay as an example. For each evaluation, 3 energy simulations were

un under the three weather files. A total of 365 optimizations

ere therefore performed to find optimum control settings for

ach day of the year. Objective functions were set according to

q. (7) ( p = 24) and Eq. (8) . The last solution of each optimiza-

ion is considered to be the optimum control setting for that

ay. 

Fig. 9 demonstrates the flowchart of the optimization process

or the above configuration. 

.5. Evaluating the main effect of the design variables on the 

bjective functions 

A screening analysis tool implemented in modeFRONTIER al-

ows the main and interaction effects of design variables on a re-

ponse to be evaluated [76] . The tool is based on the Smoothing

pline ANOVA (SS-ANOVA) method that is suitable for multivariate

odeling and regression problems [76,77] . SS-ANOVA is a statis-

ical modeling algorithm based on a function decomposition that

s similar to the classical analysis of variance (ANOVA) decomposi-

ion [76] . Global variance is explained (decomposed) through this

ethod into single model terms in a statistical model. I.e., the per-

entage of its contribution to the global variance is calculated for

ach design variable. The 1620 evaluations in the first optimiza-

ion process were used as a dataset in a sensitivity analysis to de-

ermine the relative importance of the design variables on the two

bjective functions. The results of the analysis indicate the percent-

ge of each variable’s contribution to: 1) the variability in primary

nergy use (objective function No.1) and, 2) the mean value of pri-

ary energy use (objective function No.2). 
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Fig. 6. The approach for selection of the best solution from the Pareto. 

Fig. 7. The implemented workflow of optimization process in modeFRONTIER for configuration no.1. The flowchart describes the flow of information during the process. 

Configuration no.2: optimization of the control settings. 

Table 4 

Parameter settings the selected optimization algorithms. 

Optimization 

algorithm 

No. of 

evaluations 

Simulation 

resolution 

p No. of 

runs 

Population 

size 

No. of 

generations 

Probability of 

cross-over 

Probability 

of mutation 

NSGA-II 1620 Monthly 12 1 27 60 0.9 1.0 

MOGA-II 1620 Monthly 12 1 27 60 0.5 0.1 
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Fig. 8. Evolution of objective functions. Example of optimizing control settings for a day. 

Fig. 9. Flowchart of the optimization process implemented in modeFRONTIER for configuration no.2. 
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3.6. Assessment of optimization strategies 

Six cases were designed to assess the impacts of each group of

design variables on the energy robustness of buildings under cli-

mate change: 

1. 2016-base : This is the 2016-compliant base-case model with

fixed heating and cooling setpoint values and no automated so-

lar shadings. 

Three cases were developed to identify the most effective opti-

mization strategy: 

2. 2016-EnvelopeOpt: Envelope properties of the 2016-base model

optimized using configuration no.1. Control settings are not op-

timized and remain the same as for the 2016-base. 

3. 2016-ControlOpt: Configuration no.2 used in the optimization

process. The control settings were optimized. The envelope

property values were fixed and equal to the 2016-base model.

Automated solar shading is added to the 2016-base model and

optimum daily values are used for setting the setpoint values

for space heating and cooling and solar shading control. 

4. EnvelopeOpt + ControlOpt: Envelope property values were as for

the solution 2016-EnvelopeOpt. Configuration no.2 was used for

the optimization of control settings. 

The building that we assumed was compliant with 1980s qual-

ity standards was then used in optimization. 

5. 1980-base: This building model has the same geometry as the

2016-base, but has a construction that is set to typical 1980s

quality standards. 

It should be noted that only optimizing the building envelope

without upgrading the HVAC systems may not be comply with the

latest legislative requirements (e.g. in Europe the Energy Perfor-

mance of Buildings Directive). It may also not be compatible with

the lifecycle of an HVAC system, which is not more than 30 years.

Renovating a 1980-compliant base-case building by upgrading the

HVAC systems to recent requirements (let’s say 2016) and opti-

mizing the building envelope to maximize its energy-robustness

and energy-efficiency gives the 2016-EnvelopeOpt . Furthermore, op-

timizing the envelope properties and the control settings gives the

EnvelopeOpt + ControlOpt . We therefore study the case in which an

existing building is enhanced by optimizing its control settings,

which requires a low level of investment. 

An additional case was therefore studied: 

6. 1980-ControlOpt: Configuration no.2 was considered for the op-

timization process. The control settings were optimized. Enve-

lope property values fixed and equal to the 1980-base model.

Automated solar shading was added, optimum daily values

used for setting the setpoint values for space heating and cool-

ing and solar shading control. 

4. Robustness evaluation 

All the above 6 cases were tested against a weather file dataset

of 74 representative weather files generated for the city of Geneva,

to test the effectiveness of the proposed method and demonstrate

the most energy-robust building variant to climate change. The set

of the representative weather files was synthesized in a previous

study [56] . The synthesis was carried out to determine both ex-

treme and typical climate conditions that represent a suitable test

bench for investigating the energy performance of a building under

changing climate. The weather files are divided into three groups: 

• TMY group: includes two weather files, the IWEC typical mete-

orological year (TMY) and a TMY generated by Meteonorm 
• Statistical group: six weather files generated using the mor-

phing method by CCWorldWeatherGen and WeatherShift, and

three weather files generated using the stochastic method by

Meteonorm 

• Dynamical group: 21 weather files generated using dynami-

cal downscaling and that represent typical conditions and 42

weather files generated using dynamical downscaling and that

represent extreme conditions. 

Typical weather files refer to the files that are generated

hrough statistical downscaling or dynamical downscaling (TDY se-

ies). Extreme weather files refer to ECY and EWY files that rep-

esent extreme cold and warm years (using the RCM dynami-

ally downscaled data). All the above methods provide 72 future

eather files for the city of Geneva. More details are provided in

56] . 

This assessment methodology was applied to identify the most

ffective optimization strategy that can give a new building a ro-

ust energy performance under climate change and measure the

obustness potential. 

. Results 

The first optimization round was performed to find optimal

alues for the building envelope properties (2016-EnvelopeOpt).

he optimization parameters were set as described in Section 3.4 .

ig. 10 shows the scatterplot of the simulated building variants us-

ng MOGA_II and NSGA_II algorithms. MOGA_II demonstrates bet-

er performance by covering a larger area of the design space and

roviding a Pareto frontier closer to the utopia point. 

The optimal solution is selected from the Pareto frontier using

he approach described in Section 3.4 . The Pareto frontier is, in this

pproach, first normalized to values between zero and one, the so-

ution with minimum distance to the ideal point then being se-

ected as the optimal solution. The normalized Pareto frontier and

he selected solution are shown in Fig. 11 . 

Table 5 presents the values of the optimal solution (2016-

nvelopeOpt) and compares them with the values of building en-

elope properties for the 2016-base and 1980-base cases. 

A built-in tool from modeFRONTIER was used to calculate the

ontribution of each variable to the objective functions (as de-

cribed in Section 3.5 ), to better understand the importance of

ach variable on the variability and mean of primary energy use.

he analysis was conducted on the dataset generated from the op-

imization process with 1620 evaluations using MOGA_II algorithm.

he tool created two statistical models of the global variance for

bjective function No.1 and No.2 from which the main effects of

ach variable were derived as a percentage (contribution index).

he reported values for the R-squared (coefficient of determina-

ion) of the models were 0.958 for objective function No.1 and

.933 for No.2. R-squared is a statistical measure of how well the

egression model approximates the data, and therefore provides in-

ormation on the goodness of fit of the model [76] . An R-squared

f 1 indicates a perfect fit. The results of this analysis are shown

n Fig. 12 . 

Fig. 12 shows that the variance in objective function No.1 is

ainly influenced by the window SHGC (X02), roof thermal resis-

ance (X05) and floor thermal resistance (X08) input variables. The

ariables that exercise the greatest influence on objective function

o.2 are window U-value (X01), roof thermal resistance (X05) and

all thermal resistance (X07). The results reveal that, for the city

f Geneva, window SHGC plays a significant role in the sensitiv-

ty of the building’s energy performance to outdoor climate con-

itions. The thermal properties of windows and roof of buildings

re, for this city, the key design variables for improving the energy-

obustness of buildings to climate change. 
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Fig. 10. Scatter plot for the optimization of building envelope properties (in orange are building variants using MOGA_II algorithm and in green the ones based on NSGA_II 

algorithm). 

Table 5 

comparison of the optimal values for the building envelope properties (2016-EnvelopeOpt) with 2016-base and 1980-base 

cases values. 

Variable names Description of variables Unit of measure 2016-base 1980-base 2016-EnvelopeOpt 

X01 Window U -value W/(m 

2 K) 0.41 3.35 0.20 

X02 Window SHGC – 0.38 0.39 0.10 

X03 Window visible transmittance – 0.49 0.80 0.69 

X04 Roof solar absorptance – 0.70 0.92 0.31 

X05 Roof thermal resistance (m 

2 K)/W 8.10 2.98 33.20 

X06 Wall solar absorptance – 0.70 0.92 0.10 

X07 Wall thermal resistance (m 

2 K)/W 3.07 1.34 33.20 

X08 Floor thermal resistance (m 

2 K)/W 0.22 0.22 0.24 

X09 Infiltration 1/h 0.37 1.72 0.04 

Fig. 11. Normalized Pareto frontier with the selected optimal solution in black (in 

orange are normalized Pareto frontier using MOGA_II algorithm and in green the 

ones provided by NSGA_II algorithm). 
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The next step is to find solutions for 2016-ControlOpt,

nvelopeOpt + ControlOpt and 1980-ControlOpt using optimization

onfiguration no.2. This configuration allows optimum daily values

or heating, cooling and shading setpoints to be found. The 2016-

ontrolOpt case finds the optimum values with envelope proper-

ies remaining as for the 2016-base case. This process was also ap-

lied to the 1980-ControlOpt case by keeping envelope properties

s for the 1980-base case. The EnvelopeOpt + ControlOpt case finds

hese values with the optimum building envelope properties set as

or the 2016-EnvelopeOpt. This step is a combination of configu-

ation no.1 and no.2. The above-mentioned process provides solu-

ions for the configuration of the six cases described in Section 3.5 .

he robustness to climate change of the six cases were assessed af-

er performing all the optimizations. Each case underwent 74 an-

ual simulations using 74 representative weather files (described

n Section 4 ). 

Fig. 13 shows the results of this assessment. These are the dis-

ribution of 74 primary energy values calculated for each case un-

er 74 different weather files, which includes typical and extremes.

his shows that the primary energy use of the 1980-base case has

he highest sensitivity to changing climate by a significant margin.

ensitivity in falling order is 1980-ControlOpt, 2016-base, 2016-

nvelopeOpt, 2016-ControlOpt and EnvelopeOpt + ControlOpt. The

tatistics that are based on the 74 primary energy values calculated

or each case are presented in Table 6 . The relative change (%) of

ean and standard deviation (SD) of all cases are compared on the

ight side of the table with values for the 1980-base and 2016-base

ases. 
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Fig. 12. The effects bar chart of contribution indices shows the relative importance of different design variables, that is the percentage contribution of each variable to the 

global variance of each objective function. 

Fig. 13. Qualitative distributions comparison of the six cases. For better readability, the distribution of 1980-base is separated from other cases. 

Table 6 

Descriptive statistics based on 74 calculated primary energy use for each case. 

Cases Primary energy use (kWh/m 

2 ) Relative Change (%) to 

1980-base value 

Relative Change (%) to 

2016-base value 

Mean SD Min Median Max Mean SD Mean SD 

1980-base 521.7 26.3 485.1 514.7 602.4 0.0% 0.0% 98.1% 354.5% 

1980-ControlOpt 301.8 21.4 275.4 296.5 363.5 −42.1% −18.7% 14.6% 269.6% 

2016-base 263.4 5.8 257.1 260.7 284.0 −49.5% −78.0% 0.0% 0.0% 

2016-ControlOpt 239.4 4.6 234.9 237.5 257.1 −54.1% −82.4% −9.1% −19.9% 

2016-EnvelopeOpt 246.7 2.1 244.2 246.2 254.6 −52.7% −92.1% −6.3% −64.0% 

EnvelopeOpt + ControlOpt 225.5 1.1 223.9 225.1 228.9 −56.8% −95.9% −14.4% −81.5% 
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Looking deeper into the results, the distribution of 2016-

otrolOpt has a lower mean than the 2016-EnvelopeOpt but has

 longer tail that covers the distribution of the 2016-EnvelopeOpt

ase. This means that the EnvelopeOpt case has a higher energy

emand than the 2016-CotrolOpt case, but that the demand is

ore predictable under extreme conditions. Comparing the 1980-

ase and 1980-ControlOpt shows that optimum control settings

ause a significant reduction in the mean primary energy use. Vari-

tion, however, remains significantly high and is unreliable dur-

ng extreme climate conditions. The highest value of the 1980-

otrolOpt case is, however, still lower than the lowest value of

980-base case. This means a significant improvement can be

chieved by only applying the minimum intervention of optimum

ontrol settings. The EnvelopeOpt + ControlOpt case has a very nar-

ow distribution compared to the other cases and also the lowest

ean value. 

The statistics in Table 6 show that the calculated standard de-

iation for the EnvelopeOpt + ControlOpt case is around 5 times

81.5%) smaller than 2016-base case and is almost 24 times (95.9%)

maller than 1980-base case. This points to a significant reduction

f variability in primary energy use. This is in addition to hav-

ng the lowest mean value of primary energy use. This makes the

nvelopeOpt + ControlOpt case not only the most energy-efficient

ase, but also the case with most robust energy performance. It

emonstrates the effectiveness of the proposed method for design-

ng buildings with robust energy performance under future climate

ncertainties. 

The results furthermore show that shading and control settings

ave the highest impact on energy-efficiency. In other words, ad-

usting the cooling and heating setpoints to optimum values and

ncluding the solar incident setpoint for shading gives a significant

eduction in primary energy use under typical conditions. Optimiz-

ng building envelope properties effectively reduces f 1 , and gives a

olution that has a lower variability in its response to extreme con-

itions and therefore better energy performance robustness. 

. Conclusions 

This paper provides an account of a number of avail-

ble technologies. These include building performance simulation

ools, simulation-based optimization techniques, robust design ap-

roaches and climate model data. The paper then describes a

ethod that is based on a combination of these that allow the de-

ign of buildings with a more robust and efficient energy perfor-

ance in the face of climate change. The main goal of this study

as to provide a computationally feasible and easy to understand

ethod that can be used effectively by building designers, archi-

ects and engineers to improve the robustness of their designs to

uture climate uncertainties. 

Our work, in summary, proposes a robust design optimization

RDO) workflow. The aim of this is to achieve an optimum solution

nd its energy performance which has a minimum sensitivity to

limate variations. The key to the method’s feasibility is consider-

ng climate variations using only three weather files. These are typ-

cal (TDY), extreme warm (EWY) and extreme cold (ECY) weather

onditions. A multi-objective optimization process was configured

ith two objective functions. Minimization of objective functions

nsures a building with low energy use under the most likely con-

itions and with minimum variance under disturbances or extreme

vents. Building envelope properties of the 2016 compliant model

2016-base case) were optimized in the first step. The optimum so-

ution selected is called 2016-EnvelopeOpt ( Fig. 10 ). Building en-

elope properties of the 2016-base case were unchanged in the

econd step. Shading was, however, added, and the daily control

etting of heating, cooling and shading were optimized. The so-

ution from this step is called 2016-ControlOpt. This process was
erformed on the 1980 compliant model (1980-base case).The en-

elope properties were unchanged and control settings were opti-

ized and presented as 1980-ControlOpt. 

Comparing the acquired results allows: 

– The impact of different interventions on the energy-robustness

of a building to be better understood, interventions ranging

from deep and costly interventions such as to envelope prop-

erties to less costly interventions such as shading and control

settings. 

– The impact of such interventions to be shown for a building

that is built according to a recent energy code, and for a build-

ing that is built to a 1980s construction quality. 

In the final step, optimization was performed to find optimum

ontrol settings for heating, cooling and shading for the optimum

nvelope properties case (2016-EnvelopeOpt case). This resulted in

he EnvelopeOpt + ControlOpt case, in which both envelope prop-

rties and control settings are optimized. 

The results demonstrate that optimum daily setpoint tempera-

ures for cooling and heating, and solar incident setpoint for shad-

ng, allows a significant reduction in primary energy use under

ypical conditions (2016-ControlOpt and 1980-ControlOpt cases). 

ptimizing the building envelope properties (2016-EnvelopeOpt)

urthermore significantly reduces the variability of performance

nder changing climate conditions, including extreme conditions.

inally, optimizing both envelope properties and the control set-

ings achieves the most energy-efficient solution with a robust en-

rgy performance (EnvelopeOpt + ControlOpt case). This case has a

onsiderably lower sensitivity to climate conditions by having low-

ariability performance, and also minimum energy use. 

. Future works 

The simplicity and the low computational demand of the pro-

ess underlies the feasibility and applicability of this method. The

pproach can be used at any stage of the design process and can

elp architects and engineers improve the robustness of their de-

ign to future climate uncertainties. This study has only exam-

ned the method on a reference building in the city of Geneva.

pplying this method to other locations and to different types of

uildings can therefore give a deeper knowledge of designing fu-

ure buildings with robust performance. The approach used in this

tudy can also be used as a guideline to develop further robust

esign optimization (RDO) processes for other significant noise fac-

ors than climate (e.g. occupant behavior) and other target perfor-

ances than energy (e.g. indoor environmental qualities). We are

urrently in the process of investigating an RDO in which both cli-

ate and occupant behavior are a source of variations. We believe

hat our research will also serve as a basis for future studies at

he urban scale, where robustness of built environment to climate

hange impacts are crucial. 
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