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A B S T R A C T

Zero-day attack detection and categorization is an open-research field where four main context factors need
to be taken into account: novel or zero-day attacks (i) are unlabeled by definition, (ii) may correspond to
out-of-distribution data, (iii) can arise concurrently, and (iv) distribution shifts in the feature space need online-
learning. Given such constraints, the online detection and categorization of new cyber threats can be modeled
as a heterogeneous collective anomaly detection problem, for which no online-learning solutions exist purely
based on back-propagation. To this respect, this paper presents an online-learning, end-to-end back-propagation
strategy for Automatically Synthesizing the potential signatures or Attack Prototypes of novel cyber threats
(asap). The presented framework incorporates automatic feature engineering, operating over raw data from the
OpenFlow monitoring API and raw bytes of traffic captures. In asap, specialized inductive biases enhance the
training data efficiency and accommodate the inference machinery to resource-constrained scenarios such as
the Internet of Things. Finally, the validity of this framework is demonstrated in a live training experiment
comprising IoT traffic emulation 3.
1. Introduction

Anomaly detection has been applied to infer the presence of cyber-
attacks among network-related data for decades [2]. Moreover, the
Network Intrusion Detection (NID) research community has recently so-
phisticated vanilla offline statistical analyses to face the challenges pre-
sented by distribution shifts among observed data. Approaches based on
online-learning [3] and continuous-learning [4] have been implemented
to dynamically adapt the definition of normal and abnormal patterns in
network observations. Online-learning models produce inferences each
time they process a single observation, while offline-learning models
collect observations and perform bulk processing over them to produce
a result in a second moment.

Another challenging objective accomplished by state-of-the-art NID
approaches is training-data efficiency: recent approaches based on
Few-shot Learning (FSL) [5] have increased the learning efficiency of
neural networks, enabling them to learn from low training samples.
In this context, a recent synergic advance to FSL-based NID is Multi-
Modal learning (MML) [6,7], where cyber-attacks are analyzed through
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multiple domains or feature-sets. If at least one of these feature sets is
labeled, on-the-fly categorization of zero-day attacks is possible even
on a Zero-Shot Learning (ZSL) basis [8].

In general, learning from multiple domains has proven useful to
enhance the context-awareness of NIDs based on Machine Learning
(ML), giving the inference machinery a 360◦ visibility of the network
state and thus augmenting the quality of predictions [9]. In this context,
Software Defined Networking (SDN) [10] is a game-changing technol-
ogy that enables the fine-grain monitoring of the data plane and the
efficient management of the control plane [11].

This paper investigates the best combination of the above-mentioned
techniques (i.e., online-learning, few-shot learning, multi-modal learn-
ing, and SDN-based monitoring) to face a still-to-resolve challenge in
the current research landscape of NID: the online categorization of col-
lective anomalies from raw network observations. Moreover, this cat-
egorization is made without manual feature selection/pre-processing,
but within an end-to-end automatic feature engineering pipeline. To
this respect, it is noted that offline analyses of traffic traces can use
unsupervised learning techniques to cluster anomalies [12]. However,
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although semantically rich and impactful, offline analyses usually lack
timeliness in the context of attack discovery and mitigation [13].

Moreover, the assumption of having a labeled set of samples for
new attacks in any feature domain may not be strictly realistic, limiting
the effective usefulness of partially labeled ZSL-based detectors of new
attacks [14]. For this reason, this paper presents a candidate modeling
strategy for zero-day attack detection and categorization by framing
the problem into a heterogeneous Collective Anomaly Detection (CAD)
problem [13], where not only multiple observations are classified as
anomalies, but these might also be clusterized into different classes.

The issue of heterogeneous CAD could be solved by importing
recent deep clustering frameworks [15]. Still, two main reasons may
impose a different strategy: (i) the Out-Of-Distribution (OOD) character
of new attacks may require a meta-learning approach [16], and (ii)
the computational resource restriction at the network’s edge imposes
favoring inductive biases over the depth of neural networks [17]. For
these reasons, prototypical networks [18] and manifold learning [19]
are imported in asap. The first end-to-end backpropagation pipeline for
Automatic Synthesis of zero-day Attack Prototypes.

Main contribution

This paper presents an end-to-end back-propagation approach for
online-learning to concurrently detect multiple Zero-day Attacks (ZdA)
while synthesizing their corresponding latent prototypes. Three main
characteristics make of asap a relevant approach in the field of machine-
learning based intrusion detection pipelines:

(1) The presented pipeline classifies both known and unknown traf-
fic and is implemented using end-to-end back-propagation. Con-
sequently, it permits online-learning and does not rely on man-
ual feature selection/engineering.

(2) Prototypical learning is at the core of asap, importing the benefits
of increased training data efficiency and enhancing compatibility
with low-computational resource scenarios such as the IoT.

(3) With respect to canonical anomaly detection techniques, asap fo-
cuses on learning to simultaneously categorize a heterogeneous
out-of-distribution set of anomalies into multiple classes.

Finally, it is worth noting that, to the best of the authors’ knowledge,
the three concurrent goals of asap, namely, multi-class classification,
ZdA detection and clustering, constitute an original outcome for an
end-to-end DL pipeline.

Outline. After clarifying some preliminary concepts in Section 3, and
offering a summary of the related works in Section 2, this paper
presents a detailed description of the proposal in Section 4. A use
case study is then provided in Section 5, describing and discussing
the obtained results. Finally, the work limitations and future research
directions are pointed out in Section 6.

2. Related works

The authors of [8] relied on zero-shot learning to achieve ZdA
detection. They used supervised learning counting on descriptions of
seen classes and with parallel labels of unseen classes on another
domain. In this work, autoregressive neural networks are used to
translate between the feature domain and the semantic domain. More
specifically, the authors of this work used prior knowledge of attacks
whose samples were not included in the training dataset to compare
their hidden representations with those of testing data at inference
time. Similarly, the work in [20] uses manifold alignment to create
cluster correspondences between different slices of the same datasets
and between different datasets. The alignment between a full-labeled
source dataset and a partially labeled target dataset performs zero-day
2 
attack inferences on the second. To assess their method, the authors
performed experiments using different chunks of the NSL-KDD dataset.4

The authors in [21] introduced a hierarchical model with raw
traffic passes through two stacked anomaly-detection modules. The
first anomaly detection component separates known-benign traffic from
potentially anomalous patterns. The former are filtered from the initial
input, and the latter enters a second module, which operates ZdA
detection. The authors of this work designed two threshold parameters
related to the first anomaly criterion and the second confidence crite-
rion that associates an anomaly to a known attack class or a potential
ZdA. The work in [22] offers a two-step ZdA attack detection pipeline
based on conditional and variational neural networks. The outputs of
the first phase are related to a closed-set classification task, while in
the second stage, the reconstruction errors of conditional autoencoders
are used as a ZdA association score.

The authors of [23] presented a few-shot classification pipeline
based on a fusion of the prototypical and graph convolutional networks.
The raw bytes of flows’ traffic captures were mapped to pixels on
learning images. Few-shot learning was then performed on such image
samples. The authors of this work also validated their algorithm with a
fraction of the IoT-23 [24] dataset. The authors of [25] focused on few-
shot intrusion detection framing it as a hyper-parameter optimization
problem and using the model-agnostic meta-learning paradigm [26].
The authors of [27], instead, used capsule networks [28] in the feature
learning stage to enhance the performance of prototypical FSL in the
context of NID. In contrast to the few-shot settings of these works, the
asap method infers unknown attacks on an open-set basis, i.e., without
using labels at test time.

The authors of [29] presented a pipeline for intrusion detection that
inverts the approach of [21]. First, a high-dimensional latent space
is constructed, and a convolutional neural network divides inputs be-
tween benign and known attacks. Then, two anomaly-based classifiers
analyze the traffic deemed as benign to identify oversights and novel
attacks. The authors differentiate between novelty and OOD attacks and
use their approach to detect only the former. Recent surveys on ZdA
detection are available in [30–32].

The framework in [14] focuses on the heterogeneous categorization
of OOD observations. It presented a hint-labeling strategy to extend
the episodic learning in [18] to anomaly detection tasks. The neural
algorithmic reasoning blueprint [33] is used to ZdAs considering a
two-level taxonomy of attacks (macro-attacks and micro-attacks) and
low-dimensional tabular data. A successive extension of this work [34]
presents a two-step process where the neural processor is offline pre-
trained on low-dimensional data to reach convergence on a fine-tuning
stage using high-dimensional raw-packet bytes. asap represents the first
step toward an end-to-end extension of these contributions in which a
single-level taxonomy of attacks is considered.

The assumption of having second-domain labels for unknown at-
tacks limits the effective applicability of ZdA detectors. For this reason,
with respect to [8,20], asap disregards such a hypothesis. Moreover, this
work not only seeks to combine closed and open-set classification [21,
29,35], but it additionally addresses the categorization of multiple con-
current ZdAs. With respect to multi-step training approaches [22,34],
asap focuses on end-to-end learning, augmenting training efficiency. In
contrast to the few-shot settings of [23,25,27], the presented method
is zero-shot because it does not need human-expert labels to categorize
multiple possibly unknown attacks at test time.

3. Preliminaries

This section presents some preliminary concepts at the core working
principles of asap. Table 1 contains a list of the abbreviations used in
this paper, apart from the proper names of algorithms.

4 https://www.unb.ca/cic/datasets/nsl.html
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Table 1
Abbreviations used in this paper.

Abbreviation Meaning

API Application Programming Interface
ARI Adjusted Rand-Index
ARP Address Resolution Protocol
ANN Artificial Neural Network
BCE Binary Cross-Entropy
BN Batch Normalization
CAD Collective Anomaly Detection
C&C Command-and-Conquer
DDoS Distributed-Denial-of-Service
DoS Denial-of-Service
DL Deep Learning
FSL Few-Shot Learning
GAT Graph Attention Network
HPO Hyper-Parameter Optimization
HScan Horizontal Scan
IoT Internet of Things
ML Machine Learning
MML Multi-Modal Learning
MLP Multi-Layer Perceptron
NID Network Intrusion Detection
OOD Out of Distribution
PL Prototypical Learning
PN Prototypical Networks
RN Relation Network
SDN Software-Defined Networking
TNP True Negative-Proportion
TPP True Positive-Proportion
ZdA Zero-day Attacks
ZSL Zero-Shot Learning

3.1. Prototypical meta-learning

Prototypical Networks (PN) [18] offer a neural architecture strategy
that decouples the classification task from the singular distributions
of classes. PNs are biased toward learning a representational space
where the Euclidean distances between latent vectors describe the class
assignment of each inputs. A detailed explanation follows on how such
a representational and discriminative mechanism works.

PNs are trained through episodic learning : given in input a set of
query and support latent samples, PNs make a multi-class classification
inference for each one of the former as a function of the labels of the
latter. Let the input batch be represented by ℬ = {ℬ𝑆 ∪ ℬ𝑄} where
ℬ𝑆 is the set of support latent vectors 𝐳𝑠1, 𝐳

𝑠
2,… , 𝐳𝑠

|ℬ𝑆 |
and ℬ𝑄 is the

set of query latent vectors 𝐳𝑞1 , 𝐳
𝑞
2 ,… , 𝐳𝑞

|ℬ𝑄|

. The class-wise centroids or
rototypes are computed using the support latents:

𝑖 =
1
𝑁𝑖

𝑁𝑖
∑

𝑗=1
𝐳𝑠𝑗 , ∀𝐜𝑖 ∈ 𝒞 , s.t. 𝐳𝑠𝑗 ∈ ℬ𝑆 , ∀𝑗 ∈ {𝑖,… , 𝑁𝑖} (1)

here 𝑁𝑖 is the number of support latents in class 𝑖 and 𝒞 is the set of
lasses included in ℬ.

Successively, PNs build a classification logits vector for each query
ample where the vector components are the association scores to
ach class. These scores are inversely proportional to the Euclidean
istances between the latent representation of the query sample and
he correspondent class prototype. asap uses PNs to perform multi-class
lassification of attacks. By doing so, the class prototypes learned in the
N framework are mapped to latent attack signatures. To obtain these
ignatures for unlabeled attacks, two additional steps are required,
hich are now explained.

.2. Zero-day attacks

Zero-day attacks are new types of cyber threats that exploit vul-

erabilities in software or hardware that have not been patched or

3 
fixed by the vendors [30]. Applying ML to detect unknown attacks is
an open research area, mainly because statistical-based models lack
OOD generalization capabilities [36]. ZdA detection can be seen, in
fact, as an OOD anomaly detection task, where anomalies correspond
to samples of zero-day attacks. The held-out data in OOD anomaly
detection must come from a different set of classes concerning those
used for training. For this reason, the attack classes used for training
differ from those used for testing. Moreover, in the context of episodic
learning, by the definition of ZdAs, the test ZdA input samples do not
have a labeled support set [32].

3.3. Manifold learning for clustering-friendly latent spaces

Generalizable tasks, like meta-learning and OOD clustering, might
require a strict alignment between the semantic relations in data and
the geometrical distribution of the correspondent representations in the
latent space. Manifold learning [19] refers to a set of techniques that
steer the convergence of the latent-space toward such a goal. Inspired
by the deep clustering research community [15], this paper uses both
contrastive and associative regularization to induce the convergence of
a latent space that permits clustering to OOD samples.

The working principle of this regularization mechanism is as fol-
lows. Given an input batch ℬ, the corresponding class one-hot labels
𝐲𝑖,∀𝑖 ∈ |ℬ| are used to build a semantic adjacency kernel 𝐀:

𝐀 =
[

𝑎𝑖𝑗
]

𝑖,𝑗∈|ℬ|

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐲1
𝐲2
⋮

𝐲
|ℬ|

⎤

⎥

⎥

⎥

⎥

⎦

×

⎡
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⎢

⎢

⎢

⎣

𝐲1
𝐲2
⋮

𝐲
|ℬ|

⎤

⎥

⎥

⎥

⎥

⎦

𝑇

On the other hand, pair-wise similarities 𝛼𝑖𝑗 between the latent rep-
esentations 𝐳𝑖, 𝐳𝑗∀𝑖, 𝑗 ∈ |ℬ| are computed. The similarity distributions
re then used to minimize the divergence between the predicted and
round truth similarity and distance distributions using cross-entropy:

𝐴𝑅 = − 1
|ℬ|

|ℬ|

∑

𝑖=1

(

𝒂𝑇𝑖 ⋅ log(𝜶𝑖) + (1 − 𝒂𝑖)𝑇 ⋅ log(1 − 𝜶𝑖)
)

where𝒂𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑎𝑖1
𝑎𝑖2
𝑎𝑖3
⋮

𝑎𝑖|ℬ|

⎤

⎥

⎥
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⎦

and 𝜶𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛼𝑖1
𝛼𝑖2
𝛼𝑖3
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𝛼𝑖|ℬ|

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(2)

By minimizing (2), the alignment between the semantic and latent-
space geometrical relations of samples is maximized. In other words,
the model is biased toward learning the distribution of similarities
between the environment observations, which is denoted as 𝒟 . Being
a distribution of a property which is relative to two or more objects,
this distribution is said to lay on a higher level of abstraction with
respect to the absolute features of inputs. Notice that 𝒟 describes the
regularities that permit to cluster elements in a way which is consistent
with the semantic labels at hand. Note also that the existence and the
learnability of 𝒟 is a fundamental requirement toward generalizing
collective anomaly detection over previously unknown observations.
The next section gives a detailed description of the proposed pipeline.

4. The asap framework

This section describes the asap framework for the online automatic
obtainment of ZdA signatures in the latent space through end-to-
end back-propagation. The following description follows the schematic
representation in Fig. 1.

4.1. State space

The observational or state space of asap is that of an IoT network
and is represented by point (A) in Fig. 1. More specifically, the main
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Fig. 1. Schematic representation of the asap framework. Features from two-domains are aggregated through time using per-domain recurrent layers. The last outputs of the recurrent
layers are sent through sparse linear projections and concatenated to create the latent flow representations. The SDN controller is trained using prototypical classification and
adjacency regression toward online detection and clustering of potential attacks out-of-distribution without any further supervisory signal.
components of information considered refer to network level flows,
i.e., those having the same source and destination IP addresses, and
are of two modalities:

(1) Anonymized raw packet captures. Our neural modules ingest
the binary octets of network-level packets. An example of such
binary octets from an IPv4 packet can be the following:

4500 003c 1c46 4000 4006 b1e6 c0a8
c0a8 0002 0050 0050 9fa5 17aa 0000
a002 7210 2d78 0000 0204 05b4 0101

Where the binary encoding has been changed to hexadecimal
values for readability purposes. The first 64 octets are taken to
include the network and transport-layer headers, as well as a
part of the payload. Importantly, the IP addresses and transport
ports of these packets are masked to prevent the neural modules
from using them as discriminators [37]. To characterize each
network-level flow, the bytes from the sequence of the last 𝑛
packets is embedded on a feature tensor. In our experiments,
the value of 𝑛 = 1 held the best balance between accuracy and
learning efficiency. Appendix A contains more details on how
the value of 𝑛 was chosen.

(2) Flow statistics from edge forwarders. asap assumes to operate
over an SDN-compatible network scenario where an SDN switch
sends network observations to an SDN controller. Specifically,
a sliding-window sequence of flow statistics is provided by an
SDN switch [38] through the Flowstats request and responses of
the OpenFlow protocol [39], a popular southbound interface for
SDN. To build the flow feature tensors, three features extracted
from the OpenFlow API were used: byte count, flow duration in
seconds, and packet count.

asap first processes features of each data-domain separately, as
represented by point (B) in Fig. 1. For each data-domain and at any
instant 𝜏, a multi-dimensional set of inputs 𝐗𝜏 ∈ R𝑁,𝑑 , is considered
where 𝑁 is the batch dimension and 𝑑 is the feature dimension of
the considered data modality. After concatenating these input vectors
across the time dimension, a three-dimensional input 𝐗 ∈ R𝑁,𝑑,𝑡 is
built by stacking the last 𝑡 matrices 𝐗𝜏−𝑡+1,… ,𝐗𝜏−1,𝐗𝜏 . Notice that,
if provided, more feature domains with respect to those mentioned
above can be easily added in this setting. The interested reader is
referred to [1] for experiments with a three-modality setting in which
node-status features are incorporated to the input space.
4 
4.2. Automatic and adaptive feature engineering

Online learning implies online and adaptive feature processing. To
this end, a learnable Batch Normalization (BN) layer [40] is used
in asap. During training, BN normalizes inputs using the feature-wise
mean and variance computed from the current mini-batch of data.
By normalizing the activations, batch normalization helps to reduce
the change in the distribution of inputs to subsequent layers during
training.

The automatic nature of feature engineering in asap derives instead
from the fact that raw-bytes of packets are fed to the neural network
which extracts suitable representations of these, by using only the
gradients of the downstream loss functions. In this sense, the presented
framework avoids manual feature selection and engineering, and deliv-
ers a neural machinery that can process network traffic of any type in
the form of binary raw-bytes, as mentioned in Section 4.1.

4.3. Recurrent time-series processing

After passing the time-series inputs through BN, any type of re-
current module can be used to learn a collapsed representation for
each sequence of inputs, leading to a two-dimensional representation
𝜒 ∈ R𝑁,ℎ, where ℎ is the latent-space dimension. In asap, a Gated
Recurrent Unit (GRU) layer is used for this purposes. Such a recurrent
module uses gating mechanisms to efficiently manage information flow,
improving performance on sequential data tasks by mitigating issues
like the vanishing gradient problem that were presented by other
recurrent modules [41]. More detail on the GRU layer’s implementation
is provided in Appendix C.

The latent-space dimension is bigger that the dimension of the
original feature space (ℎ ≫ 𝑑) to reduce the representational bottleneck
and facilitate the separability of different classes in the latent space.
Each data modality is processed by its own GRU layer, as schematized
in point (C) in Fig. 1. Finally, the rows of every domain-specific
matrix 𝜒 ∈ R𝑁,ℎ are concatenated to form a combined latent flow
representation 𝐳𝐢, ∀𝑖 ∈ {0, 1,… , 𝑁}, as represented by point (D) of the
same figure.

4.4. Prototypical learning

asap performs Prototypical Learning (PL) [42] over such latent
representations. More specifically, for each query latent 𝐳𝑞𝑖 , the in-
verses of its distances to each prototype are computed to form a logits
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Fig. 2. Left: Prototypical classification uses a set of support labeled latent represen-
tations (colored dots) for each class to compute the classes’ centroids or prototypes
(colored crosses). For each query sample latent (black dots), the class association score
is inversely proportional to the distances to each corresponding prototype (colored
dashed lines). Right: For each query input sample, its ZdA score is proportional to the
distance between its latent representation and the closer prototype. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

classification vector 𝐥𝑖:

𝐥𝑖 =1∕([𝑑1𝑖 , 𝑑
2
𝑖 , 𝑑

3
𝑖 ,… , 𝑑|𝒞 |

𝑖 ] + 𝜖) with:
𝑑𝑗𝑖 =‖𝐳𝑞𝑖 − 𝐜𝑗‖2 ∀𝑗 ∈ 𝒞

(3)

where 𝜖 is a little fixed value added for numerical stability purposes.
Successively, the multi-class cross-entropies between the predicted

class assignations and the ground-truth labels of query samples are
computed and averaged over the query batch:

ℒ𝑐𝑠 = − 1
|ℬ𝑄|

|ℬ𝑄|

∑

𝑖=1
𝐲𝑖 ⋅ log(𝐥𝑖) (4)

where 𝐲𝑖 is the one-hot label of the 𝑖th query sample, and the log
operation is performed element-wise. The prototypical classification of
flow latents is represented by point (E) in Fig. 1.

During training, the input samples are divided between benign
traffic, known attacks, and unknown attacks, also called training ZdAs,
which are replaced by a different set of ZdA classes at test time.
Thus, to online detect and cluster OOD anomalies, the representational
machinery in asap accommodates two additional outputs for each query
input sample: first, a ZdA score for each query sample, and second, an
adjacency matrix that clusters all the input batch into classes. These
two additional outputs are now explained.

4.5. ZdA discrimination

Once the multi-class classification vectors 𝐥𝑖, ∀𝑖 ∈ |ℬ𝑄| are ob-
tained, the positions corresponding to training ZdAs are masked to
zero, and the one’s complement of such masked vectors are computed.
The minimum values for each of the resulting complement vectors are
then selected and passed through a Sigmoid function. The final values,
𝜇𝑖 ∀𝑖 ∈ |ℬ𝑄|, are then used as ZdA scores for the corresponding query
samples, as represented in Fig. 2 . Finally, the mean Binary Cross-
Entropy (BCE) of the batch is computed and used as a loss signal for
the anomaly detection task:

ℒ𝐴𝐷 = − 1
|ℬ𝑄|

|ℬ𝑄|

∑

𝑖=1

(

𝑚𝑖 log(𝜇𝑖) + (1 − 𝑚𝑖) log(1 − 𝜇𝑖)
)

(5)

where 𝑚𝑖 is a binary label indicating the ZdA condition of the 𝑖th sample
in ℬ. Note that masking the ZdA positions in the classification vectors
is a key step of this training framework: the class labels of ZdAs are not
used to discriminate them from known attacks during training because
they are assumed to be absent at test time. The ZdA classification is
also represented in point (F) in Fig. 1.
5 
4.6. Adjacency regression

The final step of the pipeline involves clustering anomalous traffic.
To this end, asap uses a Relation Network (RN) [43] which operates on
the latent input representations 𝐳𝐢, ∀𝑖 ∈ {0, 1,… , 𝑁} in the following
manner. First, the absolute value of element-wise subtraction between
the latent vectors is computed. By doing so, a distance vector 𝐝𝑖𝑗 ∈ Rℎ is
obtained for every pair of inputs. These vectors are then passed through
a Multi-Layer Perceptron (MLP), specifically implemented as two fully-
connected neural maps with a LeakyRelu activation in between that
reduces each vector 𝐝𝑖𝑗 to be mapped to a scalar value 𝛼𝑖𝑗 :

𝐝𝑖𝑗 = |𝐳𝐢 − 𝐳𝐣|, ∀𝑖, 𝑗 ∈ {0, 1,… , 𝑁} (6)

𝛼𝑖𝑗 = 𝐖2 ⋅ 𝜎
(

𝐖1 ⋅ 𝐝𝑖𝑗 + 𝐛1
)

+ 𝐛2 (7)

where 𝐖1,𝐖2,𝐛1,𝐛2 are the learnable weights and biases matrices, and
their dimension is consistent so as to project 𝐝𝑖𝑗 to a one-dimensional
space. Overall, the RN ingests pairs of latents and predicts if such a
pair belongs or not to the same class. asap uses the set of 𝛼𝑖𝑗 and the
set of one-hot labels to perform clustering as explained in Section 3.3.
The clustering or relation inference part is represented by point (G) in
Fig. 1.

Finally, the three loss terms in (4), (5), and (2) are summed and
minimized by performing gradient descent with respect to the whole
pipeline parameters (i.e., end-to-end gradient descent). By doing so, the
prototypical latent space is aligned with 𝐀 as much as possible, which
otherwise would not happen.

5. Experiments

This section provides experimental evidence of the effectiveness of
asap in the form of a case study. A CPU-only back-end and IoT traffic
captures are used to test the validity of the proposed framework in a
resource-constrained scenario, with the concurrent presence of known
and unknown malicious traffic. The following paragraphs give more
detail on the experimental settings and a description of the obtained
results.

5.1. Virtual testbed

A virtual testbed was implemented to test the convenience of
the proposed neural machinery in an online learning and zero pre-
processing setting. The testbed is hosted on a GNS3 v 2.2.46 [44],
an open-source robust network emulation software compatible with
node containerization. The GNS3 server runs on Ubuntu 22.04.3 LTS.
A set of attacker and victim nodes are implemented using Docker
containers [45] and connected through an SDN-compatible switch.

The SDN controller is implemented using POX [46], a Python-based
open-source library that helps issue OpenFlow commands to an SDN-
compatible switch. The ‘‘Gar’’ branch of the official POX repository
is used to handle compatibility with Python 3.8.18. The layer-3 for-
warding boilerplate code of such a repository is extended. Such a code
implements Address Resolution Protocol (ARP) request/response and
2-tuple flow matching rules (a flow comprises a source and destination
IP).

5.2. Details on the neural module implementation

A Hyper-Parameter Optimization (HPO) procedure was made to
choose the most suitable neural architecture. Also, the time sequence
length 𝑡 was set to 10, the number of raw packets included in each
time-instant sample, 𝑛, was set to 1, hidden state dimension, ℎ, to 800,
and the number of raw packet bytes per packet was set to 64. Note
that, rigorously speaking, these hyper-parameters could be conceived
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Table 2
Hyper-parameter values and Neural Architecture Specifications.

Hyperparameter Specification

Learning Rate (for all modules) 0.001
Support samples per class (K-SHOT) 5
Query samples per class 20
GRU Recurrent Layers 1
Hidden space dimension (ℎ) 800
Evaluation Batches 50
Loss Function (Closed set classification) Multi-class Cross-Entropy
Loss Function (Open set classification) BCE
Optimizer Adam (no weight decay)
Experience Replay Max Length 1000
Train-Evaluation split (for known traffic) 80% 20%
Relation network’s MLP layer count 2
RN MLP layer dimensions (h_dim, h_dim // 2, 1)
RN activation function LeakyRelu(alpha=0.2)
Num. of packets in the feature vector 1
Num. of flow stats timesteps in the feature vector 10
Num. of. bytes for packet features (𝑓 ) 64
Min. experience tuples for batch training (𝑚) 20

Fig. 3. The network emulation is done over GNS3. An SDN IoT environment is
configured using Docker containers that replay attacker and honeypot behavior. The
SDN controller online trains the neural modules to perform attack-related inferences.
The Network Address Translation (NAT) node is added for train logging purposes.

as manual feature selection. Future work might focus on online adapt-
ing these hyper-parameters when needed.5 Appendix A contains more
details on the HPO procedure.

The DL-based inference modules are implemented using the Py-
Torch deep learning library, version 2.2.0-CPU, and are located inside
the SDN controller. In particular, the 1-layered GRU module, the batch
normalization layer, and the relation network’s MLP were implemented
using the corresponding reference implementations in PyTorch. Table 2
contains a full list of the hyper-parameter values and architectural
specifications of the implemented neural modules. These values hold
on every experiment unless explicitly specified.

5.3. Topology details

The network topology implemented comprises 17 nodes: 10 attack-
ers, 4 victims, 1 SDN controller, and 2 SDN switches. All these nodes
concurrently share the 20 × 2.19 GHz virtual cores at the disposition of

5 Such a necessity did not arise during the experiments hereby exposed.
6 
our hardware back-end. Victims and attackers are based on the Ubuntu
Focal Docker image, while the controller is based on the Python 3.8
image. The switches are based on the OpenvSwitch [47] images in the
GNS3 Docker Hub. A schematic view of the topology from the GNS3
GUI is available in Fig. 3.

5.4. Realistic IoT traffic and attack patterns

The Aposemat IoT23 traffic captures in [24] were used to reproduce
the attacker and honeypot behavior of an IoT network. The IoT23
dataset contains various DDoS attacks such as Gafgyt, Hakai, and Mirai,
Command and Conquer (C&C) malware such as Torii and Okiru, and
other IoT related malware such as the Hajime trojan, the Muhstik worm,
among other attack traces. In our experiments a total of ten attack
types were considered including those previously mentioned. More
specifications on the attacks used and the exact number of traces per
attack is provided in Appendix B.

The set of used attacks is denoted by 𝒜 . Before starting any training
procedure, an arbitrary partition of 𝒜 must be defined as follows:

𝒜 = 𝒜𝐾 ∪𝒜 𝑡𝑟𝑎𝑖𝑛
𝑈 ∪𝒜 𝑡𝑒𝑠𝑡

𝑈 (8)

where each element of the partition corresponds to a disjoint subset of
attacks and has a specific role in the training and evaluation phase of
asap:

(1) The set of known attacks, 𝒜𝐾 ⊂ 𝒜 is used to train and evaluate
known-attack classification. Notice only the labels of the samples
in 𝒜𝐾 will be used to compute the multi-class loss function in
(4). The traffic samples of each attack in 𝒜𝐾 will be used either
for train or evaluation purposes, but not for both.

(2) The ZdA detection task is learned using 𝒜𝐾 and 𝒜 𝑡𝑟𝑎𝑖𝑛
𝑈 . Where

the latter indicates the set of training ZdAs. Each sample in 𝒜𝐾
is given a non-ZdA label while samples in the 𝒜 𝑡𝑟𝑎𝑖𝑛

𝑈 attacks are
labeled as ZdAs. Both of these binary labels are used to compute
and back-propagate the ZdA discrimination loss in (5) during
training.

(3) Finally, the ZdA discrimination is evaluated using 𝒜 𝑡𝑒𝑠𝑡
𝑈 , which

contains samples from attacks that were not seen during train-
ing, i.e., OOD samples. These samples are also labeled as ZdAs
but are used only during evaluation.

Notice that any partition that follows (8) is a potential curriculum
for training and evaluating asap. Two considerations can be made
regarding the significance of different partitions. First, from a field-
expert’s perspective, different attacks might be more amenable to be
assigned to the different subsets of 𝒜 , depending, e.g., on the multiple
levels of knowledge maturity acquired by the community regarding dif-
ferent attacks. Second, from a pure information-theoretical perspective,
the partition that maximizes the divergences in the feature distributions
between train and test attacks could demonstrate a greater generaliza-
tion power of the presented pipeline. The experiments made in this
paper were done over three randomly created curricula as specified
in Appendix B, letting both of the mentioned considerations as future
work.

The traffic captures were analyzed using the dataset’s provider in-
structions to filter and extract the malicious traffic. Refer to Appendix B
for more details on these analyses. Importantly, to ensure a realistic
setting, the malicious flows were reproduced at the same rate they were
recorded using the TCPReplay software [48]. By doing so, the potential
low-frequency attacks are correctly characterized.

5.5. Online labeling and training strategy

In the experiments, each attacker is assumed to perform only one
type of attack. With this assumption, the labeling strategy during
training consists of hard-coding the attackers’ IP addresses with the
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corresponding attack label in the controller node. Annotations are used
to compute the training losses as explained in Section 5.4.

The presented pipeline performs online-learning of each one of its
functional features. Note, however, that the efficiency of this learning
paradigm is subjected to the actual throughput of the observed data,
and can thus be potentially slow, e.g. in the case of low-frequency
attacks. To this respect, adding an Experience Replay (ER) [49] mech-
anism proves useful to accelerate convergence: at each time-step, asap
stores the received set of inputs and labels into a memory buffer to
accumulate training data. These data are then periodically sampled to
perform offline batch-learning6 aside of the online learning activity.

Notice that instantiating one buffer per class permits the balanced
sampling of support and query samples for each known class to imple-
ment episodic learning. The set of class buffers in asap is dynamic in
that it can create new buffers for new classes at runtime, provided that
a new labeled IP sends traffic.

ZdA detection requires careful evaluation. Specifically, even if the
training accuracy in ZdA detection might be perfect, the model could
perform poorly on the evaluation domain given its OOD characteristic.
To this respect, an online-evaluation method has been implemented
in asap: Taking into consideration a fixed partition as defined in (8),
two separate replay-buffers are created for each attack in 𝒜𝒦 . The first
one is used for training purposes, while the second holds test samples.
By doing so, test-data batches can be sampled periodically from the
test buffers, and from the buffers in 𝒜 𝑡𝑒𝑠𝑡

𝑈 to compute the accuracy in
the evaluation domain. If substantial overfitting is observed, i.e., the
evaluation accuracy is worsening as the train accuracy grows, the
hyper-parameters of the pipeline can be changed and the training can
be restarted.7

5.6. Baselines

asap is compared with four baselines to put in evidence the role of
each one of its design choices. The key properties and the experimental
role of such baselines is now explained.

(1) gatv2. This baseline is identical to asap except for the architecture
of the similarity metric module. More specifically, the MLP of the
relation network, which performs the same transformation over
all inputs, is substituted by the attention mask of a dynamic graph
attention layer as defined in [50], which implements different
transformations to each sample in the batch. Comparing asap
with gatv2 aims to answer the following question: can adjacency
regression, as defined in Section 4.6, benefit from using a set-to-set
transformation as opposed to a fixed one? More specific imple-
mentation details of the attention network used in this setting
is given in Appendix D.

(2) skr. Standing for simple kernel regression, this pipeline does not
use the RN’s MLP to cluster points but rather operates clustering
directly over the classification latent space. More specifically,
the only difference between skr and asap is the fact that the
former substitutes the RN’s logic in (6) and (7) by:

𝛼𝑖𝑗 = 𝜎( 1
‖𝐳𝐢 − 𝐳𝐣‖2 + 𝜖

), ∀𝑖, 𝑗 ∈ {0, 1,… , 𝑁} (9)

where ‖ ⋅ ‖2 indicates the Euclidean distance, 𝜎 is a Sigmoid
activation function, and 𝜖 is an arbitrarily-small fixed real-value
added for stability purposes. This baseline is used to test if the
transformation made by the RN in asap is necessary at all.

6 The class-wise experience buffer is sampled after a prefixed number 𝑚 of
xperience tuples is collected, where 𝑚 is a user-defined hyper-parameter. The
xperiments documented in this paper used 𝑚 = 20, as it resulted on a fair
alance between training efficiency and computational overhead.

7 Future works could implement an online adaptation of the pipeline to

ifferent hyper-parameters. p

7 
(3) NoReg. This baseline is identical to skr except that it does not
back-propagate the gradients of (2). The rationale of this base-
line is that the loss term in (2) uses only the labels of known
traffic, potentially biasing the neural modules to overfitting the
training distribution. By not back-propagating the gradients of
(2), this baseline should help understand the potential disad-
vantages of using (2) on the multi-class classification and ZdA
discrimination tasks, as well as the importance of it for the
clustering task.

(4) Mono. This baseline also runs the asap training and evaluation
pipeline but discards multi-learning: it does not use raw-packet
bytes, but only the flow-related features. This baseline helps to
understand if and how is the second domain of features helpful
for learning the three goals of asap.

5.7. Metrics

The performance in the DL pipelines in the experiments is mea-
sured using the following metrics. For the multi-class classification of
currently-known attacks, the accuracy measure defined in Eq. (10) is
used, where the number of total predictions corresponds to the known
attacks in each batch/epoch:

Acc =
Correct predictions
Total predictions (10)

For ZdA detection purposes, the balanced accuracy is used as
defined in Eq. (11):

̂Acc = TNP + TPP
2

(11)

Where TNP is the true negative proportion and is defined as the ra-
tio of predicted negatives and the total number of negatives in the
batch/episode:

TNP =
True Negatives

True Negatives + False Positives (12)

Conversely, TPP is the true positive proportion and is defined analo-
gously:

TPP = True Positives
True Positives + False Negatives (13)

The reason for using (11) is that ZdAs – the positive samples in the open-
set classification – represent an unbalanced class. Consequently, using
(10) would result in a biased comparison.8

For the anomaly clustering task, the Adjusted Rand Index (ARI)is used:

ARI = ℛ − E[ℛ]
ℛ𝑚𝑎𝑥 − E[ℛ]

(14)

here ℛ is the rand index, as is defined as:

=
(𝑎 + 𝑏)
(𝑁
2

)
(15)

where 𝑁 is the number of samples in the batch/episode, 𝑎 is the number
of pairs of samples that are correctly assigned to the same cluster, and
𝑏 is the number of pairs of samples correctly assigned to different ZdAs.
Notice that (14) is an adjustment of (15) that considers the potential
chance-based agreement between predicted and ground-truth clusters.
More information about the ARI metric is in [51].

5.8. Results and discussion

The upper row of Fig. 4 contains Principal Component Analysis
(PCA) decompositions of the progressive evolution of the latent space
during training. Dots correspond to latents, and their colors correspond

8 In cases of high unbalance, e.g. 90%/10%, A deterministic negative
redictor could achieve better performance than any other baseline.
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Fig. 4. Two principal component decomposition of the latent space evolution during
training. Upper row: colors indicate ground truth labels of different classes. Lower row:
Predicted associations for inputs without considering labels. (Colors do not indicate
absolute class assignation, but unlabeled cluster assignments). asap learns to differentiate
among a labeled set of attack classes and to cluster multiple types of unlabeled samples
on a forward pass. By doing so, the potential prototypes of new attacks can be
automatically obtained. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

to the traffic classes. These plots evidence how same-class samples
are represented more concisely as training progresses and the inter-
cluster distances augment. Such a behavior in the evolution of the latent
space can be explained by the minimization of (4) and the prototypical
architecture (class assignation is biased toward the nearest class support
centroid in the latent space).

Moreover, using a combined state space, the multi-class classifica-
tion accuracy is generalized OOD, as reflected by the upper line plot
of Fig. 5. In this plot, the mean multi-class classification accuracies
as defined in (10) are tracked with in-distribution (continuous lines)
and out-of-distribution classes (dashed lines) as training progresses.
Importantly, the unique baseline not converging to a good classification
accuracy in the test (OOD) domain is Mono, which does not use packet
features.

The ZdA detection task (middle line-plot in Fig. 5) follows a more
global alignment between the latent space geometry and the labels of
samples. For a ZdA to be detected, its nearest centroid in the latent
space must be relatively long with respect to that of known samples,
as explained in Section 4. Notice, however, that such a geometrical
inductive bias for the ZdA inference is more vulnerable to eventual
overfitting of the training domain, i.e., to a latent space which is
excessively manipulated to separate classes in the training regime. In
fact, though not directly related to ZdA detection, the prototypical-
based minimization of (2) could have an adverse effect on the latent
space as it is computed only using information of training-time classes.

As can be seen in the middle line plot of Fig. 5, the unique algo-
rithms that preserve a good accuracy in test ZdA detection are those
counting on the relation network for adjacency regression. The relation
network – and gatv2 kernels – permit in fact to decouple the vector
space over which (2) is minimized from the one over which (4) and
(5) are minimized. However, even if the gatv2 kernel regressor shows to
have a modest ZdA detection accuracy at train time (continuous green
line), it is unable to classify test ZdAs (dashed green line), perhaps
because of the larger parameter space of this architecture, that might
need more data to avoid overfitting the training ZdA setup.

The most difficult task for all the baselines is back-propagation-
guided clustering of OOD anomalies. The latent space regularization in
(2) benefits precisely this task, as can be seen in the lower line plot of
8 
Fig. 5. Experimental results for online learning to classify known attacks (upper line
plot), detect Zero-day Attacks (middle), and clustering of known and unknown traffic
(lower). Train and test metrics are aggregated per batch. Continuous lines correspond
to evaluation metrics, while dashed lines correspond to training metrics. The evaluation
data corresponds to out-of-distribution samples.

Fig. 5, which tracks the evolution of train and test clustering ARI values
as defined in (14) during learning evolution. This plot evidences that
asap and skr are the unique algorithms that converge to good clustering
scores. Note also that the relation network in asap helps outperforming
skr in the overall classification accuracy. Moreover, with the exception
of asap and skr, every algorithm worsens the ARI score at test time
compared to its train scores.

The worsening of test-time clustering may indicate that a transla-
tional distribution shift exists between the global geometry of train and
test clusters. Interestingly, the skr algorithm, which clusters samples
using a global learned threshold of the latent Euclidean distances, has
lower clustering performance compared to asap even during training.
This result might suggest that different clusters might have different
densities in the latent space of skr. Again, asap decouples the class-
assignation latent space from the clustering latent space, making the
latter converge to a more clustering-friendly one, i.e. where intra-
cluster densities and inter-cluster separations might be more regular.
Such a claim is backed up by the scatter plots of the lower row of
Fig. 4, where dots correspond to PCA decomposition of latents and
colors correspond to the cluster assignation predictions made by the
relation network at the head of asap.

asap performs collective anomaly clustering with high accuracy. In
terms of the manifold learning explained in Section 3.3, the experi-
ments show that, in the realistic IoT scenario at hand, 𝒟 exists and is
learnable. Moreover, it is shown that such a distribution is learnable
by having the sole information of known attacks. Equivalently, it is
shown that in the latent space learned by asap, the densities of unknown
clusters are comparable to that of known clusters, and the patterns
of inter-clusters distances are stable between known and unknown
clusters. To this respect, future work could consider the extent to which
𝒟 exists among more heterogeneous sets of attack labels with respect
to those used in our experiments.

A final observation is made regarding training data efficiency, de-
fined as convergence speed during training. As can be seen in Fig. 5,
Noreg shows the same convergence speed for closed set classification
and improved ZdA detection with respect to asap. Still, asap is the unique
algorithm to show a fair balance between OOD generalization and
training efficiency in all three tasks (classification, anomaly detection,
and clustering), which are taken into account. Considering that the 700
training steps monitored in Fig. 5 correspond to two hours of training,
it can be noticed that the convergence plateau for the ZdA detection
task, the most challenging task for asap, is reached at a maximum of
1 h of exposition to malicious traffic.
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Notice the empiric efficiency gains observed in these experiments
are also backed up by solid theoretical considerations: by using only
the pair-wise similarities 𝛼𝑖𝑗 between the latent representations, the loss
function in (2) biases the action of gradients toward the parameters
of the relation network’s MLP, i.e., to learn a manifold relative to the
similarity distribution among elements. Such a relational inductive bias
has not only proved important for steering neural networks to reason
over a higher level of abstraction [52,53], but has also been recently
validated by concurrent work as a sample-efficiency booster for neural
modules [54].

6. Conclusive remarks

This paper presented a DL-based recipe for online learning to detect
known patterns and reveal concurrent clusters of novel (unlabeled)
anomalous observations. Beyond a typical offline trace-driven exper-
iment, the online-learning abilities of asap are tested on a carefully
designed virtual cyber-ranch that emulates a realistic IoT scenario
where known and unknown attacks are launched. Another feature that
the design of asap concentrates on is zero-preprocessing: the inferences
leveraged by the presented pipeline are made over raw traffic bytes and
OpenFlow SDN-based monitoring. By doing so, the proposed framework
proves to be adaptive by design and portable to real network scenarios.

Future research directions include measuring and, eventually, aug-
menting the scalability of asap to handle multiple forwarding nodes
with a single smart controller. Further investigation could also explore
how wider definitions of the state space could be used, for example, by
using health-status probes from nodes to enrich the information carried
by the attack prototypes.
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Appendix A. Hyper-parameter optimization

In Fig. 6, the different accuracy metrics (multi-class classification,
ZdA detection and clustering) during evaluation episodes are plotted
as a function of the hidden space dimension. In these experiments, a
hidden dimension of size 400 obtains good results with the best training
efficiency.

The observation sequence length ingested by the recurrent modules
has also been varied and the inference-time accuracies for each task
were registered and plotted in Fig. 7. It was observed that bigger
sequences of flow statistics result in better feature engineering. How-
ever, adding more than the last ten historical statistics for a flow does
not substantially improve accuracy in any task. Importantly, automatic
averaging of time-series observations significantly improves the attack
classification accuracy, suggesting that better attack prototypes are
formed with at least 50 s of flow observation.

Lastly, in Fig. 8, the number of packets that the recurrent model in
asap ingests to form the latent representation of a flow is varied from
one to three. Classification and ZdA detection accuracy benefit from
longer sequences of packets to form a more complete attack prototype.
Instead, the clustering machinery does not benefit (but rather worsens
its ARI) from adding packets to the sequence of ingested features.
9 
Fig. 6. Latent space dimension optimization. Evaluation accuracy metrics as a function
of the latent space dimension. Lineplots correspond to the mean aggregation of
accuracies/ARI per evaluation episode. The shadows correspond to the minimum and
maximum values of the evaluation batches.

Fig. 7. FlowStats Time-window Optimization. Evaluation accuracy metrics as a func-
tion of the number of successive flow statistics (and packet features) ingested by the
recurrent encoder. (For a hidden space dimension of 400.

Appendix B. Attacks and bening IoT traffic details

The Aposemat IoT23 dataset [24] was used in this work to repro-
duce realistic IoT attack and honeypot patterns. The following attacks
were extracted from the original Pcap files that are publicly available.9
Unless explicitly stated diversely, these flows were extracted using the
attacker origin IP address as the filtering criterion. Recall that source
and destination IP addresses and transport-layer ports were online
masked before feeding the neural modules with raw packet bytes.

(1) Hajime: This Trojan malware searches to exploit Linux-related
vulnerabilities. 5e4 of such flows were extracted from the data-
set’s capture 9.1.

(2) Hakai: This is a distributed denial-of-service (DDoS) botnet, a
specialization of the Mirai malware. (Extracted from dataset’s
capture 8.1.) 1.2e4 flows were extracted.

9 https://www.stratosphereips.org/datasets-iot23

https://www.stratosphereips.org/datasets-iot23
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Fig. 8. Optimization of the number of first packets per flow that form the attack pro-
totypes. Evaluation accuracy metrics as a function of the number of raw (anonymized)
packets per flow ingested by the recurrent encoder. (For a hidden space dimension of
400).

(3) Gafgyt: This is another more general DDoS botnet. (Dataset’s
capture 60.1.) 5e4 flows extracted.

(4) Mirai: This is an open-source DDoS attack specially used over
IoT devices. Capture: 34.1. Flows: 2.4e4.

(5) Torii: A Command and Conquer (C&C) and Information Gather-
ing malware. Capture: 20.1. Flows extracted: 5e4.

(6) Muhstik: A worm based on the Mirai Botnet. Among others, it
targets IoT devices. Commonly used to mine cryptocurrency and
perform DDoS attacks. Capture: 3.1. Flows extracted: 5e4.

(7) Okiru: Another C&C Botnet that targets ARC processors, com-
monly used in wearables, and medical IoT, among others. Cap-
ture 7.1. Flows extracted: 5e4. The criteria for extracting these
attack flows included target source and destination transport
ports.

(8) Horizontal Scan: 5e4 traffic flows related to generic Horizontal
Scan (HScan) were extracted from dataset’s capture 1.1.

(9) C&C HeartBeat: Generic heartbeat-related server-side flows were
also extracted in the context of the C&C traffic. Capture 7.1.
Flows extracted: 0.15e4.

(10) Generic DDoS: Also, a set of 5e4 generic DDoS-related flows
were extracted in the context of the C&C traffic from capture
7.1.

The Honeypot devices used by the authors of the IoT23 captures
were used in the experiments to emulate honeypot IoT devices used as
attack victims. More specifically, these honeypots were the following:

(1) Somfy door lock device: All the flows contained in the first
three captures of folder Honeypot7.1 were extracted. These
flows are related to a smart door lock device. In the implemented
topology, two nodes reproduced these flows.

(2) Philips HUE smart LED lamp: These flows were extracted from
the folder Honeypot4.1, and reproduced by a unique node.

(3) Amazon Echo home intelligent personal assistant: These
flows were extracted from the folder Honeypot5.1. One node
reproduced these flows.

The interested reader is referred to [24] for more details on the dataset.
All the flow extraction code used for the experiments is available in the
form of a GitHub Gist.10

10 https://gist.github.com/QwertyJacob/e33e68f230d5ecec8b6f2524ab166e
bf

10 
Train and test curricula

As explained in Section 5.4, the ten attacks used in our experiments
were grouped under the set 𝒜 , which is then partitioned following (8)
to form a training-evaluation curricula for asap. In our experiments,
three different partitions of 𝒜 were used to evaluate our hypotheses:

(1) 𝒜𝐾 = {C&C HB, Gen-DDoS, H-Scan}, 𝒜 𝑡𝑟𝑎𝑖𝑛
𝑈 = {Hakai, Torii,

Mirai, Gafgyt}, and 𝒜 𝑡𝑒𝑠𝑡
𝑈 = {Hajime, Okiru, Muhstik}

(2) 𝒜𝐾 = {Hakai, Torii, Okiru},
𝒜 𝑡𝑟𝑎𝑖𝑛

𝑈 = {C&C HB, Gen-DDoS, Mirai, Gafgyt}, and 𝒜 𝑡𝑒𝑠𝑡
𝑈 =

{Hajime, Horizontal Scan, Muhstik}
(3) 𝒜𝐾 = {Muhstik, Hajime, Mirai},

𝒜 𝑡𝑟𝑎𝑖𝑛
𝑈 = {C&C HB, Gen-DDoS, Okiru, H-Scan}, and 𝒜 𝑡𝑒𝑠𝑡

𝑈 =
{Hakai, Gafgyt, Torii}

Appendix C. The Gated Recurrent Unit

A Gated Recurrent Unit is a type of recurrent neural network
(RNN) architecture designed to address the vanishing gradient problem
commonly encountered in traditional RNNs. It achieves this by utilizing
gating mechanisms. Specifically, the update gate and the reset gate, that
regulate the flow of information within the network. These gates allow
the GRU to maintain and update hidden state representations effi-
ciently, making it particularly well-suited for tasks involving sequential
data, such as time-series analysis and natural language processing.

More in detail, the GRU layer operates over a sequence of inputs
𝑥0, 𝑥1, 𝑥2,… , 𝑥𝑡 on a sequential manner. As any recurrent model, at any
instant 𝑡, this module is fed not only with the input observations 𝑥𝑡
but also with some recurrent state ℎ𝑡−1, which in the case of the GRU,
coincides exactly with the output of the previous instant. The detailed
neural architecture of the GRU layer is given below:

(1) Reset Gate:

𝑟𝑡 = 𝜎(𝑊𝑖𝑟𝑥𝑡 + 𝑏𝑖𝑟 +𝑊ℎ𝑟ℎ(𝑡−1) + 𝑏ℎ𝑟)

(2) Update Gate:

𝑧𝑡 = 𝜎(𝑊𝑖𝑧𝑥𝑡 + 𝑏𝑖𝑧 +𝑊ℎ𝑧ℎ(𝑡−1) + 𝑏ℎ𝑧)

(3) New Gate:

𝑛𝑡 = tanh(𝑊𝑖𝑛𝑥𝑡 + 𝑏𝑖𝑛 + 𝑟𝑡 ⊙ (𝑊ℎ𝑛ℎ(𝑡−1) + 𝑏ℎ𝑛))

(4) Final Output:

ℎ𝑡 = (1 − 𝑧𝑡)⊙ 𝑛𝑡 + 𝑧𝑡 ⊙ ℎ(𝑡−1)

In the above equations, 𝜎 denotes the Sigmoid activation function,
⊙ represents element-wise multiplication or Hadamard product, and
every 𝑊 , and 𝑏 correspond to a particular learnable parameter matrix
for the gates.

Appendix D. Dynamic graph attention network implementation
details

The Relation Network in asap can be implemented in lots of ways.
Graph Neural Networks (GNN) [55] are a good architectural alternative
to the MLP for learning sparse relationships among data. GNNs operate
on a graph-format input batch through parametric combinations arising
from the topology of the input graph. In this work, such a graph is
constructed using the class labels at hand. Specifically, suppose 𝐳𝑢 ∈ R𝑚

is the latent representation of an input sample 𝑥𝑢. In that case, a GNN
will map it to a representation ℎ𝑢 ∈ R𝑚, as a function of the latent
representation vectors of the same-class samples or neighbors of 𝑥 .
𝑢

https://gist.github.com/QwertyJacob/e33e68f230d5ecec8b6f2524ab166ebf
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The Dynamic Graph Attention Networks (GATV2) [50] implement
this encoding with an attention mechanism that assigns different weights
to the different neighbors of 𝑥𝑢, as a function of their features:

𝑢 =
∑

𝑣∈𝑢

softmax𝒩𝑣
(𝐚𝑇 𝜎(𝐖 ⋅ [𝐳𝑣 + 𝐳𝑢])) ⋅𝐖𝐳𝑣 (16)

where 𝜎 is implemented as a LeakyReLU with 𝛼 = 0.2, and 𝑢 is the
set of neighbors of 𝑥𝑢. In contrast to other attention mechanisms, this
attention layer 𝐚𝑇 ∈ R𝑚 permits the attention scores to vary also as a
function of 𝐳𝑢.

In our experiments, the gatv2 baseline is identical to asap except for
substituting the adjacency regression in (6) and (7), by the attention
module in (16). Specifically, the support labels initialize the neighbor-
hoods of elements in the graph, and unlabeled observations are initially
set as connected to all the other nodes. Finally, the learned attention
kernel 𝐚 is taken as the adjacency prediction.
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