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Abstract: In the framework of the analogous Hawking effect, we significantly improve our previous
analysis of the master equation that encompasses very relevant physical systems, like Bose–Einstein
condensates (BECs), dielectric media, and water. In particular, we are able to provide two significant
improvements to the analysis. As our main result, we provide a complete set of connection formulas
for both the subluminal and superluminal cases without resorting to suitable boundary conditions,
first introduced by Corley, but simply on the grounds of a rigorous mathematical setting. Moreover,
we provide an extension to the four-dimensional case, showing explicitly that, apart from obvious
changes, adding transverse dimensions does not substantially modify the Hawking temperature
in the dispersive case. Furthermore, an important class of exact solutions of the so-called reduced
equation that governs the behavior of non-dispersive modes is also provided.

Keywords: analogous Hawking effect; connection formulas; S-matrix

1. Introduction

We again consider analytical calculations for the analog Hawking effect by devel-
oping and deepening our analysis in [1–3]. In the dispersive case, one can find several
papers dedicated to analytical calculations (see, e.g., the following (non-exhaustive) list of
papers: [4–27]), albeit not within a unified general theoretical framework. There are also
several papers describing experiments for the analogous Hawking effect [28–38].

In [1–3], we took into account a fourth-order ordinary differential equation that al-
lowed us to treat the analogous Hawking effect in condensed matter systems (Bose–Einstein
condensates (BECs), dielectric media, and water) in a systematic way, as far as weak disper-
sion effects are considered. The weak dispersion parameter ϵ appears in the aforementioned
master equation as the expansion parameter for the physical problem at hand. Strong dis-
persion effects, which, for example, may occur in some experimental settings, like those
involving fiber optics (see, e.g., [36]), cannot be discussed in the same framework and
are still beyond the possibility of a full analytical calculation. Moreover, the proposed
models, from the theoretical point of view, are 2D, in the sense that two spatial dimensions
are suppressed. The latter simplification is, in some sense, natural, as providing robust
theoretical models for a non-trivial physical situation is simpler in 2D.

In the present analysis, still in the framework of weak dispersive effects, we are able to
provide, in a rigorous way, a complete set of connection formulas on purely mathematical
grounds, thus complementing and completing, on the mathematical side, our analysis
in [1–3]. In particular, we show that in place of the connection formulas originally intro-
duced by Corley [5] using the so-called Corley’s diagrams (see, e.g., [1,2]) and then further
developed in [11] for a specific and elementary toy model (the so-called Corley model),
one can provide a set of rigorously obtained connection formulas that are at the root of
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the dispersive Hawking effect and are substantially associated with the behavior of the
solutions near the turning point. This represents a fundamental contribution to the existing
literature, as the analysis for the near-turning-point region we discussed in [1,2] is universal,
i.e., holds for any physical model quoted above, being the same in form as the near-horizon
equation governing the physical process near the turning point.

We will refer to the following papers from the mathematical literature: Ref. [39] for
the subluminal case and [40,41] for the superluminal one. We will show rigorously that,
as a consequence of the aforementioned connection formulas and due to the structure of
the Stokes matrices that allow us to transition from a basis for modes inside the black hole
region to a basis for modes in the exterior region, there is a mode (which corresponds to
the trivial, constant solution of (5)) that decouples from the other three in the near-horizon
region and then remains decoupled in a 2D framework, at least in the leading order in
the weak dispersion parameter characterizing each model, and a blackbody spectrum is
ensured both for the Hawking particle and for the Hawking partner. One can also obtain
exact solutions for the near-turning-point equation, which can be expressed in terms of the
generalized hypergeometric functions 1F2(α1; β1, β2; z).

Then, we will also provide insights into the contribution of transverse dimensions,
albeit in very simple but significant geometrical situations. We will show that transverse
dimensions do not affect the main picture of the 2D case and leave the temperature of the
Hawking effect unaltered. Still, of course, the possibility of obtaining and then detecting
particles traveling with a non-vanishing transverse wavenumber is gained, and this can
shed light on realistic experimental situations (occurring, e.g., by using laser pulses in
dielectric media).

A further important contribution appearing in this paper is the calculation, for specific
but physically meaningful velocity profiles, of exact solutions of the reduced equation
governing non-dispersive modes in the WKB approximation. This is also an important
improvement to our general approach, as, even in the WKB approximation, at the leading
order in the weak dispersion parameter ϵ, one would be forced to find exact solutions of the
reduced equation to provide solutions for non-dispersive modes, to be considered together
with the leading-order WKB solutions that can be obtained for the dispersive modes. This
improvement is important, as it provides us with a further neat improvement for analytical
calculations of physical amplitudes for the Hawking phenomenon.

2. The Master Equation: an Orr–Sommerfeld-Type Fourth-Order Equation

As discussed in [1–3], three significant cases of wave equations in dispersive analog
gravity can be studied using the following master equation:

ϵ2 d4Φ
dx4 ±

[
p3(x, ϵ)

d2Φ
dx2 + p2(x, ϵ)

dΦ
dx

+ p1(x, ϵ)Φ
]
= 0, (1)

where the upper sign occurs in the case of subluminal dispersion and the lower one in the
case of superluminal dispersion. The latter case is considered in Nishimoto’s works (see,
e.g., [40–42] and references therein). This fourth-order equation can be obtained by suitably
manipulating the equations of motion in the Corley model in the case of dielectric media [1]
and also in the case of a BEC and water [2], providing a unified framework for a systematic
study of the analogous Hawking effect in weakly dispersive media and allowing a thermal
spectrum to be found in all the cases at hand in the same limit, as expected.

A basic assumption of the present method is the analyticity of the coefficients in the
following sense:

pi(x, ϵ) =
∞

∑
n=0

pin(x)ϵn, (2)

where ϵ is the parameter expressing the presence of weak dispersive effects. Solutions of

p30(x) = 0 (3)
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define the turning points (TPs) of the equation, as usual (cf., e.g., [41]), and one obtains the
so-called reduced equation as ϵ → 0:

p30(x)
d2Φ
dx2 + p20(x)

dΦ
dx

+ p10(x)Φ = 0. (4)

In [41], it is assumed that the reduced equation displays a Fuchsian singularity at
the TP (nothing actually prevents the general equation in itself from admitting regular
behavior).

It can be shown [41] that near the TP x = a, the original equation is replaced by the
fourth-order differential equation

d4w
dz4 ±

(
z

d2w
dz2 + λ

dw
dz

)
= 0, (5)

where, as discussed in [1], w(z) represents the (rescaled [1]) wavefunction in the so-called
near-horizon approximation to then be matched in the so-called linear region, with WKB
solutions that hold far from the turning point. We refer to [1] for further details. In (5), the
upper sign is for the subluminal case, and the lower one is for the superluminal case, and

z = (p′30(a))1/3ϵ−2/3(x − a), (6)

and

λ =
p20(a)
p′30(a)

. (7)

As we discussed in [1,2], Equation (5) is universal in form and is at the root of the
analogous Hawking effect in dispersive media, as far as they are governed by the above Orr–
Sommerfeld-like equation. In the following, without loss of generality, we limit ourselves
to the case of a single TP (monotonic profile for the velocity field or the refractive index in
the dielectric case), identified with x = 0.

3. Exact Solutions of the Near-Horizon Equation (5) and Connection Formulas

The problem concerning Equation (5) consists of not only finding solutions to the
equation itself but also describing complete bases of solutions in different regions of the
complex space and relating these bases (connection formulas). We point out that there exists
a further connection problem, represented by the matching of solutions in the so-called
linear region around the turning point, where both the near-horizon solutions and the
WKB solutions are defined. This second problem (sometimes called the central connection
problem [41]) can be solved very simply in the case where suitable bases of solutions in
the near-horizon equation are assumed (see [41] and, for specific applications, [1,2]). The
former problem (sometimes called the lateral connection problem [41]) is more difficult
and is associated with the presence of the Stokes phenomenon, which does not allow us to
find diagonal connection matrices. We will comment further on the Stokes phenomenon in
the following.

Solutions to Equation (5) are found, e.g., by adopting the method of the Laplace
transform, as discussed in [41] for the superluminal case, by means of Laplace integrals:

wj(z) =
1

2πi

∫
Cj

dt tλ−2 exp
(

zt ± 1
3

t3
)

, (8)

with a suitable choice of paths Cj in the complex t-plane. It must be stressed that such
solutions are regular at the TP and admit a series expansion there (see [40]). Of course,
there is also a constant solution, which appears to be a Dirac delta in the space of the
Laplace transform. This further solution is fundamental to obtaining a complete basis for
the scattering problem, also in the region near the TP (i.e., near the horizon) [1]. Solutions
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of Equation (5) will be indexed by NH (near-horizon solutions, from a physical point
of view).

3.1. The Subluminal Case

To be more specific, we first explore the subluminal case, i.e., the case where the plus
sign appears both in (5) and in (8). We point out that it is possible to find exact solutions of
Equation (5). For example, we can find the general solutions using Mathematica, and the
result is

w(z) = C1 + C2z 1F2

(λ

3
;

2
3

,
4
3

;− z3

9

)
+ C3z2

1F2

(1 + λ

3
;

4
3

,
5
3

;− z3

9

)
+ C4z3

(
1 − 1F2

(−1 + λ

3
;

1
3

,
2
3

;− z3

9

))
. (9)

The generalized hypergeometric functions 1F2 are analytic functions everywhere.
They correspond, e.g., to the Airy functions one deals with in standard nonrelativistic
quantum mechanics in a neighborhood of turning points, where the semiclassical WKB
solutions fail. Even if they are analytic, their asymptotic expansion involves functions that
are not analytic, and the Stokes phenomenon emerges. Furthermore, the main problem
with these solutions is the fact that they are not in a simple relation with the physical modes
involved in the problem in the following sense. As we recalled in the previous discussion,
one has to match, in the linear region, WKB solutions and near-horizon solutions (9). This
matching requires considering asymptotic expansion as x → 0 (i.e., at the turning point)
with asymptotic expansions of (9) as z → ∞. The point is that, even if the asymptotic
expansion of 1F2(z) is known, they represent quite cumbersome linear combinations of the
physical modes, so it is not so easy to use exact solutions in this sense. Still, the analysis by
Langer in [39] allows us to find a basis of solutions and connection formulas. We prefer
to adopt another strategy, mimicking the analysis in [40,41] for the superluminal case. We
limit ourselves to notice that, with respect to the bases described in [40], the bases described
below are obtained simply by a rotation z 7→ exp(−iπ/3)z, so we have the replacement
arg(z) 7→ arg(z) + π

3 . These bases are also confirmed by the analysis in [39]. We have the
following representations for the non-constant subluminal solutions:

wj(z) =
1

2πi

∫
Cj

dt tλ−2 exp
(

zt +
1
3

t3
)

, (10)

where the relevant paths for the bases are indicated in Figures 1–3 below.

C
1

C
4

π−

C
2

C
3

π

Figure 1. Paths labeled with Cj in the t-plane, j = 1, 2, 3, 4, for the basis [1, w4(z), w1(z), w2(z)]. There
is a branch cut for arg(t) = π.
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The first basis, say B1, which is relative to the sector − 2π
3 < arg(z) < 2π

3 , is [1, w4(z),
w1(z), w2(z)].

C
6

C
1

π/3−5
π/3

C
2

C
3

Figure 2. Paths labeled with Cj in the t-plane, j = 1, 2, 3, 6, for the basis [1, w6(z), w3(z), w1(z)]. There
is a branch cut for arg(t) = π

3 .

The second basis, say B2, which is relative to the sector 0 < arg(z) < 4π
3 , is [1, w6(z),

w3(z), w1(z)].

C
5

C
1

5π/3
−π/3

C
2

C
3

Figure 3. Paths labeled with Cj in the t-plane, j = 1, 2, 3, 5, for the basis [1, w5(z), w2(z), w3(z)]. There
is a branch cut for arg(t) = 5π

3 .

The third basis, say B3, which is relative to the sector 2π
3 < arg(z) < 2π, is [1, w5(z),

w2(z), w3(z)].
From a physical point of view, we adopt, substantially as in [1,2] for the subluminal

Corley model and for the dielectric case with a single resonance frequency and water
(both are subluminal), the basis [1, w4(z), w1(z), w2(z)] to represent the near-horizon ex-
pressions for the physical modes (Hawking particle w4(z), positive-norm dispersive mode
w1(z), negative-norm dispersive mode w2(z), and 1 for the disconnected regular entering
mode), participating in the scattering process in the external region x > 0, and the basis
[1, w5(z), w2(z), w3(z)] to represent the Hawking partner (solution w5(z)), the exponentially
decaying mode (w2(z)), the exponentially growing mode (w3(z), for a comparison see,
e.g., [11]), and the regular disconnected mode, represented by 1. Notice that the basis B2
could also be used to describe physical states in the black hole interior.
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The present choice of bases in the different sectors has the following advantages. First
of all, from the Cauchy formula, for B1, we have

w1(z) + w2(z) + w3(z) = w4(z), (11)

as is evident from Figure 1. Furthermore, by defining, as in [40],

ψ := exp
(

i
2
3

π

)
, (12)

we find the following relations:

w1(z) = ψλ−1w3(ψz) = ψ2(λ−1)w2(ψ
2z), (13)

w4(z) = ψλ−1w6(ψz) = ψ2(λ−1)w5(ψ
2z), (14)

which represent the substantial advantage of using such choices. Let us also introduce the
following notation:

w̄i(z) := ψ−3λwi(z), (15)

w̃i(z) := ψ3λwi(z), (16)

for i = 1, 2, 3, 4, 5, 6. Given (11), we can see that, for B2,

w̄1(z) + w2(z) + w3(z) = w6(z) (17)

holds true, and for B3, the corresponding relation is

w̄1(z) + w2(z) + w̄3(z) = w5(z). (18)

We can provide the following connection formulas:

[1, w4(z), w1(z), w2(z)] = [1, w6(z), w3(z), w1(z)]P3, (19)

[1, w5(z), w2(z), w3(z)] = [1, w4(z), w1(z), w2(z)]P2, (20)

[1, w6(z), w3(z), w1(z)] = [1, w5(z), w2(z), w3(z)]P1, (21)

where the matrices Pi, i = 1, 2, 3 connect the bases above and, in the following, will be
explicitly written at the leading order in the series in ϵ. It is not difficult to see that, in
considering the relation between B1 and B2,

w4(z) = w6(z) + w1(z)− w̄1(z), (22)

w2(z) = w6(z)− w3(z)− w̄1(z), (23)

hold true, so

P3 =


1 0 0 0
0 1 0 1
0 0 0 −1
0 1 − ψ−3λ 1 −ψ−3λ

. (24)

Analogously, as far as the relation between B3 and B1 is concerned, one finds

w5(z) = w̄4(z) + w2(z)− w̄2(z), (25)

w3(z) = w4(z)− w1(z)− w2(z), (26)
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and then

P2 =


1 0 0 0
0 ψ−3λ 0 1
0 0 0 −1
0 1 − ψ−3λ 1 −1

. (27)

As to the relation between B2 and B3, we obtain

w6(z) = w5(z) + w3(z)− w̄3(z), (28)

w1(z) = w̃5(z)− w̃2(z)− w3(z), (29)

and then

P1 =


1 0 0 0
0 1 0 ψ3λ

0 0 0 −ψ3λ

0 1 − ψ−3λ 1 −1

. (30)

3.2. The Superluminal Case

In the superluminal case, which, from a physical point of view, is very relevant because
the dispersion relation of a BEC is superluminal, both in (5) and in (8), a minus sign appears.
Also, in this case, we can find the general solutions:

w(z) = C1 + C2z 1F2

(λ

3
;

2
3

,
4
3

;
z3

9

)
+ C3z2

1F2

(1 + λ

3
;

4
3

,
5
3

;
z3

9

)
+ C4z3

(
1 − 1F2

(−1 + λ

3
;

1
3

,
2
3

;
z3

9

))
. (31)

We do not delve into a discussion, as considerations analogous to those in the previous
subsection hold true.

We refer instead to the framework in which generalized Airy solutions are introduced
by means of the Laplace transform, as discussed in the previous subsection. For a complete
analysis, readers can refer to [40,41]. We present, in a single figure, as in [41], the full set of
six non-constant solutions, again expressed in terms of generalized Airy functions:

wj(z) =
1

2πi

∫
Cj

dt tλ−2 exp
(

zt − 1
3

t3
)

, (32)

along the paths indicated in Figure 4.

C
1

C
2

C
3

C
4

C
5

C
6

−2π

0

−4π/3

4π/3

2π/3

−2π/3

Figure 4. Paths labeled with Cj in the t-plane, j = 1, 2, 3, 4, 5, 6. There are branch cuts for arg(t) = 0,
arg(t) = 2π

3 , and arg(t) = 4π
3 .
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To construct the three bases

[1, w6(z), w3(z), w1(z)] for − π

3
< arg(z) < π, (33)

[1, w5(z), w2(z), w3(z)] for
π

3
< arg(z) <

5π

3
, (34)

[1, w4(z), w1(z), w2(z)] for − π < arg(z) <
π

3
, (35)

one can simply select the corresponding paths in Figure 4, with just one branch cut (i.e.,
the branch cut involved in the definition of the specific function wi(z), i = 4, 5, 6, in the
basis at hand), and construct figures analogous to Figures 1–3. As in [40], the connection
formulas are

[1, w6(z), w3(z), w1(z)] = [1, w5(z), w2(z), w3(z)]Π1, (36)

[1, w5(z), w2(z), w3(z)] = [1, w4(z), w1(z), w2(z)]Π2, (37)

[1, w4(z), w1(z), w2(z)] = [1, w6(z), w3(z), w1(z)]Π3, (38)

where, for the matrices Πi, we have Πi = Pi for i = 1, 2, 3, with the same Pi as in (24), (27),
and (30).

4. Application to the Corley Model

We choose to work in the framework of the simplest possible model, both for brevity
and for a more direct comparison with the most quoted literature [5,11]. We note that, even
if it allows both a subluminal and a superluminal setting, it allows only a constant sound
velocity c, and, moreover, it represents a strong simplification of the picture described in the
previous analysis, as the coefficients pi(x, ϵ) do not actually depend on ϵ in this case. We
limit ourselves to the subluminal case, and the superluminal one is sketched in Appendix C.
We start with the following action:

S =
1
2

∫
d2x[((

1
c

∂t +
v
c

∂x)ϕ)
2 + ϕ(∂2

x + ϵ2∂4
x)ϕ], (39)

which was deduced in [5,43]. The model is associated with a conserved inner prod-
uct (see [5]) and with current conservation. By separating variables as in [5], ϕ(t, x) =
e−iωt φ(x), one obtains the fourth-order ordinary differential equation

ϵ2∂4
x φ +

(
1 − v2(x)

c2

)
∂2

x φ + 2
v(x)

c2 (iω − v′(x))∂x φ − i
ω

c2 (iω − v′(x))φ = 0, (40)

where v(x) is the velocity field, v′(x) stands for its first derivative with respect to x, and c
is the constant sound velocity. We assume, as a significant physical scale, as in [5,43], the
scale ϵ2 associated with nonlinearity, which is to be related to the presence of dispersion in
the model itself, and, to allow a better comparison with the literature, we point out that,
in [5], one has

ϵ 7→ 1
k0

(41)

(this is slightly different from the choice in [1], but substantially equivalent results are
inferred). As is evident, the model is just 2D. In the limit ϵ → 0, one obtains the so-called
reduced equation,(

1 − v2(x)
c2

)
∂2

x φ + 2
v(x)

c2 (iω − v′(x))∂x φ − i
1
c2 ω(iω − v′(x))φ = 0. (42)
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In agreement with [5], we assume v(x) ≤ 0 and a monotonic velocity profile, where
v(x) is asymptotically constant, as in [1,2]. A real turning point occurs for

v(x) + c = 0, (43)

and the so-called linear region is the interval where the following approximation holds:

v(x) ≃ −c + κx, (44)

where
κ := v′(x = 0). (45)

For a complete and exhaustive calculation of both the WKB solutions and the near-
horizon solutions, we refer to [1]. We simply display the main results obtained in [1] in
Sections 4.1 and 4.2.

4.1. WKB Solutions

The following solutions

φ1(x) =

(
1

1 − v2(x)
c2

)3/4

exp

(
i
ϵ

∫ x
ds

√
1 − v2(s)

c2

)
exp

i
ω

c

∫ x
ds

v(s)
c

1

1 − v2(s)
c2

, (46)

φ2(x) =

(
1

1 − v2(x)
c2

)3/4

exp

(
− i

ϵ

∫ x
ds

√
1 − v2(s)

c2

)
exp

i
ω

c

∫ x
ds

v(s)
c

1

1 − v2(s)
c2

, (47)

where (46) is the dispersive (non-normalized) positive-norm mode, and (47) is the disper-
sive (non-normalized) negative-norm mode. The seemingly weird numbering is useful for
matching in the linear region (cf. Figure 1), where

φ1(x) ≃
(

2κ

c
x
)−3/4

x−
iω
2κ exp

(
i
ϵ

2
3

√
2κ

c
x

3
2

)
, (48)

φ2(x) ≃
(

2κ

c
x
)−3/4

x−
iω
2κ exp

(
− i

ϵ

2
3

√
2κ

c
x

3
2

)
. (49)

These expansions also hold true for x < 0: let us assume x = exp(iπ)|x|; then, in the
linear region, one finds

φg(x) ≃
(

2κ

c
|x|
)−3/4

exp
(
−i

3
4

π

)
|x|−

iω
2κ exp

(πω

2κ

)
exp

(
1
ϵ

2
3

√
2κ

c
|x|

3
2

)
, (50)

φd(x) ≃
(

2κ

c
|x|
)−3/4

exp
(
−i

3
4

π

)
|x|−

iω
2κ exp

(πω

2κ

)
exp

(
−1

ϵ

2
3

√
2κ

c
|x|

3
2

)
, (51)

where d indicates the decaying mode and g the growing mode (cf. [11]). We do not need
to give a general WKB expansion for these modes, as they do not enter the asymptotic
expansion of the S-matrix (as the decaying mode vanishes and the growing one must be set
to zero).

Two further solutions can be obtained from the reduced equation, and, in order to
maintain the same order of approximation in our WKB expansion, one would need exact
solutions to avoid the introduction of a further expansion parameter. Nevertheless, near
the regular singular point x = 0, which represents the real turning point, i.e., the horizon,
we can provide the following series expansions:
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φs(x) = 1 +
∞

∑
n=1

cnxn, (52)

φ4(x) = xi ω
κ

(
1 +

∞

∑
n=1

dnxn
)

, (53)

where φ4 represents the Hawking mode, and φs represents a further short wavenumber
mode, which, eventually, simply plays the role of a disconnected spectator mode, at least as
far as the leading-order process is concerned. It is useful to provide approximate solutions
to the reduced equation even for large x (in the external region with respect to the black
hole). It is easy to show that for large x in the above sense, we have v(x) ∼ const, and then
v′ = 0. As a consequence, e.g., under the conditions of theorem 1.9.1 in [44], we obtain, as
x → ∞,

φs(x) ∼ exp
(
−iω

1
c − vr

x
)

, (54)

φ4(x) ∼ exp
(

iω
1

c + vr
x
)

. (55)

For x < 0, the reduced equation provides us with two further solutions:

φd(x) = 1 +
∞

∑
n=1

enxn, (56)

φ5(x) = xi ω
κ

(
1 +

∞

∑
n=1

fnxn
)

, (57)

with the asymptotic behavior

φd(x) ∼ exp
(
−iω

1
c − vl

x
)

, (58)

φ5(x) ∼ exp
(

iω
1

c + vl
x
)

, (59)

with limx→−∞ v(x) =: vl < −c < 0. These solutions correspond to left-moving modes
in the superluminal region, and they are the only propagating modes in that region. We
notice that the mode φ5(x) is a negative-norm mode and that the regular mode φd(x) is
analogous to φs(x) on the negative real axis.

As useful interpolating formulas inherited by [5] (WKB-like, but they cannot be rigor-
ously obtained by using the ϵ-expansion as in the above framework), we could also use

φint
j (x) ∼ exp

(
−iω

∫ x
dy

1
c − v(y)

)
, j = s, d (60)

φint
k (x) ∼ exp

(
iω
∫ x

dy
1

c + v(y)

)
, k = 4, 5 (61)

which still display the correct behavior both in the linear region and in the asymptotic one.
In the appendix, we also provide exact solutions of the reduced equation for very

specific velocity profiles.

4.2. Solutions Near the Turning Point

Let us introduce

z =

(
2κ

c

)1/3

ϵ−2/3x, (62)
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and point out that, in our case, we obtain

λ = 1 − i
ω

κ
. (63)

In order to find physically relevant solutions of (5), we adopt the strategy utilized
in [1]. We refer to Figure 1, and we choose to directly construct the relevant physical
states by exploiting the method of the steepest descents [45–47] for approximating, as
z → ∞, the solutions w1(z), w2(z), w4(z) occurring in B1. We need to consider, of course,
the solutions (10), which, by setting t =

√
|z|u, can be rewritten as

wj(z) =
1

2πi
|z|

λ−1
2 Ij(z), (64)

where
Ij(z) =

∫
C̄j

du g(u) exp
(
|z|3/2h±(u)

)
, (65)

and

g(u) := uλ−2, (66)

h±(u) := ±u +
u3

3
; (67)

where ± = sign(x) and Cj are the same as in Figure 1. We notice that the constant solution
indicated as 1, as in [40,41], is the same on both sides of the linear region. The following
analysis involves just the non-trivial solutions of (5) in the asymptotic portions of the linear
region, i.e., as z → ±∞, as this is the behavior we need to know for matching with WKB
solutions. This is by no means different from what is implemented in standard quantum
mechanics near a TP.

For x > 0, the solutions w1 and w2 can be found through the steepest descents passing
through the saddle points u± = ±i, respectively:

w1(z) ≃
1

2
√

π
e−

3
4 πie

πω
2κ |z|−

iω
2κ −

3
4 ei 2

3 |z|
3/2

, (68)

w2(z) ≃
1

2
√

π
e

1
4 πie−

πω
2κ |z|−

iω
2κ −

3
4 e−i 2

3 |z|
3/2

. (69)

As to the cut contribution for x > 0, i.e., w4(z), it represents the Hawking mode. As
shown in [1], the branch cut lies along the steepest descent, and this allows us to find [1]

w4(z) ≃ − 1
iπ

|z|i
ω
k Γ
(
−i

ω

κ

)
sinh

(πω

κ

)
. (70)

For x < 0, we must refer to the basis B3 and to Figure 3. The decaying mode passing
through the saddle point u = 1 is

w3(z) ≃
1

2
√

π
|z|−

iω
2κ −

3
4 e−

2
3 |z|

3/2
. (71)

The mode w2(z) corresponds to the growing mode:

w2(z) ≃
1

2
√

π
|z|−

iω
2κ −

3
4 e

2
3 |z|

3/2
. (72)
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And one may also simply consider the contribution (70) by choosing a suitable analyt-
ical continuation for x < 0. It turns out that, by choosing the branch where −1 = eiπ , the
further solution one obtains,

w5(z) :≃ − 1
iπ

e−π ω
κ |z|i

ω
k Γ
(
−i

ω

κ

)
sinh

(πω

κ

)
, (73)

is such that it corresponds to the Hawking partner (an antiparticle state, i.e., a state with a
negative norm).

4.3. Matching: Complete Solutions

A careful comparison with the WKB expansion displayed in the previous section
provides us with the connection formulas (cf. the so-called central connections in [41]). We
have to match, in a single solution, the WKB part and the near-horizon part of the modes
introduced above in such a way as to obtain basis functions that are defined in the whole
domain (cf. also [1]). Let us use φWKB

i (x) and φNH
i (x) to denote the parts to be joined for

the i-mode in a specific sector of the complex plane, with indexes that match those in B1,
B2, or B3, according to the sector one chooses, and with x taking complex values.

In the matching region, which, in our case, will be considered to be the linear region,
where the two approximations coexist, we have

φWKB
i (x) ∼ aWKB

i hi(x), (74)

and also
φNH

i (x) ∼ bNH
i hi(x), (75)

with the same functional dependence hi(x) and with known constants aWKB
i , bNH

i . We
remark that, in a rigorous approach, one should also take into account the dependence on
the parameter ϵ of both expansions. We limit ourselves to the leading order. For details,
see [41]. Let us consider the region x > 0. As we must connect φWKB

i (x) and φNH
i (x) in the

linear region, where there exists a coexistence region for both the solutions, we find

φNH
i (x) = HWKB

i φWKB
i (x); (76)

i.e., matching in the linear region requires

HWKB
i =

bNH
i

aWKB
i

. (77)

As can be seen, the aforementioned matching is diagonal (in [41], this is indicated as
the central connection problem) in the sense that the WKB and NH expansions of each
single i-esime mode are connected. We notice that, for the complete solution, which is
indicated as φi(x), in the aforementioned sector of the complex plane, we must obtain

φi(x) ∼ φNH
i (x) for x ∈ LR ∩ U(TP), (78)

φi(x) ∼ HWKB
i φWKB

i (x) for x ∈ LR ∩ DWKB, (79)

where LR identifies part of the linear region where both expansions coexist, U(TP) repre-
sents the neighborhood of the TP where the near-horizon approximation holds, and DWKB
indicates the region where the WKB approximation holds. As a consequence, either φNH

i (x)
or HWKB

i φWKB
i (x) equivalently identifies the complete solution φi(x). HWKB

i φWKB
i (x) is

the most interesting for scattering problems, where x → ±∞ has to be taken into account.
Analogously, for x < 0, we will find

KWKB
j =

mNH
j

nWKB
j

, (80)
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with an obvious notation (where the replacements bNH
j 7→ mNH

j and aWKB
j 7→ nWKB

j are
made to distinguish between outer and inner constants), which takes into account that we
have different bases for the black hole region x < 0 and for the exterior one x > 0 so that
such matching will involve solutions on both sides of the horizon (TP).

Herein, we deepen and develop our results obtained in [1–3] by taking into account
rigorously, from a mathematical point of view, what happens in the scattering process
associated with the analog (weakly dispersive) Hawking effect. We consider, in the near-
horizon region and then in the matching with WKB solutions, the basis B1 for representing
physical states for x > 0 and the basis B3 for representing states for x < 0 (notice that, in
line with principles, one could also choose the basis B2 for the states at x > 0). The horizon
corresponds to x = 0 in our assumed setting. Formally, let us define I(B1), I(B2), I(B3)
as the sets of indices associated with the bases in the near-horizon region. We choose the
index 0 for the constant solution, and then, for example, we have I(B1) = {0, 4, 1, 2}.

The first obvious observation is that, as mode (72) explodes at x → −∞, when one
considers the generic states that can be constructed with the basis B3,

ϕ(x) := ∑
i∈I(B3)

ai KWKB
i φWKB

i (x), (81)

where ai is a constant, one must set a2 = 0. As the lateral connection formulas are not
diagonal, this does not imply that for x > 0, the element φWKB

2 (x), which corresponds
to a negative-norm state, disappears. Indeed, the Stokes phenomenon (cf. [41]) arises so
that the different bases in the different regions of the complex plane are related through
non-diagonal matrices. This happens because, although exact solutions of (5) are analytical
everywhere, their asymptotic expansions as z → ∞ (which are needed because of the
matching in the linear region with the WKB solutions) are not analytical and, in particular,
at infinity an irregular singularity appears for the WKB solutions. The finding of Stokes
lines, for a higher-order linear ordinary differential equation, represents a highly non-trivial
problem, as pointed out in [48], and often requires numerical calculations (see also [49]).
Their presence, in our case, is implicit in the non-triviality of the connection matrices Pi
and the non-diagonality of the matrices connecting the bases of states for x < 0 and x > 0.
Following the mathematical literature, we will refer to the aforementioned matrices as
Stokes matrices.

For the Stokes matrices connecting asymptotic states, we have the following situation,
for which we adopt a general notation, to be specified in the next discussion. Let α, β
indicate the specific basis one is referring to. Let Cα

i be the central connection coefficient
for the basis Bα (we mean B1, B2, B3, discussed in the previous section), indexed by α, and
Cβ

i be the analogous coefficient for the basis Bβ indexed by β, and let P(α 7→β) represent the
(lateral) connection matrix associated with the transition from Bα to Bβ (we mean P1, P2, P3,
discussed in the previous section). Then, we have

∑
i∈I(Bα)

ai φ
WKB
i (x) = ∑

i∈I(Bα)
∑

j∈I(Bβ)

ai M
(α 7→β)
ij φWKB

j (x), (82)

where the coefficients ai are a priori arbitrary coefficients for constructing a generic state,
and the Stokes connection matrix M(α 7→β) has the elements

M(α 7→β)
ij = (Cα

i )
−1P(α 7→β)

ij Cβ
j , (83)

i.e., M(α 7→β) = diag(Cα)−1P(α 7→β)diag(Cβ) (see also the discussion in [41]).
Herein, we start by discussing Stokes matrices for our specific case of interest. As

x → −∞, i.e., in the black hole region, there are two non-dispersive WKB solutions of the
reduced equation, representing the Hawking partner and the spectator mode, which are the
only propagating ones, with central connections in the linear region, with w5(z) and with
the constant solution 1, respectively. The other two dispersive WKB solutions represent
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the decaying mode, connected with w3(z) in the linear region, and the growing mode,
connected with w2(z). In the opposite region, as x → ∞, i.e., in the external region, all
four solutions propagate. There are, as can be seen, two dispersive and two non-dispersive
WKB solutions, to be connected in the linear region with w1(z), w2(z), w4(z), 1. Let us
introduce I′(B3) = {0, 5, 3}, i.e., the set I(B3) without the index of the diverging mode (the
growing mode).

As discussed in detail in [1] and inherited by the analysis in [5], in the situations
involved with the analog Hawking effect for x → ∞, the propagating modes behave as
plane waves:

φWKB
j (x) ∼ dWKB

j eikj(ω)x, (84)

where dWKB
j defines (known) constants emerging in the asymptotic expansion of WKB

solutions such that
φj(x) ∼ HWKB

j dWKB
j eikj(ω)x. (85)

For a direct comparison with the coefficients cj := ccorley
j appearing in [5], one has

ccorley
j = HWKB

j dWKB
j . As to the situation for x → −∞, we have, analogously,

φi(x) ∼ KWKB
i gWKB

i eiki(ω)x, (86)

where the constants gWKB
i are known and emerge in the asymptotic expansion of the WKB

solutions. Then, for the generic state for x < 0, we obtain (cf. (81))

ϕ(x) ∼ a0KWKB
0 gWKB

0 eik0(ω)x + a5KWKB
5 gWKB

5 eik5(ω)x + a3KWKB
3 gWKB

3 e−k3(ω)|x| (87)

As a consequence, we have, for x → −∞,

ϕ(x) ∼ ∑
i∈I′(B3)

aiKWKB
i gWKB

i eiki(ω)x, (88)

and, as x → ∞,
ϕ(x) ∼ ∑

i∈I′(B3)
∑

j∈I(B1)
aiP2ijH

WKB
j dWKB

j eikj(ω)x, (89)

where the lateral connection matrix P2 enters in a fundamental way. By comparison
with (82), we infer, in our case,

M(B3 7→B1)
ij =

1
KWKB

i gWKB
i

P2ijH
WKB
j dWKB

j . (90)

We refer, for a more general discussion, involving n-th-order ordinary differential
equations and their WKB solutions, to [48], specifically Section 7 therein.

As to the scattering amplitudes, it is interesting to introduce

HWKB
j dWKB

j =: H̄jNj, (91)

where Ni denotes the normalizations of the propagating modes in the asymptotic region,
as in [5,11] (see [1] and references therein). In particular, we have

Nj =
1√

4π|vg(k j(ω))(ω − vk j(ω))|)
, (92)

where vg(k j(ω)) is the group velocity of the j − th mode. We note that, as to normalizations,
the above formula also holds for the propagating modes for x < 0 (i.e., in the black hole re-
gion), i.e., one can, e.g., define KWKB

j gWKB
j =: K̄jNj as well. We note that the decaying mode

is not normalizable, but this is irrelevant. See the discussion in the following subsection.
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The coefficients H̄j are given by

H̄j =
HWKB

j dWKB
j

Nj
=

bNH
j

NjaWKB
j

dWKB
j . (93)

For x < 0, we find analogously

K̄j =
KWKB

j gWKB
j

Nj
=

mNH
j

NjnWKB
j

gWKB
j . (94)

These quantities are very relevant, as, in the calculation of the ratio of currents whose
conserved flux is measured at infinity, one has, for example,

|Ji
x|

|J j
x|

=
|H̄i|2
|H̄j|2

(95)

if both the currents are relative to the external region, with an obvious change if currents in
the black hole region are involved. See also the following subsection.

4.4. S-Matrix Revisited: A Further Labeling of States, Stokes Matrices Elements, and
Particle Creation

Let us adopt the following physical notation for states: in the external region x > 0, we
set, for the indices, the following correspondence: 0 7→ V, 1 7→ P, 2 7→ N, 4 7→ H, where P
and N represent the dispersive modes with positive and negative norms, respectively, and
H and V are the modes that correspond to solutions of the reduced equation, representing
Hawking particles and regular modes, respectively. For x < 0, the correspondence is
0 7→ V′, 5 7→ H̄ for the propagating modes, where V′ is the regular mode propagating
toward x → −∞, and H̄ is associated with the Hawking partner; furthermore, we consider
3 7→ D for the decaying mode. It is simpler to write the connection matrix by referring to
physical modes instead of using the basis elements described in the previous section, as
it makes the process associated with the elements of the Stokes matrix more explicit in a
trivial way. A subtlety could occur, as some modes, particularly the decaying mode, do not
admit normalization; still, this does not represent a problem at all. As is seen, in regard to
the growing mode, its amplitude must be set to zero.

The transition from (87) to (85) involves the following non-vanishing elements of the
Stokes matrix (90):

MH̄H =
1

KWKB
H̄ gWKB

H̄

ψ−3λ HWKB
H dWKB

H , (96)

MH̄N =
1

KWKB
H̄ gWKB

H̄

(1 − ψ−3λ)HWKB
N dWKB

N , (97)

MV′V =
1

KWKB
V′ gWKB

V′
HWKB

V dWKB
V , (98)

MDH =
1

KWKB
D gWKB

D
HWKB

H dWKB
H , (99)

MDP = − 1
KWKB

D gWKB
D

HWKB
P dWKB

P , (100)

MDN = − 1
KWKB

D gWKB
D

HWKB
N dWKB

N . (101)

These matrix elements tell us how the various solutions, and thus how the physical
modes, are related to each other. As in a Feynman diagram, we consider that there is a
so-called mode conversion ([43]) only in the case of non-zero non-diagonal matrix elements.
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All the constants appearing in (99), (100), and (101) are known, and, explicitly, in
particular, we have

HWKB
P = e−

3
4 πi e

πω
2κ

2
√

π

(2κ

c

)− iω
6κ +

1
2
ϵ

iω
3κ +

1
2 , (102)

HWKB
N = e

1
4 πi e−

πω
2κ

2
√

π

(2κ

c

)− iω
6κ +

1
2
ϵ

iω
3κ +

1
2 , (103)

HWKB
H = −

sinh
(

πω
κ

)
πi

Γ
(
− iω

κ

)(2κ

c

) iω
3κ

ϵ−
2iω
3κ , (104)

KWKB
D = ei 3

4 π e−
πω
2κ

2
√

π

(2κ

c

)− iω
6κ +

1
2
ϵ

iω
3κ +

1
2 , (105)

KWKB
H̄ = −

sinh
(

πω
κ

)
πi

Γ
(
− iω

κ

)(2κ

c

) iω
3κ

ϵ−
2iω
3κ . (106)

It is important to stress that the modes V′ and V correspond to particle states (positive
norm), and there is no association between them and negative particle states, so no possible
involvement in the process of particle creation from the vacuum is foreseeable. Moreover,
the corresponding solutions are regular and analytic at the TP, in contrast to every other
solution at hand. The only physically sensible choice is to connect these solutions to each
other at x = 0, and this amounts to setting MV′V = 1, as in a standard scattering in
nonrelativistic quantum mechanics. V′ is simply V inside the horizon, at least as far as
the leading order in ϵ is considered in the basis construction, as previously discussed.
Furthermore, it is correct to consider, in the same order, the modes V and V′ as giving rise
to a sort of disconnected line of a disconnected Feynman diagram. A corroboration of this
picture is found in Appendix B.1, where we have explicit solutions to the reduced equation
for a specific but physically meaningful monotonic transcritical velocity profile, and we
can see that the regular solution is analytic and describes both V and V′ asymptotically. As
to the disconnected mode V, one has

|JV′
x | = |JV

x |, (107)

where JL
x represents the flux of L-modes at x = ∞, with L = H, P, N, V, and where (107)

holds true at least at the leading order in ϵ.
From (11), one obtains the following current conservation:

|JH
x | = |JP

x | − |JN
x |, (108)

where no contribution from the decaying mode arises, being |JD| → 0 as x → −∞, of
course.1 Then, by considering (99), (100), and (101), we obtain

1 − |P|2 + |N|2 = 0, (109)

where

|P|2 :=
|JP

x |
|JH

x | =
|H̄P|2
|H̄H |2

, (110)

|N|2 :=
|JN

x |
|JH

x | =
|H̄N |2
|H̄H |2

. (111)
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Explicitly, we find

|H̄N |2 = 2κce−π ω
κ , (112)

|H̄P|2 = 2κceπ ω
κ , (113)

|H̄H |2 = 4κc sinh
(

π
ω

κ

)
. (114)

The ingoing modes moving from ∞ toward the horizon (TP), namely, P and N, at
initial times correspond to the only mode H going to ∞ at final times (again, at infinity, the
decaying mode cannot contribute, as above):

aH
ω = αωaP

ω + βωaN
ω

†
, (115)

where the various amplitudes are obtained as follows: the ratio giving the particle-creation
rate is

|βω |2 := |N|2, (116)

and
|αω |2 := |P|2. (117)

It is very important to notice that, if |0⟩ is the vacuum state, then for the number nH(ω)
of Hawking particles (created at frequency ω), as a consequence of (115), one obtains

nH(ω) = ⟨0|aH
ω

†
aH

ω |0⟩ = |βω |2 = |N|2. (118)

Thermality, as is well known, is associated with the ratio

|βω |2
|αω |2

=
|JN

x |
|JP

x |
= e−βhω, (119)

where
βh :=

2π

κ
(120)

is the inverse of the expected Hawking temperature. This ratio and (109) imply a blackbody
spectrum,

|N|2 =
1

exp(βhω)− 1
, (121)

that, at least at the leading order in ϵ, is purely Planckian, because no contribution of the
disconnected mode V is present. We notice that this result can also be obtained from a
direct calculation of |JN

x |/|JH
x |, as it is easy to verify.

Finally, let us discuss the state H̄ associated with the Hawking partner. Let us recall

that we have the set −1 = eiπ . Then, we obtain g5 = e−
βh
2 ω (see (57) but also compare (70)

with (73)). Furthermore,
|K̄H̄ |2 = 4κce−βhω sinh

(
π

ω

κ

)
. (122)

As a consequence, we have

aH̄
ω

†
=

H̄H

K̄H̄
ψ−3λaH

ω +
H̄N

K̄H̄
(1 − ψ−3λ)aN

ω
†

(123)

=
H̄H

K̄H̄
ψ−3λ(αωaP

ω + βωaN
ω

†
) +

H̄N

K̄H̄
(1 − ψ−3λ)aN

ω
†

(124)

=
H̄P

K̄H̄
ψ−3λaP

ω + θωaN
ω

†
, (125)
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where we have used (115) for aH
ω and αω = H̄P/H̄H . Notice that the term proportional to

aN
ω

† cannot contribute to the vacuum expectation value of aH̄
ω

†
aH̄

ω , so we do not need to
make the factor θω explicit. We find

⟨0|aH̄
ω

†
aH̄

ω |0⟩ = |H̄P|2
|K̄H̄ |2

ψ−6λ =
1

exp(βhω)− 1
, (126)

i.e., the same rate of production from the vacuum for H̄ as for H, as is expected if one is the
antiparticle of the other one. Also, in this case, the latest result is a pure consequence of the
rigorous mathematical setting adopted, and no particular effort to find a suitable Corley’s
diagram must be made.

One might wonder which results could be obtained if, instead of the basis B3 for
describing the near-horizon physical states in the black hole region, one were to use the
basis B2. The following (obvious) changes occur in the construction of the scattering matrix:

∑
i∈I′(B2)

aiKWKB
i gWKB

i eiki(ω)x = ∑
i∈I′(B2)

aiKWKB
i gWKB

i ∑
j∈I(B1)

M(B2 7→B1)
ij HWKB

j dWKB
j eikj(ω)x,

(127)
with

M(B2 7→B1)
ij =

1
KWKB

i gWKB
i

P3
−1
ij HWKB

j dWKB
j , (128)

where the following holds:

P−1
3 =


1 0 0 0
0 1 1 0
0 −1 + ψ−3λ −1 1
0 0 −1 0

. (129)

As a consequence, it is easy to see that, as far as the decaying mode is concerned,
which is represented by w3(z) in the linear region, the standard calculation of the Hawking
particle production occurs, exactly as above. Instead, for the Hawking partner, the lateral
connection formula

w6(z) = w4(z) + (−1 + ψ−3λ)w1(z), (130)

leads to

aH̄
ω

†
=

H̄H

K̄H̄
aH

ω +
H̄P

K̄H̄
(−1 + ψ−3λ)aP

ω (131)

=

(
H̄H

K̄H̄
αω +

H̄P

K̄H̄
(−1 + ψ−3λ)

)
aP

ω +
H̄H

K̄H̄
βωaN

ω
†

(132)

=
H̄P

K̄H̄
ψ−3λaP

ω +
H̄H

K̄H̄
βωaN

ω
†
, (133)

and then the same result as in the above discussion is obtained.
In concluding this section, we stress that the present analysis also holds not only for

dielectric media and water, which are subluminal, but also for BECs (superluminal case), as
discussed in [1–3], and we considered the subluminal Corley model just for simplicity. For
completeness, in Appendix C, we sketch the basic calculations for the superluminal Corley
model as well, which is just the one most directly related to a BEC (see [2] for calculations
for BECs in the present framework).

5. The 4D Extension of the Corley Model

We take into account the simplest possible model, i.e., the Corley model, and limit
our considerations to the subluminal case, which is considered in [5,11,17]. In contrast to,
e.g., BEC and water waves [2], it does not allow a variable speed of sound velocity c(x).
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Furthermore, it cannot be related to the dielectric model, which is discussed in the following
section. It represents the reference model for analytical studies of the dispersive analog
Hawking effect, and thus, it is a useful benchmark for the discussion of a 4D extension
and also for the search for exact solutions of the reduced equation. A possible extension
consists of both extending the model to transverse directions and considering the following
extension of the action. In particular, we add transverse coordinates y, z, both in the kinetic
term and in the dispersive one, in the simplified hypothesis that the velocity field still
depends only on x. This is necessary in order to allow variable separation and analytic
studies of the model itself. The present restriction, which is admittedly strong, is not
necessary in the Hopfield model that we discuss in the following section.

The extension we propose is the following:

S =
1
2

∫
d4x[((

1
c

∂t +
v
c

∂x)ϕ)
2 + ϕ(∂2

x + ∂2
⊥ + ϵ2(∂2

x + ∂2
⊥)

2)ϕ], (134)

where ∂2
⊥ := ∂2

y + ∂2
z . With the separation ansatz ϕ(t, x, y, z) = eiωtψ(x, y, z), we obtain the

modified equation of motion

ϵ2(∂4
x + 2∂2

x∂2
⊥ + ∂4

⊥)ψ(x, y, z) +
(

1 − v2(x)
c2

)
∂2

xψ(x, y, z) + ∂2
⊥ψ(x, y, z)

+2
v(x)

c2 (iω − v′(x))∂xψ(x, y, z)− i
ω

c2 (iω − v′(x))ψ(x, y, z) = 0, (135)

where we have enhanced the spatial dependence of ψ. We further adopt the variable
separation ansatz:

ψ(x, y, z) = ei(kyy+kzz)φ(x). (136)

Let us define k2
⊥ := k2

y + k2
z and assume that |k⊥|ϵ ≤ O(1), i.e., that transverse

momenta are not big with respect to the scale ϵ (they are not order 1
ϵ as the wavenumbers

associated with the dispersive modes). Then, we obtain

ϵ2(∂4
x − 2k2

⊥∂2
x + k4

⊥)φ(x) +
(

1 − v2(x)
c2

)
∂2

x φ(x)− k2
⊥φ(x)

+2
v(x)

c2 (iω − v′(x))∂x φ(x)− i
ω

c2 (iω − v′(x))φ(x) = 0, (137)

and then, in terms of the Orr–Sommerfeld-type equation we discussed in the previous
section, we obtain the following coefficients:

p3(x, ϵ) =

(
1 − v2(x)

c2 − 2ϵ2k2
⊥

)
, (138)

p2(x, ϵ) = 2
v(x)

c2 (iω − v′(x)), (139)

p1(x, ϵ) =
ω

c2 (ω + iv′(x))− k2
⊥ + ϵ2k4

⊥. (140)

With respect to the original model, the only corrections we obtain concern an O(ϵ2)
correction of p3 and an O(ϵ2) correction of p1, and, as a consequence, we can again corrob-
orate the general picture, in the sense that we confirm, once again, the need to use a more
general and less model-dependent approach than the one discussed in [11].

As to the near-turning-point approximation, at the leading order, nothing changes, as
it involves only the leading-order coefficient p30, p20, which remains trivially unaltered.

Also, the leading-order WKB approximation for the above-separated equation is only
affected by the shift ω2 7→ ω2 − c2k2

⊥, and, again, nothing substantial changes, as the
leading-order WKB wavefunctions remain unaltered.

There is an important change in the classification of the modes; indeed, one finds
that the new quantum number k⊥ appears, and then we have to replace the modes
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P, N, H, V, H̄, V′, and D with a one-parameter family of the modes P(k⊥), N(k⊥), H(k⊥),
V(k⊥), H̄(k⊥), V′(k⊥), and D(k⊥). The scattering is, in this situation, by no means as
simple as in the 2D setting because of the presence of the transverse contributions, albeit in
the most simple choice to allow a trivial separation of variables.

As to thermality, again, it is straightforward to show that the temperature is unaffected
and is universal, as expected (cf. the discussion in [51] about the contributions beyond the
s-waves; herein, we could say that we consider contributions beyond the case k⊥ = 0).

It is also remarkable that the possible presence of massive modes [11,52] in a 4D frame-
work, but even in the 2D case, does not modify the black hole temperature and can also
be treated in the present framework. Indeed, a mass contribution in the action functional
corresponds to the term ∝ m2ϕ2, which is a non-derivative term. As a consequence, by
imposing m2 ≪ 1/ϵ2 (cf. [11]), it may only contribute a further additive term −m2 to
p1(x, ϵ) above. Under this assumption, no modification to the temperature occurs (still,
modifications to the dispersion relation arise). We refer again to the discussion in [51].

6. The 4D Extension of the Hopfield Model and the Analogous Hawking Effect

The electromagnetic Lagrangian for the full Hopfield model is quite involved and
has been discussed, using different theoretical tools, in [21]. A simplified model is then a
better choice. Our model, introduced in [18], is related to the two-dimensional reduction
of the Hopfield model adopted in [53] and is such that the electromagnetic field and the
polarization field are simulated by a pair of scalar fields, φ and ψ, respectively, in the
so-called φψ–model. We also provided a new approach, in a perturbative framework, for
the subcritical case in [26] and even exact solutions for a specific monotonic profile for the
refractive index in [27], with a full description of connection formulas. Despite its simplifi-
cation, it is still set up in such a way that we obtain exactly the same dispersion relation,
and, moreover, we can simulate the same coupling as in the full case. Its Lagrangian is

Lφψ =
1
2
(∂µ φ)(∂µ φ) +

1
2χω2

0

[
(vα∂αψ)2 − ω2

0ψ2
]
− g

c
(vα∂αψ)φ, (141)

where χ plays the role of the dielectric susceptibility, vµ is the usual four-velocity vector of
the dielectric, ω0 is the proper frequency of the medium, and g is the coupling constant be-
tween the fields. The latter constant is henceforth set equal to one, as its original motivation
(see [18]) can be relaxed without problems in a more advanced discussion (cf. also [1]).

We adopt a phenomenological model where we can leave room for a spacetime
dependence of the microscopic parameters χ, ω0 in such a way that χω2

0 is a constant. In
particular, our parameter for a perturbative expansion is

ϵ2 :=
1

χω2
0

, (142)

which corresponds to the parameter appearing in the Orr–Sommerfeld-like equation (mas-
ter equation). The equations of motion are

□φ +
1
c
(vα∂αψ) =0, (143)

1
χω2

0
(vα∂α)

2ψ +
1
χ

ψ − 1
c

vα∂α φ =0. (144)

We can separate the above system, obtaining equations involving only one of the fields
φ, ψ. As in [1], we focus on the electromagnetic field φ, obtaining[

□+
1
c2 (v

α∂α)
(

χvβ∂β

)
+ ϵ2(vα∂α)

(
χ(vβ∂β)□

)]
φ = 0. (145)
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As we wish to discuss the 4D setting, we assume that the velocity of the perturbation
is along the x-axis. The latter assumption is quite natural, as the velocity in the model is
assumed to be spatially homogeneous and constant. We, again, designate x⊥ as the trans-
verse spatial directions y, z. As a consequence, in the above formula (145), the only explicit
dependence on the transverse directions appears in the terms involving the operator □.
One may observe that, in the Fourier space, the transverse directions are associated with the
contribution k⊥ to the wavenumber and are constants in a separation-of-variables process,
which is allowed in our settings, and that this contribution affects only the coefficient p10
of the master equation, at the leading order. This has a very interesting consequence: the
near-horizon equation is totally unaffected by the presence of transverse contributions, as
the p10 coefficient does not participate in its construction at the leading order. Also, the
temperature remains unaffected, but ω satisfies a different dispersion relation due to the
presence of transverse modes. This finding, which is a natural consequence of our general
approach, is, of course, in perfect agreement with statements in [21,51].

7. Conclusions

Our main result concerns the analytical calculations of the various interesting rates of
particle production for the analog Hawking effect. We have first deduced suitable bases
of solutions in the near-horizon region in different sectors of the complex plane and then
calculated the relative connection matrices, both in the subluminal case and the superlumi-
nal one, in agreement with the analysis in [39–41]. Then, for simplicity, we have applied
our general analysis, which can also be applied to BECs, dielectrics, and water (cf. [1,2]), to
the most well-known theoretical model, the so-called Corley model [5,11], and we have
shown how to deduce physical amplitudes without introducing hypotheses ad hoc, like the
Corley’s boundary condition appearing in [5], but just on rigorous mathematical grounds.
See also [11], where a refinement of Corley’s analysis is found, but not a complete and
rigorous analysis of the connection formulas. The subtle point is that the main features of
the analog Hawking effect are associated with the Stokes phenomenon, i.e., the appear-
ance of non-trivial Stokes matrices. The Stokes phenomenon, on rigorous mathematical
grounds, was discussed before in the context of the dispersive Hawking effect only in [27]
for dielectrics, using the Hopfield model and thanks to exact solutions associated with a
specific but physically very relevant choice of the refractive index profile. A general setting,
albeit for weak dispersive effects, as discussed in [1–3], was still lacking.

In our view, our analysis in the present paper represents a strong corroboration, in
terms of analytical calculations, of the analog Hawking effect in the framework of weak
dispersive effects and completes the analysis in previous papers [1–3].

Then, we have taken into account the problem of extending, at least in a prelimi-
nary way, our framework to 4D cases, albeit allowing for the separation of variables. We
have shown that the expression of the Hawking temperature remains unaltered, as it
happens in the standard Hawking effect (see [51]). As a final (but still relevant) contri-
bution, we provide, in Appendix B, exact solutions for the so-called reduced equation
that governs the behavior of the short-wavelength modes in the WKB approximation
(non-dispersive modes).

Future investigations should involve a more detailed analysis of the 4D case, as well as
a better comprehension of the subcritical case, which, from the point of view of analytical
calculations, remains a challenging problem (see [22,26]).

There are further possible lines of investigation. The first one concerns the explicit
evaluation of the contributions arising from higher-order terms in the expansion parameter
ϵ. In particular, as discussed in previous works (see, e.g., [1,2] and see also [54]), there is,
for small but non-zero ϵ, a maximum value of the frequency beyond which the Hawking
process is not allowed, and, moreover, its thermal appearance at low frequencies must be
corrected. This may happen either when considering a model where transverse dimensions
(and/or massive modes) are also allowed because of the possible arising of a non-trivial
gray-body factor, or as a consequence of higher-order contributions. Going beyond the
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leading order in epsilon is possible but is non-trivial (we refer to the papers quoted by
Nishimoto, in particular, [40]) and requires further analytical studies, which we intend to
develop in the future.

A further line of investigation might be represented by the Unruh effect [55], which
is, as is well known, a phenomenon with strong similarities to the Hawking effect. A very
important issue from the experimental point of view consists of measuring the effect itself
in analog condensed matter systems. See, for example, [56–59] and references therein. BECs
coupled with lasers are, e.g., involved in this picture [56]. As far as a fourth-order equation
of the Orr–Sommerfeld kind can be obtained, as is standard in BECs (see, e.g., [2,60]),
the present framework could help in performing analytical calculations. We reserve the
analysis of this problem for future investigations.
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Appendix A. Corley’s Boundary Condition

For completeness and a better comparison with previous calculations, we sketch how
thermality is usually recovered and the Hawking effect calculated in the external region
(see [5] as the seminal paper and [1] and references therein). The starting point is the
so-called Corley’s boundary condition, which amounts to the following diagram for modes
in the linear region.

decaying mode

H−mode

N−mode

P−mode

Figure A1. The paths used in the subluminal case in Corley’s work [5]. Given the universality
of (5), this diagram holds true for all the subluminal cases that can be rewritten in terms of the
Orr–Sommerfeld-like equation discussed in [1]. The paths for the dispersive modes, called P-mode
and N-mode in the text, are indicated, as well as those for the Hawking mode (H-mode) and for the
decaying mode. The last mode is the one in the black hole region x < 0.

To be more explicit, Corley’s boundary condition amounts to a shortcut for finding
connection formulas, and in particular, it resembles Figure 1, where, instead of considering
wi(z) at the same z, one considers w1(z), w2(z), and w4(z) at z > 0, and w3(z) at z < 0 is
identified with the decaying mode.
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As discussed in [1,5], in the external region,

|JH | = |JP| − |JN |+ |JV | (A1)

holds true. Also,
aH

ω = αωaP
ω + βωaN

ω
†
+ ηωaV

ω (A2)

holds true, and thermality is found, but on less rigorous grounds and with a less clear
role for the mode V, which still was found not to modify the blackbody spectrum at the
leading order in [1] (and which is often neglected, at least in the linear region, as in [5,11]).
A complete calculation, as we have shown in Section 4.4, reveals that V does not participate
in (A1), and ηω = 0.

Appendix B. The Exact Solution of the Reduced Equation

As discussed in [1], non-dispersive modes, which are modes at low wavenumbers,
satisfy the reduced Equation (4) in the WKB approximation. This is a second-order ordinary
differential equation, which cannot be solved in the general case. Note that, corresponding
to the leading-order equation governing non-dispersive modes in the WKB approximation
in the parameter ϵ, one cannot approach its solutions using the WKB approximation
itself (unless a further scale is taken into account in the problem, but there is no physical
indication for such a new scale). As a consequence, consistency would require calculating
exact solutions of the reduced equation to maintain a well-behaved WKB approximation.
Of course, WKB works very well for the non-degenerate dispersive modes (the ones with
non-zero wavenumbers from the eikonal equation) but is still problematic for degenerate
non-dispersive modes (both with zero wavenumbers). Knowledge of the solutions of the
reduced equation is necessary to implement S-matrix calculations. What is true is that it
remains possible to provide solutions asymptotically at x → ±∞ (see [1]) and also near the
turning point in the transcritical case (as near x = 0, a Fuchsian singularity appears). In
the following, at least for the case of the Corley model, and for a physically meaningful
profile, we can provide exact solutions. Notice that, as the same reduced equation is shared
by the subluminal and superluminal cases (cf. Appendix C), the following solutions hold
for both cases.

We consider two specific velocity profiles, one for the transcritical case and the other
for the subcritical one.

Appendix B.1. Transcritical Case

In order to allow for supersonic velocities and then for the presence of a real turning
point x = 0, we choose the following velocity profile:

v(x) := − c
3
(3 − tanh(x/L)), (A3)

where L is a length scale. Then, we can obtain the following two solutions:

φ1(x) = C1(tanh(x/L))i 3ωL
c sech(x/L)−i 3ωL

c , (A4)

φ2(x) = C2(1 − tanh(x/L))i 3ωL
10c (6 − tanh(x/L))−i 3ωL

35c (1 + tanh(x/L))−i 3ωL
14c , (A5)

where φ1(x) corresponds to the Hawking mode for x > 0, presents a logarithmic branch
point at x = 0, and represents, by analytic continuation, the Hawking partner for x < 0. It
may be noted that, by taking into account the due inner product for the model, the Hawking
mode in the exterior region has a positive norm, whereas the same mode obtained by the
analytical continuation in the black hole region of the Hawking mode acquires a negative
mode (antiparticle state). This changing of the norm is a special feature of the transcritical
case; for the subcritical one, there is a substantially unaltered characterization for the states
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at the left and right of the dielectric perturbation, in the specific sense that no change in the
signs of norms happens.

As to φ2(x), it corresponds to an analytical solution defined everywhere and represents
the (spectator) mode V for x > 0 and its part V′ for x < 0.

Appendix B.2. Subcritical Case

We choose the following velocity profile:

v(x) := −c
(2

3
− 1

6
tanh(x/L)

)
, (A6)

so that the velocity is such that |v| < c. In this case, we have no real turning point; still,
it may be interesting to also provide solutions for this situation. Then, we can obtain the
following two solutions:

φ1(x) = C1(1 − tanh(x/L))−i ωL
c (1 + tanh(x/L))i 3ωL

c (2 + tanh(x/L))−i 2ωL
c , (A7)

φ2(x) = C2(1 − tanh(x/L))i ωL
3c (1 + tanh(x/L))−i 3ωL

11c (10 − tanh(x/L))−i 2ωL
33c , (A8)

where φ1(x) corresponds to the (would-be) Hawking mode, and φ2(x) to the regular
(spectator) mode.

Appendix C. The Corley Model in the Superluminal Case

The superluminal case of the Corley model was discussed both in the original pa-
per [5] and in [11]. In both cases, connection formulas are presented, but not on rigorous
mathematical grounds. Here, we report all basic calculations.

We also consider herein the model studied analytically in [5], with specific reference
to the superluminal case (the subluminal one is considered in [1]). We notice that the
superluminal Corley model amounts to replacing ϵ2 7→ −ϵ2 in the subluminal one. As a
consequence, we have the following fourth-order ordinary differential equation:

ϵ2∂4
x φ −

[(
1 − v2(x)

c2

)
∂2

x φ + 2
v(x)

c2 (iω − v′(x))∂x φ − i
1
c2 ω(iω − v′(x))φ

]
= 0, (A9)

where, again, v(x) is the velocity field and v′(x) remains its first derivative with respect to
x. The reduced equation is the same as (42), and the TP is again a solution of v(x) + c = 0.
The linear region is defined in the same way as in the subluminal case.

Appendix C.1. WKB Approximation

We set

φ(x) = exp
(

θ(x)
ϵ

) ∞

∑
i=0

ϵiyi(x). (A10)

For the leading order, we obtain

θ
′4 −

(
1 − v2

c2

)
θ
′2 = 0, (A11)

whose solutions are θ′ = 0 (multiplicity two, non-dispersive modes that are solutions of
the reduced equation) and, in the black hole region x < 0, two purely imaginary solutions
corresponding to dispersive propagating modes:

θ′± = ±i

√
v2

c2 − 1. (A12)

As is evident, again, the superluminal nature of the dispersion relation emerges
because the aforementioned solutions correspond to modes that propagate on the black
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hole side of the horizon (turning point). In the exterior region x > 0, we find real dispersive
solutions θ′±, corresponding to the growing mode (plus sign) and the decaying mode
(minus sign).

By taking into account the so-called transport equation, as in [1], we obtain the
solutions corresponding to the high-wavenumber mode k± solutions appearing in [5,11]:

φ±(x) = C

 1
v2(x)

c2 − 1

3/4

exp

(
± i

ϵ

∫ x
ds

√
v2(s)

c2 − 1

)
exp

−i
ω

c

∫ x
ds

v(s)
c

1
v2(s)

c2 − 1

. (A13)

It is fundamental to notice that, in the linear region, we have

φ±(x) ∼ C
(

2κ

c

)−3/4
|x|−

3
4−

iω
2κ exp

(
∓ i

ϵ

2
3

√
2κ

c
|x|

3
2

)
, (A14)

where we stress the change of sign in the exponential factor, as we must match these
solutions with that of the near-horizon approximation.

As to non-dispersive modes, the solutions φs(x), φ4(x), φd(x), and φ5(x) that we
found in Section 4.1 also hold in this case and have the same properties (as they solve the
same reduced equation).

We point out that the positive-norm states are φ+(x), φ4(x), φs(x), φd(x), and the
negative-norm ones are φ5(x), φ−(x).

Appendix C.2. Near-Horizon Approximation

Near the TP, again, Equation (5) holds with the minus sign, with λ given by (63), and
for z, relation (62) holds true. The bases we are interested in are the ones described in detail
in [41], and in particular, we limit our attention to [1, w5(z), w2(z), w3(z)], representing
states in the black hole region z < 0, and to [1, w4(z), w1(z), w2(z)], representing states for
z > 0 (exterior region). In particular, we are interested in appealing to the lateral connection
formula [1, w4(z), w1(z), w2(z)] = [1, w5(z), w2(z), w3(z)]Π−1

2 , where

Π−1
2 =


1 0 0 0
0 ψ3λ ψ3λ 0
0 1 − ψ3λ −ψ3λ 1
0 0 −1 0

. (A15)

We refer to [41] for the asymptotic expansions of the functions wi(z) in the different
sectors of the complex plane. We just limit ourselves to providing the asymptotic expres-
sions on the real axis, both in the black hole region and in the exterior one. For z < 0, we
obtain the same expression as in (73) for w5(z), which corresponds to the Hawking partner
(a state with the negative norm). Dispersive modes are to be associated with

w2(z) ≃− 1
2
√

π
e−

3
4 πie−

πω
2κ |z|−

iω
2κ −

3
4 ei 2

3 |z|
3/2

, (A16)

w3(z) ≃
i

2
√

π
e−

3
4 πie

πω
2κ |z|−

iω
2κ −

3
4 e−i 2

3 |z|
3/2

. (A17)

Notice that w3(z) must be connected with the positive-norm state φ+(x), and w2(z)
must be connected with the negative-norm state φ−(x). For z > 0, we have that w4(z) is
the same as in (70), whereas

w1(z) ≃
1

2
√

π
e

πω
κ |z|−

iω
2κ −

3
4 e−

2
3 |z|

3/2
, (A18)

w2(z) ≃− 1
2
√

π
e

3
4 πie−

2πω
κ |z|−

iω
2κ −

3
4 e

2
3 |z|

3/2
, (A19)
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correspond to the decaying and growing modes, respectively.

Appendix C.3. Stokes Matrix and Physical Processes

We adopt the following physical notation for states: in the external region x > 0, we
set for the indices the following correspondence: 0 7→ V, 1 7→ D, 2 7→ G, and 4 7→ H, where
D and G represent the decaying and growing modes, respectively, and H and V are the
modes that correspond to solutions of the reduced equation, representing the Hawking
particles propagating toward x → ∞ and the regular mode V propagating toward the
horizon x = 0, respectively. For x < 0, the correspondence is 0 7→ V′, 5 7→ H̄ for the
propagating non-dispersive modes, where V′ is the regular mode and H̄ is associated with
the Hawking partner, both propagating toward x → −∞; furthermore, we consider 2 7→ N
for the dispersive antiparticle mode and 3 7→ P for the dispersive mode with the positive
norm, both propagating toward the horizon x = 0. Also, in the present case, it is simpler to
write the connection matrix by referring to physical modes.

In what follows, we adopt the convention of using KL and gL to indicate the coefficients
relative to the mode L in the initial basis and using HS and dS to represent the coefficients
relative to the mode S in the final basis. The transition from the external basis to the inner
one corresponds to the following non-vanishing elements of the associated Stokes matrix
(we omit the ones involving the growing mode G, as its coefficient in the initial basis has to
be set to zero):

MHH̄ =
1

KWKB
H gWKB

H
ψ3λHWKB

H̄ dWKB
H̄ , (A20)

MHN =
1

KWKB
H gWKB

H
(1 − ψ3λ)HWKB

N dWKB
N , (A21)

MVV′ =
1

KWKB
V gWKB

V
HWKB

V′ dWKB
V′ , (A22)

MDH̄ =
1

KWKB
D gWKB

D
ψ3λHWKB

H̄ dWKB
H̄ , (A23)

MDP = − 1
KWKB

D gWKB
D

HWKB
P dWKB

P , (A24)

MDN = − 1
KWKB

D gWKB
D

ψ3λ HWKB
N dWKB

N . (A25)

For V and V′, the same considerations as in Section 4.4 hold true. From (A23)–(A25), we
find, from current conservation,

1 =
|H̄N |2
|H̄H̄ |2

− ψ−6λ |H̄P|2
|H̄H̄ |2

, (A26)

where, explicitly,

|H̄N |2 = 2κce−π ω
κ , (A27)

|H̄P|2 = 2κceπ ω
κ , (A28)

|H̄H̄ |2 = 4κce−2π ω
κ sinh

(
π

ω

κ

)
, (A29)

|K̄H |2 = 4κc sinh
(

π
ω

κ

)
. (A30)

Furthermore, we have
aH̄

ω

†
= αωaN

ω
†
+ βωaP

ω, (A31)

so that
⟨0|aH̄

ω

†
aH̄

ω |0⟩ = |βω |2, (A32)
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and

|βω |2 = ψ−6λ |H̄P|2
|H̄H̄ |2

=
1

exp(βhω)− 1
, (A33)

as expected.
From (A20), (A21), and the associated current conservation (cf. Section 4.4), we can write

aH
ω = ζωaH̄

ω

†
+ θωaN

ω
†

= ζω βωaP
ω + (θω + ζωαω)aN

ω
†
, (A34)

where we also use (A31). We find

⟨0|aH
ω

†
aH

ω |0⟩ = |θω + ζωαω |2 =
|H̄N |2
|K̄H |2

=
1

exp(βhω)− 1
, (A35)

and, again, thermality is recovered.
In conclusion, we have shown, even in the superluminal case, the performance of the

proposed method.

Note
1 It would appear puzzling that the Hawking process is so strictly related to an evanescent state like the decaying one, like a sort of

evanescent Cheshire Cat. The mathematical ratio behind this fact is that there must be a tail beyond the horizon of the modes
H, P, and N propagating in the exterior region, and this tail is represented by the decaying mode. This would be mostly evident if,
in a still more correct approach, one would use wave packets (see, e.g., [43]). In such a case, the modes H, P, and N, which would
involve integrals over positive ω, could not be confined to the half-space with x ∈ (0, ∞) (cf. also [50], where this argument was
suggested in the case of the standard Hawking effect.)
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42. Nishimoto, T. On the Orr-Sommerfeld type equations, I; W.K.B. approximation. Kŏdai Math. Sem. Rep. 1972, 24, 281. [CrossRef]
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