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Abstract. Let α1, . . . , αm be two or more positive reals with sum 1, let
C ⊆ R

k be an open convex set, and f : C → R
k be a continuous injection

with convex image. For each nonempty set S ⊆ C, let M (S) be the family
of quasi-arithmetic means of all m-tuples of vectors in C with respect to
f and the weights α1, . . . , αm, that is, the family

M (S) =
{
f−1 (α1f(x1) + · · · + αmf(xm)) : x1, . . . , xm ∈ S

}
.

We provide a simple necessary and sufficient condition on S for which the
infinite iteration

⋃
n M n(S) is relatively dense in the convex hull of S.
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1. Introduction

Let C be a nonempty convex subset of a real vector space X and let f : C → X
be an injective map with convex image. Let also α1, . . . , αm be two or more
positive reals with sum 1. Then the quasi-arithmetic mean of x1, . . . , xm ∈ C
with respect to the function f and the weights α1, . . . , αm is the “mean vector”

m(x1, . . . , xm) := f−1 (α1f(x1) + · · · + αmf(xm)) ,

so that m is a map Cm → C.
Quasi-arithmetic means, which are commonly known also as quasi-linear

means, provide a generalization of classical and weighted means (say, the arith-
metic mean, the quadratic mean, the harmonic mean, and others). They were
first considered by Kolmogorov [17], Nagumo [23], de Finetti [7], and Kitagawa
[16], and have been proved to be useful in a large variety of contexts, see e.g.
[1, Section 7.3 and Chapters 15, 17, and 20] and [18, Chapter 5]. Their lattice
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structure has been recently studied in [24]. In addition, the investigation of
functional equations involving quasi-arithmetic means dates back at least to
Aumann [2] and it has been the subject of intense research for about eighty
years, see, e.g., the textbook expositions [14, Chapter III] and [1, Chapters
15 and 17], the articles [6,10,11,15,19–21], and references therein; in turn,
the latter works revealed connections with the study of fixed point theory,
permutable mappings, and dynamical systems.

For each nonempty S ⊆ C, we write M (S) for the set of all quasi-
arithmetic means of vectors in S with respect to f and α1, . . . , αm, that is,

M (S) := {m(x1, . . . , xm) : x1, . . . , xm ∈ S} .

Considering that m(x, . . . , x) = x for all x ∈ C, M (·) is a monotone increasing
operator (i.e., S ⊆ M (S) for all S ⊆ C), so it makes sense to define

M ω(S) :=
⋃

n≥0

M n(S),

where M 0(S) := S and M n+1(S) := M (M n(S)) for all integers n ≥ 0 and
sets S ⊆ C. Of course, each M n(S) is a subfamily of finite convex linear
combinations of elements of S, hence the limit M ω(S) is contained in the
convex hull of S, hereafter denoted by conv(S).

Remark 1.1. Note that M ω(S) is the smallest set W ⊆ C containing S such
that M (W ) = W . For, pick x1, . . . , xm ∈ M ω(S). Then there exists an inte-
ger n ≥ 0 such that x1, . . . , xm ∈ M n(S). Hence the quasi-arithmetic mean
m(x1, . . . , xm) belongs to M n+1(S), with the conclusion that M (M ω(S)) =
M ω(S).

As a related notion, in the case where f is the identity function id, follow-
ing Mesikepp [22], the set M (S) can be regarded as the Minkowski M -sum

⊕M (S, . . . , S) := {a1x1 + · · · + amxm : x1, . . . , xm ∈ S, (a1, . . . , am) ∈ M},

where M is the singleton {(α1, . . . , αm)}; cf. also [3,9].
Here and after, we suppose that X = R

k, for some integer k ≥ 1, and
that C is a nonempty open convex set. Let us also denote by int(S) and cl(S)
the interior and the closure of a subset S ⊆ R

k in the relative topology of C,
respectively. A subset S ⊆ R

k is said to be k-dimensional whenever it does not
lie in an affine (k − 1)-dimensional hyperplane, or, equivalently, int(conv(S))
is nonempty. Every subset of Rk is endowed with its relative topology. Hence,
given subsets A,B ⊆ R

k, we say that A is relatively dense in B if the closure
of A ∩ B in the relative topology of B coincides with B. Lastly, let |S| denote
the cardinality of a set S.

In the case where f is the identity function and C = R
k, the sets M ω(S)

have been studied by Green and Gustin in [12]. Remarkably, they proved in
[12, Theorem 2.2] the following density result.



Vol. 78 (2023) Quasi-Arithmetic Means Ad Libitum Page 3 of 11 238

Theorem 1.2. Suppose that f is the identity function id on R
k and fix two or

more positive weights α1, . . . , αm with sum 1. Then M ω(S) is relatively dense
in conv(S) for every set S ⊆ R

k.

Theorem 1.2 is the starting point of this work. Our main question is to
understand which continuous injections f may replace the identity map id in
the above result.

2. Main Result

Our main result follows.

Theorem 2.1. Let C ⊆ R
k be an open convex set and f : C → R

k be a con-
tinuous injection with convex image. Fix also two or more positive weights
α1, . . . , αm with sum 1, and a k-dimensional subset S ⊆ C. Then the following
are equivalent :
(i). M ω(S) is relatively dense in conv(S);
(ii). f [int(conv(S)] ⊆ int(conv(f [S])).
If, in addition, S is compact, then they are also equivalent to:
(iii). f [conv(S)] ⊆ conv(f [S]).

Before we proceed to the proof of Theorem 2.1, some remarks are in
order. First of all, if C = R

k and f = id, then condition (ii) clearly holds,
hence we recover Green and Gustin’s Theorem 1.2 (in the case where S is not
k-dimensional, it is enough to consider, modulo homeomorphisms, the problem
replacing R

k with the affine hull of S; we omit details).
Second, the hypothesis that f has convex image is not automatically

satisfied if k ≥ 2: for instance, consider the continuous injection f : C → R
2

with C := (0, 1)2 defined by f(x, y) := (x, x2 + y) for every (x, y) ∈ C.
Lastly, by condition (iii), one may think that there exists some relation-

ship between f [conv(S)] and conv(f [S]), apart from the trivial inclusion

f [S] ⊆ f [conv(S)] ∩ conv(f [S]).

But this is not the case: we may have equality, for instance, if k = 2, C =
(0,∞)2, S = {(1, 1), (2, 2)}, and f : C → R

2 is the continuous injection defined
by f(x, y) := (x, x2 + y2) for all (x, y) ∈ C. Indeed, f [conv(S)] = {(x, 2x2) :
x ∈ [1, 2]} and conv(f [S]) is the line segment between (1, 2) and (2, 4).

Remark 2.2. The equivalence between (i) and (iii) does not hold without any
conditions on S. For, suppose that m = k = 2, α1 = α2 = 1/2, and let
f : R2 → R

2 be an homeomorphism with the property that f [D] = B and
f(1, 0) = (1, 0), where D := [−1, 1]2 and B is the closed unit ball B with center
(0, 0) and radius 1 (for instance, it is sufficient to define f(0, 0) := (0.0) and
f(x, y) := (max{|x|, |y|} ·cos(θ),max{|x|, |y|} · sin(θ)) otherwise, where θ is the
unique angle in [0, 2π) such that x = k cos(θ) and y = k sin(θ) for some k ∈ R).
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Then, setting S := D \ {(1, 0)}, it follows that M ω(S) is relatively dense in
conv(S) = D, hence condition (i) holds. On the other hand, f [conv(S)] = B
is not contained in conv(f [S]) = B \ {(1, 0)}, hence condition (iii) fails.

As a consequence, we obtain an extension of Green and Gustin’s Theo-
rem 1.2 in the case of boxes Sk; here, an interval I ⊆ R may be unbounded.

Corollary 2.3. Let f1, . . . , fk : I → R be continuous injections such that I ⊆ R

is an open interval. Define the map f : Ik → R
k by

∀x ∈ Ik, f(x) := (f1(x1), . . . , fk(xk))

Fix also two or more positive weights α1, . . . , αm with sum 1. Then M ω(Sk)
is relatively dense in conv(Sk) for each S ⊆ I with nonempty interior.

We will need a series of intermediate lemmas given in Sect. 3. We will
deduce Theorem 2.1 and Corollary 2.3 in Sect. 4.

3. Intermediate Lemmas

In what follows, C ⊆ R
k stands for an open convex set, f : C → R

k for a
continuous injection with convex image, and S for a k-dimensional subset of
C (as in the statement of Theorem 2.1).

Lemma 3.1. The set f [C] is open in R
k and the function f is an homeomor-

phism onto its image.

Proof. It follows by the Brouwer’s invariance of domain theorem, see [5]. �
Lemma 3.2. Fix a subset U ⊆ f [C]. Then f−1 [int(U)] = int(f−1 [U ]) and
f−1 [cl(U)] = cl(f−1 [U ]).

Proof. On the one hand, by [8, Proposition 1.4.1], the continuity of f is equiv-
alent to f−1[int(V )] ⊆ int(f−1 [V ]) for all V ⊆ f [C]. On the other hand,
in view of Lemma 3.1, the restriction of the inverse f−1 on int(U) is con-
tinuous and injective. This implies that f [int(f−1[U ])] is an open set con-
tained in f [f−1[U ]] = U . Hence f [int(f−1[U ])] ⊆ int(U) and we conclude that
int(f−1[U ]) ⊆ f−1[int(U)].

For the second part, set V c := f [C] \ V for each V ⊆ f [C]. Then

f−1 [cl(U)] = f−1 [(int(U c))c] =
(
f−1 [int(U c)]

)c

=
(
int

((
f−1 [U ]

)c
))c

= cl
(
f−1[U ]

)
,

which concludes the proof. �
Let us recall the classical result of Carathéodory:

Lemma 3.3 [25, p.73]. Let V ⊆ R
k be an arbitrary set. Then

conv(V ) =
⋃

U⊆V : |U |≤k+1

conv(U).

We will need also the following characterization of interior of convex hulls:
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Lemma 3.4 [13]. Let V ⊆ R
k be an arbitrary set. Then

int(conv(V )) =
⋃

U⊆V : |U |≤2k

int(conv(U)).

Note that the constant 2k in the above lemma cannot be improved: in-
deed, if V := {e1,−e1, . . . , ek,−ek}, where {e1, . . . , ek} stands for the canoni-
cal basis of Rk, then the zero vector belongs to int(conv(V )), but it does not
belong to int(conv(U)) for all U ⊆ V with |U | = 2k − 1.

Lemma 3.5. The following inclusion holds:

f−1 [int (conv(f [S]))] ⊆
⋃

T⊆S : |T |≤2k

cl
(
f−1 [int (conv(f [T ]))]

)
. (1)

Proof. Note that the claim is obvious if f [S] is not k-dimensional. Hence, let
us assume hereafter that int(conv(f [S])) 
= ∅. By the injectivity of f and
Lemma 3.4, the left hand side of (1) can be rewritten as

f−1

⎡

⎣
⋃

U⊆S : |U |≤2k

int (conv(f [U ]))

⎤

⎦ .

Now, fix T ⊆ S with |T | ≤ 2k and note that int (conv(f [T ])) is an open set
contained in f [C], so by the continuity of f the set f−1[int (conv(f [T ]))] is open
and contained in C. Thus int (conv(f [T ])) ⊆ f [C], therefore by Lemma 3.2 the
right hand side of (1) can be rewritten as

f−1

⎡

⎣
⋃

T⊆S : |T |≤2k

cl (int (conv(f [T ])))

⎤

⎦ .

At this point, the conclusion is immediate. �

Lemma 3.6. Let V ⊆ R
k a be k-dimensional convex set. If H ⊆ R

k is relatively
dense in int(V ), then H is relatively dense in V .

Proof. It is sufficient to show that int(V ) is relatively dense in V . For, let U
be an open ball centered at some boundary point of V , so that U ∩ V 
= ∅,
and let us say u ∈ U ∩ V . Since int(V ) 
= ∅, there exists a closed ball W with
positive radius contained in int(V ). If u belongs to int(V ), the claim holds.
Otherwise u has to be a boundary point of V . Now, since V is convex, the
subset D := {γu+(1−γ)w : γ ∈ [0, 1], w ∈ W} is contained in V . In addition,
u is an interior point of U , hence there exists an open ball B centered in u with
B ⊆ U . By monotonicity, we obtain int(D) ∩ B ⊆ int(D) ∩ U ⊆ int(V ) ∩ U .
The claim follows from the fact the left hand side is clearly nonempty. �

Lastly, let us recall the following useful property:
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Lemma 3.7 [4, Chapter II, Section 6, Proposition 16 and Corollaire 1]. Let
U, V ⊆ R

k be k-dimensional convex sets with U open and V closed. Then

int(cl(U)) = U and cl(int(V )) = V.

4. Proofs Section

We proceed now to the proof of Theorem 2.1 and Corollary 2.3.

Proof of Theorem 2.1. (i) =⇒ (ii). Let us suppose on the contrary that con-
dition (i) holds, while (ii) does not. To simplify the notation, define

P := int (conv(S)) , Q := f−1 [int (conv(f [S]))] , and R := int (conv(f [S])) .

Hence P \ Q is nonempty. Note all P , Q, and R are open subsets of Rk.

Claim 1. P \ cl(Q) has nonempty interior.

Proof. If (ii) does not hold then f [P ] is not contained in R. Let us suppose
that f [P ] is contained in cl(R). Since f [P ] is open by Lemma 3.1, it follows
that f [P ] ⊆ int(cl(R)). Since the interior of the closure of an open convex
set coincides with the set itself by Lemma 3.7, it follows that f [P ] ⊆ R,
contradicting our assumption. Therefore f [P ]\cl(R) 
= ∅.

Let g be the restriction of the inverse map f−1 to R and note that R =
f [Q]. By Lemma 3.1, g is a homeomorphism onto its image Q. It follows by
Lemma 3.2 that f [P ] is not contained in cl(f [Q]) = cl(g−1[Q]) = g−1[cl(Q)] =
f [cl(Q)]. By the injectivity of f this is equivalent to saying that the open set
P \ cl(Q) is nonempty, which proves the claim. �

Let us suppose that M ω(S) is relatively dense in conv(S). Since M ω(S) ⊆
f−1[conv(f [S])] and P ⊆ conv(S), we obtain that f−1[conv(f [S])] is relatively
dense in P , that is, V ∩ f−1[conv(f [S])] 
= ∅ for each nonempty open subset
V ⊆ P . Taking into account Claim 1, we obtain

(P \ cl(Q)) ∩ f−1[conv(f [S])] 
= ∅. (2)

Since S is k-dimensional and f is an homeomorphism by Lemma 3.1, f [S] is
k-dimensional, so that R is a nonempty open set. It follows by Lemma 3.2 and
Lemma 3.7 that

f−1 [conv(f [S])] ⊆ f−1 [cl(conv(f [S]))] = f−1[cl(R)] = cl(Q).

However, this contradicts (2).
(ii) =⇒ (i). Since S is k-dimensional, |S| ≥ k + 1 ≥ 2. Let us a fix a

subset T ⊆ S, let us say T = {t1, . . . , th}, with 2 ≤ h ≤ 2k. Let Δ be the
(h− 1)-dimensionalsimplex, that is, the set of vectors δ = (δ1, . . . , δh) ∈ [0, 1]h
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with
∑

i≤h δi = 1. Moreover, define W :=
⋃

n Wn where, for each integer
n ≥ 1,

Wn :=
{
γ ∈ Δ : f−1 (γ1f(t1) + · · · + γhf(th)) ∈ M n(T )

}
.

Claim 2. W is dense in Δ.

Proof. For each V ⊆ R
h, let π(V ) be the projection of V on its first h − 1

coordinates, that is,

π(V ) := {x ∈ R
h−1 : (x1, . . . , xh−1, y) ∈ V for some y ∈ R}.

Since the vectors δ in Δ satisfy the linear constraint
∑

i≤h δi = 1, it is sufficient
to show that π(W ) is relatively dense in π(Δ) = {δ ∈ [0, 1]h−1 :

∑
i<h δi ≤ 1}.

Define α := max{α1, . . . , αm}. Consider the cube J0 := [0, 1]h−1 and let
us construct recursively a sequence (Jn)n≥1 of increasingly finer partitions of
J0 into 2n(h−1) parallelepipeds as it follows. Set for convenience J0 := {J0}
and suppose that Jn−1 has been defined for some n ≥ 1. At the nth step, let
us divide each parallelepiped J ∈ Jn−1 with h−1 hyperplanes with dimension
h − 2, each one perpendicular to an edge and dividing the edge itself in two
segments with lenghts proportional to α and 1 − α. Therefore we obtain a
partition Jn of the original cube J0 into 2n(h−1) parallelepipeds of dimension
h − 1, each one with volume ≤ αn(h−1) and diagonals of length ≤ αn

√
h − 1.

Let Vn be the set of vertices of these parallelepipeds which belong also to π(Δ),
and note that Vn ⊆ π(Wn). Since V :=

⋃
n Vn is contained in π(W ), we obtain

lim sup
n→∞

max
x∈π(Wn)

min
y∈π(Wn),x �=y

‖x − y‖ ≤ lim sup
n→∞

max
J∈Jn

max
x,y∈J,x �=y

‖x − y‖

≤ lim sup
n→∞

αn
√

h − 1 = 0.

Therefore V (and, hence, π(W )) is relatively dense in π(Δ). �

At this point, let gT : Δ → R
k be the function defined by

∀δ ∈ Δ, gT (δ) := δ1f(t1) + · · · δhf(th).

Since gT is continuous with image gT [Δ], it follows by Claim 2 that gT [W ]
is relatively dense in gT [Δ] (this easy fact can found, e.g., in the proof of [8,
Theorem 1.4.10]). In particular, gT [W ] is relatively dense in int(conv(f [T ])).
Taking into account that f is a homeomorphism, we obtain that f−1[gT [W ]]
is relatively dense in f−1[int(conv(f [T ]))]. Since M ω(T ) contains f−1[gT [W ]],
it follows that

M ω(T ) is relatively dense in cl(f−1[int(conv(f [T ]))]). (3)

Considering that (3) holds for all subsets T ⊆ S with 2 ≤ |T | ≤ 2k, it
follows by monotonicity that

M ω(S) is relatively dense in
⋃

T⊆S:|T |≤2k

cl(f−1[int(conv(f [T ]))]).
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In view of Lemma 3.5, we get

M ω(S) is relatively dense in f−1[int(conv(f [S]))].

Hence, by condition (ii) and the injectivity of f , we have

M ω(S) is relatively dense in int(conv(S)).

The conclusion follows by Lemma 3.6 and the hypothesis that the convex hull
of S has nonempty interior.

(iii) =⇒ (ii). Condition (iii) implies that

f [int(conv(S))] ⊆ f [conv(S)] ⊆ conv(f [S]).

Moreover, f is an open map by Lemma 3.1, hence f [int(conv(S))] is contained
in int(conv(f [S])), i.e., condition (ii) holds.

Lastly, suppose that S is compact.
(ii) =⇒ (iii). Since S is k-dimensional, f [S] is k-dimensional as well

by condition (ii). Moreover, by Lemma 3.1, f is a homeomorphism onto its
image. Since both continuity and convex hull operator preserve compacteness
(see e.g. [8, Theorem 3.1.10] and [25, Theorem 3.20(d)], respectively), then
conv(S), conv(f [S]), and f−1[conv(f [S])] are compact sets. In addition, by
condition (ii) and the monotonicity of the closure operator, we have

cl (int (conv(S))) ⊆ cl
(
f−1 [int (conv(f [S]))]

)
.

Since a k-dimensional closed convex set coincides with the closure of its interior
by Lemma 3.7, we obtain by Lemma 3.2 that

conv(S) = cl (int (conv(S))) ⊆ cl
(
f−1 [int (conv(f [S]))]

)

= cl
(
int

(
f−1 [conv(f [S])]

))
= f−1 [conv(f [S])] ,

which is equivalent to condition (iii) by the injectivity of f . �

Remark 4.1. As it is clear from the proof above, the implication (iii) =⇒ (ii)
holds independently of the compactness assumption on S.

Proof of Corollary 2.3. The image of an interval of a continuous real-valued
function of a real variable is also an interval. Moreover, every interval is a con-
vex set. Since conv(S) is an interval of R and the functions fi are continuous
injections, we obtain fi[conv(S)] = conv(fi[S]) for each i ∈ {1, . . . , k}. How-
ever, each inverse function f−1

i is a continuous injection, hence fi[int(conv(S))]
is an open subsets of fi[conv(S)], cf. Lemma 3.1. Therefore

fi[int(conv(S))] ⊆ int (fi[conv(S)]) = int (conv(fi[S]))
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for each i ∈ {1, . . . , k}. By [8, Proposition 1.4.1], the map f−1
i is continuous if

and only if fi[int(V )] ⊆ int(fi[V ]) for all V ⊆ I. Therefore, we obtain that

f [int(conv(Sk))] = f
[
int(conv(S))k

]
=

k∏

i=1

fi [int(conv(S))]

⊆
k∏

i=1

int (fi [conv(S)]) = int
(
f [(conv(S))k]

)
= int

(
f [conv(Sk)]

)
.

The conclusion follows from Theorem 2.1. �
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[6] Daróczy, Z., Maksa, G., Páles, Z.: Functional equations involving means and
their gauss composition. Proc. Am. Math. Soc. 134(2), 521–530 (2006)

[7] de Finetti, B.: Sul concetto di media. Giornale dell’Istituto Italiano degli Attuari
2(3), 369–396 (1931)

[8] Engelking, R.: General topology, second ed., Sigma Series in Pure Mathematics,
vol. 6, Heldermann Verlag, Berlin, Translated from the Polish by the author
(1989)

[9] Gardner, R.J., Hug, D., Weil, W.: Operations between sets in geometry. J. Eur.
Math. Soc. (JEMS) 15(6), 2297–2352 (2013)

[10] G�lazowska, D., Leonetti, P., Matkowski, J., Tringali, S.: Subcommutativity of
integrals and quasi-arithmetic means, manuscript, arxiv.org/abs/2305.03227

[11] G�lazowska, D., Leonetti, P., Matkowski, J., Tringali, S.: Commutativity of in-
tegral quasi-arithmetic means on measure spaces. Acta Math. Hungar. 153(2),
350–355 (2017)

[12] Green, J.W., Gustin, W.: Quasiconvex sets. Canad. J. Math. 2, 489–507 (1950)

[13] Gustin, W.: On the interior of the convex hull of a Euclidean set. Bull. Am.
Math. Soc. 53, 299–301 (1947)
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